

GWI Features Consistent wi	th M	D-OS
MD = mitochondrial dysfunction. OS = oxidative stress.	GWI	MD-OS
Symptoms: Fatigue, muscle, brain sx archetypal	\checkmark	MD
Symptom multiplicity+ heterogeneity: encompass GI, psych, sleep, dyspnea, vision, exert'l intol	\checkmark	MD
Variable latency to symptom onset	\checkmark	MD
Exposures: AChEi especially strong relationship	\checkmark	OS+MD
Other chemically "unrelated" exposures contributory – common toxicity by OS	\checkmark	OS
Objective Markers : \downarrow PON; \downarrow HRV; \downarrow NK cell fxn	\checkmark	OS
\uparrow autoantibodies; \uparrow infl+coagulation activation; \uparrow GGT	\checkmark	OS
Attendant Conditions: ↑ALS; ↑HTN; ↑CFS-FM-IBS	\checkmark	OS-MD
Golomb BA. Oxidative Stress and Mitochondrial Injury in Chronic Multisymptom Condition Autism Spectrum Disorder. Available from Nature Precedings http://hdlhandlenet/10101	ons: From Gu /npre2012684	lf War Illness to 171> (2012).

Lipid Derived Markers: Eicosanoids, products of arachidonic acid - are depressed in GWI						
	Case	Control	Difference			
Test	Mean	Mean	Mean	SE	Р	
Ln(PGF2a)	3.3	4.3	94	.26	0.001	
Ln(LB4)	2.1	3.1	-1.0	.35	0.009	
PGF2a	43.4	104	-60.8	20.8	0.006	
Ln(PGD2)	4.4	5.6	-1.2	.45	0.01	
LB4	19.1	51.8	-32.6	14.6	0.03	
PG D2	310	1001	-692	312	0.03	
13,14-dihydro-15-	5.2	16.5	-11.3	5.5	0.05	
	Dr. John Re	epine, PI, DoD (CDMRP GW0	93021		

		Case Control Difference					се		
Tes	t	Ме	an	N	lean	Mean	S	E	Р
Ln(MD	A)	2.	6		2.8	0.18	0.0	57	0.004
MDA		1	5		18	2.9	0.0	97	0.004
	2.5		×× ***	- XXX XX	* × ×	×			
	0.5		*		******	Κ	*	* Control	
	0+	5	10	15	20 2	25 30	35 40		

What is MDA

A product of arachidonic acid metabolism – like eicosanoids:

"Malondialdehyde results from lipid peroxidation of polyunsaturated fatty acids.^[3]

It is a prominent product in Thromboxane A2 synthesis, wherein cyclooxygenase 1 or cycloxygenase 2

metabolizes arachidonic acid {emphasis added}

to prostaglandin H2, by platelets and a wide array of other cell types and tissues."

Wikipedia, "Malondialdehyde" 2015-09-28

Candidate	"General"	OS Mark	ers des	ignated	by NIH gr	oup ¹
predi	ct GWI ne	gatively,	positive	ly, and r	neutrally.	
(We will	see there	e is wides	pread li	pid dysr	egulation	.)

	Coeff (SE)	Р	95% CI
Ln (MDA)	-3.5 (1.5)	0.024	-6.5, -0.47
8-OHDG	2.7 (1.3)	0.039	0.14, 5.2
F2iso	0.003 (0.003)	0.34	-0.003, 0.008

R² = 0.20 Sample: Age-, sex-, and ethnicity matched GWI cases and controls (N=40) Logistic regression: Outcome = GWI Case Status.

Adjusts for age and sex (these are still a source of variance, though not a confounder) DoD CDMRP GW093063.

¹Kadiiska et al. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCI4 poisoning? Free Radic Biol Med 2005;38:698-710.

OS	and CAC (+lipi	d-based) Mark	ers
	Coeff (SE)	P	95% CI
Ln (MDA)	-5.5 (1.7)	0.001	-8.9, -2.1
8-OHDG	2.7 (1.2)	0.022	0.39, 5.0
Citrate	-0.33 (0.17)	0.045	-0.66, -0.0076
Ln (Fumarate)	4.7 (2.0)	0.016	0.88, 8.6
R ² = 0.35 Sample: Age Logistic regression: Ou	e-, sex-, and ethnicity ma utcome = GWI Case Statu	atched GWI cases and us.	controls (N=40)

Adjusts for age and sex (these are still a source of variance, though not a confounder.) DoD CDMRP GW093063. Thanks to Dr. Richard I. Kelley for CAC marker assessment.

OS and C	OS and CAC Markers Predict GWI Case Status			
	Coeff (SE)	Р	95% CI	
Ln (MDA)	-5.6 (1.7)	0.001	-8.9, -2.3	
8-OHDG	6.1 (2.6)	0.019	0.99, 11.1	
Ln (PGF2a)	-2.4 (1.4)	0.081	-5.0, 0.29	
Ln (Fumarate)	4.2 (1.9)	0.028	0.46, 7.9	
Citrate	-0.29 (0.16)	0.069	-0.075, 0.27	
$R^2 = 0.47$				

Sample = GWI cases and age-, sex-, and ethnicity matched controls (N=40) Logistic regression: Outcome = GWI Case Status.

Adjusts for age and sex (these are still a source of variance, though not a confounder.) DoD CDMRP GW093063; Also, DoD CDMRP GW093021 (Repine) for PGF2a. Thanks to Dr. Richard I. Kelley for CAC marker assessment.

Ма	Markers Predict GWI Case Status				
	Coeff (SE)	Р	95% Cl		
Ln (MDA)	-5.6 (2.7)	0.012	-10.0, -1.2		
PGF2a	-0.038 (0.015)	0.014	-0.068, -0.0076		
Ln (mal)	-7.7 (3.1)	0.014	-13.9, -1.6		
Ln (akg)	7.5 (3.2)	0.019	1.2, 13.8		
R ² = 0.47.					

Sample = GWI cases and age-, sex-, and ethnicity matched controls (N=40) Logistic regression: Outcome = GWI Case Status. Adjusts for age and sex (these are still a source of variance, though not a confounder.) DoD CDMRP GW093063; Also, DoD CDMRP GW093021 (Repine) for PGF2a.

Thanks to Dr. Richard I. Kelley for CAC marker assessment.

	Con	trols	GWI	Cases
	r	Р	r	Р
AKG & Uric Acid	-0.11	0.56	+0.55	0.001
Isocitrate & GGT	-0.0095	0.96	+0.48	0.006
Fumarate & F2iso	0.066	0.78	+0.66	0.0015
AKG & MDA	+0.69	0.0007	0.21	0.38

Markers are forged. Normal ones are lost.

Metabolomics of Gulf War Illness Preliminary Draft for Beatrice Golomb Jane C. Naviaux, Kefeng Li, A. Taylor Bright, William A. Alaynick, Robert K. Naviaux University of California, San Diego School of Medicine

Findings May Have Treatment Implications

E.g.: Inactive 25-OH Vitamin D was strongly increased

Suggests a block in renal mitochondrial 1-alpha hydroxylation and consistent with a chronic oxidative state

-- Supports observations of benefit with vit D or CLO (and attempted treatment trial submissions!)

E.g. Prominent role for phospholipids, including phosphatidylcholine

-- Supports observation of veteran member of RAC who cited benefits from lecithin

-- Supports my observations of added benefit with WGO

Summary: Metabolomic Widespread dysregulation in phospholipids, sphingolipids, sterois. Strong link to membrane status. Powerful resemblance to mt metabolomics. Also markers bear on OS protection, mt fxn, apoptosis, myelin production Provide a new lens for existing objective alterations (e.g. corticosteroid alterations) Provide a new lens for observed treatment benefits (lecithin, CLO, WGO) Suggest new treatment approaches Profiles differentiate GWI from other groups with controversial tie to GWI: CMI (CFS); "war related illness" (PTSD) Metabolomics able to completely separate GWI from control Corroborate/ extend premetabolic focus on lipids, OS, mt.

Sphingomyelin (SPH)

- a type of <u>sphingolipid</u> found in animal <u>cell membranes</u>, especially in the membranous <u>myelin sheath</u> that surrounds some <u>nerve cell axons</u>. It usually consists of phosphocholine and ceramide or a phosphoethanolamine head group.Can also be classified as sphingophospholipids.^[1] In humans, SPH represents ~85% of all sphingolipids, and typically make up 10-20 mol % of <u>plasma membrane</u> lipids.
- Sphingomyelins are present in the plasma membranes of animal cells and are **especially prominent in myelin**, a membranous sheath that surrounds and insulates the axons of some neurons—thus the name "sphingomyelins.

Niacin Niacinamide NAD

- Nahid A Khan, Mari Auranen, Ilse Paetau, Eija Pirinen, Liliya Euro, Saara Forsström, Lotta Pasila, Vidya Velagapudi, Christopher J Carroll, Johan Auwerx and Anu Suomalainen. *EMBO Molecular Medicine*, April 2014 Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.
 - Depeint F¹, Bruce WR, Shangari N, Mehta R, O'Brien PJ.
 Chem Biol Interact. 2006 Oct 27;163(1-2):94-112. Epub 2006 May 1.Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism.

PGF2alpha Exposure Relations			
Exposure	r	P-value	
Degreasing solutions	-0.35	0.003	
Pesticides on clothes/ bedding	-0.35	0.003	
Radioactive chemicals	-0.35	0.003	
Petroleum products (e.g., oil)	-0.34	0.004	
Diesel or petrochemical fuel on skin	-0.33	0.006	
DEET (e.g., insect repellant)	-0.33	0.006	
Asbestos	-0.33	0.006	
Burning fuels	-0.33	0.006	
Solvents	-0.32	0.007	
Diesel or petrochemical fumes	-0.31	0.01	

Exposu	ire		r	P-value
DEET (e.g., insect repellant)			.9	0.0087
Head lice treatment (e.g., Lindane)			25	0.028
Petroleum products (e.g., oil)			.4	0.029
Stored fuels			23	0.037
Solvents-Thinners			23	0.043
Multivariable Mode	l – Cases. R2	= 0.36	-	
Exposure	β (SE)		Р	
Solvents-thinners	-6.1 (2.6)		0.02	26
Ciprofloxacin	-6.4 (2.6)		0.0	19
PB pills	-6.7 (2.6)		0.0	15
Atorvastatin	5.3 (2.6)		0.04	51