
Medical Domain Web Services (MDWS)

Version 2.0
C3-C1 Conversion Project

Developer’s Guide
(MWVS*2)
[image: image1.png]
September 2011
Department of Veterans Affairs

Office of Information and Technology (OI&T)

Office of Enterprise Development (OED)

Revision History

	Date
	Revision
	Description
	Author

	February 2010
	1.0
	Initial version for v 2.0
	J Confer

L Harmon
C Beynon

	May 2010
	1.1
	Added Content
	J Confer

	July 2010
	
	Changed dates
	C Beynon

	September 2010
	
	Changed dates to September
	C Beynon

	October 2010
	
	Changed dates to October
	C Beynon

	January 2011
	1.2
	Updated footers and date on cover page.
	J Rogers

	May 2011
	1.3
	Changed dates to May 2011

Added (MWVS*2) namespace
	CBeynon

	June 2011
	1.4
	Updated the DG with comments from JM/Medora
	CBeynon

	July 2011
	1.5
	Prepped for national release, ESE Checklist
	CBeynon

	September 2011
	1.6
	Changed dates to September 2011 for release
	CBeynon

Table of Contents
1Orientation and Acknowledgements

2Introduction

2History

5Subscribed Applications

6Data Sources and Interfaces

7MDWS Managed Data Sources

7Tools and Utilities

8Developer Workstation Setup

11Configuration Information

11Directories

12MDWS Class Structure

13Build Process

15Deploying the Project to IIS

16UDDI Services

16Web Services

16EmrSvc

18CallService

19NumiService

20TbiService

21UserMgtScv

22EmerseService

22FindpatientSvc

23MhvService

23AthenaService

23UserMgtService

24MDO

25Troubleshooting MDWS

25Uninstalling MDWS

25Normal Procedures

26Sample of an Error Message

26Production Issue History

26Potential Troubleshooting Steps

27Failover MDWS Deployment

27Automated Solution

27Manual Solution

28Symptoms, Diagnoses, and Possible Solutions

29Glossary

Orientation and Acknowledgements
This document is for developers familiar with the technologies involved with MDWS who might be on a maintenance team or involved in continued development of the application. Topics cover getting a technical asset up to speed on the project, as well as covering technical and non-technical aspects of the MDWS application. This document addresses key concepts related to how MDWS talks with the world and how to make enhancements in line with the original style and intent of the system.
The Original MDWS Team
Developers:

Joel Mewton: Ann Arbor, VAMC Joel.Mewton@va.gov
Van Curtis: Ann Arbor, VAMC Van.Curtis@va.gov
The C3 -> C1 Effort Team

Project Manager:

Gary Pickwoad: Bay Pines OIFO Gary.Pickwoad@va.gov
Technical Writer:

Christine Beynon: Hines OIFO Christine.Beynon@va.gov
Tester:

Lucille Harmon: Lucille.Harmon@va.gov
Technical Resources:
Jason Confer Jason.Confer@va.gov
Mohamed Anwer: Dallas OIFO Mohamed.Anwer@va.gov
Introduction
Medical Domain Web Services (MDWS) (pronounced meadows) is a suite of Service Oriented Architecture (SOA) middle-tier web services that exposes medical domain functionality, Medical Domain Objects (MDO). MDWS is equipped with the capacity to virtualize any legacy Veterans Health Information Systems and Technology Architecture (VistA) Remote Procedure Call (RPC) as a web service. A web service is an Application Programming Interface (API), which uses Simple Object Access Protocol (SOAP), the standardized protocol to communicate with subscribed client applications.
History

Historically, the Department of Veteran Affairs (VA) developers use a standard, 2-tier (client/server) architecture to develop applications, such as the Computerized Patient Record System (CPRS) and the Remote Procedure Call (RPC) Broker. CPRS communicates to VistA through the RPC Broker.

1. Client - The top tier, or frontend, is the user interface (such as CPRS).

2. Server - The bottom tier, or backend, is the data source (a single VistA system).

MDWS evolved from the field development that Joe Gillon created with MDO at Ann Arbor Veterans Affairs Medical Center (VAMC). MDO is easier to implement/utilize than the traditional methods of accessing the VistA Legacy systems (such as the RPC Broker).
· MDO is a library of data structures with behaviors in the medical domain. It is an improvement over the Delphi RPC Broker by building in business rules to free other developers from implementing the same requirements in each application.

· MDO is written in C# .NET.

· MDO is capable of accessing a VistA system, enabling it to communicate directly with any VistA system and use all the standard local CPRS RPCs.

· MDO is capable of multi-site queries, allowing it to read data from all relevant VistA systems in parallel in the time it takes to receive data from one system.
The browser-based Electronic Medical Record Graphical User Interface (EMR GUI)/VistAWeb (VW) was developed to demonstrate MDO. VW not only demonstrated MDO, but also featured patient-centric data rather than geo-centric data. VW became a national Class 1 (C1) application in 2005.
VistAWeb Services (VWS) was developed to take MDO to Java 2 Platform, Enterprise Edition (J2EE), when it was realized that most clients can consume SOAP web services. Trying to produce J2EE web services proved painful, error-prone and time consuming. However, writing web services in the top level domain .NET was simple. VWS became a C#.NET web service exposing a pure Java library. Several web services were produced under VWS, as development moved toward a new set of web services with a new MDO written in C#.
The new service, MDWS, exposes MDO and provides transparent multi-site accessibility, while enforcing business rules. Although MDWS is not yet certified as C1 software, MDWS received a waiver from Systems Engineering for the C1 deployment of Suicide Hotline. MDWS will be the catalyst to make several VA mission critical systems operational in addressing compliance with VA requirements and White House/DHS mandates.

3. Healthcare-Associated Infection & Influenza Surveillance System (HAIISS) program tools

4. Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE)

5. QcPathfinder

6. Bed Management Solutions (BMS) and other web-based applications

The current object set in MDWS focuses primarily on clinical information. Future development efforts may include other patient administrative areas, financial areas, etc. Much of the medical data comes from VistA,

· where data domain objects, such as Allergy, Medication, LabResult, etc., are created from the results of one or more VistA RPCs.

· where data comes from a relational source, the objects are created from recordsets.
· where data comes from XML sources the objects are created by parsing the Document Object Model (DOM).

Using MDO’s data structures and behaviors, MDWS interacts with a variety of data sources. MDWS queries several VA data sources for clinical data.

7. All the VistA systems

8. Master Patient Index (MPI)

9. Structured Query Language (SQL)

10. Extensible Markup Language (XML)

11. Health Level 7 (HL7)

12. Some Planning System Support Group (PSSG) sources
MDWS is used by a variety of field-developed products and is a component of several notable C1 efforts implemented across the Enterprise.
13. Adverse Drug Reaction
http://vhaannscm1.v11.med.va.gov/trac/medora/wiki/Clients/ADR
14. Apollo (CPRS Re-engineering (AViVA)
http://trac.medora.va.gov/web/wiki/Projects/Apollo
15. Athena
http://trac.medora.va.gov/web/wiki/Clients/Athena
16. BHIE
http://trac.medora.va.gov/web/wiki/Clients/BHIE
17. Chronic Disease Management
http://trac.medora.va.gov/web/wiki/Clients/CDM
18. Crisis Center (web service behind Suicide Hotline and Homeless Hotline)
http://medora.sharepoint.med.va.gov/sites/crisiscenter/default.aspx
19. Diversions
http://medora.sharepoint.med.va.gov/sites/diversions/default.aspx
20. Electrophysiology Reporting
Ann Arbor

21. EMERSE
http://trac.medora.va.gov/web/wiki/Clients/EMERSE
22. MOVE
http://www.move.va.gov/Default.asp
23. MyHealtheVet
http://www.myhealth.va.gov/
24. Mynapin (used in demonstrations)
3TUhttp://www.kabotintl.com/products.php?ProdCatID=7U3T
25. National Utilization Management Integration (NUMI)
http://medora.sharepoint.med.va.gov/sites/utilizationmgt/default.aspx
26. PatientFinder
 http://medora.sharepoint.med.va.gov/sites/PatientFinder/default.aspx
27. Traumatic Brain Injury
http://trac.medora.va.gov/web/wiki/Clients/TBI
Subscribed Applications

These are the current and prospective subscribed applications using MDWS. The table includes the facades each application uses, whether the clients are live or prospective clients, and contact information for the application.
	Application
	Façades
	Live
	Contact Email

	MHV
	Mhvsvc
	Yes
	robert.murtha@va.gov

	Suicide Hotline
	
	Yes
	jason.jones@va.gov

	MOVE
	
	Yes
	tony.rogers@va.gov

	Traumatic Brain Injury
	TbiService
	Yes
	troy.sherrill@va.gov

	NUMI
	NumiService
	Yes
	van.curtis@va.gov

	EMERSE
	EmerseService
	Yes
	joel.mewton@va.gov

	Apollo
	EmrSvc
	Yes
	kevin.meldrum@va.gov

	Athena
	AthenaService
	Yes
	dan.wang@va.gov

	Utilization Management
	
	Yes
	ken.baker@va.gov

	Chronic Disease Management
	
	
	terry.ostrander@va.gov

	Embedded Fragments Registry
	
	
	troy.sherrill@va.gov

	vaADER
	
	
	tom.leadholm@va.gov

	Diversions
	
	
	jason.jones@va.gov

	PatientFinder
	
	
	

	Poppies
	
	
	jason.jones@va.gov

	MedsHelp
	
	
	joel.mewton@va.gov

	MedsRec
	
	
	joel.mewton@va.gov

	Homeless Hotline
	
	
	jason.jones@va.gov

	EP Reporting
	
	
	jason.jones@va.gov

	Patient Care Services DB
	
	
	christopher.nielson@va.gov

	MUET
	
	
	tom.leadholm@va.gov

	Bed Management
	
	
	hub.freeman@va.gov

	Comp & Pen
	
	
	shawn.hardenbrook@va.gov

	VA Genomics
	
	
	leonard.davilio@va.gov

Data Sources and Interfaces
MDWS interfaces with multiple systems. All communication inbound to MDWS is SOAP. As middleware connecting to multiple data sources, MDWS must encapsulate the communication methodologies of the sources. MDWS does this through MDO, medical domain objects. The MDO combines a typical data access object with business rules that data sources may require enforced. By doing it this way, MDWS frees every subscribed application from enforcing the same business rules.
	Service
	Data Sources

	EmrSvc
	VistA, HL7, SQL

	CallService
	VistA, HL7, SQL

	NumiService
	VistA

	TbiService
	VistA

	UserMgtScv
	VistA, SQL

	EmerseSvc
	VistA

	FindpatientSvc
	VistA, SQL

	MhvService
	VistA

	AthenaService
	VistA

	UserMgtService
	VistA

MDWS defines the VistA systems about which it knows in an .xml file located on the application server called VhaSites.xml.

Examples
<VhaSite name="Sioux Falls, SD" ID="438" moniker="SUX">

<DataSource modality="HIS" protocol="VISTA" source="VISTA.SIOUX-FALLS.MED.VA.GOV" status="active"/>

</VhaSite>

<VhaSite name="White River Junction, VT" ID="405" moniker="WRJ">

<DataSource modality="HIS" protocol="VISTA" source="VISTA.WHITE-RIVER.MED.VA.GOV" status="active" port="19204"/>

</VhaSite>
MDWS Managed Data Sources

MDWS uses several data sources that need to be actively managed by the MDWS development or production support teams.

28. Geographic and zip code data for MDWS is a COTS access database. The zip code database requires incremental manual updates from the vendor.

29. The vendor is www.ZIPCodeDownload.com and the account is held in the name of the MDWS development staff. Contact joseph.gillon@va.gov for the login and password.
30. The PSSG Access database provides information on various VISN locations and those locations nearest the veteran.
· The file comes in as an Excel spreadsheet and is converted to an Access database, which is readable by MDWS.
· The PSSG file link is http://vaww.pssg.med.va.gov/PSSG/search_zipcode4.html
31. H1N1 database is located on VHAAANNSQL1 in the database H1N1Assessment. H1N1 data is compiled from a collection of .xml files located at the VISNs.
Tools and Utilities
32. Visual Studio 2010 - Development Environment
http://msdn.microsoft.com/en-us/vstudio/default.aspx
33. Tortoise SVN – Source Control
http://tortoisesvn.net/
34. SoapUI Pro – Web Services testing framework
http://www.soapui.org/
35. N-Unit – Unit testing framework for C#
http://www.nunit.org/
Developer Workstation Setup

To set up the developer workstation, perform the following steps.
36. Install Tools from the Tools and Utilities list.
37. Create a suitable MDWS project root directory.

38. Create subfolders for MDWS and MDO.

39. On the Checkout window, right click the MDWS folder, select SVN Checkout, and click OK.
[image: image2.png]
Screen capture of the Checkout window
40. Type your Username and Password in the appropriate text boxes and click OK.

Note: If you have not done so already, request access to the Repository.
[image: image3.png]
Screen capture of the Authentication window

41. With successful checkout and authentication, the trunk – Checkout window displays.
[image: image4.png]
Screen capture of the trunk – Checkout window
42. Click OK.

43. On the Checkout window, right click the MDO folder, select SVN Checkout, and click OK.
[image: image5.png]
Screen capture of the Checkout window
44. Repeat steps 5-8 for MDO specific directories.

Configuration Information
Directories

	Application
	Root
	Functional Folder
	Functional Folder
	Sub-Folders

	
	
	
	
	

	MDWS
	
	
	
	

	
	MDWS
	
	
	

	
	
	Properties
	
	

	
	
	Src

	dto
	

	
	
	
	lib
	

	
	
	
	partial
	

	
	
	
	svc
	

	
	
	
	resources
	

	
	
	
	
	lib

xml

	MDO
	
	
	
	

	
	MDO
	
	
	

	
	
	properties

resources

src
	
	

	
	
	
	api

mdo

utils

dao

	hl7

	
	
	
	
	soap

	
	
	
	
	sql

VistA
webservice

	
	
	
	
	xml

	
	
	
	
	

	
	
	
	
	

MDWS Class Structure
45. MDWS Web Service Classes
· Directory Path: directory mdws\src\svc\

· Purpose: The purpose of the web service classes are as a thin client pass through to the MDOs (medical data objects)

· Base Class: System.Web.Services.WebMethod
· Namespace: gov.va.medora.mdws
46. MDWS DTO Classes
· Directory Path: mdws\src\dto\

· Purpose: These classes are to define abstract data types for the web services.

· Base Class: AbstractTO

· Namespace: gov.va.medora.mdws.dto
47. MDWS Lib Classes
· Directory Path: mdws\src\lib\

· Purpose: These classes are used to match up a data type object and verify the connection.

· Base Class: None

· Namespace: gov.va.medora.mdws
48. MDO API Classes
· Directory Path: mdo\src\api\

· Purpose: Execute the data request queries with a connection and parameters.

· Base Class: None

· Namespace: gov.va.medora.mdo.api
49. MDO DAO Classes
· Directory Path: mdo\src\dao\

· Purpose: Provide interfaces for data access objects.

· Base Class: System.Collections
· Namespace: gov.va.medora.mdo.dao
50. MDO MDO Classes
· Directory Path: mdo\src\mdo\

· Purpose: Defines data collections (Notes, Orders) and encapsulates business rules for the data.

· Base Class: None
· Namespace: gov.va.medora.mdo.mdo
51. MDO Util Classes
· Directory Path: mdo\src\util\

· Purpose: Defines utility methods for use within MDO.

· Base Class: None
· Namespace: gov.va.medora.mdo.utils
Build Process
52. To open Visual Studio Solution project, open the MDWS folder and double-click the mdws.sln file.

Screen capture of the C:\Documents and Settings window

53. Your Visual Studio Solution project displays as in the following window.

Screen capture of the mdws – Microsoft Visual Studio window
Solution Explorer
54. In the Solution Explorer, right click the Solution 'mdws' text and select the Build Solution option.
55. In Visual Studio at the bottom of the window, click the Output tab and look for the
Build: n succeeded or up-to-date, n failed, n skipped message.

Screen capture of the mdws – Microsoft Visual Studio window
Output
56. In the MDWS project folder, navigate to the mdws.csproj_deploy folder.
57. To view the MDWS deployment files, open the Debug or Release folder.

Screen capture of the C:\Documents and Settings window
Deploying the Project to IIS
Copy the files from step 6 to the C:\inetpub\wwwroot\mdws folder.

UDDI Services
Universal Description Discovery and Integration (UDDI) is an ‘advertising space’ for web services. The VA did not have any existing UDDI services, so the MDWS developers created a method for getting what MDWS can provide to other VA developers. The UDDI is at https://medora.va.gov/uddipublic/ and currently ‘advertises’ five MDWS web services, CallService, EmrSvc, FindPatientService, UserMgtSvc, and UtilMgtSvc.
To search the UDDI services, go to the URL.
58. Click Search.

59. Click the Services tab.

60. Type in % wildcard and click Search.
All the services display in the left hand pane.
Instructions for publishing a new façade to UDDI are located at https://medora.va.gov/uddipublic/help/1033/publish.gettingstarted.aspx
Web Services
MDWS web services are organized into logical web method groupings within the system called facades.
An application uses a particular façade, depending on the applications type. For example, there are specific facades intended for care providers or call centers.
· If an application’s requirements do not match existing facades, new facades can quickly be set up (programmatically speaking) for new applications.
· Facades are a collection of thin pass-through calls to MDWS library classes. There is little programmatic logic within the web methods.
EmrSvc
The EmrSvc service will act as a façade for applications where the user is a health care provider.
	Web Method
	Library
	Data Source

	closeNote
	NoteLib
	VistA

	cprsLaunch
	ConnectionLib
	VistA

	cprsUserLookup
	UserLib
	VistA

	getAdmissions
	EncounterLib
	VistA

	getAdmissionsReports
	EncounterLib
	VistA

	getAdvanceDirectives
	NoteLib
	VistA

	getAllMeds
	MedsLib
	VistA

	getAllergies
	ClinicalLib
	VistA

	getAppointmentText
	EncounterLib
	VistA

	getAppointments
	EncounterLib
	VistA

	getAutopsyReports
	LabsLib
	VistA

	getBloodAvailabilityReports
	LabsLib
	VistA

	getBloodBankReports
	LabsLib
	VistA

	getBloodTransfusionReports
	LabsLib
	VistA

	getCareTeamReports
	EncounterLib
	VistA

	getChemHemReports
	LabsLib
	VistA

	getClinicalWarnings
	NoteLib
	VistA

	getClinics
	EncounterLib
	VistA

	getCompAndPenReports
	EncounterLib
	VistA

	getConfidentiality
	PatientLib
	VistA

	getConsultsForPatient
	OrdersLib
	VistA

	getCrisisNotes
	NoteLib
	VistA

	getCytologyReports
	LabsLib
	VistA

	getCytopathologyReports
	LabsLib
	VistA

	getDemographics
	
	VistA

	getDischargeDiagnosisReports
	EncounterLib
	VistA

	getDischargeSummaries
	NoteLib
	VistA

	getDischargesReports
	EncounterLib
	VistA

	getDiscontinueReasons
	OrdersLib
	VistA

	getElectronMicroscopyReports
	LabsLib
	VistA

	getExpandedAdtReports
	EncounterLib
	VistA

	getFutureClinicVisitsReports
	EncounterLib
	VistA

	getHospitalLocations
	EncounterLib
	VistA

	getIcdProceduresReports
	EncounterLib
	VistA

	getIcdSurgeryReports
	EncounterLib
	VistA

	getImagingReport
	ClincalLib
	VistA

	getImmunizations
	MedsLib
	VistA

	getIvMeds
	MedsLib
	VistA

	getLatestVitalSigns
	ClinicalLib
	VistA

	getLocations
	EncounterLib
	VistA

	getMedicationDetail
	MedsLib
	VistA

	getMedsAdminHx
	MedsLib
	VistA

	getMedsAdminLog
	MedsLib
	VistA

	getMicrobiologyReports
	LabsLib
	VistA

	getNote
	NoteLib
	VistA

	getNoteTitles
	NoteLib
	VistA

	getNotesWithText
	NoteLib
	VistA

	getOtherMeds
	MedsLib
	VistA

	getOutpatientEncounterReports
	EncounterLib
	VistA

	getOutpatientMeds
	MedsLib
	VistA

	getOutpatientRxProfile
	MedsLib
	VistA

	getPastClinicVisitsReports
	EncounterLib
	VistA

	getPatientsByClinic
	PatientsLib
	VistA

	getPatientsByProvider
	PatientsLib
	VistA

	getPatientsBySpecialty
	PatientsLib
	VistA

	getPatientsByTeam
	PatientsLib
	VistA

	getPatientsByWard
	PatientsLib
	VistA

	getPrfNoteActions
	NoteLib
	VistA

	getProblemList
	ClinicalLib
	VistA

	getRadiologyReports
	ClinicalLib
	VistA

	getSignedNotes
	NoteLib
	VistA

	getSpecialties
	EncounterLib
	VistA

	getSurgeryReportText
	ClinicalLib
	VistA

	getSurgeryReports
	ClinicalLib
	VistA

	getSurgicalPathologyReports
	LabsLib
	VistA

	getTeams
	EncounterLib
	VistA

	getTransfersReports
	EncounterLib
	VistA

	getTreatingSpecialtyReports
	EncounterLib
	VistA

	getUncosignedNotes
	NoteLib
	VistA

	getUnitDoseMeds
	MedsLib
	VistA

	getUnsignedNotes
	NoteLib
	VistA

	getVHA
	SitesLib
	VistA

	getVISN
	SitesLib
	VistA

	getVersion
	NA
	NA

	getVisits
	EncounterLib
	VistA

	getVitalSigns
	VitalsLib
	VistA

	getWards
	EncounterLib
	VistA

	isConsultNote
	NoteLib
	VistA

	isCosignerRequired
	NoteLib
	VistA

	isOneVisitNote
	NoteLib
	VistA

	isPrfNote
	NoteLib
	VistA

	isSurgeryNote
	NoteLib
	VistA

	isValidEsig
	UserLib
	VistA

	issueConfidentialityBulletin
	PatientLib
	VistA

	match
	PatientLib
	VistA

	mpiLookup
	ConnectionLib
	HL7

	patientInquiry
	PatientLib
	VistA

	saveH1N1Survey
	H1N1SqlDao
	SQL

	select
	PatientLib
	VistA

	signNote
	NoteLib
	VistA

	writeNote
	NotLib
	VistA

	writeSimpleOrderByPolicy
	OrdersLib
	VistA

	visit200
	ConnectionLib
	

CallService
The Call service will act as the façade to develop call center applications.

	Web Method
	Library
	Data Source

	addDataSource
	ConnectionLib
	VistA

	closeNote
	NoteLib
	VistA

	connect
	ConnectionLib
	VistA

	cprsUserLookup
	UserLib
	VistA

	disconnect
	ConnectionLib
	VistA

	getAdmissions
	EncounterLib
	VistA

	getCitiesInState
	SitesLib
	VistA

	getConsultsForPatient
	TbiLib
	VistA

	getLocations
	EncounterLib
	VistA

	getNearestFacility
	SitesLib
	VistA

	getNoteTitles
	NoteLib
	VistA

	getPrfNoteActions
	NoteLib
	VistA

	getSite
	SitesLib
	VistA

	getVHA
	SitesLib
	VistA

	getVersion
	NA
	NA

	getVhaByStates
	SitesLib
	VistA

	getVisits
	EncounterLib
	VistA

	isConsultNote
	NoteLib
	VistA

	isCosignerRequired
	NoteLib
	VistA

	isOneVisitNote
	NoteLib
	VistA

	isPrfNote
	NoteLib
	VistA

	isSurgeryNote
	NoteLib
	VistA

	login
	UserLib
	VistA

	match
	PatientLib
	VistA

	matchByNameCityState
	PatientLib
	VistA

	mpiLookup
	PatientLib
	HL7

	select
	NoteLib
	VistA

	signNote
	NoteLib
	VistA

	visit
	ConnectionLib
	VistA

	writeNote
	NoteLib
	VistA

NumiService

The Numi service will allow the tracking of inpatient bed movements.

	Web Method
	Library
	Data Source

	addDataSource
	ConnectionLib
	VistA

	connect
	ConnectionLib
	VistA

	connectAndLogin
	UserLib
	VistA

	disconnect
	ConnectionLib
	VistA

	getConfidentiality
	PatientLib
	VistA

	getDRGRecords
	EncounterLib
	VistA

	getInpatientDischarges
	EncounterLib
	VistA

	getInpatientMoves
	EncounterLib
	VistA

	getInpatientMovesByCheckinId
	EncounterLib
	VistA

	getInpatientMovesByDateRange
	EncounterLib
	VistA

	getInpatientMovesByDateTimeRange
	EncounterLib
	VistA

	getStayMovements
	EncounterLib
	VistA

	getStayMovementsByDateRange
	EncounterLib
	VistA

	getStayMovementsByPatient
	EncounterLib
	VistA

	getVHA
	SitesLib
	VistA

	getVersion
	NA
	NA

	getVistATimestamps
	ConnectionLib
	VistA

	getWards
	NumiLib
	VistA

	issueConfidentialityBulletin
	PatientLib
	VistA

	login
	UserLib
	VistA

	match
	PatientLib
	VistA

	select
	PatientLib
	VistA

	userLookup
	UserLib
	VistA

	visit
	ConnectionLib
	VistA

TbiService

The Traumatic Brain Injury service is a facade intended for use with health care providers.

	Web Method
	Library
	Data Source

	addDataSource
	
	VistA

	closeNote
	NoteLib
	VistA

	cprsLaunch
	ConnectionLib
	VistA

	cprsUserLookup
	UserLib
	VistA

	disconnectSite
	ConnectionLib
	VistA

	getAdmissions
	EncounterLib
	VistA

	getClinics
	EncounterLib
	VistA

	getConsultsForPatient
	TbiLib
	VistA

	getLocations
	EncounterLib
	VistA

	getNoteText
	NoteLib
	VistA

	getNoteTitles
	NoteLib
	VistA

	getOefOif
	PatientLib
	VistA

	getPatientsByClinic
	PatientLib
	VistA

	getPatientsByWard
	PatientLib
	VistA

	getPrfNoteActions
	NoteLib
	VistA

	getVersion
	EncounterLib
	VistA

	getVisits
	EncounterLib
	VistA

	getWards
	PatientLib
	VistA

	isConsultNote
	NoteLib
	VistA

	isCosignerRequired
	NoteLib
	VistA

	isOneVisitNote
	NoteLib
	VistA

	isPrfNote
	NoteLib
	VistA

	isSurgeryNote
	NoteLib
	VistA

	signNote
	NoteLib
	VistA

	writeNote
	NoteLib
	VistA

	writeUnsignedNote
	NoteLib
	VistA

UserMgtScv

The User Management service will allow applications to manage VistA user accounts.

	Web Method
	Library
	Data Source

	addDataSource
	ConnectionLib
	VistA

	addMenuOption
	UserLib
	VistA

	addSecurityKey
	UserLib
	VistA

	addSecurityKeyForContext
	UserLib
	VistA

	connect
	ConnectionLib
	VistA

	ddrLister
	ToolsLib
	VistA

	disconnectSite
	ConnectionLib
	VistA

	disconnectSites
	ConnectionLib
	VistA

	getDelegatedOptions
	UserLib
	VistA

	getGeographicLocations
	SitesLib
	VistA

	getMenuOptions
	UserLib
	VistA

	getSecurityKeys
	UserLib
	VistA

	getSiteDivisions
	EncounterLib
	VistA

	getUser
	UserLib
	VistA

	getUserDUZBySSN
	UserLib
	VistA

	getVHA
	SitesLib
	VistA

	getVariableValue
	ToolsLib
	VistA

	getVersion
	NA
	NA

	login
	UserLib
	VistA

	lookupByName
	UserLib
	VistA

	lookupByNameMS
	UserLib
	VistA

	removeMenuOption
	UserLib
	VistA

	removeSecurityKey
	UserLib
	VistA

	sendEmail
	ToolsLib
	VistA

	visitSites
	ConnectionLib
	VistA

EmerseService
The Emerse service allows text searching of notes and reports.
	Web Method
	Library
	Data Source

	addDataSource
	ConnectionLib
	VistA

	connect
	ConnectionLib
	VistA

	cprsLaunch
	ConnectionLib
	VistA

	disconnect
	ConnectionLib
	VistA

	getAllMeds
	MedsLib
	VistA

	getNotesWithText
	NotesLib
	VistA

	getOutpatientRxProfile
	MedsLib
	VistA

	getProblemList
	ClinicalLib
	VistA

	getRadiologyReports
	ClinicalLib
	VistA

	getVHA
	SitesLib
	VistA

	getVersion
	NA
	NA

	login
	UserLib
	VistA

	match
	PatientLib
	VistA

	mpiLookup
	PatientLib
	VistA

	select
	PatientLib
	VistA

	setupMultiSiteQuery
	ConnectionLib
	VistA

	visit
	ConnectionLib
	VistA

FindpatientSvc

The Findpatient service will provide utilities for finding patients.

	Web Method
	Library
	Data Source

	addDataSource
	ConnectionLib
	VistA

	connect
	ConnectionLib
	VistA

	disconnectSite
	ConnectionLib
	VistA

	disconnectSites
	ConnectionLib
	VistA

	getFacilitiesForCounty
	SitesLib
	VistA

	getSite
	SitesLib
	VistA

	getVHA
	SitesLib
	VistA

	getVersion
	NA
	NA

	getVisnsForState
	SitesLib
	VistA

	locatePatient
	PatientLib
	VistA

	login
	UserLib
	VistA

	matchByNameCityStateMS
	PatientLib
	VistA

	matchCityAndState
	SitesLib
	VistA

	mpiLookup
	PatientLib
	VistA

	visitSites
	ConnectionLib
	VistA

MhvService

The Mhv service will allow patient health record (PHR) use cases.
	Web Method
	Library
	Data Source

	addDataSource
	ConnectionLib
	VistA

	getAppointments
	unimplemented
	VistA

	getAppointmentsFromSite
	MhvLib
	VistA

	getChemHemReports
	unimplemented
	VistA

	getChemHemReportsForPatientFromSite
	unimplemented
	VistA

	getChemHemReportsFromSite
	MhvLib
	VistA

	getDetailedRemindersFromSite
	MhvLib
	VistA

	getFutureAppointments
	unimplemented
	NA

	getFutureAppointmentsFromSite
	unimplemented
	VistA

	getSummaryRemindersFromSite
	MhvLib
	VistA

	getVersion
	NA
	NA

AthenaService

The Athena service will provide the ability to launch from CPRS Tools menu, and connect, authenticate, select patient given DUZ, DFN, or site code.
	Web Method
	Library
	Data Source

	addDataSource
	ConnectionLib
	VistA

	cprsLaunch
	ConnectionLib
	VistA

	disconnect
	ConnectionLib
	VistA

	getLatestVitalSigns
	VitalsLib
	VistA

	getLocations
	AthenaLib
	VistA

	getNoteTitles
	NoteLib
	VistA

	getVersion
	NA
	NA

	setupMultiSiteQuery
	ConnectionLib
	VistA

	writeUnsignedNote
	NoteLib
	VistA

UserMgtService

The User Management service will allow a user to access a single VistA system given SSN, DUZ, site code, and user/pass
	Web Method
	Library
	Data Source

	addDataSource
	ConnectionLib
	VistA

	connectSite
	ConnectionLib
	VistA

	cprsUserLookup
	UserLib
	VistA

	disconnectSite
	ConnectionLib
	VistA

	getUserInfo
	
	VistA

	getVHA
	SitesLib
	VistA

	getVersion
	NA
	NA

	login
	UserLib
	VistA

	lookup
	UserLib
	VistA

	visitSite
	ConnectionLib
	VistA

MDO
Most of the heavy lifting in MDWS happens in Medical Data Objects (MDO). The MDWS libraries call one of the API’s listed in the \api folder of MDO.
The API is the implementation of one of the web methods.
· The API implementation takes the parameters from MDWS, a new instantiation of the MDO objects (in \mdo), and passes everything along to the data access objects in the \dao folder.
· The Data Access Objects (DAO) contain the specifics on where to connect and what to connect to, in order to provide the data elements for MDO.

Note: MDO is both the project name and the general term to name the set of objects, but most of the work to populate a particular medical data object with meaningful data takes place inside the different DAO classes. These rules are depicted in Figure A.1, however the NHIN portion may not make the initial national release of MDWS. While the figure below shows business rules as a distinct portion similar to the API, the rules are implemented as a natural part of the rest of the system and not part of a distinct and separate code base with distinct objects.
[image: image10.png]
Representation of MDO depicting the implementation of business rules
Troubleshooting MDWS

Uninstalling MDWS

61. Click Start.

62. Select Control Panel.

63. Double-click Add or Remove Programs.

64. Select MDWS.

65. Click Remove.

Control Panel>Add or Remove Programs

Normal Procedures
In general, to troubleshoot any problem, check the following sources:

66. Browse to the local web services and make sure the Web Service Definition Language (WSDL) displays.

67. Run the connection test page.

Sample of an Error Message

from MDWS to a requesting client application

<?xml version="1.0" encoding="utf-8" ?>

- <TaggedInpatientStayArray xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://mdws.medora.va.gov/EmrSvc">

- <fault>

 <type />

 <message>There are no open connections</message>

 <stackTrace />

 <suggestion />

 </fault>

 <count>0</count>

 </TaggedInpatientStayArray>

Production Issue History
MDWS has never had a production problem. MDWS shared an application pool at the C3 level with VistAWeb. Problems with the VistAWeb application caused a brief loss of connectivity for MDWS clients, until IIS was restarted.

Future productions issues are to be added to this document in the following table.

	Date
	Cause
	Resolution

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Potential Troubleshooting Steps
68. In IIS, recycle the application pool in which MDWS resides.

69. Restart IIS.

70. Look for server events or server changes (anti-virus, group policies, etc.).
Failover MDWS Deployment
The client application(s) are responsible for pointing to a failover MDWS deployment and is not directly related to restoring a failed MDWS instance. The client can accomplish the failover in two ways: automated and manual.

Automated Solution
The automated solution is more complex from a software development standpoint, but has the advantage of being a near instantaneous resolution to a primary MDWS failure.
In an automated failover environment, when the primary endpoint no longer responds to requests, the client application switches from the primary well known MDWS endpoint to a well known backup or failover MDWS endpoint.

· It is imperative the client application support team is made aware a switch was made to a backup service.
· The client application developer must architect this notification into their software.

Manual Solution
In a manual failover environment, when the primary well known MDWS endpoint becomes unavailable,

the client application developer must manually modify their code or configuration files.

· The client application support team can be made aware of the failure automatically by including code that notifies the necessary personnel when the primary MDWS instance becomes unavailable.
· The client application support team usually settles on the simplest solution, which is to wait for users to report the failure. Then the support team begins troubleshooting, determines the failure is MDWS related, and points the client application to a well-known failover endpoint.
Symptoms, Diagnoses, and Possible Solutions

	1.
	Symptom

MDWS WSDL not viewable locally

http://localhost/mdws/CallService.asmx
404 Page Not Found

	
	Diagnoses and Solutions

IIS Default web site configuration likely incorrect

	2.
	Symptom

This room left blank intentionally for future solutions

	
	Diagnoses and Solutions

This room left blank intentionally for future solutions

	3.
	Symptom

This room left blank intentionally for future solutions

	
	Diagnoses and Solutions

This room left blank intentionally for future solutions

	4.
	Symptom

This room left blank intentionally for future solutions

	
	Diagnoses and Solutions

This room left blank intentionally for future solutions

	5.
	Symptom

This room left blank intentionally for future solutions

	
	Diagnoses and Solutions

This room left blank intentionally for future solutions

	6.
	Symptom

This room left blank intentionally for future solutions

	
	Diagnoses and Solutions

This room left blank intentionally for future solutions

	7.
	Symptom

This room left blank intentionally for future solutions

	
	Diagnoses and Solutions

This room left blank intentionally for future solutions

	8.
	Symptom

This room left blank intentionally for future solutions

	
	Diagnoses and Solutions

This room left blank intentionally for future solutions

Glossary
	Term
	Definition

	AITC
	Austin Information Technology Center

	AViVA
	A Virtual Instance of VistA Architecture

	BHIE
	Bi-directional Health Information Exchange

	BMS
	Bed Management Solutions

	Caché
	An ‘M’ based product (by InterSystems) which has been selected as the next generation VistA platform

	CAPRI
	Compensation and Pension Records Interchange

	C1
	Class 1

	C3
	Class 3

	CCOW
	Clinical Context Object Workgroup

	Client Applications
	Client applications can be written in Delphi. Visual Basic, C#, HTML/Javascript, PHP, etc.

	COM
	Component Object Model

	Connectivity
	Connectivity provides connection to the Master Patient Index (MPI), Structured Query Language (SQL) and Extensible Markup Language (XML).

	COTS
	Commercial Off the Shelf

	CPRS
	Computerized Patient Record System

	DAO
	Data Access Objects

	DFN
	Data File Number
A patient’s local identifier, the internal entry number in file #2

	DHS
	Department of Homeland Security

	DICOM
	Digital Imaging and Communication in Medicine

	DUZ
	A user’s local identifier, the internal entry number in file #200

	EIE
	Enterprise Infrastructure Engineering

	ESSENCE
	Electronic Surveillance System for the Early Notification of Community-based Epidemics

	Façade
	A set of useable features made available for applications of a certain type. Each façade is a partial class composed of methods from multiple source libraries combined in a logical grouping for the consumer type (e.g., Patient, Provider, Util)

	FIPS
	Federal Information Processing Standard

	GOTS
	Government Off The Shelf

	GUI
	Graphical User Interface

	HAIISS
	Healthcare Associated Infection and Influenza Surveillance System

	HDR
	Health Data Repository

	HL7
	Health Level 7

	ICD
	International Classification of Diseases

	ICN
	The patient’s national identifier, Integration Control Number

	IDE
	Integrated Development Environment

	IEN
	Internal Entry Number

	J2EE
	Java 2 Platform, Enterprise Edition defines the standard for developing multitier enterprise applications

	MDO
	Medical Domain Objects

MDO is the middle-tier SOA used by MDWS to access multiple VistA sites without further credentialing, which works entirely through existing Remote Procedure Calls (RPCs)

	MDWS
	Medical Domain Web Services

	MPI
	Master Patient Index

	MRI
	Magnetic Resonance Imaging

	MSI
	Microsoft Installer (file)

	MWSV
	NameSpace assigned to Medical Domain Web Services (MDWS) by DBA

	.NET
	The Microsoft .NET Framework is a software framework that can be installed on computers running Microsoft Windows operating systems

	NOK
	Next Of Kin

	NUMI
	National Utilization Management Integration

	OEF
	Operation Enduring Freedom

	OIF
	Operation Iraqi Freedom

	PHR
	Patient Health Re cord

	PSSG
	Planning System Support Group

	RPC
	Remote Procedure Call

	RSD
	Requirements Specification Document

	SIA
	Security Integration Agreement

	SMTP
	Simple Mail Transfer Protocol

	SOA
	Service Oriented Architecture is a flexible set of design principles used during the phases of systems development and integration. A deployed SOA-based architecture will provide a loosely integrated suite of services that can be used within multiple business domains.

	SOAP
	Server Oriented Architecture Protocol

	SQL
	Structured Query Language

	TIU
	Text Integration Utility

	UDDI
	Universal Description, Discovery and Integration
A registry that enables a developer to shop for MDWS pre-fabricated web services

	VA
	Department of Veterans Affairs

	VAMC
	Department of Veterans Affairs Medical Center

	VHA
	Veterans Health Administration

	VistA
	Veterans Health Information Systems and Technology Architecture
An enterprise-wide information system built around an electronic health record used throughout the Department of Veterans Affairs medical system.

	VW
	VistA Web

	VWS
	VistA Web Services

	WSDL
	Web Service Description Language (WSDL) is a document that provides a common language to describe:

what the web service does

what functionality it can provide

what data it can deliver

A developer can click WSDL and generate the code automatically.

	XML
	Extensible Markup Language

24
MDWS v2.0 C3-C1 Conversion Project
September 2011

Developer’s Guide (MWVS*2)
Month 2010
Medical Domain Web Services
iii

Security Guide

