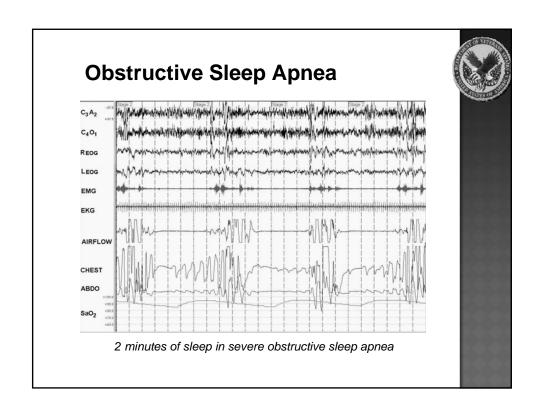
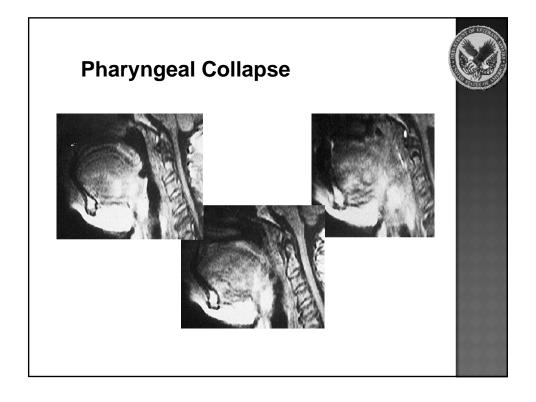
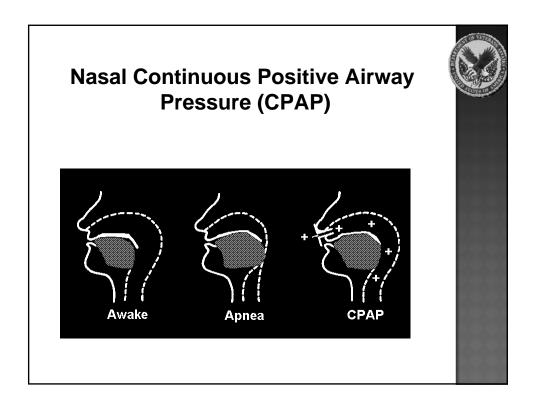
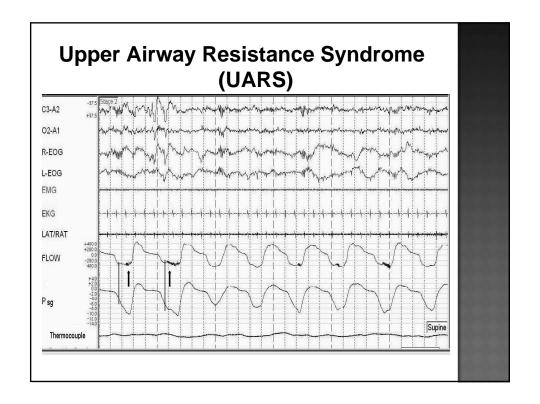


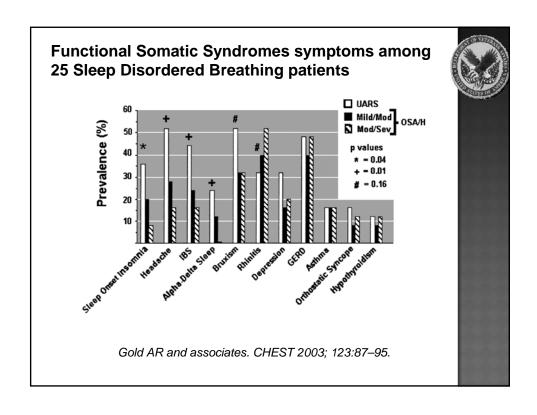
The PI report no conflict of interest.
This research funded by a DVA Career Development Award

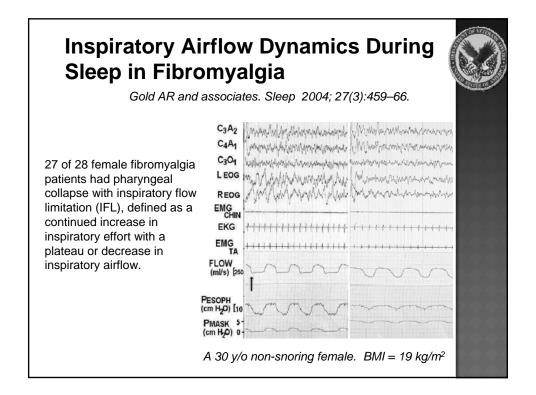

EFFECT OF CPAP ON GWI SYMPTOMS

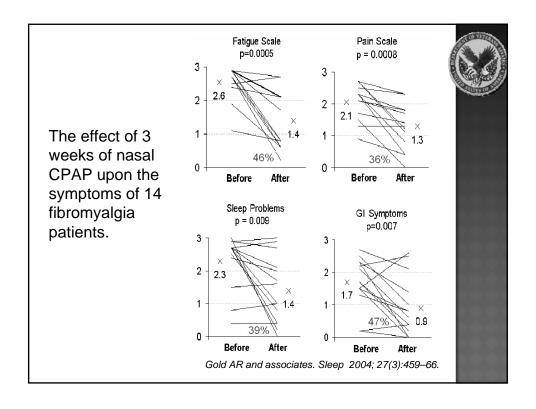

Mohammad M. Amin, MD
Assistant Professor of Medicine
Division of Pulmonary / Critical Care / Sleep Medicine
Stony Brook University School of Medicine
Staff Physician, DVAMC, Northport, NY

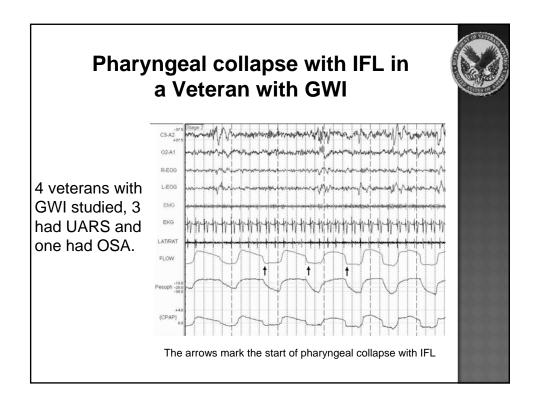

Background

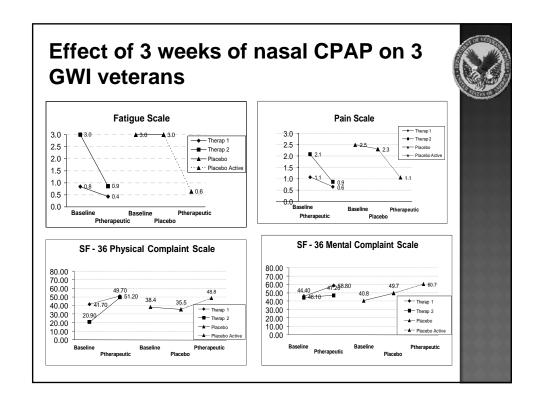

- Veterans of the first Gulf War experience the symptoms of the Functional Somatic Syndromes, including: headaches, widespread pain, cognitive difficulties, fatigue and gastrointestinal complaints.
- My involvement with this research began with the recognition that Sleep Disordered Breathing plays a role in the symptoms of the functional somatic syndromes.









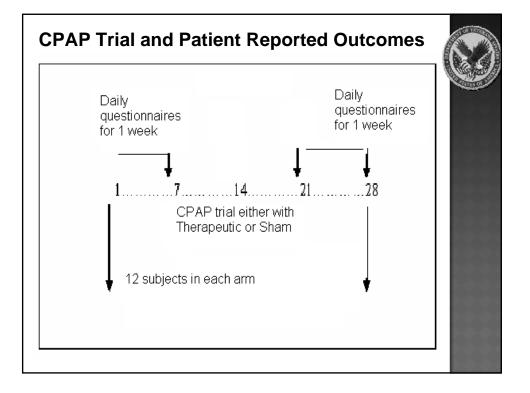


Does pharyngeal collapse during sleep underlie the symptoms of GWI?

Career Development Award

Hypothesis:

GWI veterans have Inspiratory Flow Limitation (IFL) during sleep, its correction will result in an improvement of sleep complaints and other functional symptoms.


- GWI veterans have increased IFL during sleep compared to asymptomatic Gulf War veterans (cross sectional study).
- Relief of IFL with CPAP results in improvement of GWI patient's symptoms (longitudinal study).

Study Protocol

- 1. Initial enrollment and verification of GWI status.
- First standard polysomnogram (PSG) to document IFL and obtain baseline parameters.
- Second PSG with supra glottic pressure catheter and pneumotachograph to measure effort & flow / CPAP titration.
- 4. Randomization to receive either therapeutic CPAP or sham for 3 weeks (compliance monitored by software in the CPAP units).
- 5. Third PSG after 3 weeks on their assigned treatment.

Patient-Reported Outcomes

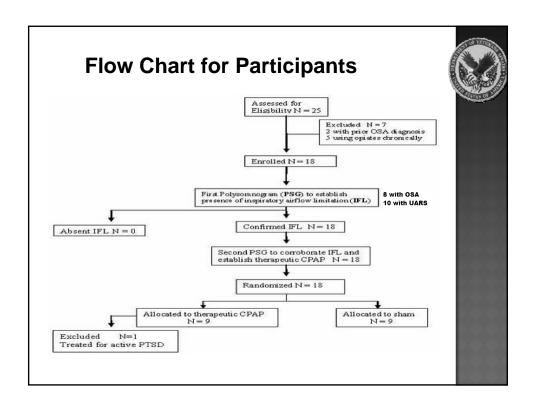
- Questionnaires administered at baseline and during the third week on assigned treatment:
- 1. Daily **cognitive VAS** to evaluate ability "to think" "to concentrate" and "memory".
- 2. **FSS** to measure fatigue over one week.
- 3. Daily pain VAS.
- 4. Pittsburgh Sleep Quality Index (PSQI) to measure sleep quality over one week.
- 5. **SF36** to measure general and mental health.

Recruitment / Inclusion Criteria

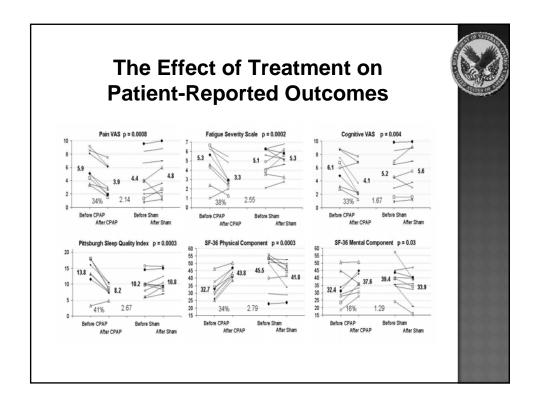
By advertisement, participants must have been deployed to the Persian Gulf between 8/90 and 8/91 and have the following 3 symptoms beginning after 8/90, lasting at least 6 months and meeting the clinical threshold of validated instruments:

- Fatigue that limits usual activity measured by Fatigue Severity Scale (FSS): assessing impact of fatigue on daily activity.
- 2. **Musculoskeletal pain** involving 2 or more regions of the body measured by visual analogue scale with increasing pain recorded as 0-10.
- 3. Cognitive symptoms (memory, concentration, or attention difficulties) measured by Cognitive Failure Questionnaire assessing frequency of difficulties with memory, attention, action and perception.

All **3** symptoms must be unexplained by any clearly defined organic illness.

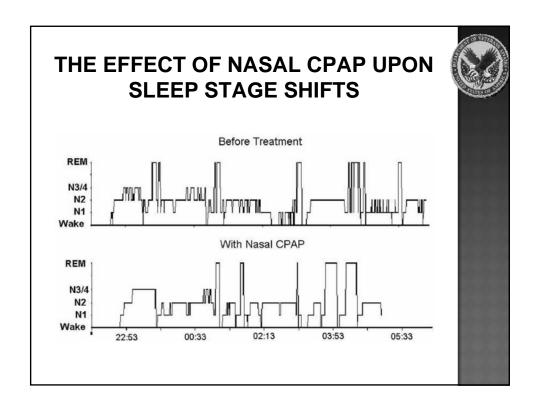

Sleep complaints were not part of the inclusion criteria to avoid a sampling bias.

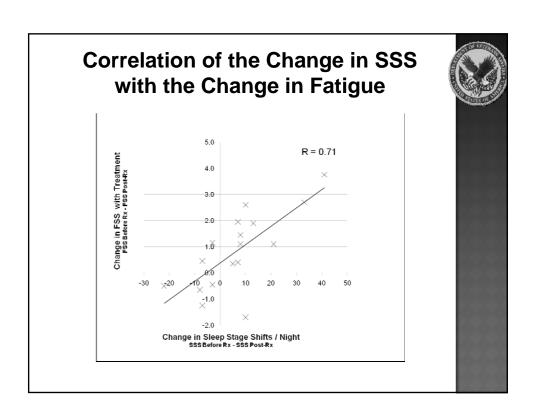
Exclusion Criteria



- Alcoholism:
 Seropped by Rapid Alcohol Broble
 - screened by Rapid Alcohol Problem Screen.
- Uncontrolled Depression: screened by Beck Depression Inventory.
- Uncontrolled PTSD: screened by PTSD check list.
- 4. Current opiate use.

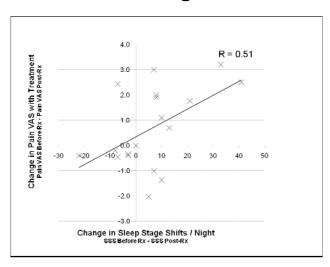
To facilitate matching with healthy controls (in the cross-sectional arm of the study), all subjects were male.


Baseline Patient-Reported Data Therapeutic CPAP (N=8) Sham CPAP P-Value (N=9) mean ± SD mean ± SD Pain VAS 5.9 ± 2.4 4.4 ± 3.1 0.28 **FSS** 5.3 ± 1.5 5.1 ± 1.1 0.74 **Cognitive VAS** $\textbf{6.1} \pm \textbf{2.3}$ $\textbf{5.2} \pm \textbf{3.1}$ 0.50 $\textbf{13.8} \pm \textbf{5.0}$ 10.2 ± 3.5 SF-36 Physical $\textbf{32.7} \pm \textbf{6.9}$ 45.5 ± 12.0 0.02 SF-36 Mental 32.4 ± 10.6 39.4± 9.1 0.16



Post-Treatment Polysomnographic Data

Polysomnographic Parameter		Therapeutic CPAP	Sham CPAP	n value	
		mean ± SD	mean ±SD	p value	
AH (events/hr)	before	22.7 ± 31.0	17.5 ± 20.4	p = 0.0009	
	after	0.5 ± 0.7	<u>-</u>	h – 0:000a	
Sleep Stage Shift	s before	43.9 ± 15.8	36.0±7.0	0.000	
	after	26.3 ± 5.7	39.1 ± 9.4	p = 0.002	
SIp Stg Shift ldx	before	6.6 ± 2.6	8.2 ± 4.3	0000	
	after	4.4 ± 0.8	7.5 ± 3.0	p = 0.026	



Correlation of the Change in SSS with the Change in Pain

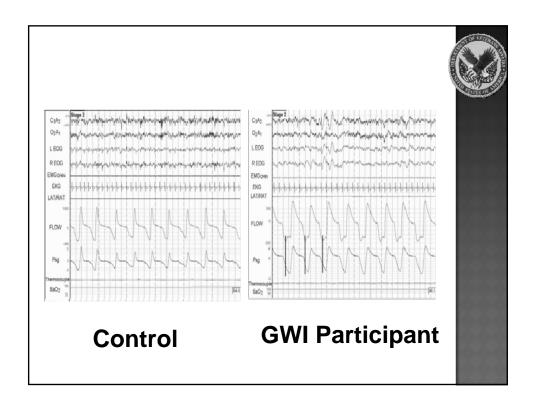
CONCLUSIONS

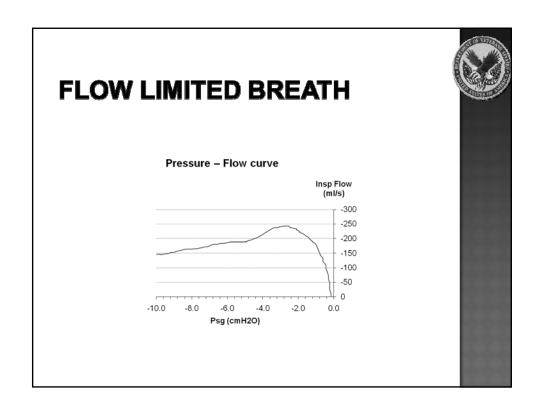
- Our findings in this pilot study suggest that pharyngeal collapse during sleep is common among veterans with GWI, and contributes to their symptoms.
- These findings are similar to the previous findings among fibromyalgia patients.

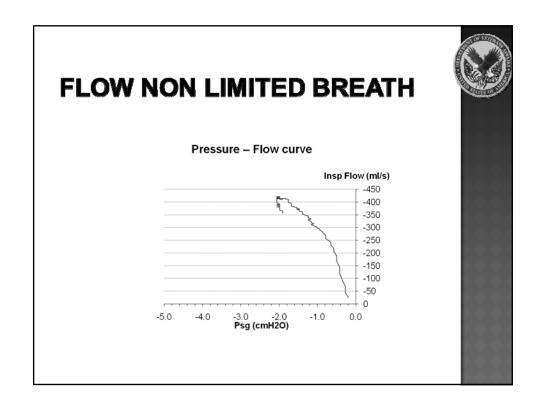
ACKNOWLEDGEMENT

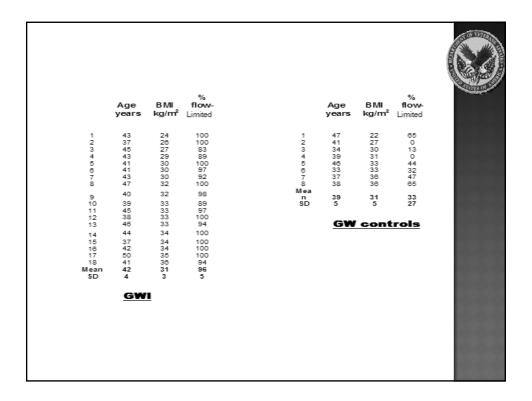
CDA Mentoring Committee:

Dr. Avram Gold


Dr. Morris Gold


Dr. Alan Schwartz


Dr. Norman Edelman

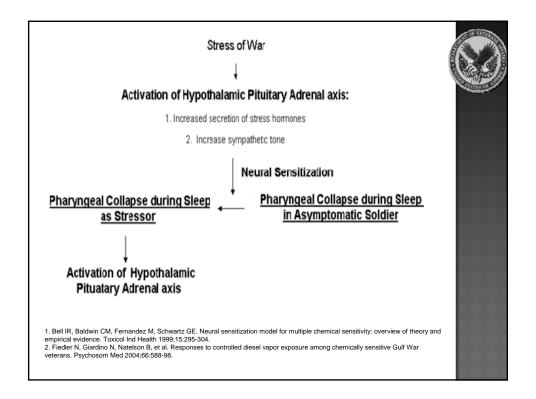

Dr. Joan Broderick

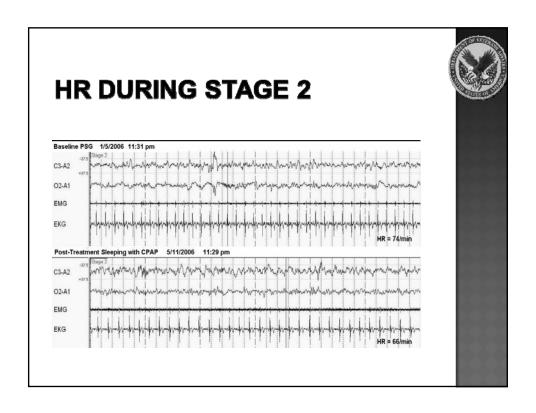
Respironics Inc. supplied the hardware and compliance software CPAP and sham units

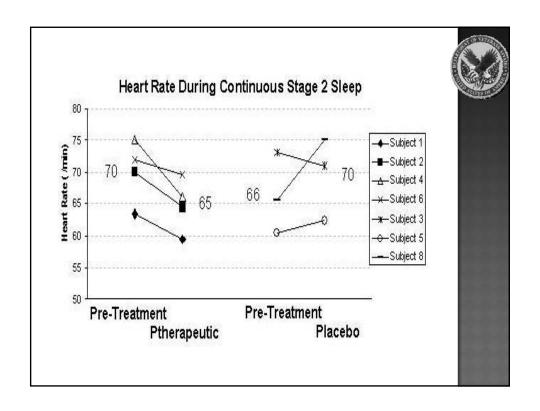
VOSS'S HYPOTHESIS

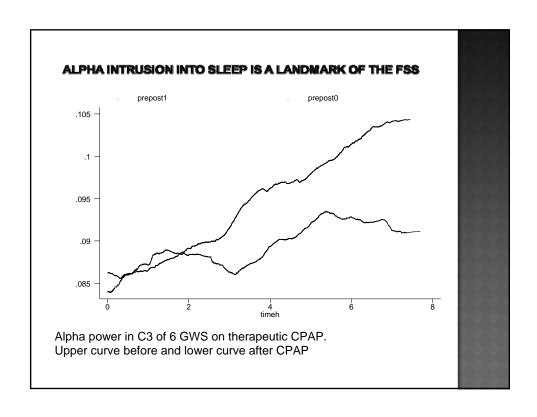
☐Sleep stage shifts protect an organism from threats

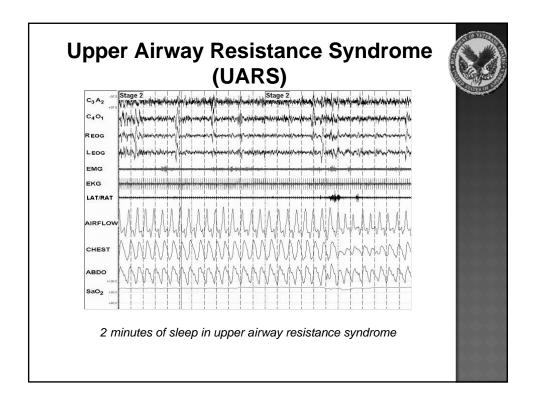
☐ Predators have more continuous sleep than their prey

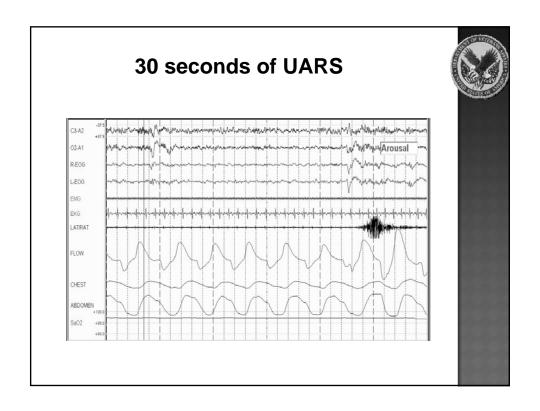

☐ Monkeys in captivity sleep longer, deeper, with fewer interruptions and with more REM sleep than when they sleep in the wild


□ Humans have increased sleep stage shifts during their first night of sleep in a new environment (the first night effect)


☐An organism sleeping under stress adapts by increasing its sleep stage shifts


Voss U. Functions of sleep architecture and the concept of protective fields. Reviews in the Neurosciences 15: 33-46 (2004)




AN	THR	ОРО	MET	RIC A	ND SL	EEP D	ATA
Participant	Age	BMI	Snoring	AHI	RERA/hr	P therapeutic	Assignment
1	46	33	+	9	6	7	Sham
2	43	24	-	10	25	7	Sham
3	41	30	-	10	37	11	Sham
4	42	34	+	60	11	10	Sham
5	44	34	+	45	2	8	Sham
6	45	33	-	2	9	7	Sham
7	47	32	+	8	7	8	Sham
8	41	30	-	5	11	9	Sham
9	37 39	26	-	9	15	9	Sham
10	39	33	+	7	19	11	Active
11	50	34	+	47	27	13	Active
12	41	35	+	91	14	12	Active
13	43	36	+	10	29	10	Active
14	43	29	-	10	13	7	Active
15	43	30	-	5	23	9	Active
16	40 45	32	+	9	4	8	Active
17	45 38	27	?	6	8	9	Active
18	38	33	-	3	7	9	Active
Mean + SD	42 <u>+</u> 4	31 <u>+</u> 3		19 <u>+</u> 25	15 <u>+</u> 10	9 <u>+</u> 2	

Post treatment symptoms

Questionnaire	Therapeutic CPAP (N=8) mean ± SD	Sham CPAP (N=9) mean ± SD	Correlation with SSS (p-value)		
Pain VAS Post	3.9 ± 2.3	4.8 ± 3.3	0.54 (0.007)		
Change from Baseline	-2.0 ± 0.9	0.4 ± 1.2	0.51 (0.037)		
FSS Post	3.3 ± 1.3	5.3 ± 1.1	0.74 (0.002)		
Change from Baseline	-2.1 ± 0.9	0.2 ± 1.0	0.71 (0.002)		
Cognitive VAS Post	4.1 ± 2.6	5.6 ± 3.4	0.64 (0.006)		
Change from Baseline	-2.0 ± 1.7	0.4 ± 1.0	0.04 (0.000)		
PSQI Post	8.2 ± 1.8	10.8 ± 3.2	0.59 (0.016)		
Change from Baseline	-5.7 ± 3.5	0.6 ± 1.7	0.59 (0.016)		
SF-36 Physical Post	43.8 ± 4.0	41.0 ± 10.0	-0.41 (0.104)		
Change from Baseline	11.1 ± 3.9	-4.5 ± 5.9	-0.41 (0.104)		
SF-36 Mental Post	37.6 ± 7.8	33.9 ± 9.9	0.50 (0.045)		
Change from Baseline	5.3 ± 7.3	-5.5 ± 7.0	-0.58 (0.015)		

