
July 1995 Kernel V. 8.0 Systems Manual 451

Chapter 29 KIDS Programmer Tools: Advanced
Build Techniques

The previous chapter introduced KIDS from the developer's perspective,
describing the basics of how to create build entries and how to transport
distributions. This chapter describes advanced build techniques that
developers can use when creating builds. The following subjects are covered:

• Environment Check Routine

• PRE-TRANSPORTATION ROUTINE

• Pre- and Post-Install Routines: Special Features

• Obtaining Package Name and Version Information

• Edit a Build - Screen 4

• How to Ask Installation Questions

• Using Checkpoints (Pre- and Post-Install Routines)

• Required Builds

• Package File Link

• Track Package Nationally

• Alpha/Beta Tracking

• Callable Entry Point Summary

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 452

Environment Check Routine

KIDS, like DIFROM, lets you specify an environment check routine.
Typically, the environment check routine looks at the installing system and
determines whether it's appropriate to install the package, based on
conditions on the installing site's current system or environment.

You are not required to specify an environment check in order for your
package to be installed. If, however, you have some special checks that you
want to make to decide whether it's appropriate to go ahead with the
installation, the environment check routine is the place to do it.

KIDS lets you specify the name of the environment check routine in screen
one of EDIT A BUILD.

Self-Contained Routine

The environment check routine itself must be a single, self-contained routine.
The reason is that it is the only routine from your build that will be loaded on
the installing site's system at the time it is executed by KIDS. Based on what
you find out about the installing system during the environment check, you
can tell KIDS to continue installing the package, abort installing the
package, or abort installing all packages (transport globals) in the
distribution.

Although output during the pre-install and post-install should be done with
the MES^XPDUTL and BMES^XPDUTL entry points, during the
environment check routine you should use direct reads and writes.

Environment Check is Run Twice

KIDS runs the environment check routine twice. It runs the environment
check routine first when the installer loads the transport global from the
distribution (with the Load a Distribution option).

KIDS runs the environment check a second time when the user runs the
Install Package(s) option to install the packages in the loaded distribution.

The KIDS key variable XPDENV (see below) indicates which phase (load or
install) the environment check is running in.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 453

Key Variables during Environment Check

XPDNM The KIDS key variable XPDNM is available during the

environment check, as well as during the pre- and post-install
phases of a KIDS installation. XPDNM is set to the name of the
transport global currently being installed. It is in the format of
the .01 field of the package's BUILD file entry, which is package
name, concatenated with a space, concatenated with version
number.

XPDENV The KIDS key variable XPDENV is available during the

environment check only. It can have the following values:

0 The environment check is being run by the KIDS Load a
Distribution option.

1 The environment check is being run by the KIDS Install

Package(s) option.

You can use XPDENV if, for example, there is a check that is
valid to perform at install time, but not at load time.

DIFROM For the purpose of backward compatibility, the variable

DIFROM is available during the environment check, as well as
during the pre- and post-install phases of a KIDS installation.
DIFROM is set to the version number of the incoming package.

Package Version vs. Installing Version

KIDS provides several functions that you can use during the environment
check to compare version numbers of the current package at the site to the
incoming transport global. See the Obtaining Package Name and Version
Information section in this chapter for more on this subject.

Telling KIDS to Skip Installing or Delete a Routine

During the environment check, you can tell KIDS to skip installing any
routine and also change a routine's installation status to delete at site.

For example, suppose you have one version of a routine for MSM sites, one
version for DSM for OpenVMS sites, and one version for DataTree sites.
Based on the type of system your environment check finds, you can use the
$$RTNUP^XPDUTL function to tell KIDS which routines to skip installing.

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 454

Verifying Patch Installation

During the environment check, you can tell KIDS to verify that a particular
patch has been installed on a system prior to the installation of your package.

For example, if your package is dependent on a particular patch being
installed, you can use the $$PATCH^XPDUTL function to have KIDS alert
the user that a required patch is not installed on their system.

Aborting Installations During the Environment Check

In the environment check you can decide whether an installation should
continue or stop, or whether the installation of all transport globals in the
distribution should be aborted.

When you abort the installation of a transport global by setting XPDQUIT or
XPDABORT, KIDS outputs a message to the effect that a particular
transport global in the installation is being aborted. You should also issue
your own message when aborting an installation, however, to give the site
some diagnostic information as to why you've chosen to abort the install.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 455

The following table lists ways you can ask KIDS to continue or abort an
installation, based on the conclusions of your environment check routine:

Desired Action, Based on Environment
Check Conclusions

How to Tell KIDS to
Take This Action
(during Environment
Check)

OK to install this transport global.

(Take no action)

Don't install this transport global and kill
it from ^XTMP.

S XPDQUIT =1

Don't install this transport global but leave
it in ^XTMP.

S XPDQUIT=2

Abort another transport global named
pkg_name in distribution and kill it from
^XTMP.

S XPDQUIT(pkg_name)=1

Abort another transport global named
pkg_name in distribution but leave it in
^XTMP.

S XPDQUIT(pkg_name)=2

Abort all transport globals in distribution
and kill them from ^XTMP.

S XPDABORT=1

Abort all transport globals in distribution
but leave them in ^XTMP.

S XPDABORT=2

NOTE: It is recommended you use XPDQUIT when you have a distribution

that contains multiple builds and you only want to selectively install
a portion of it. Use the XPDABORT to abort the entire installation of
a distribution.

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 456

Controlling the Queueing of the Install Question

By default, KIDS allows the installer to run in the future. It does this by
allowing the installer to enter "Q" at the device prompt. If the variable
XPDNOQUE is set to 1, then the installer will see the following prompt and
not be allowed to enter "Q":

Enter the Device you want to print the Install messages.
Enter a '^' to abort the install.

DEVICE: HOME//

Controlling the Disable Options/Protocols Question

By default, KIDS asks the following question during KIDS installations:

Want to DISABLE Scheduled Options, Options, and Protocols? YES//

You can control the way this question is asked by defining the array
XPDDIQ("XPZ1") during the environment check. The environment check
runs once during the installation and prompts the user if it should run
during the load. Setting this array only has an effect during the installation.
Therefore, you may want to define the array only when XPDENV=1. You can
use this array as follows (each node is optional):

XPDDIQ("XPZ1") Set to 0 to force answer to NO or set to 1 to force
answer to YES. When XPDDIQ("XPZ1") is set,
the site is not asked the question.

XPDDIQ("XPZ1","A") Replace default question prompt with value of

this node.

XPDDIQ("XPZ1","B") Set this node to new default answer, in external

form ("YES" or "NO").

Controlling the Move Routines to Other CPUs Question

By default, KIDS asks the following question during KIDS installations:

Want to MOVE routines to other CPUs? NO//

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 457

You can control the way this question is asked by defining the array
XPDDIQ("XPZ2") during the environment check. The environment check
runs twice (once during load and once during installation), but setting this
array only has an effect during the installation. Therefore, you may want to
define the array only when XPDENV=1. You can use this array as follows
(each node is optional):

XPDDIQ("XPZ2") Set to 0 to force answer to NO, or set to 1 to
force answer to YES. When this node is set, the
question will not be asked.

XPDDIQ("XPZ2","A") Replace default question prompt with value of

this node.

XPDDIQ("XPZ2","B") Set node to new default answer in external form

("YES" or "NO").

� Sample Environment Check Routine

ZZRON1 ;SFISC/RWF - CHECK TO SEE IF OK TO LOAD ; 8 Sep 94 10:39
;;8.0T13;KERNEL;;Aug 01, 1994
N Y
I $S($D(DUZ)[0:1,$D(DUZ(0))[0:1,'DUZ:1,1:0) W !!,*7,">> DUZ and

DUZ(0) must be defined as an active user to initialize." S XPDQUIT=2
I $D(^DD(200,0))[0,XPDNM'["VIRGIN INSTALL" W !!,"You need to

install the KERNEL - VIRGIN INSTALL 8.0 package, instead of this
package!!" G ABRT

;check for Toolkit 7.3
I $$VERSION^XPDUTL("XT")<7.3 W !!,"You need Toolkit 7.3

installed!" G ABRT
;
W !,"I'm checking to see if it is OK to install KERNEL

v",$P($T(+2),";",3)," in this account.",!
W !!,"Checking the %ZOSV routine" D GETENV^%ZOSV
I $P(Y,"^",4)="" W !,"The %ZOSV routine isn't

current.",!,"Check the second line of the routine, or your routine
map table." S XPDQUIT=2

;must have Kernel 7.1
S Y=$$VERSION^XPDUTL("XU") G:Y<7.1 OLD
;Test Access to % globals, only check during install
D:$G(XPDENV) GBLOK
I '$G(XPDQUIT) W !!,"Everything looks OK, Lets continue.",!
Q
;

OLD W !!,*7,"It looks like you currently have version ",Y," of
KERNEL installed."

W !,*7,"You must first install KERNEL v7.1 before this version
can be installed.",!

;abort install, delete transport global
ABRT S XPDQUIT=1

Q
;

GBLOK ;Check to see if we have write access to needed globals.
W !,"Now to check protection on GLOBALS.",!,"If you get an

ERROR, you need to add Write access to that global.",!
F Y="^%ZIS","^%ZISL","^%ZTER","^%ZRTL","^%ZUA" W !,"Checking

",Y S @(Y_"=$G("_Y_")")
Q

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 458

Callable Entry Points

• $$RTNUP^XPDUTL: Update Routine Action

Usage

S Y=$$RTNUP^XPDUTL(routine,action)

Input routine:

action:

Routine name.

1 to delete at site;
2 to skip installing at site.

Output return
value:

1 if routine found in routine installation list, 0
if routine not found in routine installation list.

Description

For use during KIDS installations, during the environment check only. Use
this function to update the installation action for a routine.

• $$PATCH^XPDUTL: Verify Patch Installation

Usage

S Y=$$PATCH^XPDUTL(patch)

Input patch: Patch name

Output return
value:

1 if specified patch was loaded on the current
system, 0 if it wasn't loaded.

Description

For use during KIDS installations, during the environment check only. Use
this function to verify if a patch has been loaded. You can check for patches
with or without sequence numbers. For example:

I '$$PATCH^XPDUTL("XU*8*28") W !,"You must install patch XU*8*28"

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 459

PRE-TRANSPORTATION ROUTINE field (#900)

The PRE-TRANSPORTATION ROUTINE field (#900) in the BUILD file
(#9.6) contains a [TAG^]ROUTINE that is run during the transportation
process for the Build. This allows developers to populate the transport global
using the variable XPDGREF.

Developers can now put information in the KIDS Transport Global which can
be used by the Pre- or Post-install routines. KIDS runs the [TAG^]ROUTINE
in the field PRE-TRANSPORTATION ROUTINE during the transport
process. This routine can use the variable XPDGREF to set nodes in the
transport global. For example:

S @XPDGREF@("My Namespace",1)="Information I need during install"

During the install process, in the Pre- or Post-install routines, the developer
can retrieve the data by using the same variable, XPDGREF. Since these
nodes are part of the transport global, they are removed when the install is
completed.

� PRE-TRANSPORTATION ROUTINE Sample

Edit a Build PAGE 1 OF 4
Name: TEST 4.0 TYPE: SINGLE PACKAGE
--

Name: TEST 4.0

Date Distributed: OCT 9,1996

Description:

Environment Check Routine:

Pre-Install Routine:

Post-Install Routine:

Pre-Transportation Routine: TAG^ROUTINE
__

COMMAND Press PF1H for help Insert

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 460

Pre- and Post-Install Routines: Special Features

KIDS, like DIFROM, lets you specify pre-install and post-install routines.
Typically, the pre- and post-install routines are used to perform pre-install
and post-install conversions. This section describes how to use pre- and post-
install routines with KIDS installations.

Pre- and post-routines are optional; you are not required to specify them in
order for your package to be installed. If, however, you have some special
actions you want to take, either before or after your installation, the pre- and
post-install routines are the places to do it.

KIDS lets you specify the names for pre- and post-install routines in screen
one of EDIT A BUILD.

Two new functions: $$OPTDE^XPDUTL and $$PRODE^XPDUTL can be
called during the install process to disable or enable an option or protocol.

Don't set up variables during the pre-install for use during the installation or
the post-install, because these variables will be lost if the installation aborts
midway through and then is restarted by the site using the restart option.

You can reference any routine exported in your build, since all routines with
a SEND TO SITE action are installed by the time the pre- and post-install
routines run.

Aborting an Installation during the Pre-Install Routine

You can abort an installation during the pre-install routine by setting the
variable XPDABORT to 1 and quitting. Note: this is exactly as if the
installing site hit <CTRL>C, in the sense that no cleanup is done; options are
left disabled. KIDS prints one message to the effect that the install aborted in
the pre-install program. If you abort an installation in this manner, you need
to tell the site what to do to either re-start the installation or clean up the
system from the state it was left in.

Setting a File's Package Revision Data Node (Post-Install)

A new Package Revision Data node can now be updated during the post-
install. This node is located in ^DD(filenumber,0,"VRRV"). It is defined by
the developer who distributes the package and may contain patch or revision
information regarding the file. $$GET1^DID can be used to retrieve the
content of the node and PRD^DILFD is used to update the node. See the VA
FileMan Programmer Manual for more information.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 461

Key Variables during Pre- and Post-Install Routines

XPDNM The KIDS key variable XPDNM is available during the pre-

and post-install (as well as environment check) phases of a
KIDS installation. XPDNM is set to the name of the build
currently being installed. It is in the format of the .01 field of
the package's BUILD file entry, which is package name,
concatenated with a space, concatenated with version
number.

DIFROM For the purpose of backward compatibility, the variable

DIFROM is available during the pre- and post-install (as
well as environment check) phases of a KIDS installation.
DIFROM is set to the version number of the incoming
package.

ZTQUEUED If the variable ZTQUEUED is present, you know that you're

running as a queued installation. If ZTQUEUED is not
present, you know that the installer chose to run the
installation directly instead of queueing it.

Be Sure to NEW the DIFROM Variable when Calling
MailMan

You are free to use the MailMan API to send mail messages during pre- and
post-install routines (provided MailMan exists on the target system). Make
sure that you NEW the DIFROM variable before calling any of the MailMan
entry points, however. MailMan entry points may terminate prematurely if
the DIFROM variable is present because the DIFROM variable has a special
meaning within MailMan.

Update the Status Bar During Pre- and Post-Install
Routines

During the installation, if the device selected for output is a VT100-
compatible (or higher) terminal, KIDS displays the installation output in a
virtual window on the terminal. Below the virtual window, a progress bar
graphically illustrates the percentage complete that the current part of the
installation has reached (see the Installation Progress Sample in the "KIDS
System Management: Installations" chapter of the KIDS documentation).
KIDS resets the status bar prior to the Pre- and Post-install routines.

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 462

You can provide a similar status bar for users in the Pre- and Post Install by
doing the following:

1. Set XPDIDTOT=total number of items

2. Do UPDATE^XPDID(current number of items). This moves the status

bar.

For example, if you are converting 100 records and want to update the user
every time you have completed 10% of the records you would do the following:

Set XPDIDTOT=100
F%=1:1:100 D CONVERT I'(%#10) D UPDATE^XPDID(%)

If you wish to display a status bar at various intervals throughout your Pre
or Post-install routines, you should reset the status bar. To reset the status
bar do the following:

Set XPDIDTOT=0
D UPDATE^XPDID(0)

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 463

Callable Entry Points

For all output during pre- and post-installs, use the MES^XPDUTL and
BMES^XPDUTL entry points. These functions write output to both the
INSTALL file and the output device.

• BMES^XPDUTL: Output Message with Blank Line

Usage

D BMES^XPDUTL(msg)

Input msg: String to output.

Output

none

Description

For use during KIDS installations. Use this function to output a string to the
installation device. Message is also recorded in INSTALL file entry for the
installation. Similar to MES^XPDUTL, except that it outputs a blank line
before it outputs the message, and it doesn't take arrays.

• MES^XPDUTL: Output a Message

Usage

D MES^XPDUTL([.]msg)

Input msg: Message to output, either in a variable, or
passed by reference as an array of strings.

Output

none

Description

For use during KIDS installations. Use this function to output a message to
the installation device. Message is also recorded in INSTALL file entry for
the installation.

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 464

• $$PRODE^XPDUTL: Disable/Enable a Protocol

Usage

S Y=$$PRODE^XPDUTL(name,action)

Input name:

action:

Protocol name

1 to enable a protocol;
2 to disable a protocol

Output

return value: 1 indicates a success, 0 indicates a failure.

Description

For use during KIDS installations in a Pre-Init or Post-Init routine. Use this
function to disable or enable a protocol.

• $$OPTDE^XPDUTL: Disable/Enable an Option

Usage

S Y=$$OPTDE^XPDUTL(name,action)

Input name:

action:

Option name

1 to enable a option;
2 to disable a option

Output

return value: 1 indicates a success, 0 indicates a failure.

Description

For use during KIDS installations in a Pre-Init or Post-Init routine. Use this
function to disable or enable an option.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 465

Obtaining Package Name and Version Information

• $$PKG^XPDUTL: Parse Package from Build Name

Usage

S Y=$$PKG^XPDUTL(buildname)

Input buildname: Name of build (.01 field of BUILD file).

Output

return
value:

Package name.

Description

Use this function to parse the name of a package from a package's build
name. You can obtain the name of the build KIDS is installing from the KIDS
key variable XPDNM which is defined throughout a KIDS installation.

• $$VER^XPDUTL: Parse Version from Build Name

Usage

S Y=$$VER^XPDUTL(buildname)

Input buildname: Name of build (.01 field of BUILD file).

Output

return
value:

Version of build identified in buildname
parameter; null if no match in the BUILD file.

Description

Use this function to parse the version of a package from a package's build
name. You can obtain the name of the build KIDS is installing from the KIDS
key variable XPDNM, which is defined throughout a KIDS installation.

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 466

• $$VERSION^XPDUTL: PACKAGE File Current Version

Usage

S Y=$$VERSION^XPDUTL(package_id)

Input package_id: Package's name or namespace, from its entry
in the PACKAGE file.

Output

return
value:

Current version of package at site, according
to package's entry in site's PACKAGE file.
Returns null if the package is not matched.

Description

Use this function to obtain the current version of a site's package.�

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 467

Edit a Build - Screen 4

Screen four of the EDIT A BUILD option is where you can set up the install
questions, any required builds, PACKAGE file links, and tracking package
information for a build.

� Screen 4 of Edit a Build Sample

Edit a Build PAGE 4 OF 4
Name: TEST 1.0 TYPE: SINGLE PACKAGE
--

Install Questions

Required Builds

Package File Link...: TEST

Track Package Nationally: NO

__

COMMAND: Press <PF1>H for help Insert

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 468

How to Ask Installation Questions

You are not required to ask any installation questions in order for your
package to be installed. If, however, you have some special actions that you
can take in your pre-install and post-install processes, and these special
actions depend on information you need to get from your installer, then you
need a way to ask these questions.

Screen four of EDIT A BUILD option is where you can set up the install
questions for a build.

To ask questions, you need to supply KIDS with the proper DIR input values
for each question. Then, KIDS uses the DIR utility to ask installation
questions when performing installations. The DIR input values you can
supply for each question are:

DIR(0) question format
DIR(A) question prompt
DIR(A,#) additional message before question prompt
DIR(B) default answer
DIR(?) simple help string
DIR(?,#) additional simple help
DIR(??) help frame

For information on the purpose of these variables, permissible values for
them, and which are required versus which are optional, please refer to the
VA FileMan Programmer'Manual.

Question Subscripts

For each question you want to ask, the .01 field of the question (as stored by
KIDS) is a subscript. The subscript must be in one of two forms:

 Pre-Install Questions PRExxx
 Post-Install Questions POSxxx

"xxx" in the subscript can be any string up to 27 characters in length. KIDS
asks questions whose subscript starts with PRE during the pre-install and
questions whose subscript starts with POS during the post-install.

The order in which questions are asked during either the pre- or post- installs
is the same as the sorting order of the subscript itself. KIDS asks questions
with the lowest sorting subscript first and proceeds to the highest sorting
subscript.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 469

M Code in Questions

Besides specifying the DIR input variables, you can specify a line of M code
which is executed after the DIR input variables have been set up but prior to
the DIR call. The purpose of this line of M code is so that you can modify the
DIR parameters, if necessary, before ^DIR is actually called.

The M code must be standalone, however; it cannot depend on any routine in
the package (other than the environment check routine) since no other
exported routines besides the environment check routine will be loaded on
the installing system.

Skipping Installation Questions

If you want to prevent a question from being asked, you should kill the DIR
variable in the line of M code for that question (execute K DIR).

Accessing Questions and Answers

Once the questions have been asked, the results of the questions are
available (during pre-install and post-install only) in the following locations:

(Pre-Install Questions)

XPDQUES(PRExxx)=internal form of answer
XPDQUES(PRExxx,"A")=prompt
XPDQUES(PRExxx,"B")=external form of answer

(Post-Install Questions)

XPDQUES(POSxxx)=internal form of answer
XPDQUES(POSxxx,"A")=prompt
XPDQUES(POSxxx,"B")=external form of answer

The results of the questions for the pre-install can only be accessed (in
XPDQUES) during the pre-install, and the results of the questions for the
post-install can only be accessed (in XPDQUES) during the post-install. At all
other times, XPDQUES is undefined for pre- and post-install questions.

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 470

� Pre-Install Question (Setting Up) Sample

Edit a Build PAGE 4 OF 4

Name: PRE1

DIR(0): YA^^

DIR(A): Do you want to run the pre-install conversion?
DIR(A,#):

DIR(B): YES

DIR(?): Answer YES to run the pre-install conversion, NO to skip it…
DIR(?,#):
DIR(??):

M Code:

COMMAND: Press <PF1>H for help Insert

Install Questions

� Appearance of Question During Installation:

Do you want to run the pre-install conversion? YES// ?

Answer YES to run the pre-install conversion, NO to skip it...

Do you want to run the pre-install conversion? YES//

Where Questions Are Asked During Installations

KIDS asks the pre- and post-install questions when a site initiates an
installation of the package. The order of the questions is:

1. KIDS runs environment check routine, if any.

2. KIDS asks pre-Install questions.

3. KIDS asks generic KIDS installation questions.

4. KIDS asks post-Install questions.

5. KIDS asks site to queue the installation or run it directly.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 471

Using Checkpoints (Pre- and Post-Install Routines)

A new feature of KIDS allows the installing site to restart installations that
have aborted. This means that your pre-install and post-install routines must
be "restart-aware:" that is, they must be able to run correctly whether it's the
first time they're executed or whether it is the nth time through.

KIDS maintains a set of internal checkpoints during an installation. For each
phase of the installation (for example, completion of each package
component), it uses a checkpoint to record whether that phase of the
installation has completed yet. If an installation errors out, checkpointing
allows the installation to be restarted, not from the very beginning, but
instead only from the last completed checkpoint onward.

In your pre- and post-install routines, you can use your own checkpoints. If
there's an error during the pre- or post-install, and you use checkpoints, when
the sites restart the installation, it will resume from the last completed
checkpoint rather than running through the entire pre- or post-install again.

Another advantage of using checkpoints is that you can record timing
information for each phase of your pre- and post-install routines, which
allows you to evaluate the efficiency of each phase you define.

There are two distinct types of checkpoints you can create during pre- and
post-install routines: checkpoints with call backs and check points without
call backs.

Checkpoints With Call Backs

The preferred method of using checkpoints is to use checkpoints with call
backs. When you create a checkpoint with a call back, you give the checkpoint
an entry point (the call back routine). That is all you have to do during your
pre- or post-install routine: create a checkpoint with a call back. You do not
have to execute the call back. At the completion of the pre- or post-install
routine, KIDS manages the created checkpoints by calling, running, and
completing the checkpoint and its call back routine.

The reason to let KIDS execute checkpoints (by creating checkpoints with call
backs) is to ensure that the pre-install or post-install runs in the same way
whether it is the first installation pass, or if the installation aborted and has
been restarted. If the installation has restarted, KIDS skips any checkpoints
in the pre-install or post-install that have completed, and only executes the
call backs of checkpoints that have not yet completed (and completes them).

In this scenario (checkpoints with call back routines), your pre-install and
post-install routine should consist only of calls to $$NEWCP^XPDUTL to
create checkpoints (with call backs). Once you create all of the checkpoints for

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 472

each discrete pre- or post-install task you need to accomplish, your pre-install
or post-install should quit.

Once your pre- or post-install routine finishes, KIDS executes each created
checkpoint (that has a call back) in the order you created them. If it is the
first time through, each checkpoint is executed. If the installation has been
restarted, KIDS skips any completed checkpoints, and only executes
checkpoints that have not completed.

A summary of the KIDS checkpoint functions that apply when using
checkpoints with call backs is:

$$NEWCP^XPDUTL Create checkpoint (use during pre- or post-
install routine only.)

$$CURCP^XPDUTL Retrieve current check point name (use during

pre- or post-install routine). Useful when using
the same tag^routine for multiple call backs;
this is how you determine which call back you're
in.

$$PARCP^XPDUTL Retrieve checkpoint parameter (use within call

back routine.)

$$UPCP^XPDUTL Update checkpoint parameter (use within call

back routine.)

Checkpoint Parameter Node

You can store how far you have progressed with a task you're performing in
the call back by using a checkpoint parameter node. The $$UPCP^XPDUTL
entry point updates the value of a checkpoint's parameter node; the
$$PARCP^XPDUTL function retrieves the value of a checkpoint's parameter
node.

Being able to update and retrieve a parameter within a checkpoint can be
quite useful. For example, if you're converting each entry in a file, as you
progress through the file you can update the checkpoint's parameter node
with the internal entry number (ien) of each entry as you convert it. Then if
the conversion errors out and has to be re-started, you can write your
checkpoint call back in such a way that it always retrieves the last completed
ien stored in the checkpoint's parameter node. Then, it can process entries in
the file starting from the last completed ien, rather than the first entry in the
file. This is one example of how you can save the site time and avoid re-
processing.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 473

� Using Checkpoints with Call Backs: Combined Pre- and Post-
Install Routine

The pre-install entry point in this example is PRE^ZZRON2; the post-install
entry point is POST^ZZRON2.

ZZRON2 ;RON TEST 1.0 PRE AND POST INSTALL
;;1.0
;build checkpoints for PRE

PRE N %
S %=$$NEWCP^XPDUTL("ZZRON1","PRE1^ZZRON2","C-")
Q

PRE1 ;check terminal type file
N DA,UPDATE,NAME
;quit if answer NO to question 1
Q:'XPDQUES("PRE1")
S UPDATE=XPDQUES("PRE2")
;write message to user about task
D BMES^XPDUTL("Checking Terminal Type File")
;get parameter value to inialize NAME
S NAME=$$PARCP^XPDUTL("ZZRON1")
F S NAME=$O(^%ZIS(2,"B",NAME)) Q:$E(NAME,1,2)'="C-" D
.S DA=+$O(^%ZIS(2,"B",NAME,0))
.I DA,$D(^%ZIS(2,DA,1)),$P(^(1),U,5)]"" D MES^XPDUTL(NAME_"

still has data in field 5") S:UPDATE $P(^%ZIS(2,DA,1),U,5)=""
.;update parameter NAME
.S %=$$UPCP^XPDUTL("ZZRON1",NAME)
Q
;build checkpoints for POST

POST N %
S %=$$NEWCP^XPDUTL("ZZRON1","POST1^ZZRON2")
S %=$$NEWCP^XPDUTL("ZZRON2")
Q

POST1 ;check version multiple
N DA,VER,%
;quit if answer NO to question 1
Q:'XPDQUES("POST1")
;write message to user about task
D BMES^XPDUTL("Checking Package File")
;get parameter value to inialize DA
S DA=+$$PARCP^XPDUTL("ZZRON1")
F S DA=$O(^DIC(9.4,DA)) Q:'DA D
.S VER=+$$PARCP^XPDUTL("ZZRON2")
.F S VER=$O(^DIC(9.4,DA,22,VER)) Q:'VER D
..;here is where we could do something
..;update parameter VER
..S %=$$UPCP^XPDUTL("ZZRON2",VER)
.;update parameter DA
.S %=$$UPCP^XPDUTL("ZZRON1",DA),%=$$UPCP^XPDUTL("ZZRON2",VER)
Q

Checkpoints Without Call Backs (Data Storage)

KIDS ignores checkpoints that don't have call back routines specified. The
ability to create checkpoints without a call back routine is provided mainly as
a facility for programmers to store information during the pre- or post-install
routine. The parameter node of the checkpoint serves as the data storage
mechanism. It is not safe to store important information in local variables
during pre- or post-install routines: because installations can now be re-

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 474

started in the middle, variables defined prior to the restart may no longer be
defined after a restart.

An alternative use lets you expand the scope of checkpoints without call
backs beyond simply storing data. If you want to manage your own
checkpoints instead of letting KIDS manage them, you can create checkpoints
without call backs, but use them to divide your pre- and post-install routine
into phases. Rather than having KIDS execute and complete them (as
happens when the checkpoint has a call back routine), you would then be
responsible for executing and completing the checkpoints. In this style of
coding a pre- or a post-install routine, you would:

1. Check if each checkpoint exists ($$VERCP^XPDUTL); if it doesn't
exist, create it ($$NEWCP^XPDUTL).

2. Retrieve the current checkpoint parameter as the starting point if you

want to ($$PARCP^XPDUTL); do the work for the checkpoint; update
the parameter node if you want to ($$UPCP^XPDUTL).

3. Complete the checkpoint when the work is finished

($$COMCP^XPDUTL).

4. Proceed to the next checkpoint.

You have to do more work this way than if you let KIDS manage the
checkpoints (by creating the checkpoints with call back routines).

A summary of the KIDS checkpoint functions that apply when using
checkpoints without call backs is:

$$NEWCP^XPDUTL Create checkpoint (use during pre- or post-
install routine.)

$$PARCP^XPDUTL Retrieve checkpoint parameter (use during pre-

or post-install routine.)

$$UPCP^XPDUTL Update checkpoint parameter (use during pre-

or post-install routine.)

$$VERCP^XPDUTL Verify if checkpoint exists and if it has

completed (use during pre- or post-install
routine.)

$$COMCP^XPDUTL Complete checkpoint (use during pre- or post-

install routine.)

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 475

Callable Entry Points (Checkpoints)

• $$COMCP^XPDUTL: Complete Checkpoint

Usage

S Y=$$COMCP^XPDUTL(name)

Input

name: Checkpoint name.

Output

return
value:

1 if successfully complete checkpoint, 0 if error
completing checkpoint.

Description

For use during KIDS installations. Use this function to complete a
checkpoint, in pre- or post-install routines. Use this only to complete
checkpoints that don't have call back routines; if the checkpoint has a call
back routine, KIDS itself completes the checkpoint. You can only complete
checkpoints that are for the same installation phase (pre-install or post-
install) that you are currently in.

Use this entry point only for checkpoints with no call back. KIDS completes
checkpoints that have a call back.

• $$CURCP^XPDUTL: Get Current Checkpoint Name/IEN

Usage

S Y=$$CURCP^XPDUTL(format)

Input

format Pass as 0 to return checkpoint name;
pass as 1 to return checkpoint internal entry
number (ien).

Output

return
value:

Current checkpoint name. Returns null string
if not currently in a checkpoint call back.

Description

For use during KIDS installations. Use this function to return the name of
the current checkpoint. It can be useful if, for example, you use the same
tag^routine entry point for more than one call back. Using this function, you
can determine which call back you are in.

Use this entry point only for checkpoints with a call back. It will return the
null string if you call it when working with a checkpoint with no call back (in
which case, you would really be in either the pre- or post-install routine).

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 476

• $$NEWCP^XPDUTL: Create Checkpoint

Usage

S Y=$$NEWCP^XPDUTL(name,[callback],[par_value])

Input name:

callback:

par_value:

Checkpoint name.

[optional] Call back (^routine or tag^routine
reference).

[optional] Value to set checkpoint parameter to.

Output

return
value:

Internal entry number of created checkpoint if
created or if checkpoint already exists, or 0 if
error occurred while creating checkpoint.

Description

For use during KIDS installations. Use this function to create a checkpoint,
in pre- or post-install routines. The checkpoint is stored in the INSTALL file.

Pre-and post-install checkpoints are stored separately, so you can use the
same name for a pre- and post-install checkpoint if you wish. Checkpoints
created with this function from the pre-install routine are pre-install
checkpoints; checkpoints created during the post-install routine are post-
install checkpoints.

You can use $$NEWCP^XPDUTL to create a checkpoint with or without a
call back. You can also store a value for the parameter node, if you wish.

Checkpoints created with call backs have that call back automatically
executed by KIDS during the appropriate phase of the installation. If the
checkpoint is created during the pre-install routine, KIDS executes the call
back as soon as the pre-install routine completes. If the call back is created
during the post-install, KIDS executes the call back as soon as the post-
install routine completes. If multiple checkpoints are created during the pre-
or post-install routine, KIDS executes the call backs (and completes the
checkpoints) in the order the corresponding checkpoints were created.

Checkpoints created without a call back cannot be executed by KIDS;
instead, they provide a way for developers to store and retrieve information
during the pre-install and post-install phases. Rather than storing
information in a local or global variable, you can store information in a
checkpoint parameter node and retrieve it (even if an installation is re-
started).

If the checkpoint you are trying to create already exists, the original
parameter and call back will not be overwritten.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 477

• $$PARCP^XPDUTL: Get Checkpoint Parameter

Usage

S Y=$$PARCP^XPDUTL(name[,pre])

Input

name:

pre:

Checkpoint name.

[optional] To retrieve a parameter from a pre-
install checkpoint while in the post-install, set
this parameter to "PRE".

Output

return
value:

Current parameter node for checkpoint named
in name parameter.

Description

For use during KIDS installations. Retrieves the current value of a
checkpoint's stored parameter. The parameter is stored in the INSTALL file.

Use this entry point for checkpoints both with and without call backs.

Use the optional second parameter to retrieve a pre-install checkpoint's
parameter during a post-install.

• $$UPCP^XPDUTL: Update Checkpoint

Usage

S Y=$$UPCP^XPDUTL(name[,par_value])

Input

name:

par_value:

Checkpoint name.

[optional] Value to set checkpoint parameter to.

Output

return
value:

Internal entry number of updated checkpoint if
successful or 0 if error updating checkpoint.

Description

For use during KIDS installations. Use this function to update the parameter
node of an existing checkpoint, in pre- or post-install routines. The parameter
node is stored in the INSTALL file.

Use this entry point for checkpoints both with and without call backs.

During the pre-install, you can only update pre-install checkpoints; during
the post-install, you can only update post-install checkpoints.

KIDS Programmer Tools: Advanced Build Techniques

 Kernel V. 8.0 Systems Manual July 1995 478

• $$VERCP^XPDUTL: Verify Checkpoint

Usage

S Y=$$VERCP^XPDUTL(name)

Input

name: Checkpoint name.

Output

return
value:

1 if checkpoint has completed, 0 if checkpoint
has not completed but exists, -1 if checkpoint
doesn't exist.

Description

For use during KIDS installations. Use this function to check whether a
given checkpoint exists and, if it exists, whether it has completed or not.

Use this entry point only for checkpoints with no call back.

During the pre-install, you can only verify pre-install checkpoints; during the
post-install, you can only verify post-install checkpoints.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 478a

Required Builds

In the fourth screen of the EDIT A BUILD option, you can use the Required
Builds multiple to enter other builds (i.e., packages, or patches) that either
warn the installer when they are missing or requires that they be installed
before this build is installed. Make an entry in the BUILD file for those
packages or patches not installed using KIDS. Include the name and version
number in the BUILD file entry. For the action types available, see the
Required Builds Installation Actions table below.

At the installing site, KIDS checks the PACKAGE file, VERSION multiple,
and PATCH APPLICATION HISTORY multiple to verify that the required
build has been installed at that site.

� Required Builds Sample

Edit a Build PAGE 4 OF 4
Name: TEST 1.0 TYPE: SINGLE PACKAGE

Install Questions

Required Builds
TEST 1.1 Don't install, remove global

Package File Link...: TEST

Track Package Nationally: NO

COMMAND: Press <PF1>H for help Insert

KIDS Programmer Tools: Advanced Build Techniques

478b Kernel V. 8.0 Systems Manual July 1995

� Required Builds Installation Actions

Installation
Action

Description

WARNING
ONLY

Warns the installer the listed package/patch is missing
at the site but allows the installation to continue.
(Displays a **WARNING** to the installer.)

DON'T
INSTALL,
LEAVE GLOBAL

If the listed package/patch is missing, this action
prevents sites from continuing the installation. It does
not unload the Transport Global. This allows sites to
install the missing item and continue with the
installation without having to reload the Transport
Global.

DON'T
INSTALL,
REMOVE
GLOBAL

If the listed package/patch is missing, this action
prevents sites from continuing the installation. It also
unloads the Transport Global.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 478c

PACKAGE FILE Link

In the fourth screen of the EDIT A BUILD option, you can link your build to
an entry in the national PACKAGE file. Use this link if you want to update
the site's PACKAGE file when the package you're creating is installed or if
you want to use Kernel's Alpha/Beta Testing module. You can only link to a
PACKAGE file entry that is the same name (minus the version number) as
the build you're creating.

If you specify a PACKAGE file entry in the PACKAGE FILE LINK field, and
the installing site does not have a matching entry in their PACKAGE file,
KIDS creates a new entry in the installing site's PACKAGE file.

KIDS checks for duplicate version numbers and patch names when updating
the PACKAGE file. When you link to an entry in the PACKAGE file, your
installation automatically updates the VERSION multiple in the installing
site's corresponding PACKAGE file entry. KIDS makes a new entry in the
VERSION multiple for the version of the package you are installing. KIDS
fills in the following fields in the new VERSION entry:

• VERSION

• DATE DISTRIBUTED

• DATE INSTALLED AT THIS SITE

• INSTALLED BY

• DESCRIPTION OF ENHANCEMENTS

• PATCH APPLICATION HISTORY

• PATCH APPLICATION HISTORY
• DATE APPLIED
• APPLIED BY
• DESCRIPTION

KIDS saves patch names along with their sequence numbers in the PATCH
APPLICATION HISTORY multiple (this functionality was added in patch
XU*8*30). The Patch Application History sample shows a list of patch names
with and without sequence numbers. Those patches without sequence
numbers were entered prior to patch XU*8*30, since no sequence numbers
are evident.

KIDS Programmer Tools: Advanced Build Techniques

478d Kernel V. 8.0 Systems Manual July 1995

In addition, you can choose to update the following fields at the top level of
the National Package file:

PRIMARY HELP FRAME Select the primary help frame for the
package.

AFFECTS RECORD
MERGE

(multiple) Select files that, if merged,
affect this package.

ALPHA/BETA TESTING YES means that this package is
currently in alpha or beta test and
that you want to track option usage
and errors relating to this package at
the sites.

NO means that you want to
discontinue tracking of alpha or beta
testing at the sites.

Beyond these fields, KIDS does not support maintaining any other
information in the PACKAGE file.

� Patch Application History Sample

Select PATCH APPLICATION HISTORY: 48// ?
Answer with PATCH APPLICATION HISTORY

Choose from:
27
39
41
42
48
45 SEQ #41
46 SEQ #42
47 SEQ #43

You may enter a new PATCH APPLICATION HISTORY, if you wish
Answer must be 8-15 characters in length.

Select PATCH APPLICATION HISTORY: 48// <RET>
PATCH APPLICATION HISTORY: 48// <RET>
DATE APPLIED: SEP 20,1996// <RET>
APPLIED BY: DOE,JANE// <RET>
DESCRIPTION:

1>This contains fixes related to output fixes for the PCMM
software

2>(distributed as SD*5.3*41).
3>
4>Both SD*5.3*41 and SD*5.3*45 must be installed prior to loading

this
5>patch.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 478e

Track Package Nationally

The fourth screen of the EDIT A BUILD option also lets you choose whether
to send a message to the National Package File on FORUM, each time the
package is installed at a site. If you enter YES in the TRACK PACKAGE
NATIONALLY field, KIDS sends a message to FORUM when a site installs
the package, provided the following conditions are met:

• The PACKAGE FILE LINK field in the build entry points to an entry
in the PACKAGE file.

• The package is installed at a site that is a primary VA domain.

• The package is installed in a production UCI.

Answering NO to TRACK PACKAGE NATIONALLY (or leaving it blank)
means that KIDS does not send a message to FORUM.

KIDS Programmer Tools: Advanced Build Techniques

478f Kernel V. 8.0 Systems Manual July 1995

Alpha/Beta Tracking

Alpha/Beta tracking provides the following services to developers:

• Notification when a new package version is installed.

• Periodic option usage reports.

• Periodic listings of errors in the package's namespace.

This section describes how to set up alpha/beta tracking for packages you
export.

Setting up Alpha/Beta Tracking in the Build Entry

The first step to setting up alpha/beta tracking occurs when you are creating
your build entry. In the PACKAGE FILE LINK section of the build entry, you
can turn on alpha/beta tracking by answering YES to Alpha/Beta Testing.
KIDS places you in a form that lets you edit the following alpha/beta testing
options:

Installation
Message

Answering YES means that an installation message
will be sent when this package is installed at a site.
The message will be sent to the mail group specified
in the ADDRESS FOR USAGE REPORTING field.

Address for
Usage Reporting

Should be set to the MailMan address of a mail group
at the developer's domain. This MailMan address is
where installation and option usage messages are
sent by the Alpha/Beta Tracking module. Also, the
domain specified in the address is where server
requests are sent from the sites to report errors.

Select Package
Namespace or
Prefix

This field is where you identify the alpha/beta
package namespaces to track.

There is additional setup required to enable alpha/beta tracking, however.
The remaining tasks are:

• The server option must be set up correctly at the development domain.

• Errors Logged in the Alpha/Beta Test (Queued) option should be

scheduled to run at sites to gather errors and report these to the
development server.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 478g

• Send Alpha/Beta Usage to Developers option should be scheduled at
the sites to send mail messages containing option usage.

The Site Option to Report Errors

ZTMQUEUABLE OPTIONS [ZTMQUEUABLE OPTIONS]
Errors Logged in Alpha/Beta Test (QUEUED) [XQAB ERROR LOG XMIT]

The Errors Logged in Alpha/Beta Test (QUEUED) option identifies any
errors associated with an application package which is in either alpha or beta
test. You should instruct your test sites to schedule it as a task to run daily,
after midnight.

The identified errors are combined in a mail message which includes the type
of error, routine involved, date (usually the previous day), the option which
was being used at the time of the error, and the number of times the error
was logged. The volume and UCI are included so that stations with error logs
being maintained on different CPUs can run the task on each different
system.

Collecting Error Reports (Developer's Domain)

In order to track errors at test sites, make sure that the server option [XQAB
ERROR LOG SERVER] resides at your development site (which should be
the domain specified in the ADDRESS FOR USAGE REPORTING field in
the build entry).

This option processes server requests from the test sites, from the [XQAB
ERROR LOG XMIT] option. The server stores the data from the requests into
the XQAB ERRORS LOGGED file.

You can use the Print Alpha/Beta Errors (Date/Site/Num/Rou/Err) option to
print out the collected errors.

Operations Management ... [XUSITEMGR]
Alpha/Beta Test Option Usage Menu ... [XQAB MENU]

Print Alpha/Beta Errors (Date/Site/Num/Rou/Err)
[XQAB ERR DATE/SITE/NUM/ROU/ERR]

KIDS Programmer Tools: Advanced Build Techniques

478h Kernel V. 8.0 Systems Manual July 1995

Send Alpha/Beta Usage to Developers Option

To receive option usage reports, you should instruct the sites to schedule this
option to run at whatever frequency you want to receive option usage reports.
The option can also be run manually by the sites to send option usage
information. Mail messages are sent to the mail group specified in the build
entry for Address for Usage Reporting. Make sure that this mail group exists
at your development domain!

Turning Off Alpha/Beta Tracking

Alpha/Beta Tracking, once initiated for a package, should be turned off when
the final version of the package is released. You can turn off alpha/beta
tracking by answering NO to the ALPHA/BETA TESTING field in the build.
When the sites install the build, tracking is shut off.

To manually shut down tracking at an individual site, they can use the
Enter/Edit Kernel Site Parameters option to remove the desired entries from
the ALPHA/BETA TEST PACKAGE multiple in the KERNEL SYSTEM
PARAMETERS file.

 KIDS Programmer Tools: Advanced Build Techniques

July 1995 Kernel V. 8.0 Systems Manual 478i

KIDS Callable Entry Point Summary

� KIDS Environment Check Functions

� KIDS Installation Output Functions

� KIDS Installation Protocol and Option Functions

� KIDS Package Name and Version Functions

Entry Point Description
$$RTNUP^XPDUTL(routine,action) Update routine installation

action (install, delete, or skip).
$$PATCH^XPDUTL(patch) Verify if a patch has been

loaded.

Entry Point Description
BMES^XPDUTL(msg) Output a string during install,

preceded by blank line.
MES^XPDUTL([.]msg) Output a string during install.

Entry Point Description
$$PRODE^XPDUTL(name,action) Disable/Enable a protocol.
$$OPTDE^XPDUTL(name,action) Disable/Enable an option.

Entry Point Description
$$PKG^XPDUTL(buildname) Parse package name from

build name.
$$VER^XPDUTL(buildname) Parse package version from

build name.
$$VERSION^XPDUTL(package_id) Return site's currently

installed package version from
PACKAGE file.

KIDS Programmer Tools: Advanced Build Techniques

478j Kernel V. 8.0 Systems Manual July 1995

� KIDS Check Point Functions

Entry Point Description
$$COMCP^XPDUTL(name) Complete a checkpoint.
$$CURCP^XPDUTL(format) Get current checkpoint name

or internal entry number.
$$NEWCP^XPDUTL(name,[callback],

[par_value])
Create a checkpoint.

$$PARCP^XPDUTL(name[,pre]) Get checkpoint parameter
node.

$$UPCP^XPDUTL(name[,par_value]) Update a checkpoint.
$$VERCP^XPDUTL(name) Verify a checkpoint.

	Chapter 29	KIDS Programmer Tools: Advanced Build Techniques
	Environment Check Routine
	PRE-TRANSPORTATION ROUTINE field (#900)
	Pre- and Post-Install Routines: Special Features
	Obtaining Package Name and Version Information
	Edit a Build - Screen 4
	How to Ask Installation Questions
	Using Checkpoints (Pre- and Post-Install Routines)
	Required Builds
	PACKAGE FILE Link
	Track Package Nationally
	Alpha/Beta Tracking
	KIDS Callable Entry Point Summary

