
Table of Contents

[image: image1.png]
VistA Health Level Seven (HL7)
 Message Parsing Utilities

Supplement to Patch Description

Patch HL*1.6*118

July 2004

Department of Veterans Affairs (VA)

VHA OI Health Systems Design & Development (HSD&D)

Messaging & Interface Services (M&IS)

Revision History

 XE "Revision History:Documentation"

 XE "Documentation History"
The following table displays the revision history for this document. Revisions to the documentation are based on patches and new versions released to the field.

	Date
	Revision
	Description
	Author

	07/2004
	V.1.0
	Initial Draft. HL7 Message Parsing Utilities.
Supplement to HL7 Site Manager & Developer Manual Version 1.6*56
	Jim Moore

	01/2004
	
	$$GET moved to HLOPRS

PROCESSING MODE parsed from header
	Jim Moore

	2/12/2004
	
	Changed HL2PRS* routines to HLOPRS* - due to decision to move the namespace
	Jim Moore

Patch Revisions

xe "Revision History:Patches"

xe "Patch Revisions"
For a complete list of patches related to this software, please refer to the Patch Module on FORUM.

Table of Contents

iRevision History

iiiTable of Contents

11.
Overview of the HL7 Parsing Utilities

32.
Function Specifications

32.1.
$$STARTMSG^HLPRS(.HLMSG,IEN,.HEADER)

32.1.1.
Message Header, MSH Segment

42.1.2.
Message Header, BHS Segment

52.2.
$$NEXTSEG^HLPRS(.HLMSG,.SEGMENT)

52.3.
$$GET^HLOPRS(.SEGMENT,SEQ,COMP,SUBCOMP,REP)

52.4.
$$NEXTMSG^HLPRS(.HLMSG,.MSH)

62.4.1.
Message Header, MSH Segment

73.
Examples of Message Parsing

73.1.
Parsing a Single Messaging

83.2.
Parsing a Batch Message

1. Overview of the HL7 Parsing Utilities

This supplement is meant to assist application developers who are using the HL7 package. A new set of utilities for parsing HL7 messages was introduced with patch HL*1.6*118. Prior to this patch, each application was responsible for parsing received messages with little assistance from the HL7 package. The new parsing utilities relieve the individual applications from most of the burden of parsing messages.

The HL7 parsing utilities provide applications with the ability to easily parse their messages. There are two additional benefits:

1. For values within the message where instances of the HL7 encoding characters were replaced with an escape sequence, the parsed values are automatically restored to their original value.

2. MSH and BHS segments when parsed are represented as arrays with each individual value is assigned a meaningful subscript, for example:

a. MSH(“MESSAGE TYPE”)=“ADT”

b. MSH(“EVENT”)=“A01”

The utilities consist of these four functions:

1. $$STARTMSG: Starts the parsing process, returning the parsed header values.

2. $$NEXTSEG: Advances the parsing process to the next segment within the message.

3. $$GET: Obtains a particular value from the current segment.

4. $$NEXTMSG: Advances the parsing process to the next message within the batch, returning the parsed header values (for batch messages only).

2. Function Specifications

2.1. $$STARTMSG^HLPRS(.HLMSG,IEN,.HEADER)

This function begins the parsing of the message, parsing the header and returning the individual values in the array HEADER().

	Input / Output
	Description

	Input
	Internal Entry Number (IEN) of the message in the HL7 MESSAGE ADMINISTRATION file (#773)

	Output
	Function returns 1 on success, 0 on failure. Failure would indicate that the message was not found.

HLMSG() (pass by reference, required): This array is used by the HL7 package to track the progress of parsing the message. The application MUST NOT touch it!

HEADER (pass by reference, optional): This array contains the results of parsing the message header. The format is provided in section 2.1.1 below:

2.1.1. Message Header, MSH Segment

	Sequence
	Header
	Description/Comment

	
	HEADER(“SEGMENT TYPE”)= “MSH”
	

	SEQ1
	HEADER(“FIELD SEPARATOR”)
	The 1st character field separator.

	SEQ2
	HEADER(“COMPONENT SEPARATOR”)

HEADER(“SUBCOMPONENT SEPARATOR”)

HEADER(“REPETITION SEPARATOR”)

HEADER(“ESCAPE CHARACTER”)
	The four encoding characters.

	SEQ3
	HEADER(“SENDING APPLICATION”)
	

	SEQ4
	HEADER(“SENDING FACILITY”,1)

HEADER(“SENDING FACILITY”,2)

HEADER(“SENDING FACILITY”,3)
	First Component
Second Component
Third Component

	SEQ5
	HEADER(“RECEIVING APPLICATION”)
	

	SEQ6
	HEADER(“RECEIVING FACILITY”,1)

HEADER(“RECEIVING FACILITY”,2)

HEADER(“RECEIVING FACILITY”,3)
	First Component
Second Component
Third Component

	SEQ7
	HEADER(“DT/TM OF MESSAGE”)
	Converted to FileMan format.

	SEQ8
	HEADER(“SECURITY”)
	

	SEQ9
	HEADER (“MESSAGE TYPE”)

HEADER(“EVENT”)

HEADER(“MESSAGE STRUCTURE”)
	First Component
Second Component
Third Component

	SEQ10
	HEADER(“MESSAGE CONTROL ID”)
	Message control ID.

	SEQ11
	HEADER(“PROCESSING ID”)

HEADER(“PROCESSING MODE”)
	First Component

Second Component

	SEQ12
	HEADER(“VERSION”)
	

	SEQ14
	HEADER(“CONTINUATION POINTER”)
	MESSAGE CONTROL ID of the message that this one continues.

	SEQ15
	HEADER(“ACCEPT ACK TYPE”)
	ACCEPT ACKNOWLEDGMENT TYPE, <AL or NE>

	SEQ16
	HEADER(“APP ACK TYPE”)
	APPLICATION ACKNOWLEDGMENT TYPE, <AL or NE>

	SEQ17
	HEADER(“COUNTRY”)
	COUNTRY CODE

2.1.2. Message Header, BHS Segment

	Sequence
	Header
	Description/Comment

	
	HEADER(“SEGMENT TYPE”)= “BHS”
	

	SEQ1
	HEADER(“FIELD SEPARATOR”)
	1st character field separator

	SEQ2
	HEADER(“COMPONENT SEPARATOR”)

HEADER(“SUBCOMPONENT SEPARATOR”)

HEADER(“REPETITION SEPARATOR”)

HEADER(“ESCAPE CHARACTER”)
	The four encoding characters,

	SEQ3
	HEADER(“SENDING APPLICATION”)
	

	SEQ4
(See Note)
	HEADER(“SENDING FACILITY”,1)

HEADER(“SENDING FACILITY”,2)

HEADER(“SENDING FACILITY”,3)
	First Component
Second Component
Third Component

	SEQ5
	HEADER(“RECEIVING APPLICATION”)
	

	SEQ6
(See Note)
	HEADER(“RECEIVING FACILITY”,1)

HEADER(“RECEIVING FACILITY”,2)

HEADER(“RECEIVING FACILITY”,3)
	First Component
Second Component
Third Component

	SEQ7
	HEADER(“DT/TM OF MESSAGE”)
	Converted to FileMan Format.

	SEQ8
	HEADER(“SECURITY”)
	

	SEQ9
	HEADER(“BATCH NAME/ID/TYPE”)

The below fields are not defined by the standard within the BHS segment, but they are needed and are encoded in SEQ 9 by the VistA HL7 package:

1. HEADER(“PROCESSING ID”)

2. HEADER(“ACCEPT ACK TYPE”)

3. HEADER(“APP ACK TYPE”)

	SEQ10
	HEADER(“BATCH COMMENT”)

The VistA HL7 package, Version 1.6, currently requires that an application designate a batch message as being of a particular message type, event type, and version, and this information is encoded as components of SEQ10

1. HEADER(“MESSAGE TYPE”)

2. HEADER(“EVENT”)

3. HEADER(“VERSION”)

	SEQ11
	HEADER(“BATCH CONTROL ID”)
	

	SEQ12
	HEADER(“REFERENCE BATCH CONTROL ID”)
	

	Note: The HL7 Version 2.4 Standards Manual does not document this, but components 2 & 3 were added in an errata to be compatible with the MSH segment. It is documented in version 2.5 of the standard.

2.2. $$NEXTSEG^HLPRS(.HLMSG,.SEGMENT)

This function advances parsing to the next segment.

	Input / Output
	Description

	Input
	HLMSG() (pass by reference, required): This array is used by the HL7 package to track the current position in the message. The application MUST NOT touch it!

	Output
	Function returns 1 on success, 0 if there are no more segments in this message. For batch messages, a return value of 0 does not preclude the possibility that there are additional individual messages within the batch.

HLMSG (pass by reference, required): This array is used by the HL7 package to track the current position in the message. The application MUST NOT touch it!

SEGMENT (pass by reference, required): The segment is returned in this array. SEGMENT(“SEGMENT TYPE”) is returned with the 3 letter HL7 segment type that always begins a segment. The structure is not further described here because it should not be accessed directly by the application developer. Use $$GET to obtain individual segment values. As a shortcut, $$GET^HLOPRS(0) may be used to return the segment type.

2.3. $$GET^HLOPRS(.SEGMENT,SEQ,COMP,SUBCOMP,REP)

This function gets a value from a segment that was obtained by calling $$NEXTSEG. The SEQ, COMP, SUBCOMP, and REP parameters are optional. If not specified, they default to the value1. For example, $$GET^HLPRS(.SEGMENT,1) will return the value of the first field, first component, first subcomponent, in the first occurrence. Since many fields consist of a single simple value, this is a useful feature. $$GET^HLOPRS(0) may be used to return the segment type.

	Input / Output
	Description

	Input
	· SEGMENT (required, pass by reference): The segment was placed in this array by $$NEXTSEG.

· SEQ: The sequence number of the field, defaults to 1

· COMP: The number of the component, defaults to 1

· SUBCOMP: The number of the subcomponent, defaults to 1

· REP: The occurrence number. For a non-repeating field, the occurrence number need not be provided, because it is always 1.

	Output
	Function returns the value on success, “” on failure or if the specified part is not valued.

2.4. $$NEXTMSG^HLPRS(.HLMSG,.MSH)

Advances to the next message within the batch, with the MSH segment returned.

	Input / Output
	Description

	Input
	HLMSG (pass by reference, required) This array is used by the HL7 package to track the current position in the message. The application MUST NOT touch it!

	Output
	Function returns 1 on success, 0 if there are no more messages

MSH (pass by reference, required): Returns the message header in the format provided in Section 3.4.1 below.

2.4.1. Message Header, MSH Segment

	Sequence
	Header
	Description/Comment

	
	HEADER(“SEGMENT TYPE”)
	“MSH”

	SEQ1
	HEADER(“FIELD SEPARATOR”)
	The 1st character field separator.

	SEQ2
	HEADER(“COMPONENT SEPARATOR”)

HEADER(“SUBCOMPONENT SEPARATOR”)

HEADER(“REPETITION SEPARATOR”)

HEADER(“ESCAPE CHARACTER”)
	The four encoding characters.

	SEQ3
	HEADER(“SENDING APPLICATION”)
	

	SEQ4
	HEADER(“SENDING FACILITY”,1)

HEADER(“SENDING FACILITY”,2)

HEADER(“SENDING FACILITY”,3)
	First Component
Second Component
Third Component

	SEQ5
	HEADER(“RECEIVING APPLICATION”)
	

	SEQ6
	HEADER(“RECEIVING FACILITY”,1)

HEADER(“RECEIVING FACILITY”,2)

HEADER(“RECEIVING FACILITY”,3)
	First Component
Second Component
Third Component

	SEQ7
	HEADER(“DT/TM OF MESSAGE”)
	Converted to FileMan format.

	SEQ8
	HEADER(“SECURITY”)
	

	SEQ9
	HEADER (“MESSAGE TYPE”)

HEADER(“EVENT”)

HEADER(“MESSAGE STRUCTURE”)
	First Component
Second Component
Third Component

	SEQ10
	HEADER(“MESSAGE CONTROL ID”)
	Message control ID.

	SEQ11
	HEADER(“PROCESSING ID”)
	

	SEQ12
	HEADER(“VERSION”)
	

	SEQ14
	HEADER(“CONTINUATION POINTER”)
	MESSAGE CONTROL ID of the message that this one continues.

	SEQ15
	HEADER(“ACCEPT ACK TYPE”)
	ACCEPT ACKNOWLEDGMENT TYPE, <AL or NE>

	SEQ16
	HEADER(“APP ACK TYPE”)
	APPLICATION ACKNOWLEDGMENT TYPE, <AL or NE>

	SEQ17
	HEADER(“COUNTRY”)
	COUNTRY CODE

3. Examples of Message Parsing

3.1. Parsing a Single Messaging

N HLMSG,HEADER,SEG

;** start the parsing **

I $$STARTMSG^HLPRS(.HLMSG,66077,.HEADER) W !,"STARTING THE MESSAGE!",! ZW HEADER

;** the output **

STARTING THE MESSAGE!

HEADER("ACCEPT ACK TYPE")=AL

HEADER("APP ACK TYPE")=NE

HEADER("CONTINUATION POINTER")=

HEADER("COUNTRY")=US

HEADER("DT/TM OF MESSAGE")=3040217.133516

HEADER("ENCODING CHARACTERS")=~|\&

HEADER("EVENT")=A31

HEADER("FIELD SEPARATOR")=^

HEADER("MESSAGE CONTROL ID")=55366077

HEADER("MESSAGE TYPE")=ADT

HEADER("PROCESSING ID")=T

HEADER("RECEIVING APPLICATION")=RG CIRN

HEADER("RECEIVING FACILITY",1)=553

HEADER("RECEIVING FACILITY",2)=

HEADER("RECEIVING FACILITY",3)=

HEADER("SECURITY")=

HEADER("SEGMENT TYPE")=MSH

HEADER("SENDING APPLICATION")=RG CIRN

HEADER("SENDING FACILITY",1)=553

HEADER("SENDING FACILITY",2)=

HEADER("SENDING FACILTY",3)=

HEADER("VERSION")=2.3

;** loop through the segments **

F Q:'$$NEXTSEG^HLPRS(.HLMSG,.SEG) D

. .W !,"SEGMENT TYPE=",SEG("SEGMENT TY

PE")

. .I SEG("SEGMENT TYPE")="PID" W !,"PATIENT NAME IS ",$$GET^HLOPRS(.SEG,5,3)_" "_$$GET^HLOPRS(.SEG,5)

;** the output **

SEGMENT TYPE=PID

PATIENT NAME IS TWO CHESNEY

SEGMENT TYPE=NTE

SEGMENT TYPE=EVN

3.2. Parsing a Batch Message

N HLMSG,MSH,HEADER,SEG

I $$STARTMSG^HLPRS(.HLMSG,662,.HEADER) W !,"STARTING THE MESSAGE! MESSAGE

HEADER IS ",HEADER("SEGMENT TYPE")

;** output **

STARTING THE MESSAGE! MESSAGE HEADER IS BHS

;loop through the messages

F Q:'$$NEXTMSG^HLPRS(.HLMSG,.MSH) D

 .W !,"MESSAGE TYPE=",MSH("MESSAGE TYPE"),!," EVENT=",MSH("EVENT")

.;loop through the segments

 .F Q:'$$NEXTSEG^HLPRS(.HLMSG,.SEG) D

 . . W !,"SEGMENT TYPE=",SEG("SEGMENT TYPE")

 . . I SEG("SEGMENT TYPE")="PID" W !,"PATIENT NAME IS ", $$GET^HLOPRS(.SEG,5,3)_" "_$$GET^HLOPRS(.SEG,5)

;**output**

MESSAGE TYPE=ORU

 EVENT=Z07

SEGMENT TYPE=PID

PATIENT NAME IS NITSCHE

SEGMENT TYPE=PD1

SEGMENT TYPE=ZPD

SEGMENT TYPE=ZTA

SEGMENT TYPE=ZIE

SEGMENT TYPE=ZEL

SEGMENT TYPE=ZEL

SEGMENT TYPE=ZEL

SEGMENT TYPE=ZEN

SEGMENT TYPE=ZCD

SEGMENT TYPE=ZRD

SEGMENT TYPE=ZCT

SEGMENT TYPE=ZEM

SEGMENT TYPE=ZEM

SEGMENT TYPE=ZGD

SEGMENT TYPE=ZGD

SEGMENT TYPE=ZIC

SEGMENT TYPE=ZIR

SEGMENT TYPE=ZDP

SEGMENT TYPE=ZIC

SEGMENT TYPE=ZIR

SEGMENT TYPE=ZIO

SEGMENT TYPE=NTE

SEGMENT TYPE=IN1

SEGMENT TYPE=ZMT

SEGMENT TYPE=ZMT

SEGMENT TYPE=ZMT

SEGMENT TYPE=ZBT

SEGMENT TYPE=ZSP

SEGMENT TYPE=RF1

January 2002
Enterprise Single Sign-On Supplement to Patch Description
iii
Patches XU*8.0*198 and XWB*1.1*23

Draft

