EFFECTS OF MILITARY SERVICE ON THE BRAIN

Michael Weiner MD

Director: Center for Imaging of Neurodegenerative Disease VA Medical Center, San Francisco

Professor of Radiology, Medicine, Neurology, Psychiatry University of California, San Francisco

UNPUBLISHED DATA IS REMOVED FROM THIS SLIDE SET

EFFECTS OF MILITARY SERVICE ON THE BRAIN

- Military service, especially combat
 - associated with impaired health and function
- Service in the Persian Gulf War
 - associated with
 - subjective symptoms
 - neuropsychological and functional impairments
- These problems have caused great distress to soldiers, veterans and their families

MILITARY SERVICE EXPOSURES WHICH MAY AFFECT THE BRAIN

- Physical exposures
 - Medications
 - Pesticides
 - Vaccines
 - Sarin
- Psychological exposures
 - Stress
 - Traumatic events

IMPORTANCE OF REPLICATION

- Scientific results are usually first obtained on a small sample of the population.
- However, for a scientific finding to be robust and "generalizable"
 - Meaning, that the finding applies widely to the population
- The finding must be "replicated" (i.e. repeated)
 - In a different population of subjects
 - By different investigators
- Findings widely replicated become widely accepted

EARLY WORK AT OUR MEDICAL CENTER

- 1987: MRS of the brain
 - Stroke
 - Brain tumors
 - Epilepsy
 - Alzheimer's Disease
- 1990: Studies of Post Traumatic Stress Disorder
 - Hippocampal volume
 - MRS: NAA

Publications concerning PTSD

- Schuff, N., Marmar, C.R., Weiss, D.S., Neylan, T.C., Schoenfeld, F., Fein, G., and Weiner, M.W.: Reduced Hippocampal Volume and N-Acetyl Aspartate in Posttraumatic Stress Disorder. In: Annals of the New York Academy of Sciences. Supplement on Psychobiology of Posttraumatic Stress Disorders, 821:516-520, 1997.
- Schuff N, Neylan TC, Lenoci MA, Du AT, Weiss DS, Marmar CR, Weiner MW: Decreased Hippocampal N-Acetylaspartate in the Absence of Atrophy in Posttraumatic Stress Disorder. Biological Psychiatry, 50(12):952-9, 2001.
- Neylan TC, Schuff N, Lenoci M, Yehuda R, Weiner MW, and Marmar CR: Cortisol Levels are Positively Correlated with Hippocampal N-Acetylaspartate. Biological Psychiatry, 54(10):1118-21, 2003.
- Neylan TC, Lenoci M, Rothlind J, Metzler TJ, Schuff N, Du AT, Franklin KW, Weiss DS, Weiner MW, Marmar CR: Attention, Learning and Memory in Posttraumatic Stress Disorder. Journal of Traumatic Stress, 17(1):41-6, 2004.
- Samuelson KW, Neylan TC, Metzler TJ, Lenoci M, Rothlind J, Henn-Haase C, Choucroun G, Weiner MW, Marmar CR.: Neuropsychological functioning in posttraumatic stress disorder and alcohol abuse. Neuropsychology, 20(6):716-26, 2006.
- Schuff N, Neylan TC, Fox-Bosetti S, Lenoci M, Samuelson KW, Studholme C, Kornak J, Marmar CR, Weiner MW.: Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. Psych Res Neurimaging, 162(2):147-57, 2008.
- Zhen W, Neylan TC, Mueller SG, Lenoci M, Truran D, Marmar CR, Weiner MW, Schuff N. Magnetic Resonance Imaging of Hippocampal Subfields in Posttraumatic Stress Disorder. Archives of General Psychiatry, 67(3):296-303, 2010.
- Samuelson KW, Neylan TC, Lenoci M, Metzler TJ, Cardenas V, Weiner MW, Marmar CR. Longitudinal Effects of PTSD on Memory Functioning. J Int Neuropsychol Soc, 15(6):853-61, 2009.
- Schuff N, Zhang Y, Zhan W, Lenoci M, Ching C, Boreta L, Mueller SG, Wang Z, Marmar CR, Weiner MW, Neylan TC.
 Patterns of Altered Cortical Perfusion and Diminished Subcortical Integrity in Posttraumatic Stress Disorder: A MRI Study. NeuroImage [Epub ahead of print] May 16, 2010.

RESULTS PRESENTED TODAY

Some represent replications Some represent new findings: need to be repeated

- NAA in basal ganglia in GWI
- Effects of Sarin exposure
 - Symptoms and neuropsychological tests
 - Brain volumes and metabolites
- Chronic multisystem illness
 - Symptoms and neuropsychological tests
 - Brain volumes and metabolites
- Post traumatic stress disorder (PTSD)
 - Symptoms and neuropsychological tests
 - Brain volumes and metabolites

Jan. 15, 1997 Issue of JAMA

Reprinted from JAMA ® The Journal of the American Medical Association January 15, 1997 Volume 277 Copyright 1997, American Medical Association

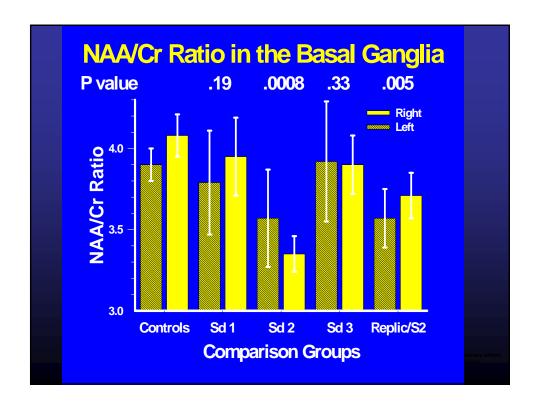
Original Contributions

Is There a Gulf War Syndrome?

Searching for Syndromes by Factor Analysis of Symptoms

Robert W. Haley, MD; Thomas L. Kurt, MD, MPH; Jim Hom, PhD

Evaluation of Neurologic Function in Gulf War Veterans


A Blinded Case-Control Study

Robert W. Haley, MD; Jim Hom, PhD; Peter S. Roland, MD; Wilson W. Bryan, MD; Paul C. Van Ness, MD; Frederick J. Bonte, MD; Michael D. Devous, Sr, PhD; Dana Mathews, PhD, MD; James L. Fleckenstein, MD; Frank H. Wians, Jr, PhD; Gil I. Wolfe, MD; Thomas L. Kurt, MD, MPH

Self-reported Exposure to Neurotoxic Chemical Combinations in the Gulf War

A Cross-sectional Epidemiologic Study

Robert W. Haley, MD; Thomas L. Kurt, MD, MPH

MRI/MRS

Pilot study for proposal: Preliminary 1H MRS measures in the right basal ganglia (n=10/group)

Measure	GWI	CONTROLS	% change	p (t-test)
NAA/Cr	3.62 ± 0.41	4.06 ± 0.72	-11	0.05
NAA/Cho	3.59 ± 0.92	3.90 ± 0.45	-8	0.16
Cho/Cr	1.10 ± 0.44	1.05 ± 0.22	+5	0.38
NAA [a.u.]	568 ± 160	633 ± 79	-10	0.12

a.u. = arbitrary units

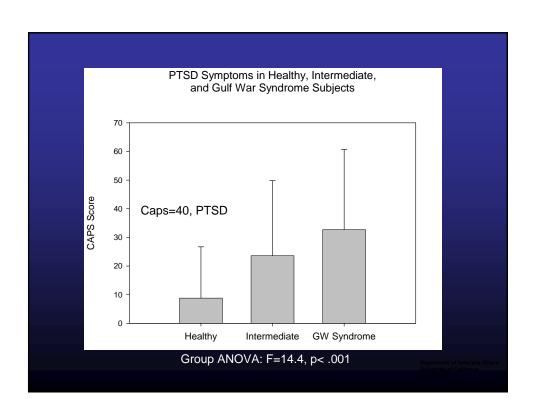
GWI from our GW clinic Controls from lab staff

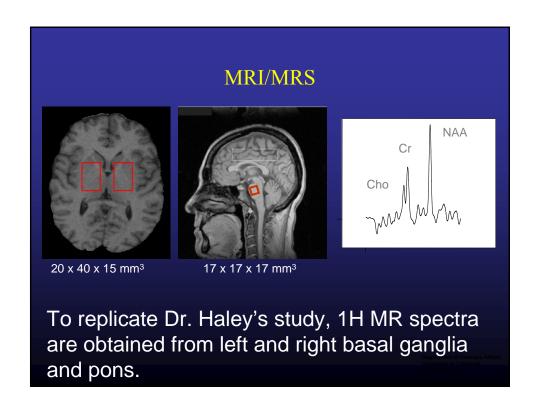
GWI STUDIES IN SAN FRANCISCO Recruitment and Classification

- Any veteran of the Gulf War is eligible
- Subjects classfied after entry
- CDC criteria
 - Musculoskeletal pain
 - Fatigue
 - Neurocognitive dysfunction
- Health Questionnaires
 - 3 questionnaires on 3 separate occasions
 - 3 CDC symptoms & 6 dummy questions
- Classification
 - Gulf War Ill (GWI)
 - Endorsed two symptoms on all three questionnaires
 - Gulf War Veteran (GWV; aka Control)
 - Endorsed no single symptom more than once
 - Intermediate
 - All other combinations

RECRUITMENT

- Referrals from GWI clinics
- Ads in veterans magazines
- 32,000 letters to Gulf War veterans (from DOD list)
- 2100 subjects telephone-screened for research
- 319 subjects enrolled in DOD 1.5T study
 - 279 completed study and had usable data.
- 162 subjects came to SFVAMC for VA 4T study
 - 158 completed study and had usable data.


Participants 1.5 T Cohort


All Subjects:

	Controls	Intermediate	GWI	Total
Male	83	68	34	185
Female	10	4	13	27
	93	72	47	212

Syndrome Two Only:

	Controls	Intermediate	GWI	Total
Male	1	7	10	18
Female	1	1	5	7
	2	8	15	25

Three-Group Comparisons males only

Left Basal Ganglia

	n	NAA	Creatine	Choline
Vets	47	6.78 ± 0.92	4.08 ± 0.50	1.48 ± 0.20
Intermediates	37	6.78 ± 1.08	4.17 ± 0.43	1.42 ± 0.19
Illness	24	6.95 ± 0.70	4.16 ± 0.41	1.47 ± 0.19
Vets vs. Illness	*	n.s.	n.s.	n.s.
Vets vs. Intermediates*		n.s	n.s.	n.s.
Intermediates vs. Illness*		n.s.	n.s.	n.s.

	n	NAA/Cre	NAA/Cho	Cho/Cre	NAA/(Cho+Cre)
Vets	47	1.66 ± 0.12	4.58 ± 0.44	0.36 ± 0.03	1.22 ± 0.09
Intermediates	37	1.62 ± 0.17	4.79 ± 0.61	0.34 ± 0.04	1.21 ± 0.12
Illness	24	1.67 ± 0.12	4.77 ± 0.51	0.35 ± 0.04	1.24 ± 0.08
Vets vs. Illness*		n.s.	0.11	n.s.	n.s.
Vets vs. Intermediates*		n.s.	n.s.	n.s.	n.s.
Intermediates vs. Illness*		n.s.	n.s.	n.s.	n.s.

^{*}p-value = two-tail

Three-Group Comparisons males only

Pons

	n	NAA	Creatine	Choline
Vets	26	3.13 ± 0.56	1.40 ± 0.22	0.92 ± 0.15
Intermediates	27	2.91 ± 0.52	1.31 ± 0.26	0.80 ± 0.16
Iliness	12	3.02 ± 0.60	1.38 ± 0.32	0.85 ± 0.19
Vets vs. Illness*		n.s.	n.s.	n.s.
Vets vs. Intermediates*		n.s.	n.s.	n.s.
Intermediates vs. Illness*		n.s.	n.s.	n.s.

	n	NAA/Cre	NAA/Cho	Cho/Cre	NAA/(Cho+Cre)
Vets	26	2.25 ± 0.39	0.66 ± 0.10	3.44 ± 0.46	1.36 ± 0.19
Intermediates	27	2.25 ± 0.32	0.62 ± 0.12	3.73 ± 0.72	1.39 ± 0.17
Illness	12	2.29 ± 0.69	0.63 ± 0.13	3.60 ± 0.63	1.39 ± 0.33
Vets vs. Illness*		n.s.	n.s.	n.s.	n.s.
Vets vs. Intermediates*		n.s.	n.s.	n.s.	n.s.
Intermediates vs. Illness*		n.s.	n.s.	n.s.	n.s.

^{*}p-value = two-tail

Syndrome II (III + Int) vs. Vets males only

Left Basal Ganglia

	n	NAA	Creatine	Choline
Veterans	47	6.78 ± 0.92	4.08 ± 0.50	1.48 ± 0.20
Syndrome II	14	7.15 ± 0.69	4.29 ± 0.43	1.42 ± 0.17
Syndrome II vs. Vets*		n.s.	n.s.	n.s.

	n	NAA/Cre	NAA/Cho	Cho/Cre	NAA/(Cho+Cre)
Veterans	47	1.66 ± 0.12	4.58 ± 0.44	0.36 ± 0.03	1.22 ± 0.09
Syndrome II	14	1.67 ± 0.14	5.08 ± 0.70	0.33 ± 0.05	1.25 ± 0.10
Syndrome II v	s. Vets*	n.s.	0.02	0.03	n.s.

^{*}p-value = two-tail

Syndrome II (III + Int) vs. Vets males only

Pons

	n	NAA	Creatine	Choline
Veterans	26	3.13 ± 0.56	1.40 ± 0.22	0.91 ± 0.15
Syndrome II	7	3.17 ± 0.53	1.37 ± 0.36	0.83 ± 0.15
Syndrome II vs. Vets*		n.s.	n.s.	n.s.

	n	NAA/Cre	NAA/Cho	Cho/Cre	NAA/(Cho+Cre)
Veterans	26	2.25 ± 0.39	3.44 ± 0.46	0.66 ± 0.10	1.35 ± 0.19
Syndrome II	7	2.40 ± 0.56	3.85 ± 0.60	0.63 ± 0.10	1.47 ± 0.27
Syndrome II v	s. Vets*	n.s.	0.06	n.s.	n.s.

*p-value = two-tail

ARYLESTERASES

(metabolize organophosphates)

Domain	GW Vet	Intermed	GW III	P-value Vet v Ill
Paraoxo nase	963.1 (662.5) N=63	867.0 (483.8) N=45	938.3 (666.9) N=41	0.9 ns
Diazoxon ase	10102.6 (3633.5) N=63	9122.5 (3278.8) N=45	10404.4 (3701.3) N=41	0.6 ns

no sign of significant results between GWV and GWI.

PARAOXONASE OR DIAZAOXONASE

- There were no paraoxonase or diazoxonase effects for either GWI (by either CDC or Syndrome II diagnosis).
- There were no results in the log transformed data.
- No PTSD effects were observed.

EFFECTS OF SARIN ON THE BRAIN

- Follows up from work of Roberta White
 - Neuropsychological impairments
 - Heaton et al: Reduced WM in high-exposed compared to low exposed
 - · But no differences between exposed and unexposed
- We obtained Sarin exposure information from the DOD (Larry Sipos)
- Study 1: Sarin exposure in the 1.5 T cohort
 - Retrospective analysis of existing data to replicate Heaton
- Study 2: Sarin exposure in the 4 T cohort
 - Prospective study to replicate our 1.5 T data

DEMOGRAPHICS OF SARIN EXPOSED/NON EXPOSED: 1.5T

	Exposed (N=40)	Unexposed (N=40)
Age, mean (S.D.)	44.0 (10.2)	42.7 (9.3)
No. left-handed or ambidextrous (%)	7 (18%)	5 (13%)
No. female (%)	7 (18%)	7 (18%)
No. White (%)	26 (65%)	19 (48%)
No. Married (%)	19 (48%)	25 (63%)
Years of education	14.9 (3.7)	14.5 (2.0)
No. with less than college education	5 (13%)	6 (15%)
Military status during Gulf War		
No. activity duty (%)	30 (75%)	31 (78%)
No. National Guard (%)	5 (13%)	2 (5%)
No. Reserves (%)	5 (13%)	7 (18%)
Years in the military	14.6 (9.2)	14.1 (7.8)
No. with service-connected disability (%)	18 (45%)	22 (55%)
Avg. percent VA disability (range)	38.6% (10-100%)	40.3% (5-100%)
No. currently employed (%)	26 (65%)	28 (70%)
No. with history of alcohol problem (%)	19 (48%)	22 (55%)

CMI, chronic multisymptom illness (as defined by Fukuda et al., 1998); PTSD, post-traumatic stress disorder; CAPS, Clinician Administered PTSD scale; MDD, major depression

Relationship between Sarin exposure and Haley factor analysis-derived syndromes in 1.5T Cohort

Hayley Syndromes	Exposed No affected (%)	Unexposed No affected (%)	- χ²	<i>p</i> -value
1 "impaired cognition"	3/40 (8)	3/40 (8)	0.00	1.00
2 "confusion-ataxia"	5/40 (13)	4/40 (10)	0.12	0.73
3 "arthro-myo-neuropathy"	4/40 (10)	5/40 (13)	0.12	0.73
4 "phobia-apraxia"	5/40 (13)	4/40 (10)	0.12	0.73
5 "fever-adenopathy"	2/40 (5)	2/40 (5)	0.00	1.00
6 "weakness-incontinence"	1/40 (3)	2/40 (5)	0.34	0.56

EFFECTS OF SARIN EXPOSURE ON NEUROPSYCHOLOGICAL TEST PERFORMANCE: 1.5T Cohort (1)

	A	All Exposed		All Unexposed		All Exposed vs. All Unexposed		posed vs. 26 exposed
	N	Mean (SD)	N	Mean (SD)	χ^2	<i>p</i> -value	χ^2	<i>p</i> -value
General Verbal Intelligence								
WAIS-III VCI	39	102.3 (12.1)	40	107.1 (13.7)	1.90	0.17	1.40	0.24
WRAT-III reading	40	47.8 (4.9)	40	48.4 (4.5)	0.17	0.68	0.21	0.65
Attention								
Continuous Performance Testa	28	408.5 (77.2)	32	382.0 (48.2)	1.44	0.23	1.64	0.20
TMT A, time to complete ^a	40	30.1 (10.1)	40	30.0 (11.3)	0.12	0.73	0.21	0.65
WAIS-III Digit Spans	39	16.5 (4.4)	40	16.5 (4.6)	0.08	0.78	0.02	0.88
Executive Function								
TMT B, time to complete ^a	40	66.1 (29.7)	40	67.3 (31.2)	0.00	0.99	0.01	0.91
Short Categoy Testa	38	28.0 (17.1)	40	25.2 (12.9)	0.33	0.57	0.40	0.53
COWAT, FAS total correct	40	40.7 (10.8)	40	38.2 (9.1)	0.96	0.33	1.53	0.22

VCI: Verbal Comprehension Index; TMT: Trail Making Test; COWAT: Controlled Oral Word Association Test; CVLT-II: California Verbal Learning Test-II, BVMT-R: Brief Visual Memory Test-R alower scores indicate better performance

bgroup difference no longer significant after the TOMM failures are excluded from analysis (χ²=2.48, p=0.12)

EFFECTS OF SARIN EXPOSURE ON NEUROPSYCHOLOGICAL TEST PERFORMANCE in 1.5T Cohort (2)

Psychomotor Function		EXPOSED		UNEXPOSED				
WAIS-III Digit Symbol, coding	40	66.7 (18.9)	40	71.4 (14.2)	1.43	0.23	0.24	0.63
Grooved Pegboard, dominanta	40	70.6 (15.6)	40	70.6 (12.0)	0.00	0.99	0.49	0.49
Grooved Pegboard, non-dominant ^a	40	78.9 (24.5)	40	73.6 (12.1)	0.95	0.33	0.24	0.62
Visuospatial abilities								
WAIS-III Block Design	40	41.3 (12.9)	40	45.2 (11.4)	1.87	0.17	0.43	0.51
Memory								
CVLT-II, short delay free recall	38	10.8 (3.7)	38	11.7 (3.2)	1.19	0.27	2.03	0.15
CVLT-II, long delay free recall	38	10.9 (3.6)	38	12.0 (2.8)	1.31	0.25	4.33b	0.04b
WMS-III Logical Memory, delayed	40	24.4 (9.3)	40	26.0 (8.3)	0.48	0.49	0.93	0.34
Recall								
BVMT-R, total recall	40	22.8 (6.1)	40	25.4 (4.5)	3.30	0.07	2.10	0.15
BVMT-R, delayed recall	40	9.2 (1.8)	40	9.4 (1.9)	0.44	0.51	0.02	0.89
Test of Memory Malingering (TOMM)								
Trial 1	38	47.0 (5.0)	40	48.4 (2.4)	0.15	0.69	0.58	0.45
Trial 2	38	48.8 (3.2)	40	50.0 (0.2)	6.69	0.01	5.46	0.02
Retention	38	48.8 (3.6)	40	49.9 (0.3)	2.67	0.10	1.44	0.23

VCI: Verbal Comprehension Index; TMT: Trail Making Test; COWAT: Controlled Oral Word Association Test; CVLT-II: California Verbal Learning Test-II, BVMT-R: Brief Visual Memory Test-R alower scores indicate better performance

^bgroup difference no longer significant after the TOMM failures are excluded from analysis (χ^2 =2.48, p=0.12)

RETROSPECTIVE STUDY EFFECTS OF SARIN EXPOSURE IN BRAIN TISSUE: 1.5 T

	Exposed	Unexposed	F-value	p-value
Total GMa	654.14 (72.92)	675.89 (67.43)	7.68	0.007
Total WM ^a	539.28 (62.59)	521.53 (71.89)	0.70	0.95
Total CSFa	386.72 (131.31)	332.58 (100.48)	2.85	0.10
Hippocampus ^b	5.09 (0.67)	5.42 (0.69)	6.41	0.01
ICVa	1571.85 (178.37)	1530.01 (175.31)	1.39	0.24

^adata available for 36 exposed and 40 unexposed subjects ^bdata available for 35 exposed and 40 unexposed subjects FAILED TO REPLICATE WM CHANGES: HEATON ET AL.

CORRELATIONS BETWEEN BRAIN TISSUE VOLUME AND NEUROPSYCOLOGICAL TESTS: 1.5T Cohort

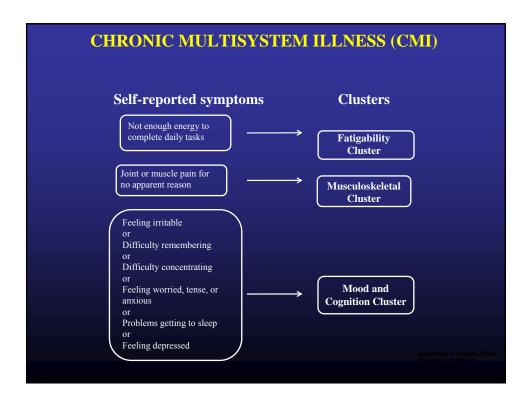
		Hippocampal volume		Total GM volume		volume
	Unexpos ed (N=40)	Exposed (N=32)	Unexpose d (N=40)	Exposed (N=32)	Unexposed (N=40)	Exposed (N=32)
WAIS-III VCI	0.28	0.48**	0.13	0.27	0.38*	0.22
TMT A ^a	-0.18	0.12	-0.38*	-0.35*	-0.10	-0.21
COWAT, FAS	-0.17	0.18	0.02	0.61**	0.20	0.43**
WAIS-III Block Design	0.14	0.29	0.36*	0.42**	-0.08	0.34*
Grooved Pegboard, non- dominant hand ^a	-0.02	-0.25	-0.14	-0.36*	0.21	-0.12

^{**}*p*<0.01, **p*<0.05

MRI volumes as a function of Arylesterase in sarin-exposed GW veterans

	QQ	QR	RR	F-value	p-value
N	10	10	10		
ICV	1680.51 (224.28)	1617.71 (305.50)	1544.40 (1256.79)	0.68	0.41
Total GM	664.63 (74.17)	697.35 (67.58)	644.01 (78.32)	1.79	0.19a
Total WM	543.24 (46.16)	639.78 (27.16)	523.00 (65.14)	2.52	$0.04^{a,b}$
Hippocampus	5.01 (0.45)	5.28 (0.54)	4.91 (0.89)	0.96	0.40a


^a ANCOVA with ICV as covariate


^bplanned contrasts: QQ and QR significantly different, p=0.03

planned contrasts shows that QR subjects have more WM volume than QQ subjects, which goes against the argument that the R allele is somehow protective.

• Haley et al. (1999) showed that ill GW veterans with the neurologic symptom complexes were more likely to have the R allele (heterozygous QR or homozygous R) than to be homozygous Q for the PON1 gene.

^alower scores indicate better performance

CMSI: DEMOGRAPHICS AND PTSD

	Severe CMSI	Mild-mod CMSI	Sx but not CMSI	No Sx	F or χ ²	<i>p</i> -value
	(N=107)	(N=91)	(N=89)	(N=92)		
Age, mean (S.D.)	44.7 (9.3)	47.4 (8.1)	46.5 (9.8)	47.8 (10.5)	2.24	0.08
No. left-handed or ambidextrous (%)	21 (20%)	8 (9%)	10 (11%)	10 (11%)	6.20	0.10
No. female (%)	23 (22%)	5 (6%)	8 (9%)	12 (13%)	12.81	0.005
No. White (%)	63 (59%)	63 (69%)	57 (64%)	69 (75%)	6.30	0.10
No. Married (%)	65 (61%)	60 (66%)	51 (57%)	55 (60%)	1.32	0.72
Years of education ¹	14.4 (2.0)	14.9 (2.0)	14.7 (2.0)	15.7 (2.4)	7.33	< 0.0001
No. with less than college education	24 (22%)	12 (13%)	14 (17%)	8 (9%)	5.80	0.12
Current CAPS ²	28.8 (29.2)	13.0 (18.3)	10.0 (18.9)	2.9 (9.7)	28.17	< 0.0001
Lifetime CAPS ³	49.8 (39.2)	31.6 (32.4)	19.6 (26.6)	9.2 (20.6)	31.50	< 0.0001
No. with PTSD*	39 (36%)	9 (10%)	7 (8%)	1 (1%)	58.55	< 0.0001
HAMD ⁴	11.9 (6.6)	6.7 (4.7)	4.7 (4.2)	1.5 (2.2)	82.61	< 0.0001
No. with MDD Dx	67 (63%)	47 (52%)	27 (30%)	8 (9%)	69.13	< 0.0001
SCID Global Assessment of Function ⁴	64.7 (12.4)	73.8 (11.4)	78.8 (10.7)	84.7 (8.2)	60.62	< 0.0001
No. with history of alcohol problem (%)	64 (60%)	47 (52%)	40 (45%)	36 (39%)	9.39	0.025
Military status during Gulf War						
No. activity duty (%)	82 (77%)	65 (71%)	63 (71%)	72 (78%)		
No. National Guard (%)	5 (5%)	10 (11%)	8 (9%)	6 (7%)		
No. Reserves (%)	19 (18%)	16 (18%)	18 (20%)	14 (15%)		

¹Tukey's post-hoc: No Sx different from all others, p<0.03

²Tukey's post-hoc: Severe CMSI different from all others, p<0.001; No Sx different from mild-mod CMSI, p=0.006

³Tukey's post-hoc: Severe CMSI different from all others, p<0.0001; mild-mod CMSI different from all others, p<0.05

⁴Tukey's post-hoc: all groups different from each other, p<0.05

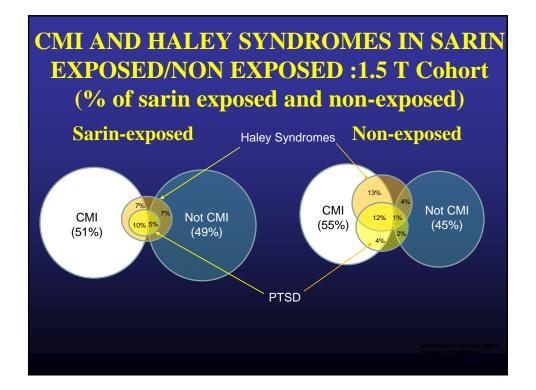
⁵Tukey's post-hoc: no Sx different from severe CMSI, p<0.0001

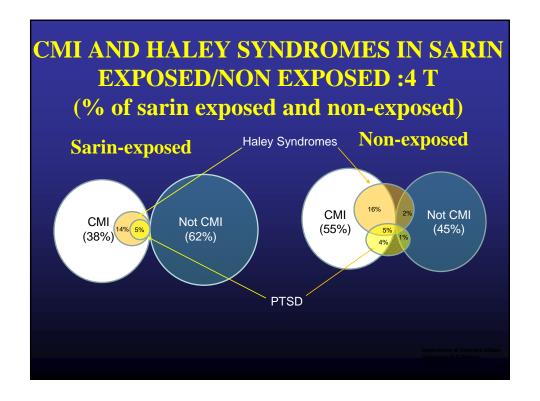
⁶Tukey's post-hoc: all groups different from each other except for mild-mod CMSI and NOT CMSI

⁷Tukey's post-hoc: severe CMSI different from all others, p<0.0001

CMI:NEUROPSYCHOLOGICAL TESTS:1.5T Cohort

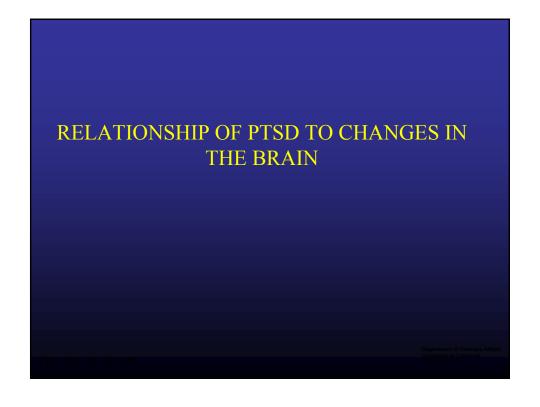
	Harlibar Carrianta	CMI	Severe CMI	Ctrls v	s. CMI	Ctrls vs. severe CMI	
	Healthy Controls	CMI Severe CM		F-value	p-value	F-value	p-value
N	59	152	129				
Age	45.0 (9.4)	45.3 (9.0)	44.6 (9.1)	0.03	0.86	0.10	0.75
Education	17.7 (1.8)	14.5 (2.5)	14.4 (2.6)	0.41	0.53	0.74	0.40
Current CAPS	4.4 (11.9)	23.9 (27.1)	25.0 (27.7)	28.22	< 0.0001	29.85	< 0.0001
Female:male	10:49	24:128	23:106				
ATTENTION							
TMT, A ¹	28.0 (9.2)	31.4 (10.2)	31.6 (10.7)	6.72	0.01ª	6.27	0.013 ^a
WAIS 3, digit span	17.0 (4.0)	16.6 (4.0)	16.4 (4.0)	0.48	0.50^{a}	1.61	0.21a
EXECUTIVE FUNCTION							
TMT, B ¹	60.6 (25.1)	68.1 (27.6)	69.4 (28.8)	3.38	0.067 ^a	4.64	0.033^{a}
Short Category ¹	25.4 (16.2)	29.0 (14.0)	29.4 (14.2)	1.10	0.30a	1.38	0.24a
PSYCHOMOTOR FUNCTION							
Grooved Pegboard, dom1	68.9 (11.9)	71.5 (12.3)	71.8 (12.4)	0.40	0.53a	0.57	0.45a
Grooved Pegboard,	76.0 (18.6)	754 (13.6)	75.8 (13.8)	0.34	0.56^{a}	0.10	0.76a
Non-dom ¹							
WAIS 3, digit symbol, coding	73.6 (15.8)	67.8 (14.5)	67.4 (14.3)	4.41	0.037a	5.57	0.019a
WAIS 3, digit symbol, pairing	14.3 (4.0)	13.0 (4.1)	13.0 (4.1)	4.29	0.040^{a}	4.13	0.043 ^a
SHORT-TERM MEMORY							
CVLT, total learning	53.3 (9.6)	50.1 (9.9)	50.2 (9.9)	2.46	0.12ª	1.79	0.18a
CVLT, short delay free recall	12.0 (2.8)	10.4 (3.2)	10.5 (3.2)	6.11	0.014^{a}	5.07	0.026^{a}
CVLT, long delay free recall	12.2 (2.8)	10.8 (3.4)	10.8 (3.4)	3.14	0.078^{a}	2.80	0.10^{a}
CVLT, total hits	14.8 (1.6)	14.7 (1.5)	14.7 (1.5)	0.05	0.83a	0.14	0.71a
GENUINE EFFORT							
TOMM, trial 1	48.8 (2.1)	47.6 (3.4)	47.3 (3.6)	5.22	0.023a	7.16	0.008a
TOMM, trial 2	49.9 (0.3)	49.7 (1.2)	49.7 (1.3)	1.57	0.21a	2.22	0.14a
TOMM, retention	49.9 (0.4)	49.6 (4.7)	49.5 (1.8)	1.94	0.17a	2.56	0.11a
					U	niversity of Calif	ornia

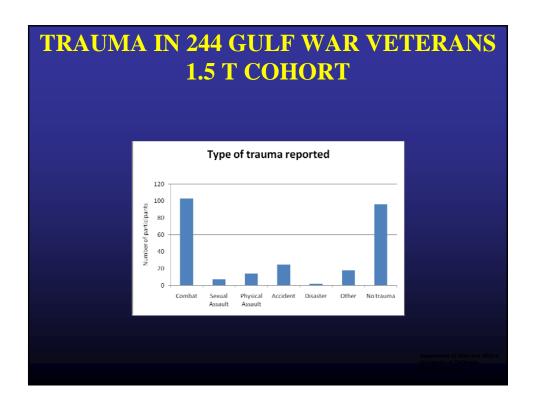

CMSI AND NAA/CHO

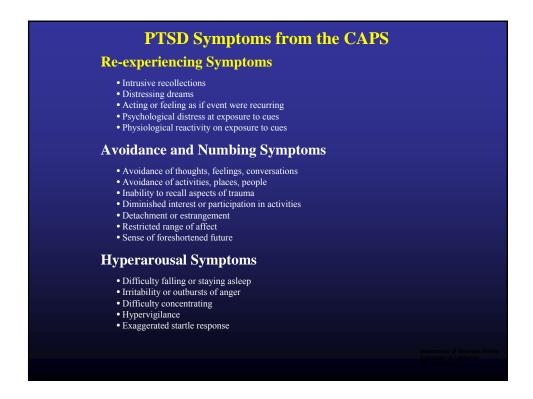

Region/Metabolite	Severe CMSI (N=44)	Mild-mod CMSI (N=34)	Sx but Not CMSI (N=35)	No Sx (N=41)	F-value	<i>p</i> -value
Left Basal Ganglia						
NAA/Cho*	4.9 (0.6)	4.5 (0.5)	4.4 (0.8)	4.6 (0.5)	2.72	0.047

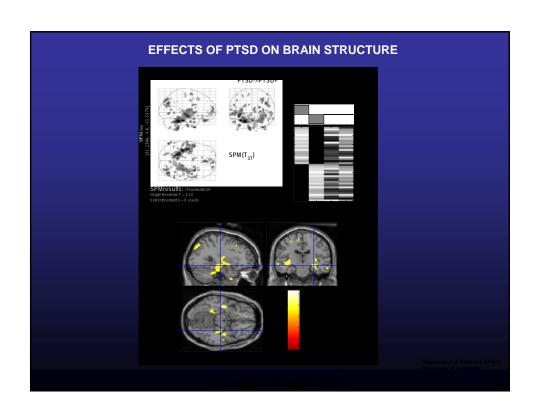
ANCOVA with scanner strength as covariate; there were significant group differences in education, current CAPS and HAMD however those variables did not contribute significantly to overall model

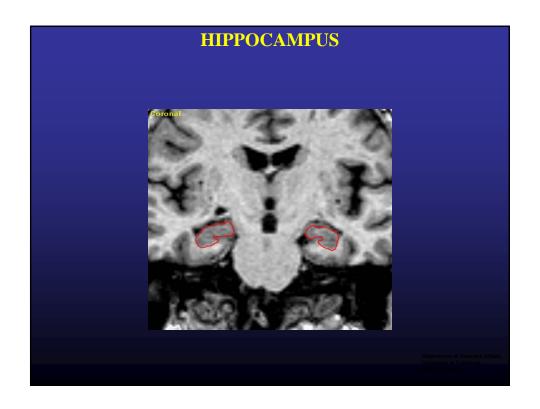
*planned contrasts showed that Sx but not CMSI (p=0.01) and mild-mod CMSI (p=0.04) were significantly different from severe CMSI; No Sx moderately (p=0.06) different from Sx but not CMSI

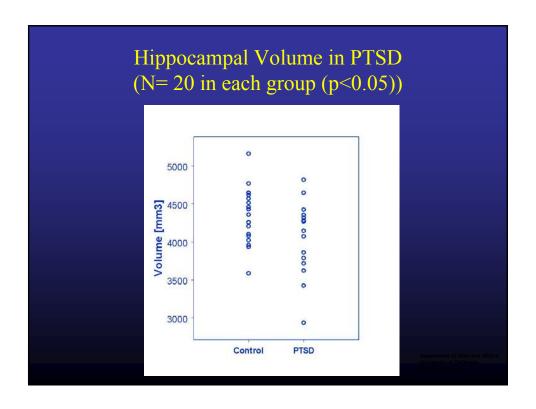

Department of Veterans Affairs

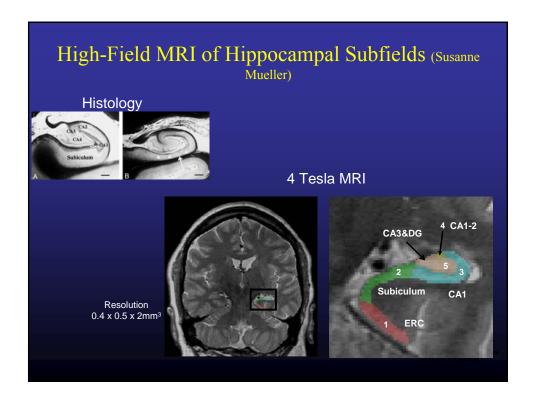


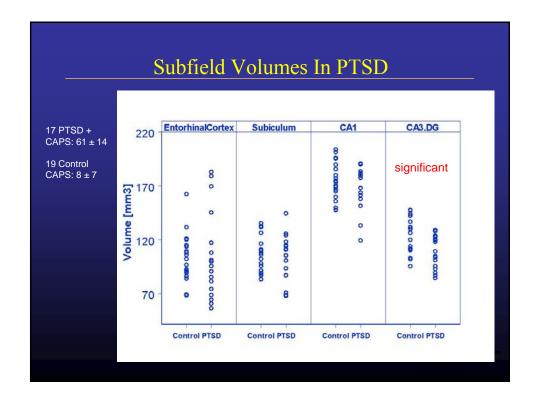


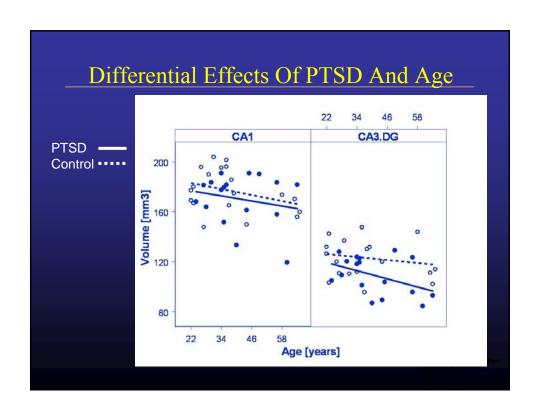

SUMMARY OF CMI ANALYSES


- CMI symptoms strongly overlap with PTSD and Haley Syndromes
- CMI symptoms associated with few NP changes
- CMI symptoms not associated with Sarin exposure
- CMI symptoms not associated with imaging changes









Subfields In Other Conditions

By Susanne Mueller et al. Neuroimage. 2008;42(1):42-8

Table 1. Subfield and Total Hippocampal Volumes in mm3

	Control N = 47	MCI N = 14	AD N = 14
ERC	202.4 ± 54.0	168.4 ± 48.0	145.0 ± 53.4*
Subiculum	200.2 ± 36.1	184.7 ± 38.1	154.2 ± 44.9*
CA1	331.4 ± 47.0	285.1 ± 42.5*	264.4 ± 63.1*
CA1-2 transition	20.5 ± 5.5	15.1 ± 3.4 *	14.1 ± 3.8*
CA3&DG	224.4 ± 37.7	227.2 ± 24.3	230.3 ± 54.7
Total Hippocampus	5520.6 ± 770.4	5154.9 ± 817.7	4450.8± 1285.2*

^{*} p<0.05 compared to controls

ERC, entorhinal cortex; CA1-2 transition, CA1-CA2 transition zone (definition see text); CA3&DG, CA3 and CA4 together with dentate gyrus

AD: Alzhei

Alzheimer's disease

Mild cognitive impairment, a transitional condition to AD

OVERALL SUMMARY

- Did not replicate NAA changes in BG in GWI
 - Didn't replicate arylesterase findings
- No changes of brain volumes or metabolites in GWI or multisystem illness
- Concerning effects of sarin exposure
 - Reduced GM in 1.5 T cohort: not replicated at 4T
 - Reduced WM high exposed at 4T, not seen at 1.5 T
 - No effects on Haley syndromes, neuropsychological tests, multisystem illness or PTSD: No clinical effects!
- No relationship of arylesterase to any symptom, impairment, or MRI/MRS data

SUMMARY (CONTINUED)

- PTSD symptomatology
 - Commonly occurs with GWI
 - Commonly occurs with MSI
- PTSD is associated with
 - Hippocampal atrophy
 - Longitudinal atrophy in ongoing severe PTSD
 - CA3-dentate subfield atrophy
 - Reduced GABA
 - Other changes (DTI perfusion)
 - Neuropsychological impairments
 - Risk for dementia (Yaffe et al)

CONCLUSION AND FUTURE DIRECTIONS

- There appears to be a biological basis for some of the symptomatology and impairments associated with military service and physical/psychological exposures
- Much more investigation is needed in order to
 - Understand the pathophysiology of symptoms/impairments
 - Develop improved methods for diagnosis
 - Develop improved treatments
- Future directions
 - Using improved MRI/MRS methods to detect changes
 - Using MRI/MRS to guide treatment

FUTURE DIRECTIONS

- Use MRI/MRS to identify changes in the brain
 - Traumatic brain injury
 - PTSD
 - Anxiety/depression and other symptoms: suicide risk
- Develop "personalized" indicators for optimum treatment response
- Determine effects of aging in Gulf War veterans
 - Increased risk for ALS, Parkinsons's or Alzheimer's disease?
 - Detect progressive brain atrophy, amyloid, cognitive decline

ACKNOWLEDGEMENTS

- VAMC SF: Linda Chao, Norbert Schuff, Charles Marmar, Tom Neylan, Brigitte Apfel, Dieter Meyerhoff, Clement Furlong
- Others: Karl Friedl, Robert Haley
- Grant Support:

