

Department of Veterans Affairs
Data Architecture Service
Data Modeling Standards

__

May 31, 2007
V.005E2.001.000

Data Architecture Service

Data Modeling Standards -ii- 05/31/2007

Revision History
Date Version Description Author

6/17/05 1.0 Initial version of the Data Modeling
Standards (DMS)

Glenn Hatfield

8/8/05 1.1 Added Appendix on UML to IDEF1.X
translation

Glenn Hatfield

05/20/2006 1.2 Changes from the DMB review Glenn Hatfield

05/26/2006 1.3 Changes from the follow-on DMB review Glenn Hatfield

8/3/06 1.4 Revise Scope and Applicability Language Luigi Tenore

5/31/07 1.5 Naming Convention Revisions TDSC

Data Architecture Service

Data Modeling Standards -iii- 05/31/2007

Table of Contents

1 EXECUTIVE SUMMARY ...1

2 OVERVIEW ..2

2.1 Purpose.. 2

2.2 Scope and Applicability ... 2

2.3 Waivers ... 3

3 RECOMMENDED VA DATA MODELING STANDARDS4

3.1 Objectives for the Data Modeling Standards... 4

3.2 Recommended Data Modeling Notation .. 4

3.3 Additional Logical Data Models Requirements... 4

4 IDEF1.X STANDARDS ..5

4.1 Entity ... 5

4.2 Domains... 6

4.3 Attributes .. 8

4.4 Relationships... 11
4.4.1 Identifying Relationships... 11
4.4.2 Non-Identifying Relationships .. 12
4.4.3 Categorization Relationships3 ... 13
4.4.4 Cardinality... 15

4.5 Model... 16
4.5.1 Model Context... 16
4.5.2 Model Data Dictionary.. 17
4.5.3 Model Notes .. 18

4.6 View... 18
4.6.1 View Semantics... 18
4.6.2 View Syntax .. 19
4.6.3 View Rules .. 19
4.6.4 View Levels... 19
4.6.5 View Level Semantics... 19
4.6.6 View Presentation.. 21

Data Architecture Service

Data Modeling Standards -iv- 05/31/2007

APPENDIX A: GLOSSARY OF TERMS ..22

APPENDIX B AUTHORIZED CLASS WORDS (NOTE 2)29

APPENDIX C CONVERSION OF UML CLASS DIAGRAMS TO IDEF1.X........32

C.1 Object-Relational Impedance Mismatch.. 32

C.2 UML Class Model to IDEF1.X conversion... 33
C.2.1 Classes... 33
C.2.2 Attributes... 34
C.2.3 Behaviors... 37
C.2.4 Associations .. 37

C.3 UML Class modeling Conventions to Support IDEF1.X conversion....................................... 40

REFERENCES ...42

Data Architecture Service

Data Modeling Standards - 1 – 05/31/2007

1 Executive Summary
The Department of Veteran Affairs (VA) has joined with other federal efforts to define a

common framework or reference model to be used in describing data standards. The Federal
Enterprise Architecture (FEA) Data Reference Model (DRM) has been defined by the Office of
Management and Budget (OMB) as a means to provide a common, consistent way of
categorizing and describing data to facilitate data management, data sharing and integration.
The FEA DRM uses data models to show the categorization of data and the relationship between
these categories. Development of a DRM is a true Enterprise-level endeavor that achieves
optimal success when participation occurs at that level. Such participation and success result
when a common set of standards for supporting dialogue and collaboration is established at the
onset.

As with any complex organization of information, extracting knowledge to build a DRM for
any Enterprise requires tools to visualize entities and their relationships, support efficient and
effective dialogue, and document effort concisely. Specifications for these tools should be
encompassed within the guidelines established for building a DRM.

Consequently, the VA, Data Architecture Services, Data Modeling Standard (DMS)
provides the necessary design guidance for representing information within the VA Enterprise
Architecture (EA). The DMS establishes a common graphical representation, naming practices
and a common vocabulary for understanding and working with all VA information. This
standard will support the VA data standardization activities and allow for a common
understanding of information across the VA enterprise. The development of this common
understanding of VA information is a vital step in realizing the One-VA goal of treating
information as a resource. It will also improve the ability of the VA enterprise to share data
across all lines of business.

The DMS was developed and drawn not only from industry best practices but also from the
work of other government agencies, including the Department of Interior (DOI), whose ongoing
pilot data modeling and standardization activity has been highlighted in the FEA DRM. Of note,
the Integration Definition for Information Modeling (IDEF1.X), developed in response to
Department of Defense (DoD) needs several decades ago, is recommended for modeling
information within the VA Enterprise Architecture. Waivers for the use of other information
modeling standards may be approved on a case by case basis. Applicability and scope for this
standard are discussed in paragraph 2.2.

This document should be viewed as a ‘work in progress’ with modifications being made as
needed to support changes in the One-VA Enterprise Architecture implementation,
International/Federal data modeling standards and the VA lines of business.

Data Architecture Service

Data Modeling Standards - 2 – 05/31/2007

2 Overview
This standard describes the semantics, syntax and associated rules for developing a logical

model of information. This standard is currently based on the IDEF1.X modeling standard.
IDEF1.X is used to produce information models which represent the structure and semantics of
information needed within an enterprise or line of business.

2.1 Purpose

This information modeling standard is used to model information requirements in a concise
and consistent manner in order to manage data (“data” is the representation of information stored
in a computer) as a resource and enable data sharing within and without an enterprise. The
primary objectives of this information modeling standard are to:

a) Provide a means for completely understanding and analyzing an organization’s data
resources;

b) Provide a common means of representing and communicating the complexity of data;

c) Provide a method for presenting an overall view of the data required to run an enterprise;

d) Provide a means for defining an implementation/technology-independent view of data;

e) Provide a method for deriving an integrated data definition from existing data resources.

Physical attribute naming techniques and practices are purposely not addressed in this
document.

2.2 Scope and Applicability
VA Directive 6064 distinguishes between “Core Enterprise Data” and “Line of Business

Specific Data”. This modeling standard is mandatory for all “Core Enterprise Data” as defined
in VA Directive 6064. In addition, this standard shall apply to all data which is LOB specific,
but which is nevertheless shared among VA LOB’s or between VA LOB’s and external partners.

This modeling standard is optional for any data which is strictly local and not shared in any
way. The Technical Standards Committee of the VA Data Management Board will issue
guidelines for the development and/or adoption of local technical standards, including modeling
and documentation standards, for non-shared data.

This standard, with the above caveats, is mandatory for all conceptual and logical data
modeling activities in support of determining the information requirements, independent of
technology for new system development projects, but does not require system owners of
currently operational systems or of systems in advanced stages of development, to produce
compliant documentation. The Data Architecture Service, in the Office of Enterprise
Architecture Management, will, over time, and in accordance with the VA Chief Architect
priorities, develop compliant documentation artifacts for existing (operational) data resources.
Once developed and validated, such documentation shall be maintained (e.g. kept up to date) by
the system owners.

Data Architecture Service

Data Modeling Standards - 3 – 05/31/2007

The current version of this document will only deal with conceptual and logical data
models. Guidelines for physical data models and database implementations are outside the scope
of this document. All sections of this document should be considered normative, with the
exceptions noted above, except for Appendices A and C. Users of this standard include
enterprise architects, data analysts, system designers, database designers, database administrators
and application system developers.

2.3 Waivers
Waivers to this standard may be approved on a case by case basis. Requests for waivers

should be directed to the Associate Deputy Assistant Secretary for Enterprise Architecture
Management, and should include:

• System name, sponsoring organization and point of contact;

• A description of the system’s function, purpose, and development state;

• The alternative modeling notation requested;

• The rationale for the adoption of the alternative modeling notation;

• A list of possible adverse effect arising from the use of the approved VA DMS; and

• A plan to integrate the system’s data modeling artifacts within the existing VA
Enterprise Data Model.

2.4 Release Notes
Separated Release Notes have been issued along with this version (Version 1.0) of the OneVA
Data Modeling Standards (DMS) to document topics that may need to be addressed in future
versions of the DMS. All of the Release Notes in this particular case are related to naming
conventions.

Data Architecture Service

Data Modeling Standards - 4 – 05/31/2007

3 Recommended VA Data Modeling Standards

3.1 Objectives for the Data Modeling Standards
It is expected that through the establishment and implementation of this standard, VA will

be able to achieve the following benefits:

• Allow the development of an Enterprise-level Conceptual Data Model;

• Foster and facilitate data standardization efforts throughout the VA Enterprise;

• Assist in data sharing within VA, with other agencies and business partners;

• Provide guidance for the development of new Information Systems.

3.2 Recommended Data Modeling Notation
Under this standard, conceptual and logical data models should be prepared in the

IDEF1.X notation.

IDEF1.X is managed by the IEEE IDEF1.X Standards Working Group of the IEEE 1320.2
Standards Committee. This standard represents the structure and semantics of data within an
enterprise and is backward-compatible with the US Government's Federal Standard for IDEF1.X,
FIPS 184, Integration Definition For Information Modeling (IDEF1.X) December 1993.

3.3 Additional Logical Data Models Requirements
A logical data model is a data model that represents the business requirements of an

organization and is developed before the physical data base design. A logical data model should
include all entities, attributes, key groups and relationships that represent business information
and define business rules relating to information structure. The logical data models developed
using this standard should be in at least third normal form (3NF) to support the standardization of
data. Logical data models for data warehouses and research data are excluded from the
requirement to be a 3rd normal form. Refer to FIPS Publication 184 for detailed information on
developing a logical data model and normal forms.

Logical data models are created to support data requirements for application systems, lines
of business, and data services. These logical data models should be fully attributed, normalized,
and validated by appropriate subject matter experts (SMEs).

Data Architecture Service

Data Modeling Standards - 5 – 05/31/2007

4 IDEF1.X Standards
IDEF1.X is used to produce a graphical information model which represents the structure

and semantics of information. Use of this standard permits the construction of semantic data
models which may serve to support the management of data as a resource, the integration of
information systems, data sharing between information systems and the building of computer
databases. This section will discuss the content, representations and rules that govern IDEF1.X
models. An IDEF1.X model is comprised of: one or more views (A subset of the LDM); and
definitions of the entities and domains used in the views.

4.1 Entity
An Entity represents a set of real or abstract things (people, objects, places, events, ideas,

combinations of things, etc.) which have common attributes or characteristics as defined by
IEEE IDEF1.X (see reference 3). An entity can participate in zero, one, or many relationships
with other entities. An individual member of the set (entity) is referred to as an “instance.” An
entity is “identifier-independent” if each instance of the entity can be uniquely identified without
participating in a relationship to another entity. An entity is “identifier-dependent” if the unique
identification of an instance of the entity depends upon its relationship to another entity.
Examples of entities that may be part of a VA view include Person, Fund and Fund-Account.
Fund-Account is an example of an identifier-dependent entity.

An entity is represented as a box as shown in Figure 4-1. If the entity is identifier-
independent, then the corners of the box are square. An identifier-dependent entity is
represented by a box with rounded corners. Each entity is assigned a label which is placed above
the box. “The label must contain a unique entity name. The entity name is a noun phrase that
describes the set of things the entity represents.”3 The noun phrase is in singular form. “A
formal definition of the entity must be defined for semantic understanding and data exchange.”3

Figure 4-1 Entity Representation

Data Architecture Service

Data Modeling Standards - 6 – 05/31/2007

Entity rules: 3

a) Each entity must have a unique name (within the context of a model and where possible
unique within the VA – see section 4.5) and the same meaning must always apply to the
same name. Furthermore, the same meaning cannot apply to different names.

b) Dashes are used to separate words in the noun phrase. Each word uses mixed case with
capitalization of the initial character. Optionally all words may be upper case to
accommodate users of Oracle Designer which does not support mixed case. Note that
models using optional upper case are semantically identical to models using mixed case.
This use of mixed case is a deviation from the IEEE IDEF1.X standard (see
reference 3).

c) An entity can have any number of relationships with other entities, including itself.

d) In a key-based or fully-attributed view, an entity has one or more attributes which are
either owned by the entity or migrated to the entity through a relationship.

e) In a key-based or fully-attributed view, an entity has one or more attributes whose values
uniquely identify every instance of the entity. This is known as the primary key for the
entity.

f) No view can contain two distinctly named entities in which the names are synonymous.

g) The name of an identifier-dependent entity often includes the name of the related
identifier-independent entity as the first part of its name, unless a more meaningful Data
Object name is available from the business experts.

4.2 Domains
A Domain represents a named and defined set of values that one or more attributes draw

their values from as defined by IEEE IDEF1.X (see reference 3). “Domains are considered
immutable classes (set of values) whose values do not change over time. In contrast, entities are
time-varying classes; their instance data (Instances are described by attribute values. The
particular values for an instance are also known as its instance data) varies over time as the data
is modified and maintained.”3 The two most common domains are the value list and the range
rules. “The value list domain rule defines the set of all acceptable instance values for a domain.
Attributes of a domain with a value list domain rule are only valid if their instance values are
drawn from the value list.”3 Examples of value list domains that may be part of a VA view
include Birth-Defect, Education-Program, and Accounting-Transaction.

Value-list domains are represented as a box as shown in Figure 4-2. Other domains do not
have a specific representation. Domain information should be stored as informal notation stating
the data type for base domains, sub-typing relationships for typed domains, and the domain rules
and representation for all domains.

Data Architecture Service

Data Modeling Standards - 7 – 05/31/2007

Birth-Defect
Birth-Defect Code

Birth-Defect Name
Birth-Defect Description

Figure 4-2 Domain Representation

Domain rules:
a) A domain must have a unique name (within the context of a model and where possible

unique within the VA – see section 4.5) and the same meaning must always apply to the
same name. Furthermore, the same meaning cannot apply to different names unless the
names are aliases.

b) A dash is used to separate words in the basic domain name. Each word uses mixed case
with capitalization of the initial character. The word “Code” is not to be used in the
domain name; which may be considered a deviation from the IEEE IDEF1.X standard.

c) “A domain is either a base domain or a typed domain.”3

d) A base domain may have one of the following types: character, numeric, datetime, binary
large object (BLOB) or boolean. These types are an expansion of the basic types
included in the IEEE IDEF1.X standard.

e) “A domain may have a domain rule.”3

f) A domain rule is stated either as a range of values or a value list. A good example of the
range domain rule is Azimuth which must be a real number between -360o to +360o.

g) The value list rule constrains valid instances to membership within one set of values. See
the tables below for examples of value list rules.

h) A value list domain may have attributes in addition to its name and code attributes.

Table 1 - Birth-Defect Domain Sample

Birth-Defect Name Birth-Defect Code
Achondroplasia A
Cleft Lip & Cleft Palate CLCP
Congenital Heart Disease CHD
Congenital Talipes Equinovarus
(Clubfoot) CTE
Esophageal & Intestinal Atresia EIA
Hallerman-Streiff Syndrome HSS
Hip Dysplasia HD

Data Architecture Service

Data Modeling Standards - 8 – 05/31/2007

Table 2 - Educational-Level Domain Sample

Educational-Level Name Educational-Level Code
1 or More Years of Graduate School, No
Degree

52

1-2 Years College, No Degree 43
3-4 Years College, No Degree 46
Adult Education Diploma 26
Associate Degree 44
Attending High School, Junior or Less 12
Attending High School, Senior 13
Baccalaureate 51
Completed One Semester of College, No HS
Diploma

41

Correspondence School Diploma 23
Doctorate Degree 64
First Professional Degree 63
High School Certificate of Attendance 24

4.3 Attributes
The attribute standards addressed below are based on the FEA DRM guidelines. The FEA

DRM data structure is shown in Figure 4-3. (Source: DRM version 1.0)

Figure 4-3 DRM Data Structure

An Attribute represents a type of characteristic or property associated with a set of real or
abstract things. For example, Person Last Name and Person Birth Date may be attributes

Data Architecture Service

Data Modeling Standards - 9 – 05/31/2007

associated with the entity Person. An entity must have an attribute or combination of attributes
whose values uniquely identify every instance of the entity. These attributes form the “primary
key” of the entity. In a key-based or fully-attributed view, every attribute is owned by only one
entity. In addition to an attribute being “owned” by an entity, an attribute may be present in an
entity due to its “migration” through a specific connection relationship or through a
categorization relationship. These migrated attributes form a “foreign-key” based on a specific
connection or categorization relationship.

An attribute name should be unique within the context of a model and where possible unique
within the VA. The following attribute structure is different than the IEEE IDEF1.X
attribute standard. These differences are necessary to align with the FEA DRM guidelines.
This structure is similar to the Department of Interior attribute naming standard (see reference 6).
A properly structured attribute name consists of the following parts:

• Data Object Name which is the Entity name.

• Data Property (optional, may be more than one)

• Class Word (names of categories of attribute’s data representation). See Appendix B for
a complete listing of allowed class words.

The relationship of these parts is shown in Figure 4-4.

Figure 4-4 Attribute Naming Example

A data object is the name of a set of real or abstract things (people, objects, places,
events, ideas, combinations of things, etc.) which have common attributes or characteristics (the
same as the Entity) which owns this attribute. The logical name of the attribute is independent of
any entity or table in which it is placed (normalization, de-normalization, indexing, redundancy,
etc.), thus is not renamed. Role names for the attribute must be used when an attribute is placed
in an entity or table more than once.

Data Architecture Service

Data Modeling Standards - 10 – 05/31/2007

Note: Physical attribute naming techniques and practices are not addressed in this document.

A data property is a peculiarity common to some or all members of a data object. The
data property part of the attribute name is optional. It is also described as a characteristic that is
common to some or all of the instances of a data object.

Examples of data properties for the following attributes are broken down as follows:

Table 3 - Attribute Name Examples

Data Object Data Property Class Word

Person Identifier

Person Eye Color Name

Person Birth Calendar Date

Person Last Name

Fund-Account Identifier

Fund-Account Type Code

A class word is a noun that designates the general category of an attribute at the highest
level and subcategorizes attributes based on like metadata. Optional modifiers may be added to
the class word as needed. The combination of a modifier with a class word further defines the
class word; e.g., Volume In Milliliters, Latitude Coordinate or Calendar Date. The list of
approved class words is in Appendix B.

Attributes are shown by listing their names, inside the entity box. Attributes which
define the primary key are placed at the top of the list and separated from the other attributes by
a horizontal line. See Figure 4-5.

Figure 4-5 Attribute Representation

Data Architecture Service

Data Modeling Standards - 11 – 05/31/2007

Attribute rules:
a) An attribute must have a unique name (within the context of a model and where possible

unique within the VA – see section 4.5) and the same meaning must always apply to the
same name. Furthermore, the same meaning cannot apply to different names unless the
names are aliases.

b) An entity can own any number of attributes. In a key-based or fully-attributed view,
every attribute is owned by exactly one entity.

c) A migrated attribute must be part of the primary key of a related parent entity or generic
entity.

d) Every instance of an entity must have a value for every attribute that is part of its primary
key.

e) Attributes that are not part of a primary key are allowed to be null.

f) No view can contain two distinctly named attributes in which the names are synonymous.
Two names are synonymous if either is directly or indirectly an alias for the other, or
there is a third name for which both names are aliases.

g) An attribute should consist of a single meaning or in other words be atomic.

4.4 Relationships
A Relationship is an association between entities or between instances of the same entity

as defined by IEEE IDEF1.X (see reference 3). A relationship between entities describes the
business rules that govern the association between these data objects. A relationship consists of
a relationship name, cardinality, and relationship type. A relationship name is a verb or verb
phase. “Associations” are instances of a “relationship” that “associate two instances of entities.

Relationship types are:

• Identifying

• Non-Identifying

• Categorization

A relationship is represented as a line between entities. Each type of representation uses a
different representation for the line between entities.

4.4.1 Identifying Relationships
“If an instance of the child entity is identified by its association with the parent entity,

then the relationship is referred to as an “identifying relationship”, and each instance of the child
entity must be associated with exactly one instance of the parent entity.”3

A solid line depicts an identifying relationship between the parent and child entities, as
shown in Figure 4-6. If an identifying relationship exists, the child entity is always an identifier-

Data Architecture Service

Data Modeling Standards - 12 – 05/31/2007

dependent entity, represented by a rounded corner box, and the primary key attributes of the
parent entity are also migrated primary key attributes of the child entity.

identifies resources to

Fund

Fund-Account

Figure 4-6 Identifying Relationship Representation

Identifying Relationship rules: 3

a) In an identifying relationship, and in a mandatory non-identifying relationship, each
instance of a child entity must always be associated with exactly one instance of its
parent entity.

b) An instance of a parent entity may be associated with zero, one, or more instances of the
child entity depending on the specified cardinality.

c) The child entity in an identifying relationship is always an identifier-dependent entity.

d) The child entity in a non-identifying relationship will be an identifier-independent entity
unless the entity is also a child entity in some identifying relationship.

e) An entity may be associated with any number of other entities as either a child or a
parent.

4.4.2 Non-Identifying Relationships
If every instance of the child entity can be uniquely identified without knowing the

associated instance of the parent entity, then the relationship is referred to as a “non-identifying
relationship.” A non-identifying relationship may be optional.

A dashed line depicts a non-identifying relationship between the parent and child entities
as shown in Figure 4-7. Both parent and child entities will be identifier-independent entities in a
non-identifying relationship unless either or both are child entities in some other relationship

Data Architecture Service

Data Modeling Standards - 13 – 05/31/2007

which is an identifying relationship. The diamond on the parent-end of the relationship indicates
that the association is optional (may not be present).

completed by

Person
Person Identifier

Educational-Level Code (FK)

Education-Level
Educational-Level Code

Educational-Level Name
Educational-Level Description

Figure 4-7 Non-Identifying Relationship Representation

Non-Identifying Relationship rules: 3

a) In an optional non-identifying relationship, each instance of a child entity must always be
associated with zero or one instance of its parent entity.

b) An entity may have any number of non-identifying relationships with other entities.

c) Only non-identifying relationships may be recursive, i.e., may relate an instance of an
entity to another instance of the same entity.

4.4.3 Categorization Relationships3
“Entities are used to represent the notion of “things about which we need information.”

Since some real world things are categories of other real world things, some entities must be
categories of other entities or “sub-types”. Categorization relationships have an understood name
(verb phrase) of “is a.” There are two basic reasons for using a categorization relationship in a
logical data model. The first is that a categorization is used when different information is needed
for the sub-types. For example, different information may be needed about a Veteran than a
DVA-Employee. In the second case, a category entity is used to express a relationship which is
valid for only a sub-type or to document the relationship differences among the various
categories of the entity. For example a Veteran may qualify for a home loan guarantee and a
DA-Employee may not; so a relation may exist between a Veteran and a Loan-Guarantee.

Data Architecture Service

Data Modeling Standards - 14 – 05/31/2007

A category cluster (A generic entity with its associated subtypes) is shown as a line
extending from the generic entity to a circle which is underlined as shown in Figure 4-8.
Separate lines extend from the underlined circle to each of the category entities in the cluster.
Each line pair, from the generic entity to the circle and from the circle to the category entity,
represents one of the categorization relationships in the cluster. Cardinality is not specified for
the category entity since it is always zero or one. Category entities are also always identifier-
dependent.3

Figure 4-8 Categorization Relationship Representations

Categorization Relationship rules: 3

a) A category entity can have only one generic entity.

b) A category entity in one categorization relationship may be a generic entity in another
categorization relationship.

c) An entity may have any number of category clusters in which it is the generic entity.

d) The primary key attribute(s) of a category entity must be the same as the primary key
attribute(s) of the generic entity. However, role names (alias for the primary key used in
the category entity) may be assigned in the category entity for additional business
understanding.

e) All instances of a category entity have the same discriminator value (Entity-Category-
Code attribute in the Generic Entity) and all instances of different categories must have
different discriminator values.

Data Architecture Service

Data Modeling Standards - 15 – 05/31/2007

f) No entity can be its own generic ancestor, that is, no entity can have itself as a parent-end
in a categorization relationship, nor may it participate in any series of categorization
relationships that specifies a cycle.

g) No two category clusters of a generic entity may have the same discriminator.

h) The discriminator of a category cluster must not be an optional attribute.

4.4.4 Cardinality
The connection relationship may be further defined by specifying the cardinality of the

relationship. That is, the specification of how many child entity instances may exist for each
parent instance. Within IDEF1.X (see reference 3), the following relationship cardinalities that
can be expressed from the perspective of the parent entity:

a) Each parent entity instance may have zero or more associated child entity instances.

b) Each parent entity instance must have at least one associated child entity instance.

c) Each parent entity instance can have zero or one associated child instance.

d) Each parent entity instance is associated with some exact number of child entity
instances.

e) Each parent entity instance is associated with a specified range of child entity instances.

See Figure 4-9 for the representations of cardinality.

Data Architecture Service

Data Modeling Standards - 16 – 05/31/2007

Figure 4-9 Cardinality Representations

4.5 Model
This section discusses IDEF1X models, their content, the rules that govern them, and the various
forms in which models may be presented. An IDEF1X model is comprised of one or more views
(often presented in view diagrams representing the underlying semantics of the views), and
definitions of the entities, attributes, and domains used in the views (i.e. a data dictionary).

Each IDEF1X model must be accompanied by a statement of purpose (describing why the model
was produced), a statement of scope (describing the general area covered by the model), and a
data dictionary. An IDEF1X modeled is identified by a model name. Model names must be
unique within VA. An IDEF1X data model must be described and defined in terms of both its
limitations and its ambitions.

4.5.1 Model Context
The modeling context is comprised of two statements:

Data Architecture Service

Data Modeling Standards - 17 – 05/31/2007

a) Statement of purpose – a statement defining concerns of the model, i.e., its contextual
limits.

b) Statement of scope – a statement expressing the functional boundaries of the model.

One of the primary concerns, which will be answered as a result of the establishment of the
modeling objective, is the concern over the time-frame reference for the model. Will it be a
model of the current activities (i.e., an as-is model) or will it be a model of what is intended after
future changes are made (i.e., a to-be model)? A formal description of a problem domain can be
used to establish the context of a model.

Although the intent behind data modeling is to establish an unbiased view of the underlying data
infrastructure which supports the entire enterprise, it is important for each model to have an
established scope which helps identify the specific data context. This context may be related to a
type of user (e.g. a clinician or benefits manager), a business function (e.g. laboratory or
budgeting), or a type of data (e.g. eligibility or financial). The statement of scope together with
the statement of purpose defines the model context.

4.5.2 Model Data Dictionary
Each IDEF1X model must be accompanied by definitions of all views, entities, attributes, and
domains. Definitions are held in a data dictionary common to all model views within the model.

For each view, entity, attribute, and domain, the data dictionary contains the following elements:

Name

The name must be unique within a model and where possible unique within the VA. This
will ensure that no naming collisions occur within a model. The name must be
meaningful, and should be descriptive in nature. Acronyms are permitted, but
abbreviations are not. Plans are to maintain a list of approved acronyms, similar to the
list of approved class words in Appendix B.

Description

This is a single declarative description of the common understanding of the entity or
domain (attribute), or a textual description of the content of the model. For entities,
attributes, and domains, the description must apply to all uses of the associated entity,
attribute, or domain name within a model. It should not be a simple restatement of the
name.

Additional Information

Optionally, additional information regarding the view, entity, attribute, or domain may
be provided, such as the name of the author, date of creation, date of last modification.
For a view, this information might also include model level (entity-relationship, key-
based, fully-attributed), and completion or review status, and so on. For an attribute or
domain, this information might include the data type, domain rule, or superclass
specification.

Data Architecture Service

Data Modeling Standards - 18 – 05/31/2007

4.5.3 Model Notes
Notes of a general nature and notes that document specific constraints are an integral part of the
model. These notes may accompany the view graphics.

Several types of assertions or constraints may be documented. Path assertions are one such type.
A path assertion involves two or more paths between an entity and one of its ancestors.
Assertions that cannot be made using role names are stated in notes. Another type of assertion
might specify a boolean constraint between two or more relationships. Value assertions are used
to specify cases in which attributes of an entity may be null.

4.6 View
An IDEF1X “view” is a collection of entities and assigned attributes and domains assembled for
some purpose. A view may cover the entire area being modeled, or a part of that area. An
IDEF1X model is comprised of one or more views (often presented in view diagrams
representing the underlying semantics of the views), and definitions of the entities, attributes, and
domains used in the views.

The components of an IDEF1X view are:

a) Entities

1) Identifier-Independent Entities

2) Identifier-Dependent Entities

b) Relationships

1) Identifying Connection Relationships

2) Non-Identifying Connection Relationships

3) Categorization Relationships

4) Non-Specific Relationships

c) Attributes and/or Keys

1) Attributes

2) Primary Keys

3) Alternate Keys

4) Foreign Keys

d) Notes

4.6.1 View Semantics
In IDEF1X, entities and domains within a model are defined in a common data dictionary and
mapped to one another in views. In this way an entity such as Employee may appear in multiple
views and have a somewhat different set of attributes in each. In each view, it is required that
the entity Employee mean the same thing. The intent is that Employee be the class of all

Data Architecture Service

Data Modeling Standards - 19 – 05/31/2007

employees. That is, individual things are classified as belonging to the class Employee on the
basis of some similarity. It is that sense of what it means to be an employee that is defined in the
data dictionary. Similarly, the domain Employee-Name is defined once, and used as an attribute
in appropriate views.

A view is given a name, and, optionally, additional descriptive information. Optional
information may include the name of the author, dates created and last revised, level (entity-
relationship, key-based, fully-attributed), completion or review status, and so on.

A textual description of the view may also be provided. This description may contain narrative
statements about the relationships in the view, brief descriptions of entities and attributes, and
discussions of rules or constraints that are specified.

4.6.2 View Syntax
The constructs, i.e., entities, attributes (domains), relationships, and notes depicted in a view
diagram must comply with all syntax and rules governing the individual constructs.

4.6.3 View Rules
a) Each view must have a unique name.

b) A model may contain views of different levels.

4.6.4 View Levels
There are three conceptual schema levels of IDEF1X modeling; entity-relationship (ER), key-
based (KB), and fully-attributed (FA). They differ in the syntax and semantics that each allows.
The primary differences are:

a) ER views specify no keys.

b) KB views specify keys and some non-key attributes.

c) FA views specify keys and all non-key attributes.

4.6.5 View Level Semantics
Entity-relationship views must contain entities and relationships, may contain attributes, and
must not contain any primary, alternate, or foreign keys. Since ER views do not specify any
keys, their entities need not be distinguished as being identifier-dependent or identifier-
independent, and their connection relationships need not be distinguished as being identifying or
non-identifying. ER views may contain categorization relationships, but discriminator attributes
are optional. ER views may also contain many-to-many or non-specific relationships.

Key-based views must contain entities, relationships, primary keys, and foreign keys. The
entities must be distinguished as either identifier-dependent or identifier-independent, and the
connection relationships must be distinguished as either identifying or non-identifying. The
parent cardinality for each non-identifying relationship must be designated as either mandatory
or optional. Each entity must contain a primary key and may define an alternate key for each
constraint. Each entity must contain a foreign key for every connection or categorization

Data Architecture Service

Data Modeling Standards - 20 – 05/31/2007

relationship in which it is the child or category entity. Key-based views may also contain non-
key attributes.

Fully-attributed views have the same requirements as key-based views. In addition, they must
contain all non-key attributes that are relevant to the subject of the view.

4.6.5.1 View Level Syntax

In entity-relationship views, connection relationships are shown as solid or dashed lines.
Identification dependency is, however, left unspecified. The entity boxes do not include the
horizontal lines that normally separate the primary keys from the non-key attributes.

In key-based and fully-attributed views, entity boxes have square or rounded corners, depending
on whether they are identifier-independent or identifier-dependent, and connection relationships
are drawn as solid or dashed lines, depending on whether they are identifying or non-identifying.
Each entity box has a horizontal line to separate its primary key from its non-key attributes.

4.6.5.2 View Level Rules
Some of the rules described in previous sections do not apply to all levels of views. The
following exceptions are made for ER-level views.

a) An entity need not have any attributes specified.

b) Entities do not have primary or alternate keys specified.

c) Entities do not have migrated attributes (i.e., entities do not have foreign keys).

d) Entities are not required to be distinguished as identifier-independent or identifier-
dependent. Category entities are considered to be dependent entities.

e) Parent cardinality (one, or zero or one) is unspecified in connection relationships.

f) Relationships are not required to be distinguished as identifying or non-identifying.

The following table provides a summary of the levels of IDEF1X views:

Feature \ View Type ER Level KB Level FA Level

Entities yes yes yes

Specific Relationships yes yes yes

Non-specific Relationships yes no no

Relations Categorizations yes yes yes

Primary Keys no yes yes

Alternate Keys no yes yes

Data Architecture Service

Data Modeling Standards - 21 – 05/31/2007

Foreign Keys no yes yes

Non-key Attributes yes (Note 1) yes yes

Notes yes yes yes

Table 4. View Levels and Content
Note 1: Attributes are not distinguished as key or non-key, and are allowed but not required in ER-level

views. Optionality is not specified.

4.6.6 View Presentation
The syntactical definitions of the IDEF1X language characterize the full set of IDEF1X
constructs and their use. This does not however, preclude “hiding” or optionally omitting certain
constructs in order to allow an alternate presentation of an IDEF1X view. Many times this is
done to “hide” detail not needed for a certain discussion, or to abstract a view to permit a broader
view. Examples of some of the possible constructs which could be “hidden” are:

 Entity Numbers

 Attributes

 Keys

 Migrated Keys

 Role Names

 Relationship Names

 Cardinality Specifications

 Category Discriminators

 Alternate Key Suffixes

 Note Identifiers

An example of an alternate presentation might be presenting a fully attributed view, but showing
only the entities and their relationships, to allow the view to be reviewed from an entity-
relationship perspective.

Data Architecture Service

Data Modeling Standards - 22 – 05/31/2007

Appendix A: Glossary of Terms

The following appendix is a collection of commonly accepted industry terms regarding data
modeling provided as reference. Appendix A is informational only.

Attribute - An attribute is a Data Item that has been "attached" to an Entity for the purpose of
describing characteristics of the Entity. By doing this, a distinction can be made between the
generic characteristics of the data item itself (for instance, data type and default documentation)
and the entity-specific characteristics (for example, identifying and entity-specific
documentation).

Business Rule - Specific business-related information that is linked to database objects. The
information can be in the form of business facts or descriptions, or it might be formula or
algorithms either client-based or destined for the server. Once defined, business rules can be
applied through the database or application code generation.

Business Rule - Definition Type - Characteristics or properties of an object in the information
system. For example, a customer is a person identified by a name and an address.

Business Rule - Fact Type - Certainty or existence in the information system. For example, a
client may place one or more orders.

Business Rule - Formula Type - Calculation employed in the information system. For
example, the total order is the sum of all the order line costs.

Business Rule - Validation Type - Constraint on a value in the information system. For
example, the sum of the order totals for a given client must not be greater than that client's
allowance.

Cardinality - Cardinality indicates the number of instances (one or many) of an entity in relation
to another entity. You can select the following values for cardinality:

• One-to-one - One instance of the first entity can correspond to only one instance of the
second entity

• Zero-to-one or many – No instance (optional) of the first entity many correspond to one
or many instance of the second entity

• One-to-many - One instance of the first entity can correspond to more than one instance
of the second entity

• Many-to-one - More than one instance of the first entity can correspond to the same one
instance of the second entity

• Many-to-many - More than one instance of the first entity can correspond to more than
one instance of the second entity

http://www.datamodel.org/DataModelDictionary.html#DataItem#DataItem

Data Architecture Service

Data Modeling Standards - 23 – 05/31/2007

Column - Data structure that contains an individual data item within a row (record), model
equivalent of a database field.

Conceptual Data Model (CDM) - A high-level data model which is a map of business-relevant
information concepts and their relationships. A CDM represents the semantic (logical) structure
of the information needs of an Enterprise, which is independent of any software or data storage
structure. A conceptual model often contains data objects not yet implemented in the physical
databases. It gives a formal representation of the data objects needed to run an enterprise or a
business activity. Within the context of this standard the CDM is focused on the high-level data
representation that will often be a precursor to, or a view of a logical data model. Normally a
conceptual data model does not convey details about the attributes contained within an entity,
and may not convey any attribute information at all.

Data Item - A data item is an elementary piece of information in the data dictionary.

Data Store - A data store in a PDM represents a place to put information, either temporarily
from process to process, or permanently as a final or finished result of a process.

Database Definition Language (DDL) - This is the syntax that a given DBMS understands and
is used to manipulate the structure of the database, from initial database creation to additions,
modifications and deletions of all database objects (tables, columns, indexes, etc.) to the eventual
removal of the database. Another term used for DDL is “schema”. A distinction between the
terms is that DDL is usually reserved to the structure of the database, while schemas might
include scripts to load data into the structures or assign security permissions to users..

Database Management System (DBMS) - A DBMS contains and controls information in some
structured form so that it can be accessed in an efficient manner. Most DBMSs support some
form of SQL as the primary access method.

Data model - Basically, a data model is any method of visualizing the informational needs of a
system, business process, business area, or enterprise, and typically takes the form of an ERD
(Entity Relationship Diagram).

Data type - Identifies the kind of data that a Data Item represents. These are conceptual
representations, not tied to any specific DBMS. The list that follows provides just a few
examples of data types:

• Integer - Number without any decimal precision.
• Short Integer - Same as Integer, but smaller values.
• Long Integer - Same as Integer, but larger values.
• Byte - Usually a small number (less than 256).
• Number - Number with decimal precision and complete decimal accuracy.
• Float - Number with partial decimal accuracy (number times 10 to a power).
• Money - Currency.

http://www.datamodel.org/DataModelDictionary.html#PAM#PAM
http://www.datamodel.org/DataModelDictionary.html#DBMS#DBMS
http://www.datamodel.org/DataModelDictionary.html#Table#Table
http://www.datamodel.org/DataModelDictionary.html#Column#Column
http://www.datamodel.org/DataModelDictionary.html#Index#Index
http://www.datamodel.org/DataModelDictionary.html#Schema#Schema
http://www.datamodel.org/DataModelDictionary.html#SQL#SQL
http://www.datamodel.org/DataModelDictionary.html#DataItem#DataItem
http://www.datamodel.org/DataModelDictionary.html#DBMS#DBMS

Data Architecture Service

Data Modeling Standards - 24 – 05/31/2007

• Boolean - Logical values (True or False).
• Characters - Alphanumeric text.
• Date - Usually Gregorian calendar dates.
• Time - Usually time on the military 24 hour clock.
• Bitmap - Usually an image stored as a straight bitmap representation.

Dimension - Defines the axis of investigation of a fact. It is attached to a dimension table.

Dimension Hierarchy - Dimension that is split into other more detailed dimensions. Each
descending level in a dimension hierarchy corresponds to a finer level of detail. The number of
levels in a dimension hierarchy corresponds to the available levels of granularity in a query.

Dimension Table - A dimension table stores data related to the axis of investigation of a fact.
For example, geography, time, product. A data warehouse or a data mart can have any number
of dimension tables. Dimension tables are connected to a central fact table. The primary key in
the dimension table migrates as a foreign key in the fact table. Dimension tables can also be
connected to other dimension tables to form a hierarchy of dimensions.

Domain - A way of identifying and grouping the types of data items in the model. This makes it
easier to standardize data characteristics for attributes/columns in different entities/tables.

Entity - Person, place, thing, or concept that has characteristics of interest to the enterprise and
about which you want to store information.

Fact - A fact corresponds to the focus of a decision support investigation, for example, Sales,
Revenue, and Budget are facts. You attach facts to fact tables. When you create a fact table, a
fact with the same name as the table is automatically created.

Fact Table - A fact table stores variable numerical values related to aspects of a business. For
example, sales, revenue, budget. These are usually the values you want to obtain when you carry
out a decision support investigation. A fact table is at the intersection of dimension tables in a
star schema.

Foreign Key - Column or combination of columns whose values are required to match a primary
key in some other table.

Identifier - In a CDM, this uniquely identifies an occurrence of an entity. Identifiers relate to
primary keys and unique indexes in the PDM.

Identifying Relationship - An identifying relationship is a relationship between two entities in
which an instance of a child entity is identified through its association with a parent entity, which
means the child entity is dependent on the parent entity for its identify and cannot exist without
it. In an identifying relationship, one instance of the parent entity is related to multiple instances
of the child.

http://www.datamodel.org/DataModelDictionary.html#Fact#Fact
http://www.datamodel.org/DataModelDictionary.html#DimensionTable#DimensionTable
http://www.datamodel.org/DataModelDictionary.html#Table#Table
http://www.datamodel.org/DataModelDictionary.html#Fact#Fact
http://www.datamodel.org/DataModelDictionary.html#FactTable#FactTable
http://www.datamodel.org/DataModelDictionary.html#PrimaryKey#PrimaryKey
http://www.datamodel.org/DataModelDictionary.html#ForeignKey#ForeignKey
http://www.datamodel.org/DataModelDictionary.html#DataItem#DataItem
http://www.datamodel.org/DataModelDictionary.html#CDMAttribute#CDMAttribute
http://www.datamodel.org/DataModelDictionary.html#Column#Column
http://www.datamodel.org/DataModelDictionary.html#Entity#Entity
http://www.datamodel.org/DataModelDictionary.html#Table#Table
http://www.datamodel.org/DataModelDictionary.html#FactTable#FactTable
http://www.datamodel.org/DataModelDictionary.html#DimensionTable#DimensionTable
http://www.datamodel.org/DataModelDictionary.html#Column#Column
http://www.datamodel.org/DataModelDictionary.html#CDM#CDM
http://www.datamodel.org/DataModelDictionary.html#Entity#Entity
http://www.datamodel.org/DataModelDictionary.html#PDM#PDM

Data Architecture Service

Data Modeling Standards - 25 – 05/31/2007

Index - An index is a data structure associated with a table that is logically ordered by the values
of a key. It improves database performance and access speed. You normally create indexes for
columns that you access regularly, and where response time is important. Indexes are most
effective when they are used on columns that contain mostly unique values.

Inheritance - Inheritance allows you to define an entity as a special case of a more general
entity. The entities involved in an inheritance have many similar characteristics but are
nonetheless different. The general entity is known as a supertype (or parent) entity and contains
all of the common characteristics. The special case entity is known as a subtype (or child), entity
and contains all of the particular characteristics.

Between entities, it is also possible to define an inheritance link. In an inheritance link, one or
more subtype (or child) entities inherit, at the physical level, all or part of the attributes carried
by one super-type (or parent) entity.

Keys - A key is one or more data attributes that uniquely identify an entity. A key that is two or
more attributes is called a composite key. A key that is formed of attributes that already exist in
the real world is called a natural key. For example, U.S. citizens are issued a Social Security
Number (SSN) that is intended to be unique to them within the Social Security Administration.
SSN could be used as a natural key, assuming privacy laws allow it, for a Person entity
(assuming the scope of your organization is limited to the U.S. and only includes legal residents).
An entity type in a logical data model will have zero or more candidate keys, also referred to
simply as unique identifiers. For example, if we only interact with American citizens or legal
residents, then SSN is one candidate key for the Person entity type and the combination of name
and phone number (assuming the combination is unique) is a second candidate key. Both of
these keys are called candidate keys because they are candidates to chosen to be the primary key.
A primary key is the preferred key for an entity type whereas an alternate key (also known as a
secondary key) is an additional way to access unique rows within a table. In a physical database,
a key would be formed of one or more table columns whose value(s) uniquely identifies a row
within a relational table.

Logical Data Model (LDM) - A LDM fills in the gap between a conceptual data model (CDM)
and physical data model (PDM). CDMs are completely devoid of physical-level information
while PDMs are specific to implementation via a specific DBMS. Since there are characteristics
of databases that are generic in nature (such as indexes and foreign keys), a LDM stores those
characteristics without adding anything specific to a single DBMS product.

MetaData - "Information about Data". This is the documentation stored in the data model about
the information system. For instance, a table in a database could have a lengthy business
description. The description is metadata about the data in the database.

Metric - A metric is a variable or measure that corresponds to the focus of an investigation.
Metrics are typically numeric values. For example, Total and Price are metrics. A metric can be
the result of an operation or calculation involving several columns of the fact table. Metrics are

http://www.datamodel.org/DataModelDictionary.html#CDM#CDM
http://www.datamodel.org/DataModelDictionary.html#DBMS#DBMS
http://www.datamodel.org/DataModelDictionary.html#Index#Index
http://www.datamodel.org/DataModelDictionary.html#ForeignKey#ForeignKey
http://www.datamodel.org/DataModelDictionary.html#DataModel#DataModel
http://www.datamodel.org/DataModelDictionary.html#Table#Table
http://www.datamodel.org/DataModelDictionary.html#DBMS#DBMS
http://www.datamodel.org/DataModelDictionary.html#Column#Column
http://www.datamodel.org/DataModelDictionary.html#FactTable#FactTable

Data Architecture Service

Data Modeling Standards - 26 – 05/31/2007

attached to columns in a fact table. For example, the Sales Total metric is attached to the Sales
Total column in the Sales fact table.

Non-Identifying Relationship - A non-identifying relationship is a relationship between two
entities in which an instance of the child entity is NOT identified through its association with a
parent entity, which means the child entity is NOT dependent on the parent entity for its identify
and can exist without it. In a non-identifying relationship, one instance of the parent entity is
related to multiple instances of the child.

Object Oriented Analysis & Design (OOA&D) - This is a methodology for application
development centered on the UML notation standard, developed by the Object Management
Group, Inc. OOA&D is not synonymous with UML. UML is only one methodology to enable
OOA&D. The methodology centers thirteen different models some of which are Class, Use Case,
Sequence, Activity and Component diagrams.

Physical Data Model (PDM) – A data model designed specifically to implementation via a
specific DBMS on a specific platform.

Primary Key - Column or combination of columns whose values uniquely identify an instance
of an Entity in a data model, or a row in a table in a database.

Prime Word- A word included in the name of a data entity that represents the logical data
grouping (in the logical data model) to which it belongs.

Reference: (q) DoD 8320.1-M-1, "Data Element Standardization Procedures," January
15, 1993
Reference: (u) National Bureau of Standards (NBS) PUB 500-149, "Guide on Data Entity
Naming Conventions," October 1987

Recursive Relationship - One special type of relationship that involves just a single table, tied
back to itself. A set of columns is set up as the foreign key, referencing the primary key
column(s), but of another record. In this manner, a hierarchy can be created within the table.

Referential Integrity - Referential integrity refers to rules governing data consistency,
specifically the interaction between primary keys and foreign keys in different tables.
Referential integrity dictates what happens when you update or delete a value in a referenced
column in the parent table and when you delete a row containing a referenced column from the
parent table.

You can define referential integrity for:

• A particular reference using a reference property sheet.
• All references using a trigger.

http://www.datamodel.org/DataModelDictionary.html#DBMS#DBMS
http://www.datamodel.org/DataModelDictionary.html#Column#Column
https://www.dmso.mil/public/resources/glossary/results?do=get&ref_list=q
https://www.dmso.mil/public/resources/glossary/results?do=get&ref_list=u
http://www.datamodel.org/DataModelDictionary.html#Table#Table

Data Architecture Service

Data Modeling Standards - 27 – 05/31/2007

Referential integrity as a generation option: For certain target databases you can define
referential integrity as a generation option. However many databases do not accept referential
integrity as a generation option (in a trigger or a declaration). In these cases, when you generate
a database generation script, it does not include the definition of referential integrity.

Relationship - A relationship is a named connection or association between entities. For
example, in a CDM that manages human resources, the relationship Member links the entities
Employee and Team, because employees can be members of teams. This relationship expresses
that each employee works in a team and that each team has employees.

An occurrence of a relationship corresponds to one instance of each of the two entities involved
in the relationship. For example, the employee Martin working in the Marketing team is one
occurrence of the relationship Member.

Reverse Engineering - “Reverse engineering is the act of generating a physical data model,
usually by means of automation, by reading existing database information (either from DDL
scripts or from ODBC sources).

Role name – A name used to uniquely identify the purpose for which an attribute is used as a
foreign key more than once in any entity.

Schema - Another term for DDL. A distinction between the terms is that DDL is usually
reserved to the structure of the database, while schemas might include scripts to load data into
the structures or assign security permissions to users.

Structured Query Language (SQL) - SQL is a language used to communicate with a DBMS
and provides a fairly common syntax for applications to use.

Stored Procedure - A stored procedure is SQL code placed in a special area inside the DBMS,
therefore each platform has a slightly (or greatly) different way of treating them. In some cases,
stored procedures are treated very much like tables masking much of the internal logic from the
client application.

Sub-Type (Entity) - An entity involved in an inheritance relationship with a parent Super-Type.
The resulting table can inherit certain attributes from the parent or be consolidated, along with
other sub-types, into the parent table. For example, an entity called Account for a banking
system might have several sub-types for each type of account, such as Checking, Savings, Credit,
Loan, etc. There are common Account attributes for each type of account which are placed in
the Account entity. In each sub-type are placed specific attributes to that type. The resulting
table structures could be an Account table with dominant 1:1 relationships to the four dependent
tables.

Subject Area - A subject area is a summary of things in which the enterprise is interested. It
corresponds to a collection of information related to a high level function. In a conceptual

http://www.datamodel.org/DataModelDictionary.html#DDL#DDL
http://www.datamodel.org/DataModelDictionary.html#ODBC#ODBC
http://www.datamodel.org/DataModelDictionary.html#DDL#DDL
http://www.datamodel.org/DataModelDictionary.html#DBMS#DBMS
http://www.datamodel.org/DataModelDictionary.html#DBMS#DBMS
http://www.datamodel.org/DataModelDictionary.html#Table#Table

Data Architecture Service

Data Modeling Standards - 28 – 05/31/2007

model, subject areas typically define the limits between systems, or areas of interest within the
enterprise. For instance, the Employee Subject Area could contain all entities and data items
related to employees.

Subject Matter Experts (SMEs) – SMEs are the people throughout the enterprise that
have knowledge about a particular functional area, or subject area. They may be program
managers, knowledge workers, systems developers, database administrators, or any other
person with extensive knowledge about a particular subject. They are most valuable in
creating complete descriptions of data requirements for the data standardization process.

Super-Type (Entity) - An entity involved in an inheritance relationship with one or more Sub-
Types. The key attributes or all attributes from this entity can be inherited to each of the sub-
types, or the sub-type attributes can be consolidated into the resulting parent table.

Table - Collection of rows (records) that have associated columns (fields).

Trigger - A trigger is a special form of stored procedure that goes into effect when you insert,
delete, or update a specified table or column. You may use triggers to enforce referential
integrity.

Unified Modeling Language (UML) - This is a modeling language created by the Object Model
Group, Inc to implement the OOA&D methodology. The Unified Modeling Language (UML) is
a language for specifying, visualizing, constructing, and documenting the artifacts of software
systems, as well as for business modeling and other non-software systems. The UML represents
a collection of best engineering practices that have proven successful in the modeling of large
and complex systems.

http://www.datamodel.org/DataModelDictionary.html#StoredProcedure#StoredProcedure
http://www.datamodel.org/DataModelDictionary.html#Table#Table
http://www.datamodel.org/DataModelDictionary.html#Column#Column
http://www.datamodel.org/DataModelDictionary.html#ReferentialIntegrity#ReferentialIntegrity
http://www.datamodel.org/DataModelDictionary.html#ReferentialIntegrity#ReferentialIntegrity
http://www.datamodel.org/DataModelDictionary.html#OOAD#OOAD

Data Architecture Service

Data Modeling Standards - 29 – 05/31/2007

Appendix B Authorized Class Words (Note 2)

Class Word Name Abbreviation Definition

Amount AM or AMT A monetary value.

(Includes Average, Balance, Cost, Price, Index,
Factor, Mean)

The data element definition should begin: “The
(modifiers) amount of”

Angle AN The rotational measurement between two lines
and/or planes diverging from a common point
and/or line.

The data element definition should begin: “The
(modifiers) angle between (modifiers) for a”

Area AR The two dimensional measurement of a surface
expressed in unit squares.

The data element definition should begin: “The
(modifiers) area of”

Code CD A combination of one or more numbers, letters, or
special characters substituted for a specific meaning.

The data element definition should begin: “The

(modifiers) code that represents and/or denotes a”

Coordinate CN One of a set of values which identifies the location
of a point.

The data element definition should be: “The
coordinate identifying the (modifiers) location of”

Date DT The notation of a specific period of time.

The data element definition should begin: “The
(modifiers) date of and/or when and/or on which a”

Dimension DM A one dimensional measured linear distance.

The data element definition should be: “The
dimension (length, width, height, radius, or
elevation, etc.) of and/or from”

Data Architecture Service

Data Modeling Standards - 30 – 05/31/2007

Class Word Name Abbreviation Definition

Identifier ID A combination of one or more numbers, letters, or
special characters which designates a specific object
and/or entity, but has no readily definable meaning.

The data element definition should begin: “The
(modifiers) identifier that represents”

Indicator IN or IND A value used to represent the existence of a
condition. Often a Boolean value is used as an
indicator.

The data element definition should begin: “The
indicator for”

Key KEY This class word was added to support existing VBA
data models. Use of the Identifier class word is
preferred.

Mass MS The measure of inertia of a body.

The data element definition should begin: “The
(modifiers) mass of”

Name NM A designation of an object and/or entity expressed in
a word or phrase.

The data element definition should begin: “The
name of”

Number NR or NBR A numeric value, often used as a synonym for
Identifier (e.g. Social Security Number, Phone
Number, etc.)

The data element definition should begin: “The
number of”

Percent PCT A non-monetary numeric value expressed as
hundredths. The data element definition should
begin: “The (modifiers) percentage of”

Quantity QY or QTY A non-monetary numeric value.

The data element definition should begin: “The
(modifiers) quantity of”

Rate RT A quantitative expression that represents the

Data Architecture Service

Data Modeling Standards - 31 – 05/31/2007

Class Word Name Abbreviation Definition

numeric relationship between two measurable units.

The data element definition should begin: “The rate
of”

Temperature TP The measure of heat in an object.

The data element definition should begin: “The
temperature of”

Text TX or TXT An unformatted character string generally in the
form of words.

The data element definition should begin: “The text
of”

Time TM A notation of a specified chronological point within
a period.

The data element definition should begin: “The time

of”

Volume VL A measurement of space occupied by a three
dimensional figure.

The data element definition should begin: “The
volume of”

Weight WT The force with which an object is attracted toward
the earth and/or other celestial body by gravitation.

The data element definition should begin: “The
weight of”

Note 2: This is an initial list of class words and will expand in the future – for example, to accommodate the
additional needs of certain clinical data.

Data Architecture Service

Data Modeling Standards - 32 – 05/31/2007

Appendix C Conversion of UML Class Diagrams to IDEF1.X

Appendix C is informational only.

C.1 Object-Relational Impedance Mismatch
IDEF1.X data models and Unified Modeling Language (UML) class diagrams were

developed by different computer science communities working on solutions to different
problems. IDEF1.X is a standardization of the data modeling representations that arose from
relational data theory. In the 1960’s the information technology community was trying to deal
with the problem how to implement information systems where the relationships between the
data were more complex than could be represented by a simple stack or hierarchy. The problem
was how to create an information system that could handle data with complex relationships. One
team decided to address this problem with what would be called an out-of-the-the box solution.
They stepped back and addressed the issue of how to best represent data in general. The solution
they developed became known as “relational theory”. Relational theory is based on the premise
that a mathematical concept called “set theory” is the best way to represent data concepts.
Relational theory and relational database management systems (DBMS) do provide a solution for
representing complex relationships between data.

In the 1960’s a different computer science community was trying to develop a solution for
developing a computer simulation of a complex real-world problem. A new type of computer
programming language (Simula 67) was created so new, more powerful computer simulations
could be created. It used a new programming paradigm that was called “object-oriented”. This
new paradigm was included in other general purpose computer programming languages. It was
soon realized that changes were needed in analyzing and modeling of business needs if the
potential of these new computer languages was to be usefully applied to the development of new
computer systems. The standardization of these new analysis and modeling practices has
resulted in the development of the UML. Seeing as IDEF1.X and UML arose independently to
solve different problems, it is not surprising that the fit between these two modeling
representations is not perfect.

The difference between these two representations has been called the object-relational
impedance mismatch. This mismatch is not just the result of differences in the modeling
representation but also to differences in the analysis approach used to develop the respective
models. The difference in the analysis approach is sometimes called the cultural differences.
The next section of this appendix will address the difference in the modeling representations.
The final section of this appendix will address the issues arising from the different analysis
processes used and makes recommendations on what additional modeling information to include
in a UML class model to improve the ability to translate a UML class model to an IDEF1.X
model.

Data Architecture Service

Data Modeling Standards - 33 – 05/31/2007

C.2 UML Class Model to IDEF1.X conversion
One of the results of the differences between UML class models and IDEF1.X relational

models is that it is simpler to convert an UML class diagram to an IDEF1.X relational model
than to do the reverse. Industry Best Practices state that a UML class model should not be based
on a relational data model. The UML class model contains information that is not in a relational
data model and a different analysis process is used to develop each model. Thirdly, since the
IDEF1.X relational data model is the standard representation, the translation of UML class
diagrams to IDEF1.X is of greater importance to this organization. As a result, this appendix
will only address the translation of UML class diagrams to IDEF1.X data model and not the
reverse.

Basically a two-step process is used to complete the translation of a UML class model to an
IDEF1.X relational data model; this is illustrated in Figure C-1. The first step is to map the class
model to a physical data model. The second step is to normalize the physical data model to
produce a logical data model. The following sections will address the first step of mapping a
UML class model to a physical data base model.

Figure C-1 Translation Process

C.2.1 Classes
The basic method for mapping classes is to map a class to a single table. Figure C-2 shows

a simple mapping from a class model to a physical data model.

Data Architecture Service

Data Modeling Standards - 34 – 05/31/2007

Figure C-2 Class Example

The UML class model is on the left-hand side of the figure and the IDEF1.X physical
model is on the right-hand side. Each class in the UML class model is mapped to a single table
in the physical data model. Changes in the UML class names and IDEF1.X entity names can be
seen. These are a result of differences in the naming standards. Determining whether the
relationship between Order and Order-Item should be an identifying or non-identifying
relationship is based on the information in the UML class model. A determination to use an
identifying relationship was made based on the functional understanding that an Order-Item may
not exist before the Order exists and if the Order is deleted then the Order-Items must also be
deleted.

C.2.2 Attributes
The basic method for mapping attributes is to map them to a column in an entity. Figure C-

3 shows a simple attribute mapping from a UML class model to a physical data model.

Data Architecture Service

Data Modeling Standards - 35 – 05/31/2007

Figure C-3 Attribute Example

As before, the UML class model is on the left-hand side of the figure and the IDEF1.X
physical model is on the right-hand side. Each attribute in the class model is mapped to a single
column within a entity in the physical data model. Changes in the UML class model attribute
names and IDEF1.X column names can be seen. These are a result of differences in the naming
standards. The physical data model contains information on primary and foreign keys which are
not shown on the UML class model. This is the shadow information that is normally not
included in the UML class model. The columns may be created by researching the primary and
foreign key indexes for existing databases, interviewing subject-area experts for this functional
area or based on normal UML conventions on key structures. Additional columns may be
needed to store information about function(s) or procedure(s) for a class. No additional columns
about functions or procedures were considered for this example.

Data Architecture Service

Data Modeling Standards - 36 – 05/31/2007

The second step is to review the relationships of the tables and columns to create the
entities for a logical data model. Figure C-4 shows the results of normalization of the physical
data model to a logical data model.

Figure C-4 Relationship Example

In the normalization process, the relationship between Item and Order-Item was changed
from non-identifying to identifying. This changed the Order-Item into an associative entity
between the Item and Order Entities. Normalization issues like this can be resolved by referring
to reference logical data models or interviewing subject-area experts. In this specific case, the
change was made so that an Item could not exist more than once in a single Order; instead of
having possible duplicate tuples in Order-Item. The Order-Item Ordered Quantity would reflect
the total quantity ordered for each Item.

Data Architecture Service

Data Modeling Standards - 37 – 05/31/2007

C.2.3 Behaviors
An analysis of the behaviors is needed to ensure the data needed to persist the object is

included in the IDEF1.X data model. This analysis may result in additional entities or columns
being added to the data model. For example, in the class model in Figure C-2, a procedure called
scheduleShipment() exists. To keep this example simple, no tables or columns are shown in the
example to support this behavior. It is possible that the scheduleShipment() behavior would
create one or more instances of the Shipment class which, in turn, would have been mapped to
one or more tables. The scheduleShipment() procedure would have to deal with shipping orders
where the item may be stored at one or more locations and delivered to different locations. Also,
the possibility of shipping backordered items will need to be dealt with. So it can be seen that
the translation of a UML class model behavior may result in a mapping to many columns in the
physical data model.

C.2.4 Associations
There are two categories of object relationships that one needs to be concerned with when

mapping associations between a UML class model and a relational logical data model. The first
category is based on multiplicity and it includes three types:

• One-to-one relationships. This is a relationship where the maximum of each of its
multiplicities is one. An employee holds one and only one position and a position may
be held by one employee (some positions go unfilled).

• One-to-many relationships. Also known as a many-to-one relationship, this occurs
when the maximum cardinality of one end of the relationship is one and the other is
greater than one. An employee works in one division and any given division has zero,
one or more employees working in it.

• Many-to-many relationships. This is a relationship where the maximum cardinality of
both ends of the relationship is greater than one. An employee is assigned one or more
tasks and each task is assigned to zero, one or more employees.

The second category is based on directionality and it contains two types, unidirectional
relationships and bi-directional relationships.

• Uni-directional relationships. A uni-directional relationship exists when a relationship
between objects should be navigated in only one direction. The direction of navigation is
indicated by an arrow.

• Bi-directional relationships. A bi-directional relationship exists when the relationship
between objects may be navigated in either direction. Employee objects may navigate the
association to the Division object and the Division object may navigate to the Employee
object.

All relationships in a relational data model are bi-directional in nature, so the directionality
information in the UML class model is lost when translated to a physical data model. UML class
model association-directionality will not be further discussed in this appendix.

Data Architecture Service

Data Modeling Standards - 38 – 05/31/2007

C.2.4.1 One-To-One Mappings
If an UML class model shows a one-to-one relationship between Employee and Position,

for instance, and if there were no further requirements known, it would be cleaner to implement
the foreign key in the Employee table. But with the potential requirement for an employee to
hold many positions, the foreign key is usually implemented on the Position table in the physical
data model. It is a common practice to place a unique clause on the index used to implement the
foreign key.

C.2.4.2 One-To-Many Mappings
Now let’s consider the relationship between Employee and Division. This is a one-to-

many relationship – an employee works in one division and a single division has many
employees working in it. This relationship should be traversed from Employee to Division but
not in the other direction. This relationship is mapped to a foreign key between the Employee
and Division tables. This foreign key would be implemented by placing the primary key for the
Division table as a column in Employee table. If the primary key for the Division table is
Division_Identifier then Division_Identifier would appear as a column in the Employee table.
The foreign key constraint would be used to ensure the Division_Identifier column in the
Employee table would contain values that exist in the Division table.

C.2.4.3 Many-To-Many Mappings
To implement many-to-many relationships in a relational DBMS, the concept of an

associative entity, an entity whose sole purpose is to maintain the relationship between two or
more tables in a relational database, is needed. In our example, there is a many-to-many
relationship between UML model classes Employee and Task. In the physical data model, an
associative entity Employee-Task is introduced to implement a many-to-many relationship
between the Employee and Task tables. In relational databases, the attributes contained in an
associative table are traditionally the combination of the keys in the tables involved in the
relationship. The name of an associative table is typically either the combination of the names of
the tables that it associates or a more meaningful name provided by the SMEs involved. In this
case Employee-Task is used. The rule is that the multiplicities "cross over" once the associative
entity is introduced. A cardinality of 1 is always introduced on the outside edges of the
relationship within the two entities to preserve the multiplicity of the original relationship. The
original relationship indicated that an employee is assigned to one or more tasks and that a task
has zero or more employees assigned to it. Two UML model classes are mapped to three tables
to support a many-to-many relationship.

C.2.4.4 Inheritances
There are at least three different approaches for dealing with UML inheritance hierarchies.

These approaches are:

• Map the entire class inheritance into a single table

Data Architecture Service

Data Modeling Standards - 39 – 05/31/2007

• Map each concrete class into its own table

• Map each class into its own table

Only the final approach will be addressed in the remainder of this discussion. In order to
keep the examples and discussion simple, the class model will not include all attributes or
operations. Only enough detail will be included to cover the topics needed for discussion.
Figure C-5 shows the example Class inheritance hierarchy.

Figure C-5 Inheritance Example

Four classes are shown – Person, an abstract class, and three concrete classes, Customer,
Employee and Executive. Person is shown as an abstract class by the class name being in italics.
A Person may be an Employee or a Customer. An Employee may be an Executive. An
Executive may receive a fixed annual bonus, but Non-Executive Employees are not eligible for a
fixed annual bonus. All employees receive an annual salary. Figure C-6 shows the mapping to a
physical data model.

Data Architecture Service

Data Modeling Standards - 40 – 05/31/2007

Figure C-6 IDEF1.X Sub-Type Example

Four classes are mapped to four tables. The primary key for the Person table is created,
which is Person_Identifier in this example. The Primary key is migrated to the other tables in the
categorization. The migrated primary key of each sub-type entity is also a foreign key. This
representation is already normalized, so no changes are needed to create a logical data model
from the physical data model.

C.3 UML Class modeling Conventions to Support IDEF1.X conversion
Object-Oriented analysis uses different thought patterns and conventions than those used

for relational data modeling. One of the results of these differences is that translating a relational
data model (IDEF1.X or any other relational representation) into a UML class model is very
difficult. A second result is that normal UML class modeling techniques do not document or
represent some of the information necessary for a relational data model. As IDEF1.X is the
OneVA EA standard information model representation, it is important for this additional
information to be captured for use for the Enterprise data model. In addition, the reality is that

Data Architecture Service

Data Modeling Standards - 41 – 05/31/2007

object and relational technologies are being used together and most likely will be used together
for many years to come. The following suggested modifications to normal UML class modeling
are made to enable the successful development of an IDEF1.X relational data model from a
UML class diagrams.

• Maintain shadow information.

• Maintain scaffolding information.

• Document referential integrity.

• Consider that all relationships are bi-directional in a relational model.

Shadow information is any data that objects need, above and beyond their normal
attributes, to identify an instance or persist themselves. This includes relational primary key
information whether the primary key consists of data with business meaning or a surrogate key.
Use of a primary key consisting of data with business meaning is encouraged, even if the
primary key uses more than one data attribute. This also includes data used for concurrency
control and audit trails such as timestamps, version numbers, and user names.

Scaffolding information is the information necessary to implement constraints on the
relationships between two classes. An example of scaffolding would be attributes needed to
implement the ordering of attributes for a relationship. Other UML relationship constraints are
aggregation and composition.

Referential integrity is used to ensure the consistency of information across a relationship.
Normally these relationships are considered as business rules and may be implemented in the
service layer in a multi-tiered architecture. The reality is that most of these rules can, and should
be, implemented in the database by the DBMS’s internal mechanisms. Many of these business
rules can be implemented using straightforward declarative referential integrity statements within
the data definition language used to create the database. Some of the business rules may be too
complex to be implemented using declarative referential integrity statements and care needs to
be taken to fully document these cases.

Data Architecture Service

Data Modeling Standards - 42 – 05/31/2007

References

1. International Standards Organization (ISO), International Electrotechnical Commission
(IEC) 11179-3:2003(E), Information Technology—Specification and standardization of
data elements, Part 3: Registry metamodel and basic attributes, 2003.

2. International Standards Organization (ISO), International Electrotechnical Commission
(IEC) 11179-5:1995(E), Information Technology—Specification and standardization of
data elements, Part 5: Naming and identification principles for data elements, 1995.

3. Federal Information Processing Standards (FIPS) PUB 184, “Specifications for
Integration Definition for Information Modeling (IDEF1.X),” December 21, 1993.

4. Federal Enterprise Architecture (FEA) The Data and Information Reference Model
(DRM), Version 1.0; Volume 1 – DRM Overview, September 2004.

5. Federal Participation in the Development and Use of Voluntary Consensus Standards and
in conformity Assessment Activities (OMB Circular A-119).

6. (DRAFT) Department of Interior Department Manual, Data Standardization Procedures,

Office of the Chief Information Officer, March 2004, Draft.

7. VA Directive 6064, Data Architecture and Data Management Program, July 2006
(Currently undergoing concurrence review).

	Department of Veterans Affairs
	1 Executive Summary
	2 Overview
	2.1 Purpose
	2.2 Scope and Applicability
	2.3 Waivers
	2.4 Release Notes

	3 Recommended VA Data Modeling Standards
	3.1 Objectives for the Data Modeling Standards
	3.2 Recommended Data Modeling Notation
	3.3 Additional Logical Data Models Requirements

	4 IDEF1.X Standards
	4.1 Entity
	4.2 Domains
	4.3 Attributes
	4.4 Relationships
	4.4.1 Identifying Relationships
	4.4.2 Non-Identifying Relationships
	4.4.3 Categorization Relationships3
	4.4.4 Cardinality

	4.5 Model
	4.5.1 Model Context
	4.5.2 Model Data Dictionary
	4.5.3 Model Notes

	4.6 View
	4.6.1 View Semantics
	4.6.2 View Syntax
	4.6.3 View Rules
	4.6.4 View Levels
	4.6.5 View Level Semantics

	4.6.5.1 View Level Syntax
	4.6.5.2 View Level Rules
	4.6.6 View Presentation

	Appendix A: Glossary of Terms
	Appendix B Authorized Class Words (Note 2)
	Appendix C Conversion of UML Class Diagrams to IDEF1.X
	C.1 Object-Relational Impedance Mismatch
	C.2 UML Class Model to IDEF1.X conversion
	C.2.1 Classes
	C.2.2 Attributes
	C.2.3 Behaviors
	C.2.4 Associations
	C.2.4.1 One-To-One Mappings
	C.2.4.2 One-To-Many Mappings
	C.2.4.3 Many-To-Many Mappings
	C.2.4.4 Inheritances

	C.3 UML Class modeling Conventions to Support IDEF1.X conversion

	References

