
 Date: August 20, 2004
 To: Al Zuech
 CC: Greg Yenchi, Al Esguerra
 From: Wendel Yale
 Subject: CaliberRM Mechanisms

Here is a summary of generic CaliberRM mechanisms that support EA 3.0 modeling. We can
(presumably) use the capabilities represented by these mechanisms in most end-user reporting or
modeling tools (via the internally developed XML interface). Some mechanisms did not make
the list since we are not (currently) planning to make use of them.

Basic Mechanisms
1. Requirement Types – We have organized document chapters and Zachman cells by requirement

type. This is useful since it is possible to create special properties to support different models in
each cell. It is also possible to set security differently for each chapter or cell. Reporting by
requirement type is much easier. In short, requirement types have made it possible to apply
divide and conquer to a massive task.

2. CaliberRM Requirements – The basic information in a requirement is its name and description.
This simple arrangement makes it possible to interpret a CaliberRM requirement as a generic
enterprise architectural object. We have added an “object type” property to each object in order
to support modeling tools that import CaliberRM XML data. Requirement descriptions retain
original HTML formatting and image information used by other modeling products.

3. Nested Requirements – CaliberRM leverages a parent-child relationship to construct a hierarchy
of requirements within each requirement type. The current Metis XML interface transforms the
context-sensitive hierarchical information encoded in CaliberRM to either Metis containers or
Metis hierarchies.

4. Internal Traceability – CaliberRM provides the ability to trace from one object to another. For
example, the architecture model contains traces from standard FEA functions to VA internal
functions. This tracing puts VA activities into the wider Federal Government context. The
tracings have direction (from or to the object) but no other properties (such as type, name, or
function).

5. External References – CaliberRM offers three types of external references. Text references are
stored in CaliberRM. They provide a mechanism for comments on the object that need not
appear in the description. File references can reference files accessible from the client
workstation. Web references address objects via URL, making it possible to access them
anywhere on the internet or intranet. EA 3.0 uses web references to maintain a controlled set of
associated files on the CaliberRM server host.

6. Shared Requirements – Although EA 3.0 is normalizing its data, it is sometimes necessary to
reuse model objects. For example, some cells share the same taxonomy (the same object
hierarchy). CaliberRM provides the capability to share the information between common objects.
This means that the sharing object displays description information in the shared object, but
cannot change it. Thus, EA 3.0 manages the descriptions of shared objects in one place.

Utilities
1. Glossaries – CaliberRM provides the ability to import and manage project glossaries. The

import uses a CaliberRM-specific XML-based glossary structure. CaliberRM does not allow
glossary updates, so it is necessary to maintain the glossary in another medium (e.g., Excel,
Word, or Access) and perform occasional bulk imports. Once in place, CaliberRM highlights and
defines glossary words in the description on mouse-over. We need to determine if we can export

10/28/2005 8:58:30 AM 1 of 3

the glossary to external models such as Metis or Borland OLAP (On-Line Analytical Processing).
One curious issue is that glossary items are not case sensitive. This means that CaliberRM treats
“of” as an acronym if “OF” (Optional Form) is in the glossary.

2. Requirement Grid – CaliberRM tends to view and update one requirement (object) at a time.
The requirements grid is a handy utility to view and update requirements in bulk. Its minor query
capability is used to filter requirements within a requirement type or a branch of the requirement
hierarchy. Some of the displayed object parameters cannot be updated, but some can be bulk
updated; most importantly, that includes requirement built-in and user-extended properties.

3. Import from Microsoft Word – CaliberRM provides a wizard to import requirements from
Microsoft Word. Note that it is the only available import path. Although it does not allow
updates, the wizard is simple to use and very effective. Word styles distinguish between
requirement names and descriptions. CaliberRM treats header styles in a hierarchical fashion,
making it possible to import complex hierarchies. The wizard offers a visual quality check before
performing the actual import. Unfortunately, there is no way to import corresponding traces,
external references, properties, etc. We are exploring the possibility of an XML-based import
interface that might overcome these limitations.

4. Export to Microsoft Access – CaliberRM provides a wizard to export a project from its object-
oriented database to an Access relational database. Most of the CaliberRM object-oriented
database is unwound into a set of tables with primary and foreign key constraints. Oddly, the
relational schema does not include a relationship between requirement type and the requirements
that use that type. However, if we define unique requirement type tags, we can use that tag to
select the desired requirement set. The Access database provides a lot of flexibility for database
reports that are necessary to manage a large set of complex data. For example, we can produce
requirement-level reports on properties, traces, and security, and we can use them to verify the
data quality. External references and version history information are not included in the export.

5. External Traceability – We plan to collect all essential enterprise data needed to describe the
VA architecture. However, some detailed data is better left in the builders or managers format.
Typical formats include Microsoft Project, Erwin, Oracle Designer, Rational Rose, etc. In an
ideal world, we would be able to trace from CaliberRM objects into these “external” object sets.
Currently, CaliberRM only provides traceability via a Microsoft Project “plug-in”. This will
provide traceability from EA 3.0 events directly to Project schedule items.

Built-in Properties
1. System Attributes – CaliberRM system attributes are user-extensible. Two of these are relevant

to EA 3.0:
a. Requirement Status – Factory settings are Submitted, Pending, Accepted, Draft, and Deferred. EA

3.0 initial input defaults to Submitted. We can add additional status choices as required.
b. Requirement Priority – Factory settings are Essential, Useful, Desirable, and Unassigned. EA 3.0

initial input defaults to Unassigned. We can add additional status choices as required.

2. Requirement Owner – Caliber requirement (object) owners are the only persons that can update
the requirement. The CaliberRM administrator can assign requirement ownership to a group of
persons.

3. Requirement Version – CaliberRM faithfully records every requirement (object) change as an
internal version. It is possible select a previous version so you can see the change. In addition,
CaliberRM will provide a complete report for any requirement with a previous version.
Unfortunately, CaliberRM does not export version information to Access.

10/28/2005 8:58:30 AM 2 of 3

4. Requirement Tag – The CaliberRM tag uniquely identifies a requirement type. CaliberRM
combines the Tag with a sequence number to create a unique requirement tag for every
requirement (object). CaliberRM also maintains a unique internal requirement identifier that the
EA 3.0 XML interface uses to tag objects for the Metis model.

User-Extended Properties
1. Internal Only – We maintain this flag to indicate that a requirement (object) is not ready for

general use. For example, if this binary flag is on (the default), the object will not be included in
the current model.

2. Procurement Sensitive – Even if the Internal Only flag is off, only selected VA staff will see the
object if this flag is on.

3. Internal Version – This number the working version of the architecture.
4. Source – We track the original source for the object using a single-selection drop-down list. As

we acquire new sources, we add them to the list. It is an important step in the bulk load process
to update this property.

5. Object Type – We assign the object type from a single-selection drop-down list according to the
EA 3.0 Zachman Framework-based model. The XML interface transmits the object type to the
Metis model where it labels the model object or provides an appropriate icon.

Data Management
1. Requirement Locking – CaliberRM runs on a centralized server. Proprietary CaliberRM clients

access the server using proprietary application protocols over the network. The multi-user server
uses a locking mechanism to avoid race conditions on a requirement. When a user starts an
update of any requirement information (name, description, property, trace … whatever) the
requirement is locked against updates by others. As soon as the user saves the update, it is
available for access by others. If they are out-of-synch, CaliberRM refreshes the view to reflect
the update. All in all, a tidy way to manage the data.

2. Requirement History – CaliberRM maintains a history of every change made to a requirement.
CaliberRM provides a simple interface to peruse the changes, right back to original object
creation.

3. Requirement Security – CaliberRM provides management of user responsibilities and project
groups. This feature will become increasing important as EA project collaboration with VA
administrations increases. The project administrator uses a separate (restricted) application (the
Framework Administrator) to manage CaliberRM users.

4. Requirement Discussions – CaliberRM provides a special tab to support data management
collaboration for each requirement (object). Users can post new comments or respond to old
ones. CaliberRM maintains and displays the discussion history in a hierarchical list.

5. Database Backup – The CaliberRM database objects are in proprietary files that the project
administrator can periodically back up or restore as required.

10/28/2005 8:58:30 AM 3 of 3

