[image: image1.png]
FILEMAN DELPHI COMPONENTS

(FMDC)

GETTING STARTED GUIDE

Version 1.0

March 1998
Revised December 2004
Department of Veterans Affairs

VistA Health Systems Design & Development (HSD&D)

Development and Infrastructure Support (DaIS)

Revision History

 XE "Revision History"
Documentation Revisions

 XE "Revision History:Documentation"

 XE "Documentation:Revisions"
The following table displays the revision history for this document. Revisions to the documentation are based on patches and new versions released to the field.

	Date
	Revision
	Description
	Author

	03/1998
	1.0
	Initial FileMan Delphi Components (FMDC) V. 1.0 software documentation creation.
	FMDC Development Team, Oakland, CA OIFO

	12/14/04
	2.0
	Reformatted manual to follow ISS Style Guide. Also, updated outdated information (e.g., Web site references).

In addition, recreated PDF document to meet 508 compliance requirements.
	Thom Blom, Oakland, CA OIFO

	
	
	
	

	
	
	
	

Table i: Documentation revision history

Patch Revisions

 XE "Revision History:Patches"

 XE "Patches:Revisions"
For a complete list of patches related to this software, please refer to the Patch Module on FORUM.

Contents

 XE "Contents"

 XE "Table of Contents"
iiiRevision History

viiFigures and Tables

ixOrientation

1-11.
Introduction

1-1FMDC Data Access Components

1-2FMDC Custom Dialogues

1-3FMDC Data Control Components

1-4FMDC Object Hierarchy

2-12.
Quick Start Guide

3-13.
How To: By VA FileMan Field Type

4-14.
How To: By Task

4-1Selecting a Record

4-2Retrieving a Record

4-3Providing Automated OnExit Processing for Controls

4-4Saving a Record

4-5Editing Records from Several Files Simultaneously

4-5Other "How To" Tasks

5-15.
Using Data Access Components Directly

5-1TFMGets: Retrieving a Record

5-2TFMLister: Retrieving a List of Records

5-3TFMValidator: Validating a Standalone Value

5-4TFMFiler: Filing Standalone Values

5-5TFMFiler: Adding a Record

6-16.
FMDC.HLP Help File

1Index
Index-

Figures and Tables

 XE "Figures and Tables" XE "Tables and Figures"
iiiTable i: Documentation revision history

ixTable ii: Documentation symbol descriptions

1-2Table 1‑1: FMDC data access components

1-2Table 1‑2: FMDC custom dialogues

1-3Table 1‑3: FMDC data control components

1-4Figure 1‑2: FMDC object hierarchy

2-2Table 2‑1: Field types and data controls on a form

2-3Figure 2‑1: TFMLookUp—Sample OnClick even handler code

3-1Table 3‑1: VA FileMan field types and compatible controls

4-1Figure 4‑1: Sample of code from the TFMLookUp Execute method

4-2Figure 4‑2: Sample code to retrieve a record and populate controls

4-4Figure 4‑3: TFMFiler—Sample code calling DisplayErrors method

5-1Figure 5‑1: TFMGets sample returned data

5-1Table 5‑1: TFMFieldObj—Structure description

5-2Figure 5‑2: TFMLister—Sample returned data

5-2Table 5‑2: TFMRecordObj—Structure description

5-4Figure 5‑3: TFMFiler—AddFDA method

5-4Figure 5‑4: TFMFiler—Sample code branching to error handler

5-6Figure 5‑5: Adding a new record

6-1Figure 6‑1: FMDC help file directory tree

Orientation

 XE "Orientation"
How to Use this Manual

 XE "How to:Use this Manual"
Throughout this manual, advice and instructions are offered regarding the use of FileMan Delphi Components (FMDC) software and the functionality it provides for Veterans Health Information Systems and Technology Architecture (VistA) software products.

This manual uses several methods to highlight different aspects of the material:

· Various symbols are used throughout the documentation to alert the reader to special information. The following table gives a description of each of these symbols:

	Symbol
	Description

	[image: image2.png]
	Used to inform the reader of general information including references to additional reading material.

	[image: image3.png]
	Used to caution the reader to take special notice of critical information.

Table ii: Documentation symbol descriptions

· Descriptive text is presented in a proportional font (as represented by this font).

· HL7 messages, "snapshots" of computer online displays (i.e., roll-and-scroll screen captures/dialogues) and computer source code, if any, are shown in a non-proportional font and enclosed within a box.

· User's responses to online prompts will be boldface type. The following example is a screen capture of computer dialogue, and indicates that the user should enter two question marks:

Select Primary Menu option: ??
· The "<Enter>" found within these snapshots indicate that the user should press the Enter key on their keyboard. Other special keys are represented within < > angle brackets. For example, pressing the PF1 key can be represented as pressing <PF1>.

· Author's comments, if any, are displayed in italics or as "callout" boxes.

	[image: image4.png]
	Callout boxes refer to labels or descriptions usually enclosed within a box, which point to specific areas of a displayed image.

· All uppercase is reserved for the representation of M code, variable names, or the formal name of options, field and file names, and security keys (e.g., the XUPROGMODE key).

How to Obtain Technical Information Online

 XE "How to:Obtain Technical Information Online"

 XE "Obtaining:Technical Information Online, How to"
Exported file, routine, and global documentation can be generated through the use of Kernel, MailMan, and VA FileMan utilities.

	[image: image5.png]
	Methods of obtaining specific technical information online will be indicated where applicable under the appropriate topic. Please refer to the FileMan Delphi Components (FMDC) Technical Manual for further information.

Help at Prompts

 XE "Help at Prompts"
VistA software provides online help and commonly used system default prompts. Users are encouraged to enter question marks at any response prompt. At the end of the help display, the user is immediately returned to the point from which he/she started. This is an easy way to learn about any aspect of VistA software.

To retrieve online documentation in the form of Help in any VistA character-based product:

· Enter a single question mark ("?") at a field/prompt to obtain a brief description. If a field is a pointer, entering one question mark ("?") displays the HELP PROMPT field contents and a list of choices, if the list is short. If the list is long, the user will be asked if the entire list should be displayed. A YES response will invoke the display. The display can be given a starting point by prefacing the starting point with an up-arrow ("^") as a response. For example, ^M would start an alphabetic listing at the letter M instead of the letter A while ^127 would start any listing at the 127th entry.

· Enter two question marks ("??") at a field/prompt for a more detailed description. Also, if a field is a pointer, entering two question marks displays the HELP PROMPT field contents and the list of choices.

· Enter three question marks ("???") at a field/prompt to invoke any additional Help text stored in Help Frames.

Obtaining Data Dictionary Listings

 XE "Obtaining:Data Dictionary Listings"
Technical information about files and the fields in files is stored in data dictionaries. You can use the List File Attributes option on the Data Dictionary Utilities submenu in VA FileMan to print formatted data dictionaries.

	[image: image6.png]
	For details about obtaining data dictionaries and about the formats available, please refer to the "List File Attributes" chapter in the "File Management" section of the VA FileMan Advanced User Manual.

Assumptions About the Reader

 XE "Assumptions About the Reader"

 XE "Reader, Assumptions About the"
This manual is written with the assumption that the reader is familiar with the following:

· VistA computing environment

· VA FileMan data structures and terminology

· Microsoft Windows

· M programming language

It provides an overall explanation of configuring the FileMan Delphi Components (FMDC) software. However, no attempt is made to explain how the overall VistA programming system is integrated and maintained. Such methods and procedures are documented elsewhere. We suggest you look at the various VA home pages on the World Wide Web (WWW) for a general orientation to VistA. For example, go to the Veterans Health Administration (VHA) Office of Information (OI) Health Systems Design & Development (HSD&D) Home Page at the following Web address XE "HSD&D:Home Page Web Address"

 XE "Web Page:HSD&D Home Page Web Address"

 XE "Home Page:HSD&D Home Page Web Address" :

http://vista.med.va.gov/
Reference Materials

 XE "Reference Materials"
Readers who wish to learn more about the FileMan Delphi Components (FMDC) software should consult the following:

· FileMan Delphi Components Installation Guide

· FileMan Delphi Components Technical Manual and Security Guide
· FileMan Delphi Components Getting Started Guide (this Manual)
· FileMan Delphi Components Help File—Provides complete information on the FileMan Delphi Components (FMDC), including full listings of each component's methods and properties.
	[image: image7.png]
	For more information, please refer to the "FMDC.HLP Help File" chapter in this manual.

· The FileMan Delphi Components (FMDC) Home Page at the following Web address XE "FMDC:Home Page Web Address"

 XE "Web Page:FMDC Home Page Web Address"

 XE "Home Page:FMDC Home Page Web Address" :

http://vista.med.va.gov/fmdc/index.asp
The FileMan Delphi Components (FMDC) Web site provides up-to-date information including Frequently Asked Questions (FAQs), troubleshooting tips, and any code or documentation links/updates.
· VA FileMan Programmer Manual—Provides complete information on the VA FileMan Database Server (DBS) API XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . The FMDC data access components are wrappers around calls in the VA FileMan Database Server (DBS) API. Thus, having a DBS reference can be handy when you're working with data access components. An online version of this documentation is available at the following Web address XE "VA FileMan Programmer Manual:Home Page Web Address"

 XE "Web Page:VA FileMan Programmer Manual Home Page Web Address"

 XE "Home Page:VA FileMan Programmer Manual Home Page Web Address" :
http://vista.med.va.gov/fileman/docs/pm/index.asp
VistA documentation is made available online in Microsoft Word format and Adobe Acrobat Portable Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader (i.e., ACROREAD.EXE), which is freely distributed by Adobe Systems Incorporated at the following Web address XE "Adobe:Home Page Web Address"

 XE "Web Page:Adobe Home Page Web Address"

 XE "Home Page:Adobe Home Page Web Address" :

http://www.adobe.com/
VistA documentation can be downloaded from the Enterprise VistA Support (EVS) anonymous directories or from the Health Systems Design and Development (HSD&D) VistA Documentation Library (VDL) Web site XE "VistA Documentation Library (VDL):Home Page Web Address"

 XE "Web Page:VistA Documentation Library (VDL) Home Page Web Address"

 XE "Home Page:VistA Documentation Library (VDL) Home Page Web Address" :

http://www.va.gov/vdl/
	[image: image8.png]
	For more information on the use of the Adobe Acrobat Reader, please refer to the Adobe Acrobat Quick Guide at the following Web address XE "Adobe Acrobat Quick Guide:Home Page Web Address"

 XE "Web Page:Adobe Acrobat Quick Guide Home Page Web Address"

 XE "Home Page:Adobe Acrobat Quick Guide Home Page Web Address" :

http://vista.med.va.gov/iss/acrobat/index.asp

	[image: image9.png]
	DISCLAIMER: The appearance of any external hyperlink references in this manual does not constitute endorsement by the Department of Veterans Affairs (VA) of this Web site or the information, products, or services contained therein. The VA does not exercise any editorial control over the information you may find at these locations. Such links are provided and are consistent with the stated purpose of this VA Intranet Service.

1. Introduction

 XE "Introduction"

 XE "FMDC:Introduction"
This Getting Started Guide introduces developers to the FileMan Delphi Components (FMDC) Version 1.0. It aims to quickly get you started building Delphi applications that access VA FileMan data.

The FileMan Delphi Components make it easy for developers to work with VA FileMan data in Delphi applications. The components encapsulate the details of retrieving, validating and updating VA FileMan data within a Delphi application. This saves you from creating your own custom remote procedure calls (RPCs) when you need to access VA FileMan data.
The FileMan Delphi Components also include special enhanced features such as complete server-side error checking and data dictionary help.

If you're already familiar with Delphi, the time needed to develop an application to edit a set of VA FileMan fields using the FileMan Delphi Components is comparable to the time needed to create the same application using VA FileMan's roll-and-scroll ScreenMan interface.

The FileMan Delphi Components provide three types of components:

· Data Access Components XE "Data Access Components" are invisible to the user, but contain the functionality for calling the server to find, retrieve, validate, and file data. Each of the data access components encapsulates the functionality of one or more VA FileMan Database Server (DBS) calls XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" .

· Custom Dialogues XE "Custom Dialogues" are like mini-applications you can include in your own application. The TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" custom dialogue makes it easy to perform lookups in files with large numbers of records.

· Data Controls XE "Data Controls" are visual controls users can interact with to change data values. For example, a TFMCheckBox XE "TFMCheckBox Component"

 XE "Components:TFMCheckBox" control is good for editing "Boolean" two-value set of codes fields; a TFMMemo XE "TFMMemo Component"

 XE "Components:TFMMemo" control is good for editing word-processing fields; and a TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" control is good for editing free text fields. Data controls XE "Data Controls" are directly populated by the data access components. Values are directly validated and filed from the controls by the data access components.

FMDC Data Access Components

 XE "FMDC:Data Access Components"
	Component
	Icon
	Function

	TFMGets XE "TFMGets Component" XE "Components:TFMGets"
	[image: image10.bmp]
	Encapsulates the Data Retriever (GETS^DIQ XE "GETS^DIQ"

 XE "APIs:GETS^DIQ") DBS call XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . Retrieves a record from the server. Populates any associated data controls XE "Data Controls" with field values of the retrieved record.

	TFMValidator XE "TFMValidator Component" XE "Components:TFMValidator"
	[image: image11.bmp]
	Encapsulates the Validator (VAL^DIE XE "VAL^DIE"

 XE "APIs:VAL^DIE") DBS call XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . Validates a data value against the corresponding VA FileMan field on the server. If any associated data control XE "Data Controls" 's coValOnExit flag is True, the TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" automatically validates values entered in the control.

	TFMFiler XE "TFMFiler Component"

 XE "Components:MFiler"
	[image: image12.bmp]
	Encapsulates the Filer (FILE^DIE) and Updater (UPDATE^DIE XE "UPDATE^DIE"

 XE "APIs:UPDATE^DIE") DBS calls XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . Given a list of data controls XE "Data Controls" with values to file, the TFMFiler XE "TFMFiler Component"

 XE "Components:TMFiler" collects those values from the controls and files them.

	TFMLister XE "TFMLister Component" XE "Components:TFMLister"
	[image: image13.bmp]
	Encapsulates the Lister (LIST^DIC XE "LIST^DIC"

 XE "APIs:LIST^DIC") DBS call XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . Retrieves a list of records from the server. Optionally populates listbox-type data controls XE "Data Controls" with the retrieved list.

	TFMHelp XE "TFMHelp Component" XE "Components:TFMHelp"
	[image: image14.bmp]
	Encapsulates the Helper (HELP^DIE XE "HELP^DIE"

 XE "APIs:HELP^DIE") DBS call XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . Retrieves field-based help from the data dictionary on the server. Can automatically display help for a data control XE "Data Controls" 's field in a panel, whenever a user sets focus on a data control XE "Data Controls" .

	TFMFinder XE "TFMFinder Component" XE "Components:TFMFinder"
	[image: image15.bmp]
	Encapsulates the Finder (FIND^DIC XE "FIND^DIC"

 XE "APIs:FIND^DIC") DBS call XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . Finds one or more records in a file that match a lookup value. Also used for lookups by TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp" and the TFMLookup XE "TFMLookUp Component"

 XE "Components:TFMLookUp" custom dialogue.

	TFMFindOne XE "TFMFindOne Component" XE "Components:TFMFindOne"
	[image: image16.bmp]
	Encapsulates the Single Record Finder ($$FIND1^DIC XE "$$FIND1^DIC"

 XE "APIs:$$FIND1^DIC") DBS call XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . Finds a unique record in a file based on a lookup value; not linked with data controls XE "Data Controls" .

Table 1‑1: FMDC data access components
FMDC Custom Dialogues

 XE "FMDC:Custom Dialogues"

 XE "Custom Dialogues"
	[image: image17.bmp] TFMLookUp XE "TFMLookUp Component" XE "Components:TFMLookUp"
The TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" custom dialogue makes it easier to do lookups in files with large numbers of records.
	
[image: image18.png]

Table 1‑2: FMDC custom dialogues

FMDC Data Control Components

 XE "FMDC:Data Control Components"
	Component
	Icon
	Example
	Use For

	TFMCheckBox XE "TFMCheckBox Component" XE "Components:TFMCheckBox"
	[image: image19.bmp]
	[image: image20.png]
	"Boolean" two-value yes/no set of codes fields.

	TFMComboBox XE "TFMComboBox Component" XE "Components:TFMComboBox"
	[image: image21.bmp]
	[image: image22.png]
	Pointer fields, record lookups.

	TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp"
	[image: image23.bmp]
	[image: image24.png]
	Pointer fields, record lookups.
Does on-the-fly lookups of what the user types in; good for longer lists.

	TFMEdit XE "TFMEdit Component" XE "Components:TFMEdit"
	[image: image25.bmp]
	[image: image26.png]
	Free Text, Numeric, Date and MUMPS fields.

	TFMLabel XE "TFMLabel Component" XE "Components:TFMLabel"
	[image: image27.bmp]
	[image: image28.png]
	Computed fields, Read-only field values.

	TFMListBox XE "TFMListBox Component" XE "Components:TFMListBox"
	[image: image29.bmp]
	[image: image30.png]
	Pointer fields, record lookups.

	TFMMemo XE "TFMMemo Component" XE "Components:TFMMemo"
	[image: image31.bmp]
	[image: image32.png]
	Word-processing fields.

	TFMRadioButton XE "TFMRadioButton Component" XE "Components:TFMRadioButton"
	[image: image33.bmp]
	[image: image34.bmp]
	Set of codes fields.

	TFMRadioGroup XE "TFMRadioGroup Component" XE "Components:TFMRadioGroup"
	[image: image35.bmp]
	[image: image36.png]
	Set of codes fields.

Table 1‑3: FMDC data control XE "Data Controls" components
FMDC Object Hierarchy

 XE "FMDC:Object Hierarchy"

 XE "Object Hierarchy"
[image: image37.png]
Figure 1‑1: FMDC object hierarchy

2. Quick Start Guide

 XE "Quick Start Guide"
This Quick Start Guide demonstrates the basic approach to editing data with the FileMan Delphi Components. This approach only uses a subset of the properties, methods and components in the FileMan Delphi Components.

There are 17 FileMan Delphi Components, and each one has a variety of methods and properties that allow you to fine-tune its behavior. However, a basic approach to using them, involving only a subset of their properties and methods, is appropriate for most data editing situations.
To follow this basic approach: First, determine the set of fields you want to edit in your Delphi application. Then follow this Quick Start Guide to provide that access in your Delphi application.

 XE "Edit Records in a Given VA FileMan File with the FMDC"

 XE "How to:Edit Records in a Given VA FileMan File with the FMDC"
To edit records in a given VA FileMan file with the FileMan Delphi Components:
1.
Establish an RPC Broker connection:
a.
Add a TRPCBroker component XE "TRPCBroker Component" XE "Components:TRPCBroker" to your form.
b.
Set its properties and invoke its methods as necessary to connect to a server system.

2.
Add a TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component to retrieve data:
a.
Add a TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component to your form.

b.
Set its RPCBroker property XE "RPCBroker Property" XE "Properties:RPCBroker" to point to your form's TRPCBroker component XE "TRPCBroker Component"

 XE "Components:TRPCBroker" .

c.
Set its FileNumber property XE "FileNumber Property"

 XE "Properties:FileNumber" to the file containing records to retrieve.

3.
Add a TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component to file changes:
a.
Add a TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component to your form.

b.
Set its RPCBroker property XE "RPCBroker Property" XE "Properties:RPCBroker" to point to your form's TRPCBroker component XE "TRPCBroker Component"

 XE "Components:TRPCBroker" .

4.
Add a TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" component to provide validation services:
a.
Add a TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" component to your form:
b.
Set its RPCBroker property XE "RPCBroker Property"

 XE "Properties:RPCBroker" to point to your form's TRPCBroker component XE "TRPCBroker Component"

 XE "Components:TRPCBroker" .

5.
Add VA FileMan data controls XE "Data Controls" for each field:
a.
For each field to edit, add data control XE "Data Controls" (s) and supporting data access components to your form as follows:

	For this Field Type:
	Add to Your Form:

	Free Text, Numeric, Date
	1 TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit"

	"Boolean" Set of Codes
	1 TFMCheckBox XE "TFMCheckBox Component"

 XE "Components:TFMCheckBox"

	Set of Codes
	1 TFMRadioGroup XE "TFMRadioGroup Component"

 XE "Components:TFMRadioGroup" , or

	
	1 TPanel XE "TPanel Component" XE "Components:TPanel" or TGroupBox XE "TGroupBox Component" XE "Components:TGroupBox" , plus 1 TFMRadioButton XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton" per code

	Word-processing
	1 TFMMemo XE "TFMMemo Component"

 XE "Components:TFMMemo"

	Pointer
	1 TFMLister XE "TFMLister Component" XE "Components:TFMLister" and 1 TFMListBox XE "TFMListBox Component"

 XE "Components:TFMListBox" , or

	
	1 TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" and 1 TFMComboBox XE "TFMComboBox Component"

 XE "Components:TFMComboBox" , or

	
	1 TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" and 1 TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp"

	Computed
	1 TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel"

Table 2‑1: Field types and data controls on a form
b.
For each field that you add component(s) for, set the field-type-specific properties of the components according to the guidelines (listed by field type) in the "How To: By VA FileMan Field Type" chapter in this manual.
6.
Select and retrieve a record:
a.
To select a record, follow the procedure in the "Selecting a Record" section below in the "How To: By Task" chapter. You'll add a TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" and TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" component to your form, and add a button that calls TFMLookup XE "TFMLookUp Component"

 XE "Components:TFMLookUp" 's Execute method
b.
TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" .Execute returns a record number. Using it you can retrieve the record and populate your data controls XE "Data Controls" with the record's field values. To retrieve the record, follow the procedure in the "Retrieving a Record" section below in the "How To: By Task" chapter. You'll call TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" ' GetAndFill method XE "GetAndFill Method"

 XE "Methods:GetAndFill" to retrieve the record and populate data controls XE "Data Controls" .

c.
The OnClick event handler for the button that executes the TFMLookup XE "TFMLookUp Component"

 XE "Components:TFMLookUp" .Execute method XE "Execute Method" XE "Methods:Execute" (Step #6a) can also perform the retrieval (Step #6b). Code to do this would look like:

procedure TForm1.Button1Click(Sender: TObject);

var AddRecord:Boolean;

begin

 if FMLookup1.Execute(AddRecord) then begin
 FMGets1.IENS:=FMLookUp1.RecordNumber+',';

 // Call any TFMListBox/TFMComboBox GetList methods

 // here, before calling GetAndFill.

 FMGets1.GetAndFill;

 end

 else

 ShowMessage('No record chosen.');

end;

Figure 2‑1: TFMLookUp—Sample OnClick even handler code
	[image: image38.png]
	Compile your application. You can now retrieve records.

	7.
Set Up Automated OnExit Processing XE "OnExit Processing" :
a.
Your data controls XE "Data Controls" should already be linked to a TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" and a TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" component, from following the "Data Control Property Settings for All Field Types" guidelines in the "How To: By VA FileMan Field Type" chapter in this manual.

b.
Set every data control XE "Data Controls" 's coValOnExit value XE "coValOnExit Value" XE "Values:coValOnExit" to True, in each control's FMCtrlOptions property XE "FMCtrlOptions Property"

 XE "Properties:FMCtrlOptions" .
	
	About Automated OnExit Processing XE "OnExit Processing"
This feature automatically validates a field value in a data control XE "Data Controls" when a user changes it (this is the control's OnExit event). If the changed value is valid, automated OnExit processing XE "OnExit Processing" adds the control to the associated TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" 's component's list of controls to file.

	[image: image39.png]
	Compile your application. All changes to fields in VA FileMan data controls XE "Data Controls" will be validated, and only accepted by the data controls XE "Data Controls" if valid.

8.
Provide an event to save changes:
a.
To save changes the user makes to the record, follow the procedure in the "Saving a Record" section below in the "How To: By Task" chapter. You'll add a button whose caption is something like "Save Changes". You'll add code for this button's OnClick event handler that calls your TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" 's Update method XE "Update Method"

 XE "Methods:Update" to file changes.

	[image: image40.png]
	Compile your application. You can now file changes to the record

9.
(optional) Provide context-sensitive field help.
There are several ways you can provide context-sensitive help for the VA FileMan fields being edited:

· The first line of the DD help for a field can automatically be displayed in a display panel, whenever a user sets focus to a control.

· All DD help for a field can be displayed when, with a particular control selected, the user presses F1.

· Standalone help: you can retrieve DD help for any field and display it using your own methods.

	[image: image41.png]
	For more information on providing context-sensitive help, please refer to the "FMDC.HLP Help File" chapter in this manual.

	10.
Register your application:
a.
Create a "B"-type option in the Option file for your application.

b.
In the option's RPC multiple, include every Remote Procedure Call (RPC) your application calls.

You need to include all RPCs invoked by methods of the FileMan Delphi Components called by your application, as well as RPCs you invoke yourself. The FMDC.HLP XE "FMDC.HLP File"

 XE "Files:FMDC.HLP" online help file details which FMDC RPCs are called by FMDC component methods.
c.
In your application's OnCreate event, register the option name using the broker's CreateContext method XE "CreateContext Method"

 XE "Methods:CreateContext" . If registration fails, your application should probably terminate. For example:
if not RPCBroker1.CreateContext('A6A APP1')

then Application.Terminate;

d.
Users must have the registered "B"-type option assigned to them in order to use your client application.
	
	Bypass Security During Development.
Possessing the XUPROGMODE key allows you as a developer to bypass RPC Broker security.
Once you're ready to deploy your application to non-developer users, your application will need to register itself appropriately.

[image: image42.png] For more information on RPC Broker security, please refer to the RPC Broker documentation.

	[image: image43.png]
	Compile your application. Users without the XUPROGMODE key should now be able to run your application.

	[image: image44.png]
	The FMDC data access components are wrappers around calls in the VA FileMan Database Server (DBS) API XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" . So having a DBS reference can be handy when you're working with data access components. For a complete DBS reference, please refer to the VA FileMan Programmer Manual. Online versions of this documentation are available on the VDL:

http://www.va.gov/vdl/Infrastructure.asp?appID=5

3. How To: By VA FileMan Field Type

 XE "How to:By VA FileMan Field Type"
This chapter shows which VA FileMan data controls XE "Data Controls" are compatible with which VA FileMan field types, and how to set the properties of the data controls XE "Data Controls" .
For each VA FileMan data control XE "Data Controls" you use on your form to edit a particular VA FileMan field type, follow the corresponding procedure in this chapter to set the control's properties.

VA FileMan Field Types and Compatible Controls

 XE "VA FileMan Field Types and Compatible Controls" XE "Field Types and Compatible Controls"

 XE "Compatible Controls and Field Types"
	Field Type
	Compatible Controls

	Computed
	TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" , TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel"

	Date
	TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" , TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel"

	Free Text
	TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" , TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel"

	MUMPS
	TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" , TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel"

	Numeric
	TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" , TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel"

	Pointer
	TFMComboBox XE "TFMComboBox Component"

 XE "Components:TFMComboBox" , TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp" , TFMListBox XE "TFMListBox Component"

 XE "Components:TFMListBox" , TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" , TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" custom dialogue

	Set of Codes
	TFMCheckBox XE "TFMCheckBox Component"

 XE "Components:TFMCheckBox" , TFMRadioButton XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton" , TFMRadioGroup XE "TFMRadioGroup Component"

 XE "Components:TFMRadioGroup" , TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit"

	Variable Pointer
	(must be done manually)

	Word-processing
	TFMMemo XE "TFMMemo Component"

 XE "Components:TFMMemo"

Table 3‑1: VA FileMan field types and compatible controls
Data Control Property Settings for All Field Types

 XE "Data Control Property Settings for All Field Types"
	Set these properties for every VA FileMan data control XE "Data Controls:Setting Properties" you use.

1.
Set the FMField XE "FMField Property"

 XE "Properties:FMField" and FMFile XE "FMFile Property"

 XE "Properties:FMFile" properties to the field and file that the control is to edit.

2.
Set the FMGets property XE "FMGets Property"

 XE "Properties:FMGets" to the TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" to use to retrieve values.

3.
Set the FMValidator property XE "FMValidator Property"

 XE "Properties:FMValidator" to the TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" to use to validate (except for TFMMemo XE "TFMMemo Component"

 XE "Components:TFMMemo" controls, which do not require validation).

4.
Set the FMFiler property XE "FMFiler Property"

 XE "Properties:FMFiler" to the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" to use to file changes.

5.
(optional) Set the FMCtrlOptions coValOnExit flag to True to enable automated OnExit processing XE "OnExit Processing" . For more information, please refer to the "Providing Automated OnExit Processing for Controls" topic.
	
	Hint
In Delphi, to set a property for a set of controls to the same value, select all of the components simultaneously (Hold down the Ctrl key and select each control).
Then, in Delphi's Object Inspector, in a single edit of that property you set the property value for all selected controls.

	Free Text, Numeric, Date, MUMPS: TFMEdit

1.
 XE "TFMEdit Component"

 XE "Components:TFMEdit"

 XE "Using:Free Text, Numeric, MUMPS Fields:TFMEdit"

 XE "How to:Using:Free Text, Numeric, MUMPS Fields:TFMEdit" Add a TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" component to your form.

2.
Set its properties as described in the "Data Control Property Settings for All Field Types" topic above.
	TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" :

[image: image45.png]

	"Boolean" Set of Codes (2 Yes/No Values): TFMCheckBox

1.
 XE "TFMCheckBox Component"

 XE "Components:TFMCheckBox"

 XE "Using:Boolean Set of Code Fields:TFMCheckBox"

 XE "How to:Using:Boolean Set of Code Fields:TFMCheckBox" Add a TFMCheckBox XE "TFMCheckBox Component"

 XE "Components:TFMCheckBox" component to your form.

2.
Set its properties as described in the "Data Control Property Settings for All Field Types" topic above.

3.
Set its FMValueChecked XE "FMValueChecked Property"

 XE "Properties:FMValueChecked" and FMValueUnchecked XE "FMValueUnchecked Property"

 XE "Properties:FMValueUnchecked" properties to the two internal codes (from the VA FileMan data dictionary) that should be represented by the checked and unchecked states of the control.

4.
Set the Caption property XE "Caption Property"

 XE "Properties:Caption" to the label to display to the end-user (typically the external value represented by the "True" internal code).
	TFMCheckBox XE "TFMCheckBox Component"

 XE "Components:TFMCheckBox" :

[image: image46.png]

	Multi-value Set of Codes: TFMRadioGroup

1.
 XE "TFMRadioGroup Component"

 XE "Components:TFMRadioGroup"

 XE "Using:Multi-value Set of Code Fields:TFMRadioGroup"

 XE "How to:Using:Multi-value Set of Code Fields:TFMRadioGroup" Add a TFMRadioGroup XE "TFMRadioGroup Component"

 XE "Components:TFMRadioGroup" component to your form.

2.
Set its properties as described in the "Data Control Property Settings for All Field Types" topic above.

3.
Populate its Items property XE "Items Property"

 XE "Properties:Items" (an array of TStrings) with the values to display to the user for each code.

4.
Populate its FMInternalCodes property XE "FMInternalCodes Property"

 XE "Properties:FMInternalCodes" with the internal values (from the VA FileMan data dictionary) of the codes in the set of codes field. Populate it in the same sequence, line-by-line and code-by-code, with which you populated the Items property XE "Items Property"

 XE "Properties:Items" .
	TFMRadioGroup XE "TFMRadioGroup Component"

 XE "Components:TFMRadioGroup" :

[image: image47.png]

	Multi-value Set of Codes: TFMRadioButton

1.
 XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton"

 XE "Using:Multi-value Set of Code Fields:TFMRadioButton"

 XE "How to:Using:Multi-value Set of Code Fields:TFMRadioButton" Place a TPanel XE "TPanel Component"

 XE "Components:TPanel" or TGroupBox XE "TGroupBox Component"

 XE "Components:TGroupBox" panel component on your form.

2.
Place one TFMRadioButton XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton" per code directly from the component palette onto the TPanel XE "TPanel Component"

 XE "Components:TPanel" or TGroupBox XE "TGroupBox Component"

 XE "Components:TGroupBox" . For example, for a 3-value set of codes field, place 3 TFMRadioButtons XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton" directly from the component palette onto the TPanel XE "TPanel Component"

 XE "Components:TPanel" or TGroupBox XE "TGroupBox Component"

 XE "Components:TGroupBox" .
3.
Set each TFMRadioButton XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton" 's properties as described in the "Data Control Property Settings for All Field Types" topic above.

4.
Set each TFMRadioButton XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton" 's FMValueChecked XE "FMValueChecked Property"

 XE "Properties:FMValueChecked" property to the internal code (from the VA FileMan data dictionary) that should be represented by the checked state of the control.

5.
Set each TFMRadioButton XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton" 's Caption property XE "Caption Property"

 XE "Properties:Caption" to the label to display to the end-user (typically the external value represented by each code).
	TFMRadioButton XE "TFMRadioButton Component"

 XE "Components:TFMRadioButton" :

[image: image48.png]

	Pointer: TFMComboBox, TFMListBox

1.
 XE "TFMListBox Component"

 XE "Components:TFMListBox"

 XE "TFMComboBox Component"

 XE "Components:TFMComboBox"

 XE "Using:Pointer Fields:TFMListBox"

 XE "How to:Using:Pointer Fields:TFMComboBox"

 XE "Using:Pointer Fields:TFMComboBox"

 XE "How to:Using:Pointer Fields:TFMListBox" Add a TFMComboBox XE "TFMComboBox Component"

 XE "Components:TFMComboBox" or TFMListBox XE "TFMListBox Component"

 XE "Components:TFMListBox" to your form. These work best when the set of records is not huge.

2.
Set its properties as described in the "Data Control Property Settings for All Field Types" topic above.

3.
Add a TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" component to your form. It must be dedicated entirely to servicing the pointer field.

4.
Set the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's FileNumber property XE "FileNumber Property"

 XE "Properties:FileNumber" to that of the pointed-to file. Make sure its FieldNumbers property XE "FieldNumbers Property"

 XE "Properties:FieldNumbers" contains at least ".01". Set its RPCBroker property XE "RPCBroker Property"

 XE "Properties:RPCBroker" to your form's TRPCBroker XE "TRPCBroker Component"

 XE "Component componentTRPCBroker" .
5.
Associate the TFMListBox XE "TFMListBox Component"

 XE "Components:TFMListBox" or TFMComboBox XE "TFMComboBox Component"

 XE "Components:TFMComboBox" with the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" through the FMLister property XE "FMLister Property" XE "Properties:FMLister" .
6.
To retrieve the current value of the pointer field: First use the control's GetList method XE "GetList Method" XE "Methods:GetList" to populate its Items property XE "Items Property"

 XE "Properties:Items" with pointed-to file's list of records. Then use the GetAndFill method XE "GetAndFill Method" XE "Methods:GetAndFill" of the associated TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component to select the current pointer value from the list of possible values.
	TFMComboBox XE "TFMComboBox Component"

 XE "Components:TFMComboBox" :

[image: image49.png]
TFMListBox XE "TFMListBox Component"

 XE "Components:TFMListBox" :

[image: image50.png]

	Pointer: TFMComboBoxLookUp

1.
 XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp"

 XE "Using:Pointer Fields:TFMComboBoxLookUp"

 XE "How to:Using:Pointer Fields:TFMComboBoxLookUp" Add a TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp" to your form. This control performs lookups "on-the-fly" (the entire list of possible records does not have to be retrieved into the control).

2.
Set its properties as described in the "Data Control Property Settings for All Field Types" topic above.

3.
Add a TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" component to your form. It must be dedicated entirely to servicing the pointer field.

4.
Set the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's FileNumber property XE "FileNumber Property"

 XE "Properties:FileNumber" to that of the pointed-to file. Make sure its FieldNumbers property XE "FieldNumbers Property"

 XE "Properties:FieldNumbers" contains at least ".01". Set its RPCBroker property XE "RPCBroker Property"

 XE "Properties:RPCBroker" to the TRPCBroker component XE "TRPCBroker Component"

 XE "Components:TRPCBroker" on your form.

5.
Optionally set the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's Number property XE "Number Property"

 XE "Properties:Number" to restrict the number of records returned in any one lookup when the user enters "?" or leaves the edit box null and presses the down-arrow. This enables a "<<< More >>>" item at the end of the Items list so the user can request more records if needed.

6.
Associate the TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp" with the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" through its FMLister property XE "FMLister Property"

 XE "Properties:FMLister" .
7.
You don't need to populate the TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp" 's Items property XE "Items Property"

 XE "Properties:Items" prior to calling GetAndFill, because lookups are performed on the fly.

8.
Because TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp" performs server-side calls automatically you application will need to register the DDR LISTER and DDR FINDER RPCs.

[image: image51.png] For more information on registering RPCs, please refer to the RPC Broker documentation on the VDL:
http://www.va.gov/vdl/Infrastructure.asp?appID=23
	TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp" :

[image: image52.png]

	Pointer: TFMLookUp

You can also edit pointer fields XE "Edit Pointer Fields:TFMLookUp"

 XE "How to:Edit Pointer Fields:TFMLookUp" with the TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" custom dialogue. This can be useful if the pointer field points to a file with a huge number of records; the TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" custom dialogue simplifies lookups in large files.

Use a VA FileMan data control XE "Data Controls" such as TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel" or TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" to display the current value of the pointer field. If you use TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" you should set its ReadOnly property XE "ReadOnly Property"

 XE "Properties:ReadOnly" set to True. Then a button you place next to the control could invoke the Execute method XE "Execute Method" XE "Methods:Execute" of TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" to edit the value of the pointer field.

[image: image53.png] For a complete list of steps and a code sample, please refer to the online FMDC.HLP help file.

	Word-processing: TFMMemo

1.
 XE "TFMMemo Component"

 XE "Components:TFMMemo"

 XE "Using:Word-processing Fields:TFMMemo"

 XE "How to:Using:Word-processing Fields:TFMMemo" Add a TFMMemo XE "TFMMemo Component"

 XE "Components:TFMMemo" component to your form.

2.
Set its properties as described in the "Data Control Property Settings for All Field Types" topic above.

3.
Make sure you set its FMFile XE "FMFile Property" XE "Properties:FMFile" property to the file number of the file containing the word-processing field, and FMField XE "FMField Property" XE "Properties:FMField" to the word-processing field number. Don't use the subfile number of the word-processing field.
	TFMMemo XE "TFMMemo Component"

 XE "Components:TFMMemo" :

[image: image54.png]

	Computed: TFMLabel or TFMEdit

1.
 XE "TFMLabel Component"

 XE "Components:TFMLabel"

 XE "TFMEdit Component"

 XE "Components:TFMEdit"

 XE "Using:Computed Fields:TFMLabel"

 XE "How to:Using:Computed Fields:TFMLabel"

 XE "Using:Computed Fields:TFMEdit"

 XE "How to:Using:Computed Fields:TFMEdit" Add a TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel" or TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" component to your form.

2.
Set its properties as described in the "Data Control Property Settings for All Field Types" topic above.

3.
Unlike other field types, no automated OnExit processing XE "OnExit Processing" or filing is needed for computed fields since they are read-only.

4.
If you are using a TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" control, set its ReadOnly property XE "ReadOnly Property" XE "Properties:ReadOnly" to True, so users don't think that they can edit the field (and so that filing is never attempted).
	TFMLabel XE "TFMLabel Component"

 XE "Components:TFMLabel" :

[image: image55.png]
TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" :

[image: image56.png]

4. How To: By Task

 XE "How to:By Task"
This chapter demonstrates how to accomplish the most common VA FileMan record-editing tasks.
Selecting a Record

 XE "Selecting a Record"
The procedure below describes how to select a record with the TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" custom dialogue.

	[image: image57.png]
	For additional ways to select records, please refer to the FMDC.HLP help file XE "FMDC.HLP File"

 XE "Files:FMDC.HLP" .

 XE "Select a Record with a TFMLookUp Component"

 XE "How to:Select a Record with a TFMLookUp Component"
To select a record with a TFMLookUp component:
1.
Add a TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" component to your form.

2.
Set the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's RPCBroker property XE "RPCBroker Property" XE "Properties:RPCBroker" to point to your form's TRPCBroker component XE "TRPCBroker Component" XE "Components:TRPCBroker" .

3.
Set the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's FileNumber property XE "FileNumber Property" XE "Properties:FileNumber" to the file to do the lookup in.
4.
Optionally set the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's Number property XE "Number Property" XE "Properties:Number" to restrict the number of records returned when the TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" window is first opened (particularly for files with large numbers of records). Setting this property enables the TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" More button so that the user can request more records if needed.

5.
Add a TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" component to your form.

6.
Set the TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" 's FMLister property XE "FMLister Property" XE "Properties:FMLister" to the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" .

7.
Add a button to your form so the user can do a lookup. Set the button's Caption to something the user will recognize, e.g. "Choose User" if you're doing a lookup in the NEW PERSON file (#200).

The button's OnClick event should call the Execute method XE "Execute Method" XE "Methods:Execute" of the TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" component to do the lookup. It can make the retrieved record number, if any, available to a TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component so that the TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" is ready to retrieve the record (see the "Retrieving a Record" topic). For example:

procedure TForm1.Button1Click(Sender: TObject);
var

 AddRecord :Boolean;
begin
 FMLookUp1.AllowNew:=False; // disallow adding records
 if FMLookUp1.Execute(AddRecord) then
 TFMGets1.IENS:=FMLookUp1.RecordNumber+','
 else
 ShowMessage('You did not select a record.');
end;
Figure 4‑1: Sample of code from the TFMLookUp Execute method

Retrieving a Record

 XE "Retrieving a Record"
To retrieve a record from the server, use the TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component. Its GetAndFill method XE "GetAndFill Method" XE "Methods:GetAndFill" retrieves fields from a record on the server and populates a set of associated data controls XE "Data Controls" with the retrieved values.
The following should be set prior to calling the code example below:

· TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" .FileNumber should be set to the file from which to retrieve the record.

· All data controls XE "Data Controls" should be associated with the TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component (through their FMGets properties).

· All data controls XE "Data Controls" ' FMFile XE "FMFile Property" XE "Properties:FMFile" and FMField XE "FMField Property" XE "Properties:FMField" properties should be set to reflect the file and field number that they should be editing.

The following code retrieves a record and populates the associated controls with appropriate field values:

// Set TFMGets.IENS to IENS (#+',' for top-level records)

// of the record to retrieve

FMGets.IENS:=TFMLookup1.RecordNumber+',';

// if you have TFMListBox or TFMComboBox controls to get lists for,

// get the lists here before calling GetAndFill.

FMListBox1.Getlist;

// Now you can call TFMGets.GetAndFill.

FMGets1.GetAndFill;

// Check for errors after the server call.

if FMGets1.ErrorList.Count>0 then FMGets1.DisplayErrors;

Figure 4‑2: Sample code to retrieve a record and populate controls
	[image: image58.png] The Items property XE "Items Property" XE "Properties:Items" of TFMListBox XE "TFMListBox Component"

 XE "Components:TFMListBox" and TFMComboBox XE "TFMComboBox Component"

 XE "Components:TFMComboBox" controls must be populated before calling TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" .GetAndFill. Do this by calling the GetList method XE "GetList Method"

 XE "Methods:GetList" of the data control XE "Data Controls" before calling GetAndFill. Then GetAndFill can retrieve the current field value, and select the corresponding value in the control's Items property XE "Items Property" XE "Properties:Items" as the control's current value.
	
	About Error Checking
Error checking is provided for each of the data access components. Whenever the data access components make a server call (invoking an M routine on the server) there is the potential for an error to occur on the server side, due to a variety of conditions in the server environment.
You should check a data access component's ErrorList.Count property after making a server call to see if a server-side error occurred. If any did, you can call the component's DisplayErrors method XE "DisplayErrors Method" XE "Methods:DisplayErrors" to display those errors to the user (typically the error number and text from a DBS XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" error is what is displayed), and then branch accordingly to gracefully handle the error condition.

Providing Automated OnExit Processing for Controls

 XE "Providing Automated OnExit Processing for Controls"
Each time a user enters a data value in a data control XE "Data Controls" , there is a set of tasks you would typically perform:

1.
Check if the user changed the data value.

2.
If the control's FMRequired property XE "FMRequired Property"

 XE "Properties:FMRequired" is True, and the user deleted the data value, warn the user that the value is required, and reset the control's value to its previous state.

3.
Otherwise, validate the changed value (usually needed only for TFMEdit XE "TFMEdit Component"

 XE "Components:TFMEdit" controls):

a.
If the value is invalid, return the control's value to the original and provide the user help on why the value was invalid.

b.
If the value is valid, update the control's display value from what user typed to validated external form of field value, if necessary.

4.
If the value is valid, update the control's FMCtrlInternal and FMCtrlExternal properties to reflect the internal and external VA FileMan forms of the control's value (except for TFMMemo XE "TFMMemo Component"

 XE "Components:TFMMemo" controls).

5.
Unless the changed value is invalid, tell the associated TFMFiler XE "TFMFiler Component" XE "Components:TFMFiler" that the control has data to file (with the TFMFiler's AddChgdControl method XE "AddChgdControl Method"

 XE "Methods:AddChgdControl").

A good place to perform these actions is in a control's OnExit event handler XE "OnExit Event Handler" . Coding these actions by hand for each of your data controls XE "Data Controls" would be laborious. Fortunately, the VA FileMan data controls XE "Data Controls" have an Automated OnExit processing XE "OnExit Processing" option you can turn on to perform each of these tasks automatically.
 XE "Turn on Automated OnExit Processing"

 XE "How to:Turn on Automated OnExit Processing" XE "OnExit Processing"
To turn on Automated OnExit Processing:
1.
Make sure each of your VA FileMan data controls XE "Data Controls" is linked to a TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component through their FMFiler properties.
2.
Make sure each of your VA FileMan data controls XE "Data Controls" is linked to a TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" component through their FMValidator properties (except TFMMemo XE "TFMMemo Component"

 XE "Components:TFMMemo" , which does not need validation).

3.
Set every data control XE "Data Controls" 's coValOnExit value XE "coValOnExit Value"

 XE "Values:coValOnExit" in the FMCtrlOptions property XE "FMCtrlOptions Property" XE "Properties:FMCtrlOptions" to True.

When Control Values are changed by Code

 XE "When Control Values are changed by Code"
If a control's value is changed by code (rather than through user interaction) the OnExit event of the control is not triggered. Automated OnExit processing XE "OnExit Processing" is not triggered either. In this case, your code will need to perform any actions that you would ordinarily expect to be performed by automated OnExit processing XE "OnExit Processing" .

Saving a Record

 XE "Saving a Record"
To save changes to the database, use the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component. You can add filing requests with its AddFDA XE "AddFDA Method"

 XE "Methods:AddFDA" and AddChgdControl XE "AddChgdControl Method"

 XE "Methods:AddChgdControl" methods, and file all pending requests with its Update method XE "Update Method" XE "Methods:Update" .

To request filing:

	· Call a TFMFiler XE "TFMFiler Component"

 XE "ComponentTFMFiler" 's AddFDA method XE "AddFDA Method"

 XE "Methods:AddFDA" to request filing a standalone field value (not attached to a control).

· Call a TFMFiler XE "TFMFiler Component"

 XE "ComponentTFMFiler" 's AddChgdControl method XE "AddChgdControl Method"

 XE "Methods:AddChgdControl" to request filing a field value in a VA FileMan data control XE "Data Controls" .
	
	Hint
If you are using automated OnExit processing XE "OnExit Processing" , the AddChgdControl method XE "AddChgdControl Method" XE "Methods:AddChgdControl" is automatically called when a user changes the value in a VA FileMan data control XE "Data Controls" to a valid new value.

To file all accumulated filing requests to the database, call the TFMFiler XE "TFMFiler Component"

 XE "ComponentTFMFiler" 's Update method XE "Update Method" XE "Methods:Update" .

 XE "Save Accumulated Filing Requests"

 XE "How to:Save Accumulated Filing Requests"
To save accumulated filing requests:
1.
Provide some event that the user can trigger to save changes. The OnClick event of a "Save Changes" button is one good place.

2.
Provide code for this event that will save the changes to the server. This code should:

a.
(optional) Check if there are any data updates waiting to be filed (TFMFiler XE "TFMFiler Component"

 XE "ComponentTFMFiler" 's AnythingToFile method XE "AnythingToFile Method"

 XE "Methods:AnythingToFile"). Because the Update method XE "Update Method" XE "Methods:Update" also calls AnythingToFile XE "AnythingToFile Method"

 XE "Methods:AnythingToFile" , your code only needs to call AnythingToFile XE "AnythingToFile Method"

 XE "Methods:AnythingToFile" if that code needs to know if changes are waiting to be filed.

b.
If you designated any controls as required with the FMRequired property XE "FMRequired Property"

 XE "Properties:FMRequired" , call the TFMFiler XE "TFMFiler Component"

 XE "ComponentTFMFiler" 's DataProblemCheck method XE "DataProblemCheck Method"

 XE "Methods:DataProblemCheck" to check that all required controls have values.

c.
If no problems are found, call the TFMFiler XE "TFMFiler Component"

 XE "ComponentTFMFiler" 's Update method XE "Update Method" XE "Methods:Update" to file the accumulated changes.
d.
If Update fails, call the TFMFiler XE "TFMFiler Component"

 XE "ComponentTFMFiler" 's DisplayErrors method XE "DisplayErrors Method"

 XE "Methods:DisplayErrors" to display error information to the end-user.

For example:

if FMFiler1.AnythingToFile then
 if FMFiler1.DataProblemCheck then
 FMFiler1.ProcessDataProblemList
 else
 if FMFiler1.Update then
 ShowMessage('Changes filed!')
 else
 FMFiler1.DisplayErrors
else
 ShowMessage('No changes to file!');
Figure 4‑3: TFMFiler—Sample code calling DisplayErrors method
Editing Records from Several Files Simultaneously

 XE "Editing Records from Several Files Simultaneously"
Previous chapters describe how to edit a set of fields from a single VA FileMan file. Often, however, you may need to edit sets of fields from several related records in different VA FileMan files simultaneously. To do this:

	Data Controls XE "Data Controls"
	Set each data control XE "Data Controls" 's FMFile XE "FMFile Property" XE "Properties:FMFile" and FMField XE "FMField Property" XE "Properties:FMField" property to reflect the file and field to edit.

	TFMGets XE "TFMGets Component"

 XE "Components:TFMGets"
	Use one TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component for each file you need to retrieve records for. Set the FMGets property XE "FMGets Property" XE "Properties:FMGets" of each data control XE "Data Controls" to the TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component you're using to retrieve records for that file.

	TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator"
	Use one TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" component for all data controls XE "Data Controls" , regardless of file and field being edited.

	TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler"
	If the set of fields from several files is to be filed simultaneously, and there are no dependencies between records, use a single TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" to file all fields for one or more files. Otherwise, use a separate TFMFiler for each file you need to save records to. Set the FMFiler XE "FMFiler Property" XE "Properties:FMFiler" of each data control XE "Data Controls" to the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component you're using to save records for that file.

Other "How To" Tasks

 XE "Other \"How To\" Tasks"

 XE "How to:Other Tasks"
Some other tasks within the scope of editing VA FileMan data in Delphi applications are not addressed in this Getting Started Guide. For help on these and other issues, please refer to the online FMDC.HLP XE "FMDC.HLP File"

 XE "Files:FMDC.HLP" help file:

· Selecting records with TFMListBox XE "TFMListBox Component"

 XE "Components:TFMListBox" , TFMComboBox XE "TFMComboBox Component"

 XE "Components:TFMComboBox" , TFMComboBoxLookUp XE "TFMComboBoxLookUp Component"

 XE "Components:TFMComboBoxLookUp" , or TFMFindOne XE "TFMFindOne Component"

 XE "Components:TFMFindOne" .
· Retrieving records with TFMFinder XE "TFMFinder Component"

 XE "Components:TFMFinder" .
· Retrieving and filing data that is in multiples.
· Providing manual OnExit processing XE "OnExit Processing" for VA FileMan data controls XE "Data Controls" .
· Providing context-sensitive DD field help for data controls XE "Data Controls" .
· Adding new records using VA FileMan controls XE "Data Controls" or TFMLookUp XE "TFMLookUp Component"

 XE "Components:TFMLookUp" .
· Deleting Records.
5. Using Data Access Components Directly

 XE "Using:Data Access Components Directly"
Previous chapters in this guide demonstrate using the VA FileMan data access components in conjunction with the VA FileMan data controls XE "Data Controls" .

You can also use the VA FileMan data access components directly to retrieve, validate and file VA FileMan data, without involving any VA FileMan data controls XE "Data Controls" .
TFMGets: Retrieving a Record

 XE "TFMGets Component:Retrieving a Record"

 XE "Retrieving a Record:TFMGets Component"
You can call the TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" .GetData method XE "GetData Method"

 XE "Methods:GetData" to retrieve one or more field values from a specified record. The field values are returned in the TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" .Results property XE "Results Property"

 XE "Properties:Results" as follows:

[image: image59.png]
Figure 5‑1: TFMGets sample returned data
Each field is retrieved into a TFMFieldObj object XE "TFMFieldObj Object"

 XE "Objects:TFMFieldObj" , whose structure is:

	Object
	Description

	FldObj.IENS
	string (IENS of record).

	FldObj.FMField
	string (field number)

	FldObj.FMDBExternal
	string (external field value if requested)

	FldObj.FMDBInternal
	string (internal field value if requested)

	FldObj.FMWordProc
	boolean (if True, field is a word-processing field)

	FldObj.FMWPTextLine
	TStrings (Word-processing field lines)

Table 5‑1: TFMFieldObj—Structure description
To retrieve a record without populating VA FileMan data controls XE "Data Controls" :
1.
 XE "Retrieve a Record Without Populating VA FileMan Data Controls"

 XE "How to:Retrieve a Record Without Populating VA FileMan Data Controls" Add a TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component to your form.
2.
Set its RPCBroker property XE "RPCBroker Property"

 XE "Properties:RPCBroker" to your form's TRPCBroker component XE "TRPCBroker Component"

 XE "Components:TRPCBroker Component" .

3.
Set its FileNumber property XE "FileNumber Property" XE "Properties:FileNumber" to the file containing records to retrieve.
4.
Set its FieldNumbers property XE "FieldNumbers Property" XE "Properties:FieldNumbers" to contain all fields to retrieve. You can set the property directly or use the AddField method XE "AddField Method"

 XE "Methods:AddField" .

5.
Set its IENS property XE "IENS Property" XE "Properties:IENS" to the IENS of the record to retrieve.

6.
Call the GetData method XE "GetData Method"

 XE "Methods:GetData" to retrieve the record into the Results property XE "Results Property"

 XE "Properties:Results" .

7.
Access each field's retrieved TFMFieldObj object XE "TFMFieldObj Object"

 XE "Objects:TFMFieldObj" with the GetField method XE "GetField Method"

 XE "Methods:GetField" . For example:
MyFldObj:=FMGets1.GetField('.01');
TFMLister: Retrieving a List of Records

 XE "TFMLister Component:Retrieving a List of Records"

 XE "Retrieving a List of Records:TFMLister Component"
You can call the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" .GetList method XE "GetList Method"

 XE "Methods:GetList" directly to retrieve a set of records. The set of records is returned in the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's Results property XE "Results Property"

 XE "Properties:Results" , which is a TStrings object. The format of returned data is as follows:

[image: image60.png]
Figure 5‑2: TFMLister—Sample returned data

The structure of each returned TFMRecordObj XE "TFMRecordObj Object"

 XE "Objects:TFMRecordObj" is:

	Object
	Description

	RecObj.IEN
	IEN of the record.

	RecObj.FMFldValues
	TFMFieldObj objects for fields requested in FieldNumbers.

	RecObj.FMIXExternalValues
	external form of index value(s) (TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" only) if requested.

	RecObj.FMIXInternalValues
	internal form of index value(s) (TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" only) if requested.

	RecObj.FMWIDValues
	Write Identifier of a file and the Identifier parameter result.

	RecObj.Objects
	Place to associate your own object.

Table 5‑2: TFMRecordObj—Structure description
 XE "Retrieve a List of Records with TFMLister"

 XE "How to:Retrieve a List of Records with TFMLister"
To retrieve a list of records with TFMLister:
1.
Add a TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" component to your form.

2.
Set its RPCBroker property XE "RPCBroker Property" XE "Properties:RPCBroker" to the TRPCBroker component XE "TRPCBroker Component"

 XE "Components:TRPCBroker" your form is using.

3.
Set the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's FileNumber property XE "FileNumber Property" XE "Properties:FileNumber" to the file or subfile number to retrieve records from. If retrieving from a subfile, use the IENS property XE "IENS Property" XE "Properties:IENS" to indicate the full path to the subfile.

4.
Set the FieldNumbers property XE "FieldNumbers Property" XE "Properties:FieldNumbers" to the fields to retrieve with each record.

5.
To use any of the optional parameters for the LIST^DIC call that affect how records are retrieved, set the corresponding property in the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" component (ListerFlags, FMIndex, Identifier, PartList, and Screen).

6.
Set any of the options controlling the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" component with the ListerOptions property XE "ListerOptions Property"

 XE "Properties:ListerOptions" .

7.
You can limit the number of records returned in any one call with the Number property XE "Number Property" XE "Properties:Number" . If you need to retrieve more records, you'll need to use the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" 's GetMore method XE "GetMore Method"

 XE "Methods:GetMore" .

8.
Invoke the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" component's GetList method XE "GetList Method" XE "Methods:GetList" to retrieve records. The list of records returned in the Results property XE "Results Property" XE "Properties:Results" of the TFMLister XE "TFMLister Component"

 XE "Components:TFMLister" . If you pass a TStrings object as a parameter to the GetList method XE "GetList Method" XE "Methods:GetList" , that list is also populated.
9.
You can access the TFMRecordObj object and TFMFieldObj objects returned for a particular record (based on IEN) with the GetRecord and GetField functions as follows:
MyRecordObj:=TFMLister1.GetRecord(IEN);
MyFieldObj:=MyRecordObj.GetField('.01');
MyFieldExternal:=MyFieldObj.FMDBExternal;

TFMValidator: Validating a Standalone Value

 XE "TFMValidator Component:Validating a Standalone Value"

 XE "Validating a Standalone Value:TFMValidator Component"
You can use the TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" directly to validate any given value in the context of a given file, field number and IENS.

 XE "Validate a Standalone Value"

 XE "How to:Validate a Standalone Value"
To validate a standalone value:
1.
Add a TFMValidator XE "TFMValidator Component" XE "Components:TFMValidator" component to your form.
2.
Set its RPCBroker property XE "RPCBroker Property"

 XE "Properties:RPCBroker" to the TRPCBroker component XE "TRPCBroker Component"

 XE "Components:TRPCBroker" your form is using.

3.
Set the TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" component's FieldNumber, FileNumber, IENS XE "IENS Property"

 XE "Properties:IENS" , and Value properties XE "Value Property"

 XE "Properties:Value" directly to reflect the value to validate, and the context in which to validate it. Value XE "Value Property"

 XE "Properties:Value" should be in the form as would be input by a user (not internal form!). Alternatively you can call the TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" 's Setup method XE "Setup Method"

 XE "Methods:Setup" to set these properties.

4.
Call the Validate method XE "Validate Method"

 XE "Methods:Validate" of the TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" . Results of the validation are returned in TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" 's Results property XE "Results Property" XE "Properties:Results" , in the format:

Results[0]:
Internal VA FileMan form of value if input Value was valid, otherwise "^".
Results[1]:
External VA FileMan form of value if input Value is valid.

TFMFiler: Filing Standalone Values

 XE "TFMFiler Component:Filing Standalone Values"

 XE "Filing Standalone Values:TFMFiler Component"
You can use the TFMFiler XE "TFMFiler Component" XE "Components:TFMFiler" directly to file any given value to a specified VA FileMan file, field and record.

 XE "File Standalone Values"

 XE "How to:File Standalone Values"
To file standalone values:
1.
If you want to pre-validate the value to file, follow the steps in the "Validating a Standalone Value" section above.
2.
Use the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" 's AddFDA method XE "AddFDA Method"

 XE "Methods:AddFDA" to request filing for a given value. You pass as parameters to this method the values that would comprise a VA FileMan Database Server (DBS) XE "Database Server (DBS) API"

 XE "APIs:Database Server (DBS)" FDA: FileNumber, IENS, FieldNumber and Value (internal). For example:

FMFiler1.AddFDA('49','+1,','.01',NewName);

Figure 5‑3: TFMFiler—AddFDA method
Call the Update method XE "Update Method" XE "Methods:Update" of the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" to file the value. This method returns True if filing was successful, or False if one or more errors were encountered on the server. You can use the return value as follows in code to branch to an error handler:

if FMFiler1.Update then
 ShowMessage('Changes filed!')

else

 FMFiler1.DisplayErrors;

Figure 5‑4: TFMFiler—Sample code branching to error handler
TFMFiler: Adding a Record

 XE "TFMFiler Component:Adding a Record"

 XE "Adding a Record:TFMFiler Component"
There are several ways you can add a new record to a file. This section describes how to add a record using the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" .AddFDA method XE "AddFDA Method"

 XE "Methods:AddFDA" .
	[image: image61.png]
	For information on other ways to add records, please refer to the online FMDC.HLP XE "FMDC.HLP File"

 XE "Files:FMDC.HLP" help file.

 XE "Add a New Record to a File Using TFMFiler.AddFDA"

 XE "How to:Add a New Record to a File Using TFMFiler.AddFDA"
To add a new record to a file using TFMFiler.AddFDA:
1.
Get values from the user for the record's .01 field, and for any required identifier fields.
2.
Pre-validate each field value. To do this, set the FieldNumber XE "FieldNumber Property"

 XE "Properties:FieldNumber" , FileNumber XE "FileNumber Property"

 XE "Properties:FileNumber" , and Value XE "Value Property"

 XE "Properties:Value" properties of a TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" component for each field directly (or use its Setup method XE "Setup Method"

 XE "Methods:Setup"). For validation, Value XE "Value Property"

 XE "Properties:Value" should be in the form it would be input as a user (not internal form!) Set the IENS property XE "IENS Property"

 XE "Properties:IENS" to the IENS including placeholder (e.g.,'+1,') for the new record. Call the TFMValidator XE "TFMValidator Component"

 XE "Components:TFMValidator" 's Validate method XE "Validate Method"

 XE "Methods:Validate" . This gives you the external and internal VA FileMan forms of each field value. Ask for the value again if it fails validation.

3.
Use a TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component's AddFDA method XE "AddFDA Method"

 XE "Methods:AddFDA" to add VA FileMan Data Arrays XE "Data Arrays" (FDAs) (File, record number, field and value) for these fields to the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component's list of fields to be updated. Value XE "Value Property"

 XE "Properties:Value" should be in internal VA FileMan format (obtained from the validation step above). For the record number for each field, use an identical placeholder (e.g. '+1,').

4.
When you're ready to file the new record, call the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component's Update method XE "Update Method" XE "Methods:Update" . This adds the new record.
5.
To find the actual IEN assigned to the new record, call the TFMFiler XE "TFMFiler Component"

 XE "Components:TFMFiler" component's FindIEN method XE "FindIEN Method"

 XE "Methods:FindIEN" using the new record's placeholder. If the return value is null, the record was not created (and an error would have been returned by the Update call).

The following example adds a new record and displays the IEN of the added record:

procedure TForm1.AddRecord(Sender: TObject);

 var NewName, IEN: String;

begin

 NewName:= InputBox('Add a New Service', 'Service Name: ', '');

 FMValidator1.Setup('49','+1,','.01',NewName);

 If not FMValidator1.Validate then
 FMValidator1.DisplayErrors

 else begin {file}
 FMFiler1.AddFDA('49','+1,','.01',NewName);

 if not FMFiler1.Update then FMFiler1.DisplayErrors;

 //get IEN of new record}

 IEN:=FMFiler1.FindIEN('+1,');

 if IEN <> '' then FMGets1.IENS:=IEN+',';

 end; {file}
end;

Figure 5‑5: Adding a new record

Once you have the IEN for the new record you've created, you could use a TFMGets XE "TFMGets Component"

 XE "Components:TFMGets" component to populate a set of VA FileMan data controls XE "Data Controls" with the new record's values.
6. FMDC.HLP Help File

 XE "FMDC.HLP File"

 XE "Files:FMDC.HLP"
For complete information on the FileMan Delphi Components, including full listings of each component's methods and properties, please refer to the FMDC.HLP XE "FMDC.HLP File"

 XE "Files:FMDC.HLP" help file provided with the FileMan Delphi Components.

[image: image62.png]
Figure 6‑1: FMDC online help file directory tree
FMDC.HLP Help File as Context-Sensitive Help

 XE "FMDC.HLP File:Context Sensitive Help"

 XE "Files:FMDC.HLP:Context Sensitive Help"
You can integrate the FMDC.HLP XE "FMDC.HLP File"

 XE "Files:FMDC.HLP" help file with Delphi's help. This means that you can select a FileMan Delphi Component on a Delphi form, or a FileMan Delphi Component property in Delphi's Object Browser, press F1, and automatically access the corresponding help file topic from FMDC.HLP XE "FMDC.HLP File"

 XE "Files:FMDC.HLP" .

	[image: image63.png]
	For more information integrating the FMDC help file with Delphi, please refer to the FileMan Delphi Components Installation Guide.

Accessing the FMDC.HLP Help File Directly
 XE "Accessing the FMDC.HLP Help File Directly"
You can invoke the FMDC.HLP XE "FMDC.HLP File" XE "Files:FMDC.HLP" file directly by making a Windows shortcut or desktop icon for it. Your shortcut or icon should load the copy of the FMDC.HLP XE "FMDC.HLP File"

 XE "Files:FMDC.HLP" file that you place in your DELPHI\HELP directory during installation.

Index

$
$$FIND1^DIC, 1-2

A
Accessing the FMDC.HLP Help File Directly, 6-2

Add a New Record to a File Using TFMFiler.AddFDA, 5-5

AddChgdControl Method, 4-3, 4-4

AddFDA Method, 4-4, 5-4, 5-5

AddField Method, 5-2

Adding a Record

TFMFiler Component, 5-5

Adobe
Home Page Web Address, xii

Adobe Acrobat Quick Guide
Home Page Web Address, xii

AnythingToFile Method, 4-4

APIs

$$FIND1^DIC, 1-2

Database Server (DBS), xi, 1-1, 1-2, 2-4, 4-2, 5-4

FIND^DIC, 1-2

GETS^DIQ, 1-1

HELP^DIE, 1-2

UPDATE^DIE, 1-1

VAL^DIE, 1-1

Assumptions About the Reader, xi

C
Caption Property, 3-3, 3-4

Compatible Controls and Field Types, 3-1

Component componentTRPCBroker, 3-5

Components

TFMCheckBox, 1-1, 1-3, 2-2, 3-1, 3-3

TFMComboBox, 1-3, 2-2, 3-1, 3-5, 4-2, 4-5

TFMComboBoxLookUp, 1-2, 1-3, 2-2, 3-1, 3-5, 3-6, 3-5, 4-5

TFMEdit, 1-1, 1-3, 2-2, 3-1, 3-2, 3-7, 4-3

TFMFiler, 4-5, 5-4, 5-5

TFMFinder, 1-2, 4-5

TFMFindOne, 1-2, 4-5

TFMGets, 1-1, 2-1, 2-2, 3-2, 3-5, 4-1, 4-2, 4-5, 5-1, 5-6

TFMHelp, 1-2

TFMLabel, 1-3, 2-2, 3-1, 3-7

TFMListBox, 1-3, 2-2, 3-1, 3-5, 4-2, 4-5

TFMLister, 1-2, 2-2, 3-5, 3-6, 4-1, 5-2, 5-3

TFMLookUp, 1-1, 1-2, 2-2, 2-3, 3-1, 3-7, 4-1, 4-5

TFMMemo, 1-1, 1-3, 2-2, 3-1, 3-2, 3-7, 4-3

TFMRadioButton, 1-3, 2-2, 3-1, 3-4

TFMRadioGroup, 1-3, 2-2, 3-1, 3-3

TFMValidator, 1-1, 2-1, 3-2, 4-3, 4-5, 5-3, 5-5

TGroupBox, 2-2, 3-4

TPanel, 2-2, 3-4

TRPCBroker, 2-1, 3-6, 4-1, 5-3

TRPCBroker Component, 5-1

ComponentTFMFiler, 4-4

Contents, v

coValOnExit Value, 2-3, 4-3

CreateContext Method, 2-4

Custom Dialogues, 1-1, 1-2

D
Data Access Components, 1-1

Data Arrays, 5-5

Data Control Property Settings for All Field Types, 3-2

Data Controls, 1-1, 1-2, 1-3, 2-2, 2-3, 3-1, 3-7, 4-2, 4-3, 4-4, 4-5, 5-1, 5-6

Setting Properties, 3-2

Database Server (DBS) API, xi, 1-1, 1-2, 2-4, 4-2, 5-4

DataProblemCheck Method, 4-4

DisplayErrors Method, 4-2, 4-4

Documentation

Revisions, iii

E
Edit Pointer Fields

TFMLookUp, 3-7

Edit Records in a Given VA FileMan File with the FMDC, 2-1

Editing Records from Several Files Simultaneously, 4-5

Execute Method, 2-2, 2-3, 3-7, 4-1

F
Field Types and Compatible Controls, 3-1

FieldNumber Property, 5-5

FieldNumbers Property, 3-5, 3-6, 5-2, 5-3

Figures and Tables, vii

File Standalone Values, 5-4

FileNumber Property, 2-1, 3-5, 3-6, 4-1, 5-1, 5-3, 5-5

Files

FMDC.HLP, 2-4, 4-1, 4-5, 5-5, 6-1, 6-2

Context Sensitive Help, 6-1

Filing Standalone Values

TFMFiler Component, 5-4

FIND^DIC, 1-2

FindIEN Method, 5-5

FMCtrlOptions Property, 2-3, 4-3

FMDC
Custom Dialogues, 1-2

Data Access Components, 1-1

Data Control Components, 1-3

Home Page Web Address, xi

Introduction, 1-1

Object Hierarchy, 1-4

FMDC.HLP File, 2-4, 4-1, 4-5, 5-5, 6-1, 6-2

Context Sensitive Help, 6-1

FMField Property, 3-2, 3-7, 4-2, 4-5

FMFile Property, 3-2, 3-7, 4-2, 4-5

FMFiler Property, 3-2, 4-5

FMGets Property, 3-2, 4-5

FMInternalCodes Property, 3-3

FMLister Property, 3-5, 3-6, 4-1

FMRequired Property, 4-3, 4-4

FMValidator Property, 3-2

FMValueChecked Property, 3-3, 3-4

FMValueUnchecked Property, 3-3

G
GetAndFill Method, 2-2, 3-5, 4-2

GetData Method, 5-1, 5-2

GetField Method, 5-2

GetList Method, 3-5, 4-2, 5-2, 5-3

GetMore Method, 5-3

GETS^DIQ, 1-1

H
Help at Prompts, x

HELP^DIE, 1-2

Home Page

Adobe Acrobat Quick Guide Home Page Web Address, xii

Adobe Home Page Web Address, xii

FMDC Home Page Web Address, xi

HSD&D Home Page Web Address, xi

VA FileMan Programmer Manual Home Page Web Address, xi

VistA Documentation Library (VDL) Home Page Web Address, xii

How to

Add a New Record to a File Using TFMFiler.AddFDA, 5-5

By Task, 4-1

By VA FileMan Field Type, 3-1

Edit Pointer Fields

TFMLookUp, 3-7

Edit Records in a Given VA FileMan File with the FMDC, 2-1

File Standalone Values, 5-4

Obtain Technical Information Online, x

Other Tasks, 4-5

Retrieve a List of Records with TFMLister, 5-2

Retrieve a Record Without Populating VA FileMan Data Controls, 5-1

Save Accumulated Filing Requests, 4-4

Select a Record with a TFMLookUp Component, 4-1

Turn on Automated OnExit Processing, 4-3

Use this Manual, ix

Using

Boolean Set of Code Fields

TFMCheckBox, 3-3

Computed Fields

TFMEdit, 3-7

TFMLabel, 3-7

Free Text, Numeric, MUMPS Fields

TFMEdit, 3-2

Multi-value Set of Code Fields

TFMRadioButton, 3-4

TFMRadioGroup, 3-3

Pointer Fields

TFMComboBox, 3-5

TFMComboBoxLookUp, 3-5

TFMListBox, 3-5

Word-processing Fields

TFMMemo, 3-7

Validate a Standalone Value, 5-3

HSD&D
Home Page Web Address, xi

I
IENS Property, 5-2, 5-3, 5-5

Introduction, 1-1

Items Property, 3-3, 3-5, 3-6, 4-2

L
ListerOptions Property, 5-3

M
Methods

AddChgdControl, 4-3, 4-4

AddFDA, 4-4, 5-4, 5-5

AddField, 5-2

AnythingToFile, 4-4

CreateContext, 2-4

DataProblemCheck, 4-4

DisplayErrors, 4-2, 4-4

Execute, 2-2, 2-3, 3-7, 4-1

FindIEN, 5-5

GetAndFill, 2-2, 3-5, 4-2

GetData, 5-1, 5-2

GetField, 5-2

GetList, 3-5, 4-2, 5-2, 5-3

GetMore, 5-3

Setup, 5-3, 5-5

Update, 2-3, 4-4, 5-4, 5-5

Validate, 5-3, 5-5

N
Number Property, 3-6, 4-1, 5-3

O
Object Hierarchy, 1-4

Objects

TFMFieldObj, 5-1, 5-2

TFMRecordObj, 5-2

Obtaining

Data Dictionary Listings, x

Technical Information Online, How to, x

OnExit Event Handler, 4-3

OnExit Processing, 2-3, 3-2, 3-7, 4-3, 4-4, 4-5

Orientation, ix

Other "How To" Tasks, 4-5

P
Patches

Revisions, iii

Properties

Caption, 3-3, 3-4

FieldNumber, 5-5

FieldNumbers, 3-5, 3-6, 5-2, 5-3

FileNumber, 2-1, 3-5, 3-6, 4-1, 5-1, 5-3, 5-5

FMCtrlOptions, 2-3, 4-3

FMField, 3-2, 3-7, 4-2, 4-5

FMFile, 3-2, 3-7, 4-2, 4-5

FMFiler, 3-2, 4-5

FMGets, 3-2, 4-5

FMInternalCodes, 3-3

FMLister, 3-5, 3-6, 4-1

FMRequired, 4-3, 4-4

FMValidator, 3-2

FMValueChecked, 3-3, 3-4

FMValueUnchecked, 3-3

IENS, 5-2, 5-3, 5-5

Items, 3-3, 3-5, 3-6, 4-2

ListerOptions, 5-3

Number, 3-6, 4-1, 5-3

ReadOnly, 3-7

Results, 5-1, 5-2, 5-3

RPCBroker, 2-1, 3-5, 3-6, 4-1, 5-1, 5-3

Value, 5-3, 5-5

Providing Automated OnExit Processing for Controls, 4-3

Q
Quick Start Guide, 2-1

R
Reader, Assumptions About the, xi

ReadOnly Property, 3-7

Reference Materials, xi

Results Property, 5-1, 5-2, 5-3

Retrieve a List of Records with TFMLister, 5-2

Retrieve a Record Without Populating VA FileMan Data Controls, 5-1

Retrieving a List of Records

TFMLister Component, 5-2

Retrieving a Record, 4-2

TFMGets Component, 5-1

Revision History, iii

Documentation, iii

Patches, iii

RPCBroker Property, 2-1, 3-5, 3-6, 4-1, 5-1, 5-3

S
Save Accumulated Filing Requests, 4-4

Saving a Record, 4-4

Select a Record with a TFMLookUp Component, 4-1

Selecting a Record, 4-1

Setup Method, 5-3, 5-5

T
Table of Contents, v

Tables and Figures, vii

TFMCheckBox Component, 1-1, 1-3, 2-2, 3-1, 3-3

TFMComboBox Component, 1-3, 2-2, 3-1, 3-5, 4-2, 4-5

TFMComboBoxLookUp Component, 1-2, 1-3, 2-2, 3-1, 3-5, 3-6, 3-5, 4-5

TFMEdit Component, 1-1, 1-3, 2-2, 3-1, 3-2, 3-7, 4-3

TFMFieldObj Object, 5-1, 5-2

TFMFiler Component, 4-4, 4-5, 5-4, 5-5

Adding a Record, 5-5

Filing Standalone Values, 5-4

TFMFinder Component, 1-2, 4-5

TFMFindOne Component, 1-2, 4-5

TFMGets Component, 1-1, 2-1, 2-2, 3-2, 3-5, 4-1, 4-2, 4-5, 5-1, 5-6

Retrieving a Record, 5-1

TFMHelp Component, 1-2

TFMLabel Component, 1-3, 2-2, 3-1, 3-7

TFMListBox Component, 1-3, 2-2, 3-1, 3-5, 4-2, 4-5

TFMLister Component, 1-2, 2-2, 3-5, 3-6, 4-1, 5-2, 5-3

Retrieving a List of Records, 5-2

TFMLookUp Component, 1-1, 1-2, 2-2, 2-3, 3-1, 3-7, 4-1, 4-5

TFMMemo Component, 1-1, 1-3, 2-2, 3-1, 3-2, 3-7, 4-3

TFMRadioButton Component, 1-3, 2-2, 3-1, 3-4

TFMRadioGroup Component, 1-3, 2-2, 3-1, 3-3

TFMRecordObj Object, 5-2

TFMValidator Component, 1-1, 2-1, 3-2, 4-3, 4-5, 5-3, 5-5

Validating a Standalone Value, 5-3

TGroupBox Component, 2-2, 3-4

TPanel Component, 2-2, 3-4

TRPCBroker Component, 2-1, 3-5, 3-6, 4-1, 5-1, 5-3

Turn on Automated OnExit Processing, 4-3

U
Update Method, 2-3, 4-4, 5-4, 5-5

UPDATE^DIE, 1-1

Using

Boolean Set of Code Fields

TFMCheckBox, 3-3

Computed Fields

TFMEdit, 3-7

TFMLabel, 3-7

Data Access Components Directly, 5-1

Free Text, Numeric, MUMPS Fields

TFMEdit, 3-2

Multi-value Set of Code Fields

TFMRadioButton, 3-4

TFMRadioGroup, 3-3

Pointer Fields

TFMComboBox, 3-5

TFMComboBoxLookUp, 3-5

TFMListBox, 3-5

Word-processing Fields

TFMMemo, 3-7

V
VA FileMan Field Types and Compatible Controls, 3-1

VA FileMan Programmer Manual
Home Page Web Address, xi

VAL^DIE, 1-1

Validate a Standalone Value, 5-3

Validate Method, 5-3, 5-5

Validating a Standalone Value

TFMValidator Component, 5-3

Value Property, 5-3, 5-5

Values

coValOnExit, 2-3, 4-3

VistA Documentation Library (VDL)
Home Page Web Address, xii

W
Web Page

Adobe Acrobat Quick Guide Home Page Web Address, xii

Adobe Home Page Web Address, xii

FMDC Home Page Web Address, xi

HSD&D Home Page Web Address, xi

VA FileMan Programmer Manual Home Page Web Address, xi

VistA Documentation Library (VDL) Home Page Web Address, xii

When Control Values are changed by Code, 4-3

1/11/2005
FileMan Delphi Components V. 1.0 Getting Started Guide
iv

_944983796.doc
[image: image1.png]

