
 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-85

5. Any WRITE (display-only) identifiers

6. The results of executing the Lister’s IDENTIFIER
parameter

(Optional) Flags to control processing:

B Backwards. Traverses the index in the
opposite direction of normal traversal.

I Internal format is returned. All output values
are returned in internal format (the default is
external). Because the new "I" suffix can be
used in the FIELDS parameter to return
information in internal format, using I in the
FLAGS parameter is virtually obsolete. It
greatly simplifies the call to use the "@"
specifier in the FIELDS parameter to
suppress return of default values and to
specify in the FIELDS parameter exactly what
other data elements are to be returned. You
can use the "I" suffix if you wish to have them
returned in internal format.

K Primary Key used for default index.

M Mnemonic suppression. Tells the Lister to
ignore any mnemonic cross-reference entries it
finds in the index.

P Pack output. This flag changes the Lister’s
output format to pack the information
returned for each record onto a single node per
record. See the information below in the
Output, the Details and Features, and the
Examples sections for more details.

FLAGS

Q Quick List. If this flag is passed, the Lister
will use the order of the index to return the
output, rather than sorting the information
into a more user-friendly order. This will
make a difference when doing Lister calls
where the index value is a pointer or variable

Database Server (DBS) API

2-86 VA FileMan V. 22.0 Programmer Manual March 1999

 pointer. The call will be more efficient but the
output may not be in an intuitive order.

When the Q flag is used, both the FROM and
PART parameters must be in the same format
as the subscripts found in the index whose
name is passed in the INDEX parameter. In
the case of a pointer, for example, the FROM
and PART parameters would be an internal
pointer value. See the description of the
FROM, PART and INDEX parameters.

U Unscreened lookup. This flag makes the Lister
ignore any whole file screen (stored at
^DD(file#,0,"SCR")) on the file specified in the
FILE parameter. NOTE: Passing this flag
does NOT make the Lister ignore any code
passed in the SCREEN parameter.

NUMBER (Optional) The number of entries to return. If the Lister
reaches the end of its list, the number of entries output
may be fewer than this parameter. A value of "*" or no
value in this parameter designates all entries. The
developer has the option to make multiple calls to the
Lister, in order to control the number of records returned.
In that case, the FROM value (described below) must be
passed by reference, and should not be altered between
calls. The Lister will return—in the FROM parameter—the
values needed to find the next record on a subsequent call.

Defaults to "*".

[.]FROM (Optional) The index entry from which to begin the list
(e.g., a FROM value of "XQ" would list entries following
XQ). The FROM values must be passed as they appear in
the index, not in external value. The index entry for the
FROM value itself is not included in the returned list.

If the INDEX parameter specifies a compound index
(i.e., one with more than one data-valued subscript), then
the FROM parameter should be passed by reference as an
array where FROM(n) represents the "nth" subscript on the
compound index. This array helps VA FileMan find a
single entry in the index. Generally, the developer can set

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-87

the FROM array to establish a starting point from which
the Lister should traverse the index. However, the FROM
array is especially useful when making multiple calls to
the Lister to return records in discrete chunks. The Lister
sets the FROM array to information about the last record
returned, so the developer can simply pass this array
unchanged from one Lister call to the next to return the
next set of records.

This parameter can contain an array node FROM("IEN").
This subscript can be set equal to a record number that
identifies the specific entry from which to begin the list.
This can alternately be passed as FROM(m) where "m" is
equal to the number of data value subscripts in the index
plus 1. This array entry would be passed only when there
is more than one entry in the index with the same values
in all of the data value subscripts. For example, using a
regular single-field index on a NAME field, if there were
two "SMITH,JOHN" entries in the file with IENs of 30 and
43, then passing FROM(1)="SMITH,JOHN" and either
FROM(2) or FROM("IEN")=30 would return a list of
entries starting with name of SMITH,JOHN and IEN of
43. If the list is built using the upright file (INDEX
parameter="#"), then FROM, FROM(1) and FROM("IEN")
would all be the same and would represent the starting
internal entry number for the list.

When listing an index on a Pointer or Variable Pointer
field, the FROM value should equal a value from the "B"
index at the end of the pointer chain, NOT a pointer value.
However, the FROM("IEN") should still equal the number
of a record in the pointing file as it does for other Lister
calls. For example, suppose you have listed entries from a
simple index that points to the STATE file and the
previous call finished with entry 12 which points to Utah
(record 49 in the STATE file). Then FROM(1) would be set
to "UTAH" and FROM("IEN") or FROM(2) would be set to
12. Again, you would only want to set FROM(2) if there
were other entries in your file that pointed to Utah, with
IENs that followed 12.

This parameter lets the caller make multiple calls to the
Lister to return a limited number of records with each call,
rather than one large one. If the FROM parameter values
are passed by reference, then the Lister will return—in the

Database Server (DBS) API

2-88 VA FileMan V. 22.0 Programmer Manual March 1999

FROM array—information that will tell it which record to
start with on subsequent Lister calls.

To start a new list, pass FROM undefined or equal to the
empty string. This will start the list with the first entry in
the index unless you're traversing the index backwards, in
which case, it will start the list with the last entry in the
index.

See Details and Features and the Examples sections for
more help on how to use this parameter.

[.]PART (Optional) The partial match restriction. For example, a
PART value of "DI" would restrict the list to those entries
starting with the letters "DI". Again, this value must be a
partial match to an index value, not the external value of a
field. This can be passed by reference and subscripted the
same as the FROM parameter so that PART values can be
specified for any subscript in a compound index.

PART is often a partial match to FROM. For example,
FROM(1)="ZTMMGR", and PART(1)="ZTM" would return
only entries that began with "ZTM" and came after
"ZTMMGR". It would not include "ZTZERO", even though
it comes after "ZTMMGR". (If traversing the index
backwards, it would find only entries that came before
ZTMMGR).

If FROM is passed and PART is not a partial match to
FROM, then the Lister will return all the partial matches
to PART that come after FROM. Thus if FROM(1)="DI"
and PART(1)="ZTM", then the Lister returns all partial
matches to "ZTM". If in this example we were traversing
the index backwards, then the lister would return nothing,
because there would be nothing that came before "DI" and
started with "ZTM".

For indexes on pointers or variable pointers, PART should
refer to values on the "B" index of the pointed-to file at the
end of the pointer chain. For example if the index was on a
field pointing to the STATE file, PART(1) could be set to
"A" to find all states whose name begins with "A".

INDEX (Optional) The name of the index from which to build the
list. For example, setting this to "C" could refer to the
Upper Case Menu Text index on the Option file. Whether

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-89

the specified index is simple (single data-value subscript
like the "B" index on most files) or compound (more than
one data-value subscript) affects the FROM and PART
parameters as previously described.

If the index is not specified, the default will be "B" unless
the FLAGS parameter contains a K, in which case, the
default will be the Uniqueness Index defined for the
Primary Key on the file.

If there is no "B" index and either "B" is passed in the
INDEX parameter or is the default index, then a
temporary index is built on the file (which could take some
time). The index is removed after the Lister call.

If "#" is passed in the INDEX parameter, then the list will
be built from the upright file (i.e., in order by internal
entry number) rather than from an index. In that case, if a
FROM value is passed, it should be an IEN and could be
passed either as a literal or in FROM(1) or FROM("IEN"),
all of which are equivalent (see FROM parameter above).

Unless the M flag is used to suppress them, mnemonic
cross-references folded into the specified index are included
in the output.

[.]SCREEN (Optional) Entry Screen. The screen to apply to each
potential entry in the returned list to decide whether or not
to include it. This may be set to any valid M code that sets
$TEST to 1 if the entry should be included, to 0 if not. This
is exactly equivalent to the DIC("S") input variable to
Classic FileMan lookup ^DIC. The Lister will execute this
screen in addition to any SCR node (whole-file screen)
defined for the file. Optionally, the screen can be defined in
an array entry subscripted by "S" (for example, SCR("S")),
allowing additional screen entries to be defined for variable
pointer fields as described below.

The Entry Screen code can rely upon the following:

Naked
indicator

Zero-node of entry’s record.

D Index being traversed.

DIC Open global reference of file being traversed.

Database Server (DBS) API

2-90 VA FileMan V. 22.0 Programmer Manual March 1999

DIC(0) Flags passed to the Lister.

Y Record number of entry under consideration.

Y() array For subfiles, descendants give record
numbers for all upper levels. Structure
resembles the DA array as used in a call to
the classic FileMan edit routine ^DIE.

Y1 IENS equivalent to Y array.

The SCREEN parameter can safely change any of these
values. For example, suppose there is a set of codes field
defined as the 5th piece of the 0 node on the file and you
only want to find entries that have the value "Y" in that
field. Then the code might look like "I $P(^(0),U,5)=""Y""".
All other variables used, however, must be carefully
namespaced.

Defaults to no extra screening.

Variable Pointer Screen. If one of the fields indexed by
the cross-reference passed in the INDEX parameter is a
variable pointer, then additional screens equivalent to the
DIC("V") input variable to Classic FileMan lookup ^DIC
can also be passed. Suppose the screens are being passed
in the SCR array. Then for a simple index with just one
data value field, the code can be passed in SCR("V"). For
simple or compound indexes, screens can be passed for any
indexed fields that are variable pointers in the format
SCR("V",n) where "n" represents the subscript location of
the variable pointer field on the index from the INDEX
parameter.

The Variable Pointer screen restricts the user’s ability to
see entries on one or more of the files pointed to by the
variable pointer. The screen logic is set equal to a line of M
code that will return a truth value when executed. If it
evaluates TRUE, then entries that point to the file can be
included in the output; if FALSE, then any entry pointing
to the file is excluded. At the time the code is executed, the
variable Y(0) is set equal to the information for that file
from the data dictionary definition of the variable pointer
field. You can use Y(0) in the code set into the DIC("V")
variable.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-91

Y(0) contains:

^-Piece Contents

Piece 1 File number of the pointed-to file.

Piece 2 Message defined for the pointed-to file.

Piece 3 Order defined for the pointed-to file.

Piece 4 Prefix defined for the pointed-to file.

Piece 5 y/n indicating if a screen is set up for the
pointed-to file.

Piece 6 y/n indicating if the user can add new entries to
the pointed to file.

All of this information was defined when that file was
entered as one of the possibilities for the variable pointer
field.

For example, suppose your .01 field is a variable pointer
pointing to files 1000, 2000, and 3000. If you only want the
user to be able to enter values from files 1000 or 3000, you
could set up DIC("V") like this:

 S DIC("V")="I +Y(0)=1000!(+Y(0)=3000)"

IDENTIFIER (Optional) The text to accompany each potential entry in
the returned list to help identify it to the end user. This
may be set to any valid M code that calls the EN^DDIOL
utility to load identification text. The Lister will list this
text AFTER that generated by any M identifiers on the file
itself. This parameter takes and can change the same
input as the SCREEN parameter.

For example, a value of "D EN^DDIOL(""KILROY WAS
HERE!"")" would include that string with each entry
returned as a separate node under the "ID","WRITE" nodes
of the output array.

This parameter should issue no READ or WRITE
commands itself nor should it call utilities that issue
READs or WRITEs (except for EN^DDIOL itself).

Defaults to no extra identification text.

Database Server (DBS) API

2-92 VA FileMan V. 22.0 Programmer Manual March 1999

See the description of EN^DDIOL for more information.

TARGET_ROOT (Optional) The array that should receive the output list.
This must be a closed array reference and can be either
local or global. For example, if TARGET_ROOT equals
OROUT(42), the output list appears in
OROUT(42,"DILIST").

If the TARGET_ROOT is not passed, the list is returned
descendent from ^TMP("DILIST",$J).

MSG_ROOT (Optional) The array that should receive any error
messages. This must be a closed array reference and can be
either local or global. For example, if MSG_ROOT equals
"OROUT(42)", any errors generated appear in
OROUT(42,"DIERR").

If the MSG_ROOT is not passed, errors are returned
descendent from ^TMP("DIERR",$J).

Output

FROM See FROM under Input Parameters. If the FROM
parameter is passed by reference and if there are more
entries to return in the list, then the FROM array will
be set to information about the last entry returned in
the current Lister call. Subsequent Lister calls will use
this information to know where to start the next list.

Other than FROM(1), none of the other FROM values
from the index will contain data unless the next entry
to return has the same index value as the last entry
returned by the current Lister call. For example, if the
index is on NAME and DATE_OF_BIRTH: if the last
entry returned was for "Smith,John" and there is only
one "Smith,John" in the file, then
FROM(1)="Smith,John", FROM(2)="", FROM(3)="".
However, if there is another "Smith,John", with a
different DOB, then you might have
FROM(1)="Smith,John", FROM(2)=2690101. If there
are two "Smith,John" entries with the same DOB, then
FROM(1)="Smith,John", FROM(2)=2690101,
FROM(3)=the IEN of the last entry output.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-93

TARGET_ROOT The examples in this section assume that the output
from the Lister was returned in the default location
descendent from ^TMP("DILIST",$J), but it could just
as well be in an array specified by the caller in the
TARGET_ROOT parameter described above.

There are two different formats possible for the output:
(1) Standard output format and (2) Packed output
(format returned when the P flag is included in the
FLAGS parameter).

1. Standard Output Format

The format of the Output List is:

��Header Node

Unless the Lister has run into an error condition,
it will always return a header node for its output
list, even if the list is empty because no matches
were found. The header node on the zero node of
the output array, has this format:

^TMP("DILIST",$J,0) = # of entries found ^
maximum requested ^ any more? ^ results flags

1. The # of entries found will be equal to or less
than the maximum requested.

2. The maximum requested should equal the
NUMBER parameter, or, if NUMBER was not
passed, "*".

3. The any more? value is 1 if there are more
matching entries in the file than were
returned in this list, or 0 if not.

4. The results flags at present is usually empty.
If the output was packed, and some of the data
contained embedded "^" characters, the results
flag contains the flag H. Check for the the
results containing H rather than results equal
to H. For more information see Details and
Features.

��Record Data

Database Server (DBS) API

2-94 VA FileMan V. 22.0 Programmer Manual March 1999

Standard output for the Lister returns each field
of each matching record on a separate node.
Records are subscripted in this array by arbitrary
sequence number that reflects the order in which
the record was found.

o Indexed Field (Simple Index)

Unless suppressed with the "@" in the FIELDS
parameter (the suggested practice), the
indexed values are returned descendent from
the 1 nodes in external format.

^TMP("DILIST",$J,1,seq#) = index_value

NOTE: This is different from the Finder,
which returns the .01 field value in the 1
subtree.

o Indexed Field (Compound Index)

If the Lister call used a compound index, an
additional sequential integer reflects the
subscript position at which the value was
found.

^TMP("DILIST",$J,1,seq#,1) =
first_subscript_index_value

^TMP("DILIST",$J,1,seq#,2) =
second_subscript_index_value

o IEN

Each record’s IEN is returned under the 2
subtree:

^TMP("DILIST",$J,2,seq#) = IEN

The other values returned for each record are
grouped together under the "ID" subtree, then
by record.

o Field Values or Field Identifiers.

The output format is the same whether the
field value is one of the Field Identifiers from
the data dictionary for the file, or the field was

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-95

requested in the FIELDS parameter. In
addition, if the .01 field is not one of the
indexed fields and is not suppressed by use of
"@" in the FIELDS parameter, then it is also
returned along with the other Field values. By
default, field values are returned in external
format.

Field identifiers and field values are
subscripted by their field numbers. Each node
shows up as:

^TMP("DILIST",$J,"ID",seq#,field#) =
field_value

Fields default to external format unless I is
passed in the FLAGS parameter (obsolete) or
the I suffix is specified in the FIELDS
parameter (recommended way to get internal
field values).

If both the "I" and "E" suffix are specified, an
additional subscript level with the values of
"E" and "I" is used to distinguish the external
and internal values of the field. If a field is
only returned in one format, the extra
subscript is never included. Values output
with the extra format specifier look like:

^TMP("DILIST",$J,"ID",seq#,field#,"E" or "I")
= field_value

o Output for field specifier "IX" in FIELDS

A field specifier of "IX" in the FIELDS
parameter retrieves the value of the indexed
field(s). In the output, the values of these fields
are returned as follows, where the final
subscript is a sequential number indicating
the subscript location in the index.

^TMP("DILIST",$J,"ID",seq#,0,1) =
first_subscript_index_value

^TMP("DILIST",$J,"ID",seq#,0,2) =
second_subscript_index_value

If both the "I" and "E" suffix are specified, an

Database Server (DBS) API

2-96 VA FileMan V. 22.0 Programmer Manual March 1999

additional subscript level with the values of
"E" and "I" is used to distinguish the external
and internal values from the index. If the
subscript on the index is not derived from a
field, i.e. if it’s a computed subscript, then the
internal and external value will both be the
same, the value directly from the index.

o WRITE Identifiers

WRITE (display-only) identifiers are grouped
under the "WRITE" subtree of the "ID" tree,
then by record number. It is the caller’s
responsibility to ensure that none of the
WRITE identifiers issue direct READ or
WRITE commands and that they issue any
output through EN^DDIOL so it can be
collected by the Lister. The output from all the
WRITE identifiers for a single record is listed
as individual lines of text:

^TMP("DILIST",$J,"ID","WRITE",seq#,line #) =
text generated by WRITE IDs

o IDENTIFIER parameter

Any text generated by the caller’s
IDENTIFIER parameter is returned in the last
lines of the WRITE identifier text.

��Map Node for Unpacked Format

In order to facilitate finding information in the
output, a Map Node is built for unpacked format.
This node is returned in
^TMP("DILIST",$J,0,"MAP").

The Map node for unpacked format describes
what Field Identifier data can be found in the
"ID" output data nodes. It contains ^-delimited
pieces described below. The position of the piece
in the map node corresponds to the order in which
it can be found in the "ID" output nodes. If the
data is returned in internal format, the piece will
be followed by "I" (ex., "2I" means that the
internal value of field 2 was returned in the

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-97

output).

o #: Individually requested field number, where
is the field number, for each field requested
in the FIELDS parameter

o FID(#): Field Identifier, where # is the field
number.

2. Packed Output Format

If the P flag is used to request packed output, the Lister
packs all the return values into one output node per
record. You must ensure that all requested data will fit
onto a single node. Overflow causes error 206. Return
values containing embedded "^" characters make the
Lister encode the output data using HTML encoding
(see Details and Features)

��Header Node

Identical to Standard Output Format

��Record Data

Values in the output are delimited by "^"
characters. Piece 1 is always the IEN. The values
of other pieces depend on the value of the FIELDS
parameter. If the FIELDS parameter is not
passed, each record’s packed node will follow this
format:

^TMP("DILIST",$J,seq#,0)=IEN^Indexed_field_
values^field_Identifiers^Write_Identifiers^
Output_from_Identifier_parameter

Field Identifiers are sequenced by field number.
Output values specified by the FIELDS parameter
are packed in the order in which they occur in the
FIELDS parameter. WRITE identifiers are
packed in the same order as their subscripts occur
in the ID subtree of the file’s data dictionary.

To parse the output of the packed nodes, use the
MAP node described below.

��Map Node for Packed Format

Database Server (DBS) API

2-98 VA FileMan V. 22.0 Programmer Manual March 1999

Because the packed format is not self-
documenting and because individual field
specifiers such as FID can correspond to a
variable number of field values, the Lister always
includes a map node when returning output in
Packed format. This node is returned in
^TMP("DILIST",$J,0,"MAP").

Its value resembles a data node’s value in that it
has the same number of ^-pieces, but the value of
each piece identifies the field or value used to
populate the equivalent location in the data
nodes. The possible values for each piece in the
map node are:

o IEN: (the IEN)

o .01: (the .01 field)

o FID(#): (Field identifier, where # is the field
number of the identifier)

o WID(string): (Write identifier, where string is
the value of the subscript in the ^DD where
the identifier is stored (such as "WRITE"))

o IDP: (Identifier parameter)

o IX(n): Indexed field values, where "n" refers to
the subscript position in the index.

o #: Individually requested field, by field number

NOTE: For any piece except IEN, the WID, or the
IDP, if the internal value is to be returned, the
piece will be followed by "I". Thus instead of
"IX(1)", you would have "IX(1)I", indicating that
the internal index value was being returned.

For example, the map node for a Lister call on the
OPTION file, if FIELDS => "3.6I;3.6;4", might
look like this:

^TMP("DILIST",$J,0,"MAP") = "IEN^.01^3.6I^3.6^4"

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-99

Examples

Example 1

This is an example of a forward traversal of the "B" index on the Option file, limited
to five entries that all begin with the characters "DIFG", but skipping any first
entry that might equal "DIFG" (the FROM value is always skipped):

>D LIST^DIC(19,"","","",5,"DIFG","DIFG","","","","OUT")

OUT("DILIST",0)=5^5^1^
OUT("DILIST",0,"MAP")=FID(1)
OUT("DILIST",1,1)=DIFG CREATE
OUT("DILIST",1,2)=DIFG DISPLAY
OUT("DILIST",1,3)=DIFG GENERATE
OUT("DILIST",1,4)=DIFG INSTALL
OUT("DILIST",1,5)=DIFG SPECIFIERS
OUT("DILIST",2,1)=321
OUT("DILIST",2,2)=322
OUT("DILIST",2,3)=323
OUT("DILIST",2,4)=326
OUT("DILIST",2,5)=325
OUT("DILIST","ID",1,1)=Create/Edit Filegram Template
OUT("DILIST","ID",2,1)=Display Filegram Template
OUT("DILIST","ID",3,1)=Generate Filegram
OUT("DILIST","ID",4,1)=Install/Verify Filegram
OUT("DILIST","ID",5,1)=Specifiers

Example 2

This related example reveals that there is a DIFG option. When we traverse
backward, starting with the first entry from the previous example, DIFG is the only
option that meets both the FROM and PART parameter criteria. The sequence
number is 5. When we traverse an index backward to get a set number of records,
the sequence number counts backward from that number in order to make the
output come out in the same order as when we traverse forward. This type of Lister
call is normally used in a GUI ListBox when the user is backing up on a list.

>D LIST^DIC(19,"","","B",5,"DIFG
CREATE","DIFG","","","","OUT")

OUT("DILIST",0)=1^5^0^
OUT("DILIST",0,"MAP")=FID(1)
OUT("DILIST",1,5)=DIFG
OUT("DILIST",2,5)=327
OUT("DILIST","ID",5,1)=Filegrams

Database Server (DBS) API

2-100 VA FileMan V. 22.0 Programmer Manual March 1999

Example 3

In this example we’ll return just one entry from a file using a compound index. This
index is on the .01 field (NAME) and field 1 (DATE OF BIRTH). Note how the two
index entries are returned in the 1 nodes. Also note that this file has several field
identifiers and WRITE identifiers. After the call, because there are two different
entries in the file with a .01 equal to "ADDFIFTEEN", but different dates of birth,
the DIFR array has been set up ready for a subsequent call. On this index, the
DATE OF BIRTH field has a collation of "backwards", so we see the most current
date first in the output.

>K DIFR,DIPRT S DIPRT(1)="ADD"

>D LIST^DIC(662001,"","","",1,.DIFR,.DIPRT,"BB","","","OUT")

OUT("DILIST",0)=1^1^1^
OUT("DILIST",0,"MAP")=FID(2)^FID(4)^FID(10)
OUT("DILIST",1,1,1)=ADDFIFTEEN
OUT("DILIST",1,1,2)=JAN 03, 1997
OUT("DILIST",2,1)=17
OUT("DILIST","ID",1,2)=SEVENTEEN*
OUT("DILIST","ID",1,4)=MITTY,WALTER
OUT("DILIST","ID",1,10)=MAY 02, 1997@09:00
OUT("DILIST","ID","WRITE",1,1)=2970103
OUT("DILIST","ID","WRITE",1,2)=
OUT("DILIST","ID","WRITE",1,3)= FIRST LINE
OUT("DILIST","ID","WRITE",1,4)=
OUT("DILIST","ID","WRITE",1,5)= SECOND LINETHIRD LINE
OUT("DILIST","ID","WRITE",1,6)=SIXTHCODE

>ZW DIFR

DIFR=ADDFIFTEEN
DIFR(1)=ADDFIFTEEN
DIFR(2)=2970103
DIFR(3)=
DIFR("IEN")=

Example 4

However, if we do another Lister call on the same file, using the DIFR array that
was passed back from the previous call, this time we’ll return two records. We get
back the second record in the index with "ADDFIFTEEN" as the .01 field, and the
next one that follows it alphabetically. In this call, we suppressed the normal
default values returned by the call, and instead asked for the index field values
"IX", the internal value of the field identifiers "FIDI", both the internal and external
values of field 3 (a set-of-codes type field), and the external value of computed field
8. All of this was done with entries in the FIELDS parameter. As you see, field 4 is

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-101

a pointer, field 10 is a variable pointer. Note how the MAP node describes what is
found in the "ID" nodes.

>D LIST^DIC(662001,"","@;IX;FIDI;3IE;8","",2,.DIFR,.DIPRT,"BB","","","OUT")

OUT("DILIST",0)=2^2^1^
OUT("DILIST",0,"MAP")=IX(1)^IX(2)^FID(2)I^3^3I^FID(4)I^8^FID(10)I
OUT("DILIST",2,1)=15
OUT("DILIST",2,2)=14
OUT("DILIST","ID",1,0,1)=ADDFIFTEEN
OUT("DILIST","ID",1,0,2)=JAN 01, 1969
OUT("DILIST","ID",1,2)=FIFTEEN
OUT("DILIST","ID",1,3,"E")=SIXTHCODE
OUT("DILIST","ID",1,3,"I")=SIX
OUT("DILIST","ID",1,4)=1
OUT("DILIST","ID",1,8)=0
OUT("DILIST","ID",1,10)=327;DIC(19,
OUT("DILIST","ID",2,0,1)=ADDFOURTEEN
OUT("DILIST","ID",2,0,2)=JAN 01, 1949
OUT("DILIST","ID",2,2)=FOURTEEN
OUT("DILIST","ID",2,3,"E")=
OUT("DILIST","ID",2,3,"I")=
OUT("DILIST","ID",2,4)=
OUT("DILIST","ID",2,8)=32.6
OUT("DILIST","ID",2,10)=10;DIZ(662003,

Example 5

In this example, we use the P flag to return the next two records in Packed output
format. We revert to letting the Lister return default values, rather than controlling
them with the FIELDS parameter, but we’ll return additional output by using the
IDENTIFIER parameter. Note that although we asked for two records, there was
only one left that fit our PART criteria. The first piece of the header node tells us
one record was returned; the second piece tells us that two records were requested;
the third tells us there are no records left that meet the criteria.

Here’s what the FROM values are set to going into the call:

DIFR=ADDFOURTEEN
DIFR(1)=ADDFOURTEEN
DIFR(2)=
DIFR(3)=
DIFR("IEN")=

>D LIST^DIC(662001,"","","P",2,.DIFR,.DIPRT,"BB","","D
EN^DDIOL(""Hi there"")"," OUT")

OUT("DILIST",0)=1^2^0^
OUT("DILIST",0,"MAP")=IEN^IX(1)^IX(2)^FID(2)^FID(4)^FID(10)^WID(WRITE1)^WID(W
RIT
E2)^WID(WRITE3)^WID(WRITE4)^IDP

Database Server (DBS) API

2-102 VA FileMan V. 22.0 Programmer Manual March 1999

OUT("DILIST",1,0)=16^ADDSIXTEEN^MAR 28, 1970^MA HERE TOO*^^DIFG^2700328^^
FIRST
 LINE~~ SECOND LINETHIRD LINE^^Hi there

Error Codes Returned

120 Error occurred during execution of a VA FileMan hook.

202 Missing or invalid input parameter.

205 The File and IENS represent different subfile levels.

206 The data requested for the record is too long to pack together.

207 The value is too long to encode into HTML.

301 The passed flags are missing or inconsistent.

304 The IENS lacks a final comma.

306 The first comma-piece of the IENS should be empty.

401 The file does not exist.

402 The global root is missing or not valid.

406 The file has no .01 field definition.

407 A word-processing field is not a file.

420 The index is missing.

501 The file does not contain that field.

520 That kind of field cannot be processed by this utility.

The Lister may also return any error returned by $$EXTERNAL^DILFD.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-103

Details and Features

Screens
Applied

Aside from the optional screen parameter, the Lister applies
one other screen to each index entry before adding it to the
output list as follows: ^DD(file#,0,"SCR"). Other screens, such

 as the 7.5 node and field-level screens on various data
types,are not checked because they relate specifically to entry
and editing, not selection.

Output
Transform

It is possible for any field with an output transform to sort
differently than a user would expect. Although the value
displayed is the output value, the value that determines its
order is its internal value. When the I flag is used, the output
transform is never executed, and the output will always
appear in the expected order.

HTML
Encoding

Since the Lister uses the "^" character as its delimiter for
packed output, it cannot let any of the data contain that
character. If any does, it will encode all of the data using an
HTML encoding scheme.

In this scheme, all "&" characters are replaced with the
substring "&" and all "^" characters with the string
"^". This keeps the data properly parsable and decodable.
The data for all records found, not just the ones with
embedded ^s, will be encoded if embedded ^s are found in the
data of any of the records.

If the Lister has encoded the output, it will include an H flag
in ^-piece four of the output header node.

Data can be decoded using the VA FileMan library function
call $$HTML^DILF(encoded string,-1). It can properly decode
individual fields or complete packed data nodes.

Pointers and
Variable
Pointers

The Lister treats indexes on fields of these two data types
specially. For every other data type, the value of the indexed
field is completely contained in the file indicated by the FILE
parameter. For pointer and variable pointers, this is not the
case. All index values come from the B index of the pointed-to
file. The Lister uses the values in the pointed-to file, extending
the search to the end of the pointer chain, to select records in
the pointing file at the beginning of the chain.

Database Server (DBS) API

2-104 VA FileMan V. 22.0 Programmer Manual March 1999

For example, suppose the FILE parameter picks file A, and
the INDEX parameter picks the X index, a cross-reference on
a pointer field. Suppose further that field points to file B,
whose .01 field points to file C, and file C’s .01 is a set of codes.
Then this Lister call will select records in file A (the pointing
file) based on the index values it finds in file C (the pointed-to
file).

The FROM("IEN"), SCREEN, and IDENTIFIER parameters
always apply to the pointing file, the one identified by the
FILE parameter, because they deal with actual record
selection. However, for pointers and variable pointers, the
FROM and PART parameters apply to the "B" index on the
pointed-to file, since they deal with index values.

Variable pointers work similarly, except that their index
values usually come from more than one pointed-to file.

WRITE ID
nodes

The Lister executes each individual WRITE ID node from the
data dictionary. If an individual node results in creating
multiple lines in the output from the EN^DDIOL call(s) it
contains, then in Standard Output Format the results will
appear on multiple lines in the output array. Thus there is not
a direct correlation between the number of WRITE ID nodes
and the number of nodes that will be returned in the output
array of a Lister call for each record. In Packed output format,
each WRITE ID node appears in a separate "^" piece and line
feeds are designated with a tilde (~) character.

FROM
parameter
with
Compound
Indexes

The FROM parameter designates only a starting point on the
index defined in the INDEX parameter. For example, we have
a compound index where the first subscript is a NAME and
the second is a DATE OF BIRTH. Supposing that after a
Lister call, FROM(1)="SMITH,JOHN" and
FROM(2)="2690101. A subsequent Lister call assumes that
there must be another entry with the name "SMITH,JOHN",
but a date-of-birth that follows 1/1/69. Any other entries
returned will have names that equal or follow SMITH,JOHN,
but after processing all of the SMITH,JOHN entries, other
output entries could have any date-of-birth. This is NOT like a
sort where we say that we want only entries where the date-
of-birth follows 1/1/69.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-105

FIELD^DID(): DD Field Retriever

This procedure retrieves the values of the specified field-level attributes for the
specified field.

Format

FIELD^DID(FILE,FIELD,FLAGS,ATTRIBUTES,TARGET_ROOT,MSG_ROOT)

Input Parameters

FILE (Required) File or subfile number.

FIELD (Required) Field name or number.

(Optional) Flags to control processing. The possible values
are:

N No entry in the target array is
created if the attribute is null.

FLAGS

Z Word processing attributes include
Zero (0) nodes with text.

ATTRIBUTES (Required) A list of attribute names separated by
semicolons. Full attribute names must be used. Following
are the attributes that can be requested:

AUDIT

AUDIT CONDITION

COMPUTE ALGORITHM

COMPUTED FIELDS USED

DATE FIELD LAST EDITED

DECIMAL DEFAULT

DELETE ACCESS

DESCRIPTION

Database Server (DBS) API

2-106 VA FileMan V. 22.0 Programmer Manual March 1999

FIELD LENGTH

GLOBAL SUBSCRIPT LOCATION

HELP-PROMPT

INPUT TRANSFORM

LABEL

MULTIPLE-VALUED

OUTPUT TRANSFORM

POINTER

READ ACCESS

SOURCE

SPECIFIER

TECHNICAL DESCRIPTION

TITLE

TYPE

WRITE ACCESS

XECUTABLE HELP

TARGET_ROOT (Required) The closed root of the array that should receive
the attributes.

MSG_ROOT (Optional) The name of a closed root reference that is used
to pass error messages. If not passed, ^TMP("DIERR",$J)
is used.

Output

TARGET_ROOT The array is subscripted by the attribute names.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-107

Example

 >D FIELD^DID(999000,.01,"","LABEL;TYPE","TEST1")

 >ZW TEST1
 TEST1("LABEL")=NAME
 TEST1("TYPE")=FREE TEXT

Error Codes Returned

200 There is an error in one of the variables passed.

202 Missing or invalid input parameter.

301 Flags passed are unknown or incorrect.

401 The specified file or subfile does not exist.

403 The file lacks a Header Node.

404 The file Header Node lacks a file #.

501 The field name or number does not exist.

505 The field name passed is ambiguous.

510 The data type for the specified field cannot be determined.

520 An incorrect kind of field is being processed.

537 Field has a corrupted pointer definition.

Database Server (DBS) API

2-108 VA FileMan V. 22.0 Programmer Manual March 1999

FIELDLST^DID(): DD Field List Retriever

This procedure returns a list of field-level attributes that are supported by FileMan.
It shows specifically which attributes the Data Dictionary retriever calls can return.

Format

FIELDLST^DID(TARGET_ROOT)

Input Parameters

TARGET_ROOT (Required) The root of an output array.

Output

TARGET_ROOT The descendents of the array root are subscripted by the
attribute names. "WP" nodes indicate that the attribute
consists of a word processing field.

Example

Below is a partial capture of what is returned:

 >D FIELDLST^DID("TEST")

 >ZW TEST
 TEST("AUDIT")=
 TEST("AUDIT CONDITION")=
 TEST("COMPUTE ALGORITHM")=
 TEST("COMPUTED FIELDS USED")=
 .
 .
 .

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-109

FILE^DID(): DD File Retriever

This procedure retrieves the values of the file-level attributes for the specified file.
It does not return subfile attributes.

Format

FILE^DID(FILE,FLAGS,ATTRIBUTES,TARGET_ROOT,MSG_ROOT)

Input Parameters

FILE (Required) File number (but not subfile attributes).

(Optional) Flags to control processing. The possible values
are:

N No entry in the target array is
created if the attribute is null.

FLAGS

Z Word processing attributes include
Zero (0) nodes with text.

ATTRIBUTES (Required) A list of attribute names separated by
semicolons. Full attribute names must be used:

ARCHIVE FILE

AUDIT ACCESS

DATE

DD ACCESS

DEL ACCESS

DESCRIPTION

DEVELOPER

DISTRIBUTION PACKAGE

ENTRIES

GLOBAL NAME

Database Server (DBS) API

2-110 VA FileMan V. 22.0 Programmer Manual March 1999

LAYGO ACCESS

LOOKUP PROGRAM

NAME

PACKAGE REVISION DATA

REQUIRED IDENTIFIERS

RD ACCESS

VERSION

WR ACCESS

TARGET_ROOT (Required) The name of a closed array reference.

MSG_ROOT (Optional) The name of a closed root array reference that is
used to pass error messages. If not passed, messages are
returned in ^TMP("DIERR",$J).

Output

TARGET_ROOT The array is subscripted by the attribute names. Some
attributes can have multiple sub-attributes and these are
further subscripted with a sequence number and the sub-
attribute name. Attributes that contain word processing
text also have a sequence number for each line of text.

Example

 >D FILE^DID(999000,"","NAME;GLOBAL NAME;REQUIRED IDENTIFIERS","TEST")

 >ZW TEST
 TEST("GLOBAL NAME")=^DIZ(999000,
 TEST("NAME")=ZZZDLTEST
 TEST("REQUIRED IDENTIFIERS")=TEST("REQUIRED IDENTIFIERS")
 TEST("REQUIRED IDENTIFIERS",1,"FIELD")=.01
 TEST("REQUIRED IDENTIFIERS",2,"FIELD")=1

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-111

Error Codes Returned

200 There is an error in one of the variables passed.

202 Missing or invalid input parameter.

301 Flags passed are unknown or incorrect.

401 The specified file or subfile does not exist.

403 The file lacks a Header Node.

404 The file Header Node lacks a file #.

501 The field name or number does not exist.

505 The field name passed is ambiguous.

510 The data type for the specified field cannot be determined.

520 An incorrect kind of field is being processed.

537 Field has a corrupted pointer definition.

Database Server (DBS) API

2-112 VA FileMan V. 22.0 Programmer Manual March 1999

FILELST^DID(): DD File List Retriever

This procedure returns a list of file-level attributes that are supported by FileMan.
It shows specifically which attributes the Data Dictionary retriever calls can return.

Format

FILELST^DID(TARGET_ROOT)

Input Parameters

TARGET_ROOT (Required) The root of an output array.

Output

TARGET_ROOT The descendents of the array root are subscripted by the
attribute names. "WP" nodes indicate that the attribute
consists of a word processing field. "M" nodes indicate that
the attribute can consist of multiple sub-attributes.

Example

 >D FILELST^DID("TEST")

 >ZW TEST
 TEST("ARCHIVE FILE")=
 TEST("AUDIT ACCESS")=
 TEST("DATE")=
 TEST("DD ACCESS")=
 TEST("DEL ACCESS")=
 TEST("DESCRIPTION")=
 TEST("DESCRIPTION","#(word-processing)")=
 TEST("DEVELOPER")=
 TEST("DISTRIBUTION PACKAGE")=
 TEST("ENTRIES")=
 TEST("GLOBAL NAME")=
 TEST("LAYGO ACCESS")=
 TEST("LOOKUP PROGRAM")=
 TEST("NAME")=
 TEST("PACKAGE REVISION DATA")=
 TEST("REQUIRED IDENTIFIERS")=
 TEST("REQUIRED IDENTIFIERS","#","FIELD")=
 TEST("RD ACCESS")=
 TEST("VERSION")=

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-113

 TEST("WR ACCESS")=

"RD ACCESS" in the example above is a new ATTRIBUTES Input Parameter.

Database Server (DBS) API

2-114 VA FileMan V. 22.0 Programmer Manual March 1999

$$GET1^DID(): Attribute Retriever

This extrinsic function retrieves a single attribute from a single file or field.

Format

$$GET1^DID(FILE,FIELD,FLAGS,ATTRIBUTE,TARGET_ROOT,MSG_ROOT)

Input Parameters

FILE (Required) File number.

FIELD Field number or name. (Required only when field attributes
are being requested, otherwise this function assumes a file
attribute is being requested)

(Optional) Flag to control processing: FLAGS

Z Zero nodes on word processing
attributes are included in the array
subscripts.

ATTRIBUTE (Required) Data dictionary attribute name.

TARGET-ROOT Closed array reference where multi-lined attributes will be
returned. (Required only when multi-line values are
returned, such as word processing attributes like
"DESCRIPTION")

MSG-ROOT (Optional) The name of a closed root reference that is used
to pass error messages. If not passed, ^TMP("DIERR",$J) is
used.

Output

A successful call returns the attribute requested. This can either be set into a
variable or written to the output device.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-115

Examples

Example 1

 > S X=$$GET1^DID(999000,"","","DESCRIPTION","ARRAY","ERR") ZW @X
 ARRAY(1)=This is the description of the file (ZZZDLTEST).
 ARRAY(2)=And this is the second line of the description.

Example 2

 >W $$GET1^DID(999000,"","","GLOBAL NAME")
 ^DIZ(999000,

Example 3

 >W $$GET1^DID(999000,.01,"","LABEL")
 NAME

Example 4

 >S X=$$GET1^DID(999000,.01,"Z","DESCRIPTION","ARRAY","ERR") ZW @X
 ARRAY(1,0)=This is the description of the .01 filed
 ARRAY(2,0)=in file 999000.

 >W X
 ARRAY

Error Codes Returned

200 Parameter is invalid or missing.

202 Specified parameter in missing or invalid.

505 Ambiguous field.

Database Server (DBS) API

2-116 VA FileMan V. 22.0 Programmer Manual March 1999

Details and Features

File/Field This retriever call differentiates whether the request is for a file or
a field by the second parameter. If the second parameter is null,
the retriever assumes (since no field is passed) that a file attribute
is desired. If the second parameter is not null, the retriever
assumes a field attribute is requested.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-117

CHK^DIE(): Data Checker

This procedure checks user-supplied data against the data dictionary definition of a
field. If the input data passes the validation, the internal and, optionally, the
external forms of the data are returned. In this respect, CHK^DIE is the inverse of
the $$EXTERNAL^DILFD call.

While this procedure indicates that a user’s response is valid according to a field’s
definition, it does not assure that a value can be filed in a particular record. In order
to verify that a value can be filed, use the VAL^DIE or FILE^DIE calls (with the E
flag). CHK^DIE does not have IENS as input; it is ignorant of the state of the data.

Do not pass a VALUE of null or "@" to CHK^DIE. This procedure cannot verify that
deletion of values from the database is appropriate. Again, use VAL^DIE or
FILE^DIE (with E flag) for this purpose.

Format

CHK^DIE(FILE,FIELD,FLAGS,VALUE,.RESULT,MSG_ROOT)

Input Parameters

FILE (Required) File or subfile number.

FIELD (Required) Field number for which data is being validated.

(Optional) Flags to control processing. The possible values are:

H Help (single "?") is returned if VALUE is not valid.

FLAGS

E External value is returned in RESULT(0).

VALUE (Required) Value to be validated, as entered by a user. VALUE
can take several forms depending on the data type involved,
e.g., a partial, unambiguous match for a pointer or any of the
supported ways to input dates (such as "TODAY" or "11/3/93").

.RESULT (Required) Local variable that receives output from the call. If
VALUE is valid, the internal value is returned. If not valid, ^ is
returned. If the E flag is passed, external value is returned in
RESULT(0).

NOTE: This array is killed at the beginning of each call.

Database Server (DBS) API

2-118 VA FileMan V. 22.0 Programmer Manual March 1999

MSG_ROOT (Optional) Root into which error, help, and message arrays are
put. If this parameter is not passed, these arrays are put into
nodes descendent from ^TMP.

Output

See input parameters .RESULT and MSG_ROOT.

RESULT = internal value or ^ if the passed VALUE is not valid.

RESULT(0) = external value if the passed VALUE is valid and E flag is present.

Example

In the following example, data for a date/time data type is being checked. Note that
the external form of the user’s input, which was "T-180", is passed. In this case, the
value was acceptable, as shown below:

 >S FILE=16200,FIELD=201,FLAG="E",VALUE="T-180"

 >D CHK^DIE(FILE,FIELD,FLAG,VALUE,.RESULT)

 >ZW RESULT
 RESULT=2930625
 RESULT(0)=JUN 25,1993

Error Codes Returned

In addition to errors that indicate that the input parameters are invalid, the
primary error code returned is:

120 Error occurred during execution of a FileMan hook.

701 Value is invalid.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-119

Details and Features

What is
checked

This call verifies that the VALUE passed is valid by passing it
through the field’s INPUT transform. Also, if the field has any
screens, those screens must be passed. If the field is a pointer or
variable pointer, this call verifies that there is an unambiguous
match (or partial match) for VALUE.

Entry
number
caution

No internal entry numbers are available when the INPUT
transform or screens for the field are executed. Therefore, the
INPUT transform and screens cannot reference any entry
numbers using either the DA() array or the D0, D1, D2, etc.,
variables. Likewise, Xecutable Help cannot reference an entry
number if the H flag is sent.

Database Server (DBS) API

2-120 VA FileMan V. 22.0 Programmer Manual March 1999

FILE^DIE(): Filer

This procedure:

• Puts validated data that is in internal FileMan format into the database.

OR:

• Validates data that is in external (user-provided) format, converts it to
internal FileMan format, and files valid data into the database.

If the data to be filed is in external format, you can specify that nothing will be filed
unless the values for every field being filed are valid. (Use the T and E flags).

Uniqueness and completeness of keys are enforced (unless the U flag is used). This
check is performed on values passed in both internal and external formats.

The associated functions of firing cross-references and of performing data audits are
also performed.

NOTE: The Filer only files data into existing entries and subentries. To add new
entries or subentries, use the UPDATE^DIE call.

Format

FILE^DIE(flags,fda_root,msg_root)

Input Parameters

(Optional) Flags to control processing. The possible values are:

E External values are processed. If this flag is set, the values
in the FDA must be in the format input by the user. The
value is validated and filed if it is valid.

If the flag is not set, values must be in internal format and
must be valid; no validation or transformation is done by
the Filer, but key integrity is enforced.

K LocKing is done by the Filer. (See discussion of Locking.)

FLAGS

S Save FDA. If this flag is not set and there were no errors
during the filing process, the FDA is deleted. If this flag is
set, the array is never deleted.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-121

T Transaction is either completely filed or nothing is filed.
The E flag must be used with the T flag, with values
passed in external format. If any value is invalid, nothing
is filed, and the error array will specify which fields were
invalid.

Without this flag, valid values are filed and only the
invalid ones are not.

If neither the T nor the U flag is‘ sent, simple keys are
checked as they are encountered in the FDA. Compound
keys are checked only after the entire record is filed. If the
key is invalid, changes to fields making up that key are
backed out.

U Don’t enforce key Uniqueness or completeness. Without
the U flag, the values in the FDA are checked to ensure
that the integrity of any key in which an included field
participates is not violated.

(CAUTION: If this flag is used, the FILE^DIE call may
result in records that contain null key fields or records
with duplicate keys. It is the programmer’s responsibility
to ensure that the database is not left in a state in which
the integrity of keys is violated.)

fda_root (Required) The root of the FDA that contains the data to file. The
array can be a local or global one. The root is the closed array
reference to be used with subscript indirection not the traditional
FileMan root. See the Database Server Introduction for details of
the structure of the FDA.

msg_root (Optional) The root of an array (local or global) into which error
messages are returned. If this parameter is not included, error
messages are returned in the default array-^TMP("DIERR",$J).

Output

Ordinarily the "output" of this call is the updating of the database. Error messages
and information supplied via EN^DDIOL are returned in the standard array in
^TMP or in the array specified by msg_root.

Database Server (DBS) API

2-122 VA FileMan V. 22.0 Programmer Manual March 1999

Error Codes Returned

This call returns error messages in many circumstances. Most of the messages
report bad input parameters or input to a file, field, or record that does not exist.
Primary user-oriented codes include:

110 Record is locked.

120 Error occurred during execution of a FileMan hook.

701 Input data was invalid.

712 Deletion was attempted but not allowed.

740 New values are invalid because they would create a duplicate key.

742 Deletion was attempted on a key field.

744 A key field was not assigned a value.

Details and Features

Security The Filer does not check user access when filing. This check must
be done by the client application.

Deleting
data

You can delete the value in a field by setting the value for the
field equal to null or "@".

This works for word processing fields, too. Instead of setting the
value for the field equal to the root of the array where the new
word processing text is to be found, set it equal to null or "@".

NOTE: When the E (external) flag is used, you can’t delete the
field value if the field is either Required or Uneditable. Without
the E flag, deletion occurs in both cases. When key integrity is
checked (the U flag is not used), you can’t delete the value of a
key field whether the E flag is used or not.

You can delete an entire entry or subentry by setting the value of
the .01 field to "@" or null. In this case, it does not matter
whether the the .01 field is Required, Uneditable, or a key field.

The Filer never asks for confirmation of the deletion.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-123

Scope of a
Single
Filer Call

Data passed to the Filer should comprise one logical record. Thus,
the data can consist of values for fields in the primary file and its
multiples and in related files. ("Navigation" to other files is
handled by the calling application, not by the Filer.)

Cross-
references

New style indexes that have an execution value of RECORD are
fired once after all the data for a single record or subrecord is
filed.

All other cross-references (and data audits) are fired as the data
is filed, that is, on a field-by-field basis.

Any possible conflict between the cross-reference and updated
data must be noted by the client application and resolved by
modifying the cross-reference. The most common situation in
which conflicts can arise is when a cross-reference (most
frequently a trigger or MUMPS cross-reference) has been used to
provide information to the user while data is being edited.
Default values which are dependent on the values of other fields
being edited can be provided in this way. These "user interface"
cross-references are fired by the Filer with the rest of the cross-
references after the data editing is complete. Thus, they cannot
have their desired effect of providing the user with information
during the editing session. However, they may have the
undesired effect of overwriting user-entered values. This type of
cross-reference must be removed from the DD as part of the
preparation for using the DBS. Also, if the functionality provided
by these cross-references is still desirable during the editing
session, the client application will need to provide it.

Locking If requested, the Filer incrementally locks records and subrecords
before beginning to file any data. If a lock on any record fails, no
filing is done and an error message is returned to the calling
program.

It is recommended that locking be done outside of the Filer by the
client application. There are several reasons for this:

It may be frustrating to the user to edit a screen’s worth of data
and then to have the SAVE fail because the necessary lock could
not be obtained.

Data successfully validated may become invalid before it is filed.

Database Server (DBS) API

2-124 VA FileMan V. 22.0 Programmer Manual March 1999

 The client application can more selectively determine which
records to lock. Of necessity, the Filer locks all entries and
subentries referenced in the FDA passed to it. In many instances,
this is more than is actually required.

Locking inside the Filer requires additional processing that slows
the filing action down.

However, there are situations in which it is appropriate for the
Filer to do the locking; for example, if only a single file is involved
and the source of the data is not an interactive editing session.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-125

HELP^DIE(): Helper

This procedure retrieves user-oriented help for a field from the Data Dictionary and
other sources. The help is returned in arrays. (The MSG^DIALOG procedure can be
used to display the help.) You control the kind of help obtained by using the FLAGS
input parameter—either a specific kind of help, the help normally returned with
one or two question marks, or all available help for a field.

Format

HELP^DIE(FILE,IENS,FIELD,FLAGS,msg_root)

Input Parameters

FILE (Required) File or subfile number.

IENS (Optional) Standard IENS indicating internal entry numbers. This
parameter is only needed if code in the Data Dictionary for
Xecutable Help or Screen on a Set of Codes references the entry
number using DA() array or D0, D1, etc., and if that kind of help is
being requested.

FIELD (Required) Field number for which help is requested.

(Required) Flags used to determine what kind of help is returned
by the call. If a lower case letter is shown, use it to suppress that
kind of help—useful in conjunction with ? or ??. The possible
values are:

? Help equivalent to user entering one "?" at an edit prompt.
(Also help returned for an invalid response.)

?? Help equivalent to user entering "??" at an edit prompt.

A All available help for the field.

B
(b)

Brief variable pointer help. A single line beginning with "To
see the entries ...".

NOTE: See also Limitations under Details and Features
below.

FLAGS

C Set of Codes screen description.

Database Server (DBS) API

2-126 VA FileMan V. 22.0 Programmer Manual March 1999

D Description text for the field; this may be multiple lines.

F Fields that can be used for lookups. Returned for top-level
.01 fields and for pointed-to files for pointer data types. For
pointed-to files, the F flag is effective only if the G flag is
also sent.

G
(g)

Getting help from pointed-to file. Help for the .01 field of
pointed-to file is returned.

H Help prompt text.

M More variable pointer help. Detailed description of how to
enter variable pointer data.

P Pointer screen description.

S Set of codes possible choices. Any screen that exists on the
set of codes field is applied so that only actually selectable
choices are presented.

T Date/Time generic help. This help text is customized based
on the allowable and required elements of the particular
Date/Time field.

U Unscreened set of codes choices.

V Variable pointer help that lists the prefixes and messages
associated with a particular variable pointer field.

X Xecutable help-the M code contained in Xecutable Help is
executed. In order to have the help returned in an array,
the executed code must use EN^DDIOL to load the help
message.

msg_root (Optional) Closed root into which the output from the call is put. If
not supplied, output is returned in ^TMP-see Output.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-127

Output

The default output from this call is:

DIHELP Number of lines of help text returned

^TMP("DIHELP",$J,n) Array containing the lines of help text. The text is
found in integer subscripted nodes (n), beginning
with 1. A blank node is inserted between each
different type of help returned.

If error messages are necessary, they are returned in the standard manner.

If the MSG_ROOT is included in the input parameters, output is returned there
instead of ^TMP. The help text is returned in nodes descendent from
MSG_ROOT("DIHELP").

Example

The following example illustrates the use of this call to return help text from a field
that is a Set of Codes data type. This is the same help that can be obtained with a
"?" in a traditional FileMan call. Note that the help is returned in the specified
array descendent from MYHELP(1):

 >D HELP^DIE(16200,"",5,"?","MYHELP(1)")

 >ZW MYHELP
 MYHELP(1,"DIHELP")=5
 MYHELP(1,"DIHELP",1)=Only YES and MAYBE are acceptable.
 MYHELP(1,"DIHELP",2)=
 MYHELP(1,"DIHELP",3)=Choose from:
 MYHELP(1,"DIHELP",4)=Y YES
 MYHELP(1,"DIHELP",5)=M MAYBE

Error Codes Returned

120 Error occurred during execution of a FileMan hook.

301 An invalid flag was passed.

501 Field does not exist.

Database Server (DBS) API

2-128 VA FileMan V. 22.0 Programmer Manual March 1999

Details and Features

Helper and
Validator

Based on a flag passed to the Validator call, single question
mark help is returned by the Validator if the value being
checked is invalid.

Pointed-to
Files

By default you receive help for the .01 field of pointed-to files
with ? or ?? when the field on which you are requesting help is
a pointer. If you do not want this extended help returned, use
the g flag.

Limitations This call does not return lists of entries for .01, pointer, or
variable pointer fields. Use the Lister utility to obtain these
lists.

The b flag will suppress the line of Variable Pointer help that
indicates a user can get a list of entries if they type <Prefix.?>.
Use this flag with "?" if you are not supporting this capability.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-129

$$KEYVAL^DIE(): Key Validator

The Key Validator extrinsic function verifies that new values contained in the FDA
do not produce an invalid key. All keys in which any field in the FDA participates
are checked. If the value for a field in a key being checked is not present in the FDA,
the value used to verify the key is obtained from the previously filed data.

Format

$$KEYVAL^DIE(FLAGS,FDA_ROOT,MSG_ROOT)

Input Parameters

FLAGS (Optional) Flags to control processing. The possible values are:

 Q Quit when the first problem in the FDA is encountered.

FDA_ROOT (Required) The root of the FDA that contains the data to be
checked. The array can be a local or global one. See the
Database Server Introduction for details of the structure of the
FDA.

The value of fields in the FDA must be the internal value. Do
not pass external (e.g., unresolved pointer values, non-FileMan
dates) in the FDA.

No action is taken on fields in the referenced FDA if those fields
do not participate in a Key defined in the KEY file.

MSG_ROOT (Optional) The root of an array into which error messages are
returned. If this parameter is not included, errors are returned
in the default array: ^TMP("DIERR",$J).

Output

This Boolean function returns a 1 if key integrity is not violated by any value in the
FDA and a 0 if an invalid key was produced by any of the values. Error messages
and DIERR are also returned when necessary.

Database Server (DBS) API

2-130 VA FileMan V. 22.0 Programmer Manual March 1999

Example

In the following example, two fields from File #99999 (SAMPLE file) are set into an
FDA. These are values for a new record; therefore, the IENS is "+1,". The values
(".111" and "Albert Jones") are valid internal values for fields .01 and .02.
$$KEYVAL^DIE returns "0" indicating that key integrity is violated by these
values. The returned error message states the values create a duplicate key. The
key that is duplicated is the "A" key.

>K MYERRORS,MYFDA

>S MYFDA(99999,"+1,",.01)=.111

>S MYFDA(99999,"+1,",.02)="Albert Jones"

>W $$KEYVAL^DIE("","MYFDA","MYERRORS")
0
>W DIERR
1^1
>ZW MYERRORS
MYERRORS("DIERR")=1^1
MYERRORS("DIERR",1)=740
MYERRORS("DIERR",1,"PARAM",0)=3
MYERRORS("DIERR",1,"PARAM","FILE")=99999
MYERRORS("DIERR",1,"PARAM","IENS")=+1,
MYERRORS("DIERR",1,"PARAM","KEY")=11
MYERRORS("DIERR",1,"TEXT",1)=New values are invalid because they create a
 duplicate Key ’A’ for the SAMPLE file.
MYERRORS("DIERR","E",740,1)=

Error Codes Returned

740 A duplicate key is produced by a field’s new value.

742 A value for a field in a key is being deleted.

744 Not all fields in a key have a value.

Details and Features

Possible
IENS

The only placeholder the IENS in the FDA can contain is the ’+’
for records not yet added to the database. You cannot use the ’?’
or ’?+’ placeholders since the Key Validator will not attempt to
lookup an entry to obtain existing values for a key. (See the
Database Server Introduction for details of the IENS; see
UPDATE^DIE for description of placeholders.)

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-131

UPDATE^DIE(): Updater

This procedure adds new entries in files or subfiles. The caller uses a standard FDA
structure to specify the field values of the new entries. The caller should restrict
each Updater call to one logical entry, possibly made up of multiple physical entries.
The record numbers for the new entries are returned in an array; the caller may
assign their own record numbers to new entries by presetting the array. Any
appropriate indexing and auditing automatically occurs for the new record.

Although the Updater can safely add entries to top-level files and to subfiles within
those same new entries, there is one caution. If the subfile contains an INPUT
transform that assumes the existence of the parent record, the developer should
make two separate Updater calls, first to add the parents, then to add the children.

This procedure includes some elementary filing capabilities to permit the adding of
required identifiers and key values at the time new records are created. It also
includes elementary finding capabilities to facilitate the identification of top-level
entries to which subentries are being added. For full filing and finding capabilities
beyond the scope of adding new records, programmers should use the Filer
(FILE^DIE) or Finder (FIND^DIC). If you are filing data in existing records and
you know the record numbers, use the Filer instead of the Updater.

Format

UPDATE^DIE(FLAGS,FDA_ROOT,IEN_ROOT,MSG_ROOT)

Input Parameters

(Optional) Flags to control processing. The possible values are:

E External values are processed. If this flag is set, the
values in the FDA must be in the format input by the
user. The Updater validates all values and converts them
to internal format. Invalid values cancel the entire
transaction.

If the flag is not set, values must be in internal format
and must be valid.

FLAGS

K If a file has a primary key, the primary Key fields, not the
.01 field, are used for lookup for Finding and LAYGO
Finding nodes.

Database Server (DBS) API

2-132 VA FileMan V. 22.0 Programmer Manual March 1999

S The Updater Saves the FDA instead of killing it at the
end.

U Don’t check key integrity. (CAUTION: If this flag is used,
the UPDATE^DIE call may result in records that contain
null key fields or records with duplicate keys. It is the
programmer’s responsibility to ensure that the database is
not left in a state in which the integrity of keys is
violated.)

FDA_ROOT (Required) The name of the root of a VA FileMan Data Array,
which describes the entries to add to the database. The Updater
accepts Adding Nodes, Filing Nodes, Finding Nodes, and
LAYGO Finding Nodes in its FDAs. See Details and Features in
this section for a description of the format of the array named
by the FDA parameter.

IEN_ROOT (Optional) The name of the Internal Entry Number Array (or
IEN Array). This should be a closed root. This array has two
functions:

1) Requesting Record Numbers for New Entries

The application can set nodes in the IEN Array to direct the
Updater to use specific record numbers for specific new records.
These nodes should have a single subscript equal to the
sequence number in the IENS subscript of the FDA entry and a
value equal to the desired record number.

For example, if the application sets the IEN_ROOT parameter
to ORIEN, and sets ORIEN(1)=1701, the Updater will try to
assign record number 1701 to the new record denoted by the
"+1" value in the FDA subscripts.

This feature also affects LAYGO Finding nodes. When these
nodes result in adding a new record, the Updater will check the
IEN Array to see if the application wants to place the new
record at a specific record number. When LAYGO Finding nodes
result in a successful lookup, the IEN Array node passed in by
the application is changed to the record number of the record
found.

If the application sets an entry in the IEN Array for a Finding
node, the Updater will ignore it (actually, it will overwrite it
when it finds the record number for that node).

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-133

This feature is meaningless for Filing nodes since they have no
sequence numbers.

Unlike FDA_ROOT, IEN_ROOT is optional, both partially and
as a whole. The Updater will pick the next available record
numbers for any new records not listed by sequence number in
the IEN Array. If the IEN Array is empty or if the IEN_ROOT
is not passed, the Updater will pick all the new record numbers.

2) Locating Feedback on What the Updater Did

As the Updater decodes and processes the sequence numbers, it
gradually converts them into genuine record numbers (see
Output). The IEN Array named by the IEN_ROOT parameter is
where this feedback will be given. Those sequence numbers not
already assigned by the application will be filled in by the
Updater (or sometimes replaced, in the case of LAYGO Finding
nodes).

MSG_ROOT (Optional) The array that should receive any error messages.
This must be a closed array reference and can be either local or
global. For example, if MSG_ROOT equals "OROUT(42)", any
errors generated appear in OROUT(42,"DIERR").

If the MSG_ROOT is not passed, errors are returned
descendent from ^TMP("DIERR",$J).

Output

IEN Array As the Updater assigns record numbers to the records described
in the FDA, it sets up nodes in the IEN Array to indicate how it
decoded the sequence numbers. See Details and Features for
more information on sequence numbers. This lets the
application find out what was done with the various nodes in
the FDA.

The meaning of IEN Array entries varies depending on the type
of node the sequence number came from. For example, the
significance of an IEN Array entry of ORIEN(3) = 1701 depends
on which type of node in the FDA the sequence number 3 came
from.

For Adding Node sequence numbers, the value in the IEN Array

Database Server (DBS) API

2-134 VA FileMan V. 22.0 Programmer Manual March 1999

indicates the record number of the new record. If our example
came from an Adding Node, such as FDA(19,"+3,",.01)
="ZTMDQ", it means the new record was assigned the record
number 1701.

For Finding Node sequence numbers, the value indicates at
which record number the value was found. If our example came
from a Finding Node, such as FDA(19,"?3,",.01) ="ZTMDQ", it
means a call to $$FIND1^DIC found record number 1701 based
on a lookup value of "ZTMDQ".

For LAYGO Finding sequence numbers, an extra zero-node
equal to ? or + identifies whether the entry was found (?) or
added (+). If our example came from a LAYGO Finding Node,
such as FDA(19,"?+3,",.01)="ZTMDQ", an extra node of
ORIEN(3,0)="?" means ZTMDQ was found, whereas
ORIEN(3,0)="+" means it was added.

By the time the Updater finishes processing an FDA, every
sequence number will be listed with a value in the IEN Array
(some set by the application as input for new record numbers
and the rest set by the Updater).

If the IEN_ROOT parameter was not passed, the IEN Array is
not returned.

Example

The following example illustrates the use of this call to create a new record in a top-
level file. In this case, a new option is being added at a specified record number.
Notice the triggered 9 on the 0-node and the triggered "U" node:

 >S FDA(42,19,"+1,",.01)="ZZ FDA TEST NAME"

 >S FDA(42,19,"+1,",1)="ZZ Toad Test Menu Text"

 >S FDAIEN(1)=2067642283

 >D UPDATE^DIE("","FDA(42)","FDAIEN")

 >D ^%G

 Global ^DIC(19,2067642283
 DIC(19,2067642283
 ^DIC(19,2067642283,0) = ZZ FDA TEST NAME^ZZ Toad Test Menu Text^^^9
 ^DIC(19,2067642283,"U") = ZZ FDA TEST MENU TEXT

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-135

Error Codes Returned

110 The record is currently locked.

111 The File Header Node is currently locked.

120 Error occurred during execution of a VA FileMan hook.

202 An input parameter is missing or not valid.

205 The File and IENS represent different subfile levels.

301 The passed flags are unknown or inconsistent.

302 Entry already exists.

304 The IENS lacks a final comma.

307 The IENS has an empty comma-piece.

308 The IENS is syntactically incorrect.

310 The IENS conflicts with the rest of the FDA.

311 The new record lacks some required identifiers.

330 The value is not valid.

351 FDA Node has a bad IENS.

352 The new record lacks a .01 field.

401 The file does not exist.

402 The global root is missing or not valid.

403 The file lacks a header node.

405 Entries in file cannot be edited.

406 The file has no .01 field definition.

407 A word-processing field is not a file.

408 The file lacks a name.

Database Server (DBS) API

2-136 VA FileMan V. 22.0 Programmer Manual March 1999

501 The file does not contain that field.

502 The field has a corrupted definition.

510 The data type cannot be determined.

520 That kind of field cannot be processed by this utility.

601 The entry does not exist.

602 The entry is not available for editing.

603 The entry lacks a required field.

630 The field value is not valid.

701 The value is not valid for that field.

703 The value cannot be found in the file.

712 The value in that field cannot be deleted.

730 The value is not valid according to the DD definition.

740 New values are invalid because they would create a duplicate key.

742 Deletion was attempted on a key field.

744 A key field was not assigned a value.

746 The K flag was used, but no primary key fields were provided in the FDA
for Finding and LAYGO Finding nodes.

The Updater may also return any error returned by:

• $$FIND1^DIC

• FILE^DIE

Details and Features

Adding Adding Nodes let applications create new entries in a file. In the
place of the actual IENS subscript for the new record in the FDA
array, the application instead uses a unique value consisting of a
+ followed by a positive number.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-137

"+#" will ALWAYS add without regard to duplication.

Thus, for example, an FDA of "FDA(42)" might be accompanied
by the following array:

 FDA(42,19,"+1,",.01)="NAME OF OPTION"
 FDA(42,19,"+1,",1)="MENU TEXT OF NEW OPTION"
 FDA(42,19.01,"+2,+1,",.01)=45
 FDA(42,19.01,"+2,+1,",2)="TM"
 FDA(42,19.01,"+3,+1,",.01)=408

The FDA_ROOT value directs the Updater to the FDA(42) array,
whose format instructs the Updater to add one new entry to the
Option file and two new entries to the Menu multiple of that
entry.

NOTE: The sequence number for each new entry to be added to
a file or subfile must be unique throughout the FDA.

Adding—
Identifiers
and Keys

The FDA for a new record MUST include the .01 field, all of the
required identifiers, and all key fields. If any of these needed
fields is missing, the entire FDA transaction fails; none of the
entries is added if any one lacks required data.

Filing Filing Nodes let the application file new data under existing
entries. This may be necessary to complete a logical record
addition. Any FDA node whose IENS subscript consists solely of
record numbers and commas is considered a Filing Node. If you
know all of the record numbers, (that is, if all of the nodes in
your FDA are Filing Nodes), you should use the Filer instead of
the Updater to file the data.

For example, FDA(42,19,"408,",1)="NEW MENU TEXT"
instructs the Updater to update field 1 of record 408, so no
actual record creation takes place as a result of this node.

Finding Finding Nodes let applications work with existing entries for
which the application does not yet have a record number.
Instead of +#, the application uses the notation ?# to stand in for
an unknown record number. The sequence number that follows
the ? must be unique throughout the FDA.

Every FDA of this type must include an FDA node for the .01
field, or, if the K flag is passed, nodes for at least one field in the
primary key. The value of this FDA node is used to perform a
lookup on the file. It must match only one entry in that file;

Database Server (DBS) API

2-138 VA FileMan V. 22.0 Programmer Manual March 1999

 ambiguity or failure to find a match is an error condition. The
record number found will then be used for this FDA entry.

For example the following FDA adds a new menu item to the
ZTMMGR menu and changes the menu’s text:

 FDA(42,19,"?1,",.01)="ZTMMGR"
 FDA(42,19,"?1,",1)="New Menu Text"
 FDA(42,19.01,"+2,?1,",.01)=45
 FDA(42,19.01,"+2,?1,",2)="TM"

In this example, the Updater first uses the value ZTMMGR in a
lookup to find the record number that replaces ?1. It then adds a
new entry to subfile 19.01 under that entry, and changes the
menu text of the option to "New Menu Text". The first node
shown is a Finding Node that specifies the value of the .01 field
to be used for lookup. The next node specifies a new value for
field 1, the menu’s text. The last two nodes are Adding Nodes
that specify the values for fields .01 and 2 of the new menu item.

When the E flag is used, the .01 Finding node can equal any
valid input value for the Lookup. For example, to pick based on a
set of codes where WA stands for WASHINGTON, when using
the E flag, you may enter WASH.

However, when the E flag is NOT used, the .01 Finding node
must equal an internal value, though the special lookup values—
space-bar and accent grave (`) concatenated with the IEN—will
still work.. So for example, a .01 Finding node equal to WASH
would return an error in the above scenario if the E flag were
not passed. To succeed, the .01 Finding node would need to equal
WA, the internal value.

LAYGO
Finding

LAYGO Finding Nodes let the application refer to entries that
may or may not already exist. If they do exist, the Updater finds
and uses their record numbers. If not, the Updater adds the
entries. The IENS notation used to stand in for these entries is
?+#. # is a unique positive number which acts as a placeholder
until an actual internal entry number can be produced by the
Updater.

For example, this call expects to find the option ZTMMGR, but
adds it if it's missing:

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-139

 FDA(42,19,"?+1,",.01)="ZTMMGR"
 FDA(42,19.01,"+2,?+1,",.01)=45
 FDA(42,19.01,"+2,?+1,",2)="TM"

The IEN Array node for this entry includes an extra zero node
equal to ? or + to identify whether the entry was found or added.
For example, if the entry for the previous example was found,
the IEN Array node for this FDA might look like this:

 IEN(1)=388
 IEN(1,0)="?"
 IEN(2)=9

All LAYGO Finding Nodes are processed in order after Finding
Nodes and before other kinds of nodes.

Like Finding Nodes, .01 LAYGO Finding Nodes must match the
format of the overall call: external if the E flag has been passed,
internal if not. See the Finding section above for details.

Sequence
Numbers

A positive number which acts as a placeholder to identify a
record until an actual internal entry number can be created or
found by the Updater. This positive number must be unique
throughout the FDA array. For example, if "+1," is used in an
FDA, you cannot also use "?1," or "?+1".

Database Server (DBS) API

2-140 VA FileMan V. 22.0 Programmer Manual March 1999

VAL^DIE(): Validator

The purpose of the Validator procedure is to take the external form of user input
and determine if that value is valid, i.e., if that value can be put into the VA
FileMan database. In addition, the Validator converts the user-supplied value into
the FileMan internal value when necessary. It is this internal value that is stored.
If the Validator determines that the value passed is invalid, an up-arrow (^) is
returned.

Word processing and computed fields cannot be validated. The .01 field of a multiple
must be input using FILE = subfile number and FIELD = .01.

Optionally, the Validator does the following:

• Returns the resolved external value of the data.

• Returns help text for invalid values.

• Loads the internal value into the FileMan Data Array (FDA) to prepare for a
later Filer call.

Format

VAL^DIE(FILE,IENS,FIELD,FLAGS,VALUE,.RESULT,FDA_ROOT,MSG_ROOT)

Input Parameters

FILE (Required) File or subfile number.

IENS (Required) Standard IENS indicating internal entry numbers.

FIELD (Required) Field number for which data is being validated.

(Optional) Flags to control processing. The possible values are:

E External value is returned in RESULT(0).

F FDA node is set for valid data in array identified by
FDA_ROOT.

H Help (single ?) is returned if VALUE is not valid.

FLAGS

R Record identified by IENS is verified to exist and to be
editable. Do not include "R" if there are placeholders in the
IENS.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-141

 U Don’t perform key validation. Without this flag, the data in
VALUE is checked to ensure that no duplicate keys are
created and that key field values are not deleted.

VALUE (Required) Value to be validated as input by a user. VALUE can
take several forms depending on the data type involved; e.g., a
partial, unambiguous match for a pointer; any of the supported
ways to input dates (such as "TODAY" or "11/3/93").

.RESULT (Required) Local variable which receives output from call. If
VALUE is valid, the internal value is returned. If not valid, ^ is
returned. If E flag is present, external value is returned in
RESULT(0).

NOTE: This array is killed at the beginning of each Validator
call.

FDA_ROOT (Optional; required if F flag present) Root of FDA into which
internal value is loaded if F flag is present.

MSG_ROOT (Optional) Root into which error, help, and message arrays are
put. If this parameter is not passed, these arrays are put into
nodes descendent from ^TMP.

Output

See input parameters .RESULT, FDA_ROOT, and MSG_ROOT.

RESULT = internal value or ^ if the passed VALUE is not valid.

RESULT(0) = external value if the passed VALUE is valid and E flag is present.

Example

This example checks the validity of a value for a set of codes field. Note that the
flags indicate that the external value should be returned and that a node in the
FDA should be built. In this situation a VALUE of "YES" would also have been
acceptable and would have resulted in exactly the same output as shown below:

 >S FILE=16200,FIELD=5,IENS="3,",FLAG="EHFR",VALUE="Y"

 >D VAL^DIE(FILE,IENS,FIELD,FLAG,VALUE,.ANSWER,"MYFDA(1)")

 >ZW ANSWER

Database Server (DBS) API

2-142 VA FileMan V. 22.0 Programmer Manual March 1999

 ANSWER=Y
 ANSWER(0)=YES

 >ZW MYFDA(1)
 MYFDA(1,16200,"3,",5)=Y

Error Codes Returned

In addition to codes indicating that the input parameters are incorrect and that the
file, field, or entry does not exist, primary error messages include:

120 Error occurred during execution of a FileMan hook.

299 Ambiguous value. (Variable Pointer data type only.)

405 The file is uneditable.

520 The field’s data type or INPUT transform is inappropriate.

602 The entry cannot be edited.

701 Value is invalid.

710 The field is uneditable.

712 An inappropriate deletion of a field’s value is being attempted.

740 A duplicate key is produced by a field’s new value.

742 A value for a field in a key is being deleted.

1610 Help was improperly requested.

Details and Features

What is
Validated

The Validator takes the following steps in validating the input
data:

Rejects value starting with "?". Help should be requested using
HELP^DIE call.

If R flag is sent, verifies that the entry is present and that editing
is not blocked because the entry is being archived.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-143

If the field is uneditable, rejects the input if there is already data
in the field.

If the passed value is null or "@", signifying data deletion, rejects
the input if the field is required, if the field is a key field, or if the
tests present in any "DEL" nodes for the field are not passed. For
multiples, the deletion of the last subentry in the multiple is
rejected if the multiple is required.

Verifies that the value of the field is not DINUMed.

Checks all keys in which the field participates to ensure the new
value does not create any duplicate keys.

Passes the value through the field’s INPUT transform and
executes any screens on pointer, variable pointer, or set of codes
fields. For pointer and variable pointer, values that do not yield
at least a partial match are rejected (no LAYGO); ambiguous
values are rejected (see note below for variable pointers). If these
tests are passed, the input value is accepted and the internal
value becomes the value resulting in the execution of the INPUT
transform or the pointer value resulting from the lookup.

NOTE: No file or field access security checks on either the file or
field level are done.

Note for
Pointers

The internal entry number of the entry in the pointed-to file that
corresponds to the input is returned. If the lookup value partially
matches more than one entry in the pointed-to file, the call fails.

Note for
Variable
Pointers

For variable pointer data types, the VALUE may include the
variable pointer PREFIX, MESSAGE, or FILENAME followed by
a period (.) before the lookup value. If no particular file is
specified in this way, all of the pointed-to files are searched. If the
lookup value is not found in any file searched or if more than one
match is found in any file(s), the call fails—VALUE is not valid.

Note for
Set of
Codes

For set of codes data types, VALUE is treated as case insensitive.
If the VALUE is ambiguous, the validation fails.

Returning
External
Values

If the E flag is sent, the Validator returns the external value of
VALUE in addition to its internal value. This is returned in
RESULT(0). For free text, number and MUMPS data types, the
external value is created by passing VALUE through the INPUT
transform (if any) and then the OUTPUT transform (if any). For

Database Server (DBS) API

2-144 VA FileMan V. 22.0 Programmer Manual March 1999

date/time data types, the external value is the standard FileMan
external date/time format. For pointers and variable pointers, the
external value is the .01 of the entry in the pointed-to file. For set
of codes, the external value is the "translation" of the code.

Validate
and File

If you want to validate a set of data and then file the valid data,
make a call to FILE^DIE (the Filer) with an E flag passed in the
first parameter. The nodes in the FDA identified by the second
parameter should be set to the external, unvalidated value used
as input to the Validator. Based on this flag, the Filer calls the
Validator for each field and only files the valid, internal values.
Error messages are returned for the fields that could not be filed.

NOTE: You cannot mix internal and external values in the FDA
when calling the Filer.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-145

VALS^DIE(): Fields Validator

The Fields Validator procedure validates data for a group of fields and converts
valid data to internal VA FileMan format. It is intended for use with a set of fields
that comprise a logical record; fields from more than one file can be validated by a
single call. By default, the integrity of any keys affected by the new values is
checked.

The Fields Validator performs the same checks performed by VAL^DIE (see for
details).

Format

VALS^DIE(FLAGS,FDA_EXT_ROOT,FDA_INT_ROOT,MSG_ROOT)

Input Parameters

(Optional) Flags to control processing. The possible values
are:

R Records identified by IENSs in the FDA_EXT are
verified to exist and to be editable. (Same as R flag
for VAL^DIE.)

FLAGS

U Don’t perform key validation. Without this flag, the
data in the FDA is checked to ensure that no
duplicate keys are created and that key field values
are not deleted.

FDA_EXT_ROOT (Required) The root of a standard FDA. This array should
contain the external values that you want to validate. This
is the input array. See the Database Server Introduction
for details of the structure of the FDA.

FDA_INT_ROOT (Required) The root of a standard FDA. This FDA is the
output array, and upon return is set equal to the internal
values of each validated field. If a field fails validation, its
value is set to an up-arrow (^). (NOTE: If a field is valid,
the corresponding node in the output array is set to the
internal value, not an up-arrow (^), even if that field
violates key integrity.) See the Database Server
Introduction for details of the structure of the FDA

Database Server (DBS) API

2-146 VA FileMan V. 22.0 Programmer Manual March 1999

MSG_ROOT (Optional) The root of an array (local or global) into which
error messages are returned. If this parameter is not
included, error messages are returned in the default array:
^TMP("DIERR",$J).

Output

See the description of the FDA_INT_ROOT for an explanation of how internal
values are returned to the client application.

If an error occurs in any of the validations, the DIERR variable will be set and
appropriate error messages will be returned.

Examples

Example 1

This simple example validates and converts the values for two fields:

>S MYFDA("EXT",16997,"1,",1)="SOME TEXT"

>S MYFDA("EXT",16997,"1,",2)="JAN 1, 1996"

>D VALS^DIE("","MYFDA(""EXT"")","MYFDA(""INT"")")

>W $G(DIERR)

>ZW MYFDA("INT")
MYFDA("INT",16997,"1,",1)=SOME TEXT
MYFDA("INT",16997,"1,",2)=2960101

Example 2

This example reports that one of the values does not pass validation. Note that the
value for the invalid field equals ^ in MYFDAINT.

>S MYFDA("EXT",16997,"1,",1)="SOME TEXT"

>S MYFDA("EXT",16997,"1,",2)="JAN 1, 6"

>D VALS^DIE("","MYFDA(""EXT"")","MYFDA(""INT"")")

>W DIERR
1^1
>D ^%G

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-147

Global ^TMP("DIERR",$J
 TMP("DIERR",$J
^TMP("DIERR",610279233,1) = 701
^TMP("DIERR",610279233,1,"PARAM",0) = 4
^TMP("DIERR",610279233,1,"PARAM",3) = JAN 1, 6
^TMP("DIERR",610279233,1,"PARAM","FIELD") = 2
^TMP("DIERR",610279233,1,"PARAM","FILE") = 16997
^TMP("DIERR",610279233,1,"PARAM","IENS") = 1,
^TMP("DIERR",610279233,1,"TEXT",1) = The value ’JAN 1,
6’ for field REVERSE DATE FIELD IN KEY in file ZZD
KEYTEST is not valid.
^TMP("DIERR",610279233,"E",701,1) =
Global ^

>ZW MYFDA("INT")
MYFDA("INT",16997,"1,",1)=SOME TEXT
MYFDA("INT",16997,"1,",2)=^

Example 3

In this example, the values pass field validation, but an error is returned because
they fail the requested key integrity check.

>K MYFDA

>S MYFDA("EXT",16997,"1,",1)="TEXT INTO SECOND"

>S MYFDA("EXT",16997,"1,",2)="MAR 4, 1996"

>D VALS^DIE("U","MYFDA(""EXT"")","MYFDA(""INT"")")

>W $G(DIERR)
1^1
>D ^%G

Global ^TMP("DIERR",$J
 TMP("DIERR",$J
^TMP("DIERR",610279233,1) = 740
^TMP("DIERR",610279233,1,"PARAM",0) = 3
^TMP("DIERR",610279233,1,"PARAM","FILE") = 16997
^TMP("DIERR",610279233,1,"PARAM","IENS") = 13,
^TMP("DIERR",610279233,1,"PARAM","KEY") = 34
^TMP("DIERR",610279233,1,"TEXT",1) = New values are invalid
because they create a duplicate Key ’C’ for the ZZD KEYTEST file.
^TMP("DIERR",610279233,"E",740,1) =
Global ^

>ZW MYFDA("INT")
MYFDA("INT",16997,"1,",1)=TEXT INTO SECOND
MYFDA("INT",16997,"1,",2)=2960304

Database Server (DBS) API

2-148 VA FileMan V. 22.0 Programmer Manual March 1999

Error Codes Returned

In addition to codes indicating that the input parameters are incorrect and that the
file, field, or entry does not exist, primary error messages include:

120 Error occurred during execution of a FileMan hook.

299 Ambiguous value. (Variable Pointer data type only.)

405 The file is uneditable.

520 The field’s data type or INPUT transform is inappropriate.

602 The entry cannot be edited.

701 Value is invalid.

710 The field is uneditable.

712 An inappropriate deletion of a field’s value is being attempted.

740 A duplicate key is produced by a field’s new value.

742 A value for a field in a key is being deleted.

744 Not all fields in a key have a value.

1610 Help was improperly requested.

Details and Features

Key
Integrity
Validation

Unless the U flag is passed, the internal values produced by the
validation of the values passed in the FDA_EXT are checked to
make sure that no key’s integrity is violated.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-149

WP^DIE(): Word Processing Filer

This procedure files a single word processing field.

Format

WP^DIE(FILE,IENS,FIELD,FLAGS,wp_root,msg_root)

Input Parameters

FILE (Required) File or subfile number.

IENS (Required) Standard IENS indicating internal entry numbers.

FIELD (Required) Field number of the word processing field into which
data is being filed.

(Optional) Flags to control processing. The possible values are:

A Append new word processing text to the current word
processing data. If this flag is not sent, the current
contents of the word processing field are completely erased
before the new word processing data is filed.

FLAGS

K LocK the entry or subentry before changing the word
processing data.

WP_ROOT (Required) The root of the array that contains the word
processing data to be filed. The data must be in nodes
descendent from this root. The subscripts of the nodes below the
WP_ROOT must be positive numbers. The subscripts do not
have to be integers, and there can be gaps in the sequence. The
word processing text must be in these nodes or in the 0-node
descendent from these nodes. To delete the word processing
field, set WP_ROOT equal to "@".

MSG_ROOT (Optional) Root into which errors are put. If this parameter is
not passed, these arrays are put into nodes descendent from
^TMP.

Database Server (DBS) API

2-150 VA FileMan V. 22.0 Programmer Manual March 1999

Output

The typical result of this call is the updating of the database with new word
processing data. If the call fails, an error message is returned either in ^TMP or, if
it is passed, descendent from MSG_ROOT.

Example

The following call files the data into Field #4 of File #16200 for record number 606.
The entry is locked before filing and the new data is added to any word processing
data that is already there.

 >D WP^DIE(16200,"606,",4,"KA","^TMP($J,""WP"")")

In this example, the word processing text must be located at:

 ^TMP($J,"WP",1,0) =Line 1
 ^TMP($J,"WP",2,0) =Line 2
 ...etc.

or at:

 ^TMP($J,"WP",1) =Line 1
 ^TMP($J,"WP",2) =Line 2
 ...etc.

Error Codes Returned

In addition to errors indicating that input parameters are missing or incorrect and
that the file, field, or entry does not exist, this procedure can return the following
error codes:

110 Lock could not be obtained because the entry was locked.

305 There is no data in the array identified by WP_ROOT.

726 The specified field is not a word processing field.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-151

CLEAN^DILF: Array and Variable Clean-up

This procedure kills the standard message arrays and variables that are produced
by VA FileMan.

Format

CLEAN^DILF

Input Parameters

None

Output

The call kills the following arrays:

 ^TMP("DIERR",$J)
 ^TMP("DIHELP",$J)
 ^TMP("DIMSG",$J)

The call kills the following variables:

 DIERR
 DIHELP
 DIMSG
 DUOUT
 DIRUT
 DIROUT
 DTOUT

Error Codes Returned

None

Database Server (DBS) API

2-152 VA FileMan V. 22.0 Programmer Manual March 1999

$$CREF^DILF(): Root Converter (Open to Closed Format)

This extrinsic function converts the traditional open-root format to the closed-root
format used by subscript indirection. It converts an ending comma to a close
parenthesis. If the last character is an open parenthesis, the last character is
dropped.

Format

$$CREF^DILF(OPEN_ROOT)

Input Parameters

OPEN_ROOT (Required) An open root which is a global root ending in either
an open parenthesis or a comma.

Example

 >W $$CREF^DILF("^DIZ(999000,")
 ^DIZ(999000)

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-153

DA^DILF(): DA() Creator

This procedure converts an IENS into an array with the structure of a DA() array.

Format

DA^DILF(IENS,.DA)

Input Parameters

IENS (Required) A string with record and subrecord numbers in IENS
format.

.DA (Required) The name of the array which receives the record numbers.

NOTE: This array is cleaned out (killed) before the record numbers are
loaded.

Output

An array with the record numbers from the IENS—the array is structured like the
traditional VA FileMan DA() array.

Example

 >S IENS="4,1,2,532,"

 >D DA^DILF(IENS,.MYDA)

 >ZW MYDA
 MYDA=4
 MYDA(1)=1
 MYDA(2)=2
 MYDA(3)=532

Error Codes Returned

None

Database Server (DBS) API

2-154 VA FileMan V. 22.0 Programmer Manual March 1999

DT^DILF(): Date Converter

This procedure converts a user-supplied value into VA FileMan’s internal date
format and (optionally) into the standard FileMan external, readable date format.

Format

DT^DILF(FLAGS,IN_DATE,.RESULT,LIMIT,MSG_ROOT)

Input Parameters

(Optional) Flags to control processing of user input and the type
of output returned. Generally, FLAGS is the same as %DT
input variable to ^%DT entry point, with the following
exceptions: "A" is not allowed and the meaning of "E" is
different (see below). The possible values are:

E External, readable date returned in zero-node of
RESULT.

F Future dates are assumed.

N Numeric-only input is not allowed.

P Past dates are assumed.

R Required time input.

S Seconds will be returned.

T Time input is allowed but not required.

FLAGS

X EXact date (with month and day) is required.

IN_DATE (Required) Date input as entered by the user in any of the
formats known to FileMan. Also, help based on the FLAGS
passed can be requested with a "?".

.RESULT (Required) Local array that receives the internal value of the
date/time and, if the E flag is sent, the readable value of the

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-155

date. If input is not a valid date, -1 is returned.

LIMIT (Optional) A value equal to a date/time in FileMan internal
format or NOW. IN_DATE is accepted only if it is greater than
or equal to LIMIT if it is positive, or less than or equal to LIMIT
if it is negative. This is equivalent to the %DT(0) variable in the
^%DT call.

MSG_ROOT (Optional) Root into which error, help, and message arrays are
put.

Output

Output is returned in the local array passed by reference in the RESULT
parameter, shown below:

RESULT Date in internal FileMan format. If input is invalid or if help is
requested with a "?", -1 is returned.

RESULT(0) If requested, date in external, readable format. When
appropriate, error messages and help text are returned in the
standard manner in ^TMP or in MSG_ROOT (if it is specified).

Example

Example 1

Following is an example of one of the many kinds of user inputs that can be
processed by this call. Use of the E flag ensures that the readable form of the data is
returned in the 0-node as follows:

 >D DT^DILF("E","T+10",.ANSWER)

 >ZW ANSWER
 ANSWER=2931219
 ANSWER(0)=DEC 19, 1993

Database Server (DBS) API

2-156 VA FileMan V. 22.0 Programmer Manual March 1999

Example 2

This is an example of a request for help when time is allowed as input:

 >D DT^DILF("T","?",.ANSWER,"","MYHELP")

 >ZW ANSWER
 ANSWER=-1
 >ZW MYHELP
 MYHELP("DIHELP")=10
 MYHELP("DIHELP",1)=Examples of Valid Dates:
 MYHELP("DIHELP",2)= JAN 20 1957 or JAN 57 or 1/20/57 or 012057
 MYHELP("DIHELP",3)= T (for TODAY), T+1 (for TOMORROW), T+2,
 T+7, etc.
 MYHELP("DIHELP",4)=T-1 (for YESTERDAY), T-3W (for 3 WEEKS AGO), etc.
 MYHELP("DIHELP",5)=If the year is omitted, the computer uses the
 CURRENT YEAR.
 MYHELP("DIHELP",6)=You may omit the precise day, as: JAN, 1957.
 MYHELP("DIHELP",7)=
 MYHELP("DIHELP",8)=If the date is omitted, the current date is assumed.
 MYHELP("DIHELP",9)=Follow the date with a time, such as JAN 20@10,
 T@10AM, 10:30, etc.
 MYHELP("DIHELP",10)=You may enter NOON, MIDNIGHT, or NOW to indicate
 the time.

Error Codes Returned

In addition to errors indicating that the input parameters are incorrect or missing,
the following error code may be returned:

330 Date/time is not acceptable.

Details and Features

Acceptable
User Input

This call processes a wide range of formats for dates and times.
Example 2 above that shows the response to an IN_DATE of
"?" summarizes the acceptable formats. Remember that the
allowable values are controlled by the FLAGS sent and by the
LIMIT parameter.

Internal
Format

The primary use of this call is to transform the date/time
passed in the IN_DATE parameter into the format used by
FileMan to store values in Date/Time data type fields. That
format is "YYYDDMM.HHMMSS" where YYY is the number of

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-157

years since 1700. When the E flag is sent to request that the
readable form of the data be returned, the format is always
"MON dd,yyyy@ hh:mm:ss."

Database Server (DBS) API

2-158 VA FileMan V. 22.0 Programmer Manual March 1999

FDA^DILF(): FDA Loader

This procedure can be used to load data into the FDA. It accepts either the
traditional DA() array or the IENS for specifying the entry. No validation of
VALUE is done.

Format

1. FDA^DILF(FILE,IENS,FIELD,FlagS,VALUE,FDA_ROOT,MSG_ROOT)

2. FDA^DILF(FILE,.DA,FIELD,FlagS,VALUE,FDA_ROOT,MSG_ROOT)

Input Parameters

FILE (Required) File or subfile number.

.DA (Required for format 2) DA() array containing entry and
subentry numbers.

IENS (Required for format 1) Standard IENS indicating internal entry
numbers.

FIELD (Required) Field number for which data is being loaded into the
FDA.

(Optional) Flag to control processing: FLAGS

R Record identified by IENS or .DA is verified to exist. Do
not use the R FLAG if the IENS or DA() array contain
placeholder codes instead of actual record numbers.

VALUE (Required, can be null) Value to which the FDA node will be set.
Depending on how the FDA is used, this could be the internal or
external value. For word processing fields, this is the root of the
array that contains the word processing data. Internal and
external values cannot be mixed in a single FDA.

FDA_ROOT (Required) The root of the FDA in which the new node is loaded.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-159

MSG_ROOT (Optional) Root into which error, help, and message arrays are
put. If this parameter is not passed, these arrays are put into
nodes descendent from ^TMP.

Output

Successful completion of this call results in the creation of a node descendent from
the root passed in FDA_ROOT. The format of the node is:

 FDA_ROOT(FILE,"IENS",FIELD)=VALUE

For more information on the format of the FDA, see the Database Server
Introduction.

By default, error messages are returned in ^TMP. If MSG_ROOT is passed,
messages are returned there.

Example

This example loads the FDA for the first sub-subentry in the second subentry of
entry number 4 for field number 4 in subfile number 16200.32 with a value of
"NEW DATA" [the FDA is descended from ^TMP("MYDATA",$J)]:

 >S FILE=16200.32,IENS="1,2,4,",FIELD=4,VALUE="NEW DATA",ROOT=
 "^TMP(""MYDATA"",$J)"

 >D FDA^DILF(FILE,IENS,FIELD,"",VALUE,ROOT)

 >D ^%G

 Global ^TMP("MYDATA",$J
 TMP("MYDATA",$J
 ^TMP("MYDATA",736101456,16200.32,"1,2,4,",4) = NEW DATA

Database Server (DBS) API

2-160 VA FileMan V. 22.0 Programmer Manual March 1999

Error Codes Returned

202 One of the input parameters is not properly specified.

401 The file does not exist.

501 The field does not exist.

601 The entry does not exist.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-161

$$HTML^DILF(): HTML Encoder/Decoder

This function has two capabilities:

1. It encodes a string that may contain embedded "^" characters according to
the rules of HTML so that the "^" characters are replaced with the string
"^". As a side effect, "&" characters are encoded as the string "&".
Other encodings typical of HTML are not performed by this function, since its
focus is on encoding the "^" character used as the delimiter in FileMan
databases.

2. This function also decodes an encoded string, restoring its "^" and "&"
characters.

Format

$$HTML^DILF(STRING,ACTION)

Input Parameters

STRING (Required) The string to be either encoded or decoded. Encoding a
string that contains no "^" or "&" characters has no effect on the
string. Nor does decoding one that lacks "^" and "&" substrings.

ACTION (Optional) Set this parameter to 1 to encode the string, or -1 to
decode it. Defaults to 1.

Output

The function evaluates to the encoded or decoded string. If encoding the string
makes it overflow the string length limit, it returns error 207. Decoding will never
make it overflow.

Error Codes Returned

207 The value is too long to encode into HTML.

Database Server (DBS) API

2-162 VA FileMan V. 22.0 Programmer Manual March 1999

$$IENS^DILF(): IENS Creator

This extrinsic function returns the IENS when passed an array in the traditional
DA() structure.

Format

$$IENS^DILF(.DA)

Input Parameters

.DA (Required) An array with the structure of the traditional VA FileMan
DA() array-that is, DA=lowest subfile record number, DA(1)=next highest
subfile record number, etc.

Output

A string of record numbers in the IENS format-that is, "DA,DA(1),...DA(n),".

NOTE: The string always ends with a comma (,). If the array passed by reference is
empty, a 0 is returned.

Example

 >S NMSPDA=4,NMSPDA(1)=1,NMSPDA(2)=2,NMSPDA(3)=532

 >W $$IENS^DILF(.NMSPDA)
 4,1,2,532,

Error Codes Returned

None

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-163

$$OREF^DILF(): Root Converter (Closed to Open Format)

This extrinsic function converts a closed root to an open root. It converts an ending
close parenthesis to a comma.

Format

$$OREF^DILF(CLOSED_ROOT)

Input Parameter

CLOSED_ROOT (Required) A closed root, which is a global root ending in a
close parenthesis.

Example

 >W $$OREF^DILF("^DIZ(999000)")
 ^DIZ(999000,

Database Server (DBS) API

2-164 VA FileMan V. 22.0 Programmer Manual March 1999

$$VALUE1^DILF(): FDA Value Retriever (Single)

This extrinsic function returns the value associated with a particular file and field
in a standard FDA. Only a single value is returned. If there is more than one node
in the FDA array for the same field, the first value encountered by this function is
returned. Use the VALUES^DILF call if you want more than one value returned.

Format

$$VALUE1^DILF(FILE,FIELD,FDA_ROOT)

Input Parameters

FILE (Required) File or subfile number.

FIELD (Required) Field number for which data is being requested.

FDA_ROOT (Required) The root of the FDA from which data is being
requested.

Output

This function returns the value for the specified file and field that is stored in the
FDA identified by FDA_ROOT. If the field is a word processing field, only the root
at which word processing data is stored is returned. No IENS information is
returned. If more than one value is associated with a particular field (for example,
in a subfile), only a single value is returned.

If there is no node in the FDA for a particular field, an ’^’ is returned. If the node
has a null value, null is returned.

Example

 >ZW MYFDA
 MYFDA("DATA",16200,"33,",4)=FREE TEXT DATA
 MYFDA("DATA",16200.04,"1,33,",1)=16
 MYFDA("DATA",16200.04,"2,33,",1)=45

 >W $$VALUE1^DILF(16200,4,"MYFDA(""DATA"")")
 FREE TEXT DATA

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-165

Error Codes Returned

None

Database Server (DBS) API

2-166 VA FileMan V. 22.0 Programmer Manual March 1999

VALUES^DILF(): FDA Values Retriever

This procedure returns values from an FDA for a specified field. The IENS
associated with a particular value is also returned. Use $$VALUE1^DILF if you
want the single value associated with a particular file and field in a standard FDA.

Format

VALUES^DILF(FILE,FIELD,FDA_ROOT,.RESULT)

Input Parameters

FILE (Required) File or subfile number.

FIELD (Required) Field number for which data is being requested.

FDA_ROOT (Required) The root of the FDA from which data is being
requested.

.RESULT (Required) Local array that receives output from the call. The
array is killed at the beginning of each call. See the next section
below, Output, for the structure of the array.

Output

See the .RESULT input parameter.

The output from the call is returned in the array identified by RESULT. Its
structure is:

RESULT Number of values found for the specified field. If no node
exists in the FDA for the field, RESULT=0

RESULT(seq#) Value for a particular instance of the field. Seq# is an integer
starting with 1 that identifies the particular value

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-167

RESULT(seq#,"IENS") The IENS of the entry or subentry with the value in
RESULT(seq#)

Example

 >ZW MYFDA
 MYFDA("DATA",16200,"33,",4)=FREE TEXT DATA
 MYFDA("DATA",16200.04,"1,33,",1)=16
 MYFDA("DATA",16200.04,"2,33,",1)=45

 >D VALUES^DILF(16200.04,1,"MYFDA(""DATA"")",.MYVALUES)

 >ZW MYVALUES
 MYVALUES=2
 MYVALUES(1)=16
 MYVALUES(1,"IENS")=1,33,
 MYVALUES(2)=45
 MYVALUES(2,"IENS")=2,33,

Error Codes Returned

None

Database Server (DBS) API

2-168 VA FileMan V. 22.0 Programmer Manual March 1999

$$EXTERNAL^DILFD(): Converter to External

This extrinsic function converts any internal value to its external format. It decodes
codes, makes FileMan dates readable, and follows pointer or variable pointer chains
to resolve their values. OUTPUT transforms are applied to their fields. For more
information about how FileMan handles OUTPUT transforms and pointers, read
this function’s Details and Features.

Format

$$EXTERNAL^DILFD(FILE,FIELD,FLAGS,INTERNAL,MSG_ROOT)

Input Parameters

FILE (Required) The number of the file or subfile that contains the
field that describes the internal value passed in.

FIELD (Required) The number of the field that describes the internal
value passed in.

FLAGS (Optional) To control processing.

A single-character code that explains how to handle OUTPUT
transforms found along pointer chains. The default describes
how fields not found along a pointer chain are always handled,
regardless of whether a flag is passed. See Details and Features
in this section for definition and explanation of pointer chains

The default, if no flag is passed, is the way this function
generally handles OUTPUT transforms. If a field has an
OUTPUT transform, the transform is applied to the internal
value of the field and FileMan does not process the value
further. This means it is the responsibility of the OUTPUT
transform to resolve codes, transform dates, and follow pointer
or variable pointer chains to their destination.

.The default handling of pointer chains, therefore, is to follow
the chain either until the last field is found, at which point the
field is transformed according to its data type, or until a field
with an OUTPUT transform is found, at which point FileMan

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-169

applies the OUTPUT transform to the field where it is found
and quits. The possible values are:

F If the First field in a pointer chain has an OUTPUT
transform, apply the transform to that first field and quit.
Ignore any other OUTPUT transforms found along the
pointer chain. With the exception of this function, FileMan
regularly handles OUTPUT transforms this way.

L If the Last field in a pointer chain has an OUTPUT
transform, apply the transform to that last field and quit.
Ignore any other OUTPUT transforms found along the
pointer chain.

U Use the first OUTPUT transform found on the last field in
the pointer chain. Following the pointer chain, watch for
OUTPUT transforms. When one is found, remember it, but
keep following the pointer chain. When the last field in the
chain is reached, apply the remembered transform to that
last field.

INTERNAL (Required) The internal value that is to be converted to its
external format.

MSG_ROOT (Optional) The array that should receive any error messages.
This must be a closed array reference and can be either local or
global. For example, if MSG_ROOT equals "OROUT(42)", any
errors generated appear in OROUT(42,"DIERR").

If the MSG_ROOT is not passed, errors are returned descendent
from ^TMP("DIERR",$J).

Output

This function evaluates to an external format value, as defined by a field in a file in
the database. In the event of an error, this function outputs the empty string
instead.

Database Server (DBS) API

2-170 VA FileMan V. 22.0 Programmer Manual March 1999

Examples

Example 1

 >W $$EXTERNAL^DILFD(19,4,"","A")
 action

Example 2

 >W $$EXTERNAL^DILFD(4.302,.01,"",2940209.0918)
 FEB 09, 1994@09:18

Example 3

 >W $$EXTERNAL^DILFD(3.7,.01,"",DUZ)
 DOE,JOHN

Example 4

 >W $$EXTERNAL^DILFD(3298428.1,.01,"",1)
 11111 1 11111

Example 5

 >W $$EXTERNAL^DILFD(3298428.1,.01,"F",1)
 11111 1 11111

Example 6

 >W $$EXTERNAL^DILFD(3298428.1,.01,"L",1)
 22222 TOAD 22222

Example 7

 >W $$EXTERNAL^DILFD(3298428.1,.01,"U",1)
 11111 TOAD 11111

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-171

Example 8

 >W $$EXTERNAL^DILFD(3298428.1,.01,"GGG",1) W DIERR D ^%G
 1^1
 Global ^TMP("DIERR"
 TMP("DIERR"
 ^TMP("DIERR",731987397,1) = 301
 ^TMP("DIERR",731987397,1,"PARAM",0) = 1
 ^TMP("DIERR",731987397,1,"PARAM",1) = GGG
 ^TMP("DIERR",731987397,1,"TEXT",1) = The passed flag(s) ’GGG’ are
 unknown or inconsistent.
 ^TMP("DIERR",731987397,"E",301,1) =

Error Codes Returned

202 The input parameter is missing or invalid.

301 The passed flag(s) are unknown or inconsistent.

348 The passed value points to a file that does not exist or lacks a Header
Node.

401 File # does not exist.

403 File # lacks a Header Node.

404 The Header node of the file lacks a file number.

501 File # does not contain a field.

510 The data type cannot be determined.

537 Corrupted pointer definition.

603 Entry lacks the required Field #.

648 The value points to a file that does not exist or lacks a Header Node.

Database Server (DBS) API

2-172 VA FileMan V. 22.0 Programmer Manual March 1999

Details and Features

Data Types The internal value of a field is the way it is stored in the
database. The external value is the way a user expects the field
to look. (See also OUTPUT Transforms, below.) FileMan must
perform the transformation whenever such a value is displayed.
The data types that undergo this process are:

Date/Time The internal value is a numeric code, while the
external is readable text. For example, the
internal value of 2940214.085938 has an
external value of FEB 14,1994@ 08:59:57.

Numeric The internal and external values are identical.

Set of
Codes

The full external value is decoded from
abbreviated internal value. Each set of codes
field defines which codes are allowed and what
they mean. For example, the internal value of F
may have the external value of FEMALE for a
certain field.

Free Text The internal and external values are identical.

Word
Processing

$$EXTERNAL^DILFD does not handle this
data type.

Computed This data type does not have an internal value,
so $$EXTERNAL^DILFD does not handle this
data type.

Pointer to
a File

The internal value of this field is the internal
entry number of one record in the pointed-to
file. The external format of a pointer value is
the external format of the .01 field of the record
identified by the pointer’s internal value. The
definition of a pointer must always identify the
pointed-to file. For example, if 1 is the internal
value of a pointer to the State file, then the
external value is ALABAMA, because the .01 of
the State file is defined as Free Text (needing
no transform) and the .01 field of record # 1 in

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-173

 the State file is ALABAMA.

Variable
Pointer

Unlike the Pointer data type, the internal value
of a variable pointer identifies the pointed-to
file. Like the Pointer, the variable pointer’s
external format is the external value of the .01
field of the pointed-to record. The Prefix.Value
notation many users are familiar with is not
the external format of a variable pointer; that is
merely a user interface convention. For
example, the internal value 1;DIC(5, has the
external format of ALABAMA (it is the variable
pointer equivalent of the previous example).

MUMPS The internal and external values are identical.

OUTPUT
Transforms

OUTPUT transforms assume full responsibility for
transforming the internal value to its external format. So
transforms on sets of codes work with values like F, not
FEMALE; those on pointers deal with 1, not ALABAMA; etc.
This includes following pointer chains to their conclusions (see
immediately below).

Pointer
Chains

A pointer chain is a list of one or more pointer fields that point
to one another in sequence, the final pointer of which points to a
file with a non-pointer .01 field. Thus, for example, if the .01
field of File A points to the State file, that is a pointer chain
with one link. If File B points to File A, that makes a pointer
chain with two links. Chains can be made up of any mix of
pointers and variable pointers. Every field in the chain except
the first one must be a .01 field, since pointers point to files, not
fields; the first pointer field may or may not be a .01 field.

When FileMan converts a pointer or variable pointer to its
external value, it must follow the links to the final field and
convert that field to its external value. An OUTPUT transform
on a pointer field, therefore, must do the same. The flags
available for this function allow developers to try out different
ways of handling OUTPUT transforms on pointer fields. These
flags only alter this function’s behavior, however. The rest of
FileMan continues to treat OUTPUT transforms on pointer
chains as described under the F flag (under Input Parameters,
above).

Database Server (DBS) API

2-174 VA FileMan V. 22.0 Programmer Manual March 1999

$$FLDNUM^DILFD(): Field Number Retriever

This extrinsic function returns a field number when passed a file number and a
field name.

Format

$$FLDNUM^DILFD(FILE,FIELDNAME)

Input Parameters

FILE (Required) The file number of the field’s file or subfile.

FIELD
NAME

(Required) The full name of the field for which you want the number.

Output

The field number of the requested field is returned by this extrinsic function. If the
field name does not exist or if there is more than one field with that name, a 0 is
returned.

Example

 >W $$FLDNUM^DILFD(200,"DUZ(0)")
 3

Error Codes Returned

401 The file does not exist.

501 The file does not contain the field.

505 More than one field has the name.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-175

PRD^DILFD(): Package Revision Data Initializer

This procedure sets the PACKAGE REVISION DATA attribute for a file. The file
Data Dictionary must exist in order to successfully set this attribute.

Format

PRD^DILFD(FILE,DATA)

Input Parameters

FILE (Required) File or subfile number.

DATA (Required) Free text information, determined by the developer.

Output

A successful call sets the data into the appropriate Data Dictionary location.

Example

The following call sets the PACKAGE REVISION DATA as follows:

 >D PRD^DILFD(999088,"REVISION #5")

 >W $$GET1^DID(999088,"","","PACKAGE REVISION DATA")
 REVISION #5

Error Codes Returned

None

Database Server (DBS) API

2-176 VA FileMan V. 22.0 Programmer Manual March 1999

RECALL^DILFD(): Recall Record Number

This procedure saves a record number for later retrieval using spacebar recall.
While Classic FileMan has automatically performed this procedure for applications
in the past, the FileMan DBS lookup calls cannot do so. The decision to perform this
procedure can only be made by code that knows its context, that knows whether the
selection taking place results from a user’s selection or from some silent activity. In
addition, FileMan often is inactive when a user selection occurs (such as when a
user picks a single entry from a listbox managed by the application). For these
reasons, the maintenance of the spacebar recall feature will increasingly be the
responsibility of the applications.

Format

RECALL^DILFD(FILE,IENS,USER)

Input Parameters

FILE (Required) The file or subfile number.

IENS (Required) The IENS that identifies the record selected.

USER (Required) The user number (i.e., DUZ) of the user who made the
selection.

Example

 >D RECALL^DILFD(19,"1,",9) W $G(DIERR) D ^%G

 Global ^DISV(9,"^DIC(19,")
 DISV(9,"^DIC(19,")
 ^DISV(9,"^DIC(19,") = 1

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-177

Error Codes

202 An input parameter is missing or invalid.

205 The FILE and IENS represent different subfile levels.

401 File # does not exist.

402 The global root is missing or not valid.

Database Server (DBS) API

2-178 VA FileMan V. 22.0 Programmer Manual March 1999

$$ROOT^DILFD(): File Root Resolver

This extrinsic function resolves the file root when passed file or subfile numbers. At
the top level of the file $$ROOT returns the global name. When passing a subfile
number, $$ROOT uses the IENS to build the root string.

Format

$$ROOT^DILFD(FILE,IENS,FLAGS,ERROR_FLAG)

Input Parameters

FILE (Required) File number or subfile number.

IENS (Required when passing subfile numbers) Standard IENS
indicating internal entry number.

FLAGS (Optional) If set to 1 (true), returns a closed root. The default
is to return an open root.

ERROR_FLAG (Optional) If set to 1 (true), processes an error message if
error is encountered.

Examples

Example 1

 >S DIC=$$ROOT^DILFD(999000.07,"1,38,")

 >W DIC
 ^DIZ(999000,38,2,

Example 2

 >S DIC=$$ROOT^DILFD(999000)

 >W DIC
 ^DIZ(999000,

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-179

Example 3

 >S CROOT=$$ROOT^DILFD(999000,"",1)

 >W CROOT
 ^DIZ(999000)

Error Codes Returned

200 Invalid parameter

205 The File and IENS represent different subfile levels.

Database Server (DBS) API

2-180 VA FileMan V. 22.0 Programmer Manual March 1999

$$VFIELD^DILFD(): Field Verifier

This extrinsic function verifies that a field in a specified file exists.

Format

$$VFIELD^DILFD(FILE,FIELD)

Input Parameters

FILE (Required) The number of the file or subfile in which the field to be
checked exists.

FIELD (Required) The number of the field to be checked.

Output

This Boolean function returns a 1 if the field exists in the specified file and a 0 if it
does not exist.

Example

 >W $$VFIELD^DILFD(200,99999)
 0

Error Codes Returned

None

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-181

$$VFILE^DILFD(): File Verifier

This extrinsic function verifies that a file exists.

Format

$$VFILE^DILFD(FILE)

Input Parameters

FILE (Required) The number of the file or subfile that you want to check.

Output

This Boolean extrinsic function returns a 1 if the file exists or a 0 if it does not.

Example

 >W $$VFILE^DILFD(200)
 1

Error Codes Returned

None

Database Server (DBS) API

2-182 VA FileMan V. 22.0 Programmer Manual March 1999

$$GET1^DIQ(): Single Data Retriever

This extrinsic function retrieves data from a single field in a file.

Data may be retrieved from any field, including computed or word processing fields,
and fields specified using relational syntax. A basic call does not require that any
local variables be present and the symbol table is not changed by this utility.
However, computed expressions may require certain variables to be present and can
change the symbol table because the data retriever does execute Data Dictionary
nodes.

The text for word processing fields is returned in a target array. If data exists for
word processing fields, this function returns the resolved TARGET_ROOT.
Otherwise null is returned.

Format

$$GET1^DIQ(FILE,IENS,FIELD,FLAGS,TARGET_ROOT,MSG_ROOT)

Input Parameters

FILE (Required) A file number or subfile number.

IENS (Required) Standard IENS indicating internal entry
numbers.

FIELD (Required) Field number, or field name, or field identified
in another file by simple extended pointer (i.e.,
POINTER:FIELD) relational syntax.

NOTE: You cannot use a variable pointer as part of
relational syntax in this parameter (i.e., varpointer:field).

(Optional) Flags to control processing. The possible values
are:

I Internal format is returned. (The
default is external.)

FLAGS

Z Zero node included for word
processing fields on target array.

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-183

TARGET_ROOT (Required for word processing fields only) The root of an
array into which word processing text is copied.

MSG_ROOT (Optional) Closed root into which the error message arrays
are put. If this parameter is not passed, the arrays are put
into nodes descendent from ^TMP.

Examples

Example 1

Following is an example of retrieving the value from the .01 field of record #1 in file
999000:

 >W $$GET1^DIQ(999000,"1,",.01)
 DOE,JOHN

Example 2

Following is an example of retrieving the internally-formatted value from the SEX
field of Record #1 in file 999000:

 >S X=$$GET1^DIQ(999000,"1,","SEX","I")

 >W X
 M

Example 3

Use the SUBTYPE pointer field in file 3.5 to navigate to the Terminal type file and
retrieve the DESCRIPTION field as follows:

 >S X=$$GET1^DIQ(3.5,"55,","SUBTYPE:DESCRIPTION")

 >W X
 WYSE 85

Database Server (DBS) API

2-184 VA FileMan V. 22.0 Programmer Manual March 1999

Example 4

Following is an example of retrieving the contents of a word processing field and
storing the text in the target array, WP:

 >S X=$$GET1^DIQ(999000,"1,",12,"","WP")

 >ZW

 WP(1)=THIS WP LINE 1
 WP(2)=WP LINE2
 WP(3)=AND SO ON
 X=WP

Example 5

Retrieve the contents of a word processing field, storing the text in the target array,
WP. The format parameter "Z" means the target array is formatted like the nodes of
a FileMan Word Processing field. If no data exists, WP is equal to null as follows:

 >S WP=$$GET1^DIQ(999000,1,12,"Z","WP") ZW WP

 WP=WP
 WP(1,0)=THIS WP LINE 1
 WP(2,0)=WP LINE2
 WP(3,0)=AND SO ON

Example 6

Following is an example of retrieving data from a subfile. Here’s a partial record
entry, number 323, in ^DIZ(999000:

 ^DIZ(999000,323...
 .
 .
 ^DIZ(999000,323,4,2,1,0) = ^999000.163^1^1
 ^DIZ(999000,323,4,2,1,1,0) = XXX2M3F.01^XXX2M3F1^XXX2M3F2
 ^DIZ(999000,323,4,2,1,"B","XXX2M3F.01",1) =
 ^DIZ(999000,323,4,"B","XXX1",1) =
 ^DIZ(999000,323,4,"B","XXX2",2) =

 >S IENS="1,2,323,"

 >W $$GET1^DIQ(999000.163,IENS,2)
 XXX2M3F2

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-185

Error Codes Returned

200 There is an error in one of the variables passed.

202 Missing or invalid input parameter.

301 Flags passed are unknown or incorrect.

309 Either the root of the multiple or the necessary entry numbers are
missing.

348 The passed value points to a file that does not exist or lacks a Header
Node.

401 The specified file or subfile does not exist.

403 The file lacks a Header Node.

404 The file Header Node lacks a file #.

501 The field name or number does not exist.

505 The field name passed is ambiguous.

510 The data type for the specified field cannot be determined.

520 An incorrect kind of field is being processed.

537 Field has a corrupted pointer definition.

601 The entry does not exist.

602 The entry is not available for editing.

603 A specific entry in a specific file lacks a value for a required field.

648 The value points to a file that does not exist or lacks a Header Node.

Database Server (DBS) API

2-186 VA FileMan V. 22.0 Programmer Manual March 1999

GETS^DIQ(): Data Retriever

This procedure retrieves one or more fields of data from a record or sub-record(s)
and places the values in a target array.

Format

GETS^DIQ(FILE,IENS,FIELD,FLAGS,TARGET_ROOT,MSG_ROOT)

Input Parameters

FILE (Required) File or subfile number.

IENS (Required) Standard IENS indicating internal entry
numbers.

FIELD (Required) Can be one of the following:

A single field number

A list of field numbers, separated by semicolons

A range of field numbers, in the form M:N, where M and N
are the end points of the inclusive range. All field numbers
within this range are retrieved.

* for all fields at the top level (no sub-multiple record).

** for all fields including all fields and data in sub-multiple
fields.

Field number of a multiple followed by an * to indicate all
fields and records in the sub-multiple for that field.

(Optional) Flags to control processing. The possible values
are:

E Returns External values in nodes
ending with "E".

FLAGS

I Returns Internal values in nodes
ending with "I". (Otherwise, external
is returned).

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-187

N Does not return Null values.

R Resolves field numbers to field names
in target array subscripts.

Z Word processing fields include Zero
nodes.

TARGET_ROOT (Required) The name of a closed root reference.

MSG_ROOT (Optional) The name of a closed root reference that is used
to pass error messages.

Output

TARGET_ROOT The output array is in the FDA format, i.e.,
TARGET_ROOT(FILE,IENS,FIELD)=DATA. WP fields
have data descendent from the field nodes in the output
array.

Examples

Retrieve the values of all fields for a record.

 >D GETS^DIQ(999000,"1,","**","","ARRAY")

 >ZW
 ARRAY(999000,"1,",.01)=TEST1
 ARRAY(999000,"1,",1)=OCT 01, 1992
 ARRAY(999000,"1,",2)=YES
 ARRAY(999000,"1,",3)=1
 ARRAY(999000,"1,",4)=DTM-PC
 ARRAY(999000,"1,",5)=SUPPORTED
 ARRAY(999000,"1,",6)=S Y="SET Y=TO THIS"
 ARRAY(999000,"1,",8)=AUDIT,Z
 ARRAY(999000,"1,",9)=ACCESS,Z
 ARRAY(999000,"1,",10)=GRP,Z
 ARRAY(999000,"1,",11)=DESCRIP,Z
 ARRAY(999000,"1,",12)=ARRAY(999000,"1,",12)
 ARRAY(999000,"1,",12,1)=THIS WP LINE 1
 ARRAY(999000,"1,",12,2)=WP LINE2
 ARRAY(999000,"1,",12,3)=AND SO ON
 ARRAY(999000,"1,",13)=LASTNAME,FIRST
 ARRAY(999000.07,"1,1,",.01)=TEST1 ONE
 ARRAY(999000.07,"1,1,",1)=
 ARRAY(999000.07,"2,1,",.01)=TEST1 TWO

Database Server (DBS) API

2-188 VA FileMan V. 22.0 Programmer Manual March 1999

 ARRAY(999000.07,"2,1,",1)=
 ARRAY(999000.07,"3,1,",.01)=TEST1 THREE
 ARRAY(999000.07,"3,1,",1)=
 ARRAY(999000.07,"4,1,",.01)=TEST1 FOUR
 ARRAY(999000.07,"4,1,",1)=MUMPS

Retrieve the values of all fields for a record, excluding multiples.

 >D GETS^DIQ(999000,"1,","*","","ARRAY1")

 >ZW
 ARRAY1(999000,"1,",.01)=TEST1
 ARRAY1(999000,"1,",1)=OCT 01, 1992
 ARRAY1(999000,"1,",2)=YES
 ARRAY1(999000,"1,",3)=1
 ARRAY1(999000,"1,",4)=DTM-PC
 ARRAY1(999000,"1,",5)=SUPPORTED
 ARRAY1(999000,"1,",6)=S Y="SET Y=TO THIS"
 ARRAY1(999000,"1,",8)=AUDIT,Z
 ARRAY1(999000,"1,",9)=ACCESS,Z
 ARRAY1(999000,"1,",10)=GRP,Z
 ARRAY1(999000,"1,",11)=DESCRIP,Z
 ARRAY1(999000,"1,",12)=ARRAY(999000,"1,",12)
 ARRAY1(999000,"1,",12,1)=THIS WP LINE 1
 ARRAY1(999000,"1,",12,2)=WP LINE2
 ARRAY1(999000,"1,",12,3)=AND SO ON
 ARRAY1(999000,"1,",13)=LASTNAME,FIRST

Retrieve both internal and external values of three specific fields for a record.

 >D GETS^DIQ(999000,"1,",".01;3;5","IE","ARRAY3")

 >ZW
 ARRAY3(999000,"1,",.01,"E")=TEST1
 ARRAY3(999000,"1,",.01,"I")=TEST1
 ARRAY3(999000,"1,",3,"E")=1
 ARRAY3(999000,"1,",3,"I")=1
 ARRAY3(999000,"1,",5,"E")=SUPPORTED
 ARRAY3(999000,"1,",5,"I")=

Retrieve both internal and external values for a range of fields in a record.

 >D GETS^DIQ(999000,"1,",".01:6","IE","ARRAY4")

 >ZW
 ARRAY4(999000,"1,",.01,"E")=TEST1
 ARRAY4(999000,"1,",.01,"I")=TEST1
 ARRAY4(999000,"1,",1,"E")=OCT 01, 1992
 ARRAY4(999000,"1,",1,"I")=2921001
 ARRAY4(999000,"1,",2,"E")=NO
 ARRAY4(999000,"1,",2,"I")=0
 ARRAY4(999000,"1,",3,"E")=66
 ARRAY4(999000,"1,",3,"I")=66
 ARRAY4(999000,"1,",4,"E")=DTM-PC

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-189

 ARRAY4(999000,"1,",4,"I")=9
 ARRAY4(999000,"1,",5,"E")=SUPPORTED
 ARRAY4(999000,"1,",5,"I")=
 ARRAY4(999000,"1,",6,"E")=S Y="SET Y=TO THIS"
 ARRAY4(999000,"1,",6,"I")=S Y="SET Y=TO THIS"

Retrieve the values of five specific fields, including all of the values of a multiple
field.

 >D GETS^DIQ(999000,"1,",".01;3;7*;11;13","","ARRAY5")

 >ZW
 ARRAY5(999000,"1,",.01)=TEST1
 ARRAY5(999000,"1,",3)=1
 ARRAY5(999000,"1,",11)=DESCRIP,Z
 ARRAY5(999000,"1,",13)=LASTNAME,FIRST
 ARRAY5(999000.07,"1,1,",.01)=TEST1 ONE
 ARRAY5(999000.07,"1,1,",1)=
 ARRAY5(999000.07,"2,1,",.01)=TEST1 TWO
 ARRAY5(999000.07,"2,1,",1)=
 ARRAY5(999000.07,"3,1,",.01)=TEST1 THREE
 ARRAY5(999000.07,"3,1,",1)=
 ARRAY5(999000.07,"4,1,",.01)=TEST1 FOUR
 ARRAY5(999000.07,"4,1,",1)=MUMPS 0S

Error Codes Returned

200 There is an error in one of the variables passed.

202 Missing or invalid input parameter.

301 Flags passed are unknown or incorrect.

309 Either the root of the multiple or the necessary entry numbers are
missing.

348 The passed value points to a file that does not exist or lacks a Header
Node.

401 The specified file or subfile does not exist.

403 The file lacks a Header Node.

404 The file Header Node lacks a file #.

501 The field name or number does not exist.

505 The field name passed is ambiguous.

Database Server (DBS) API

2-190 VA FileMan V. 22.0 Programmer Manual March 1999

510 The data type for the specified field cannot be determined.

520 An incorrect kind of field is being processed.

537 Field has a corrupted pointer definition.

601 The entry does not exist.

602 The entry is not available for editing.

603 A specific entry in a specific file lacks a value for a required field.

648 The value points to a file that does not exist or lacks a Header Node.

