Post-exertion malaise in GWI: Brain, autonomic, and behavioral interactions

Dane Cook

University of Wisconsin Co-Principal Investigator

Michael Falvo

Rutgers University Co-Principal Investigator

W. lan Lipkin

Columbia University Co-Investigator Karen Block

Veterans Administration *Program Officer*

<u>ME/CFS</u> Xiaoyu Che, Columbia (CII) Oliver Fiehn, UC Davis Anthony Komaroff, Harvard Nischay Mishra, Columbia (CII) Ayan Roy, Columbia (CII) <u>GWI</u> Xaoyu Che, Columbia (CII) Oliver Fiehn, UC Davis Ayan Roy, Columbia (CII)

*Note: some of information contained herein is unpublished and preliminary data.

Symptom Overlap in ME/CFS, GWI, and COVID

ME/CFS: symptoms persist for at least 6 months

GWI: symptoms persist for at least 6 months, appeared during active duty in Southeast Asia military operations by 12/31/21, and be at least 10% disabling. *Attributing illnesses include: Chronic Fatigue Syndrome, Fibromyalgia, functional gastrointestinal disorders, undiagnosed illnesses

Post-COVID: symptoms persist more than 4 weeks after initial infection and include asymptomatic cases

ME/CFS

80% of people with ME/CFS report a prodrome consistent with infection

Post-COVID Sequelae

Acute disease:

- Neurologic signs and symptoms: 36% Wuhan, 82% Chicago
- Common: myalgia, headache, dysgeusia, anosmia, encephalopathy, psychiatric
- Less common: seizures, movement disorders, stroke, neuropathy
- Pathogenesis: indirect damage v. neuronal infection; infection of supporting cells, inflammation, vascular

Chronic disease:

- · May occur with mild or no respiratory disease
- Cognitive dysfunction, headache, autonomic instability, sensory disturbances, anosmia, dysgeusia

Similarities between ME/CFS and Long COVID:

- Viral prodrome
- Inflammation
- Cognitive dysfunction
- · Autonomic instability

Trends in Molecular Medicine

Insights from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome May Help Unravel the Pathogenesis of Post-Acute COVID-19 Syndrome REVIEW ARTICLE-June 7, 2021 | https://doi.org/10.1016/j.molemed.2021.06.002| 27(9):895-906 Anthony L. Komaroff, W. Ian Lipkin

Pathogenesis:

 Autoantibodies to cytokines, chemokines, lymphocyte receptors, endothelial targets and multiple CNS targets including the orexin receptor (important in fatigue and sleep)

Research strategies:

- Dynamic analyses insights into energy metabolism, inflammation, and redox balance (mRNA, metabolomics)
- Stress testing to elicit and elucidate pathophysiology: in vivo (exercise and lean tests) and in vitro (TruCulture)

Cytokine Activation in Plasma in ME/CFS

ScienceAdvances

Distinct plasma immune signatures in ME/CFS are present early in the course of illness

Hornig M, Montoya JG, Klimas NG, Levine S, Felsenstein D, Baleman L, Peterson DL, Gottschalk CG, Schultz AF, Che X, Eddy ML, Komarolf AL, and Lipkin WI

Research Article Immunology Metabolism

J Clin Invest. 2020; 130(3): 1491-1505. DOI: 10.1172/JCI132185

Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations Mandarano AH, Maya J, Gioteaux L, Peterson DL, Maynard M, Gottschalk CG, and Harson MR

RESEARCH ARTICLE PNAS August 22, 2017 114 (34) E7150-E7158; DOI: 10.1073/pnas.1710519114

Cytokine signature associated with disease severity in chronic fatigue syndrome patients

Montoya JG, Holmes TH, Anderson JN, Maecker HT, Rosenberg-Hasson Y, Valencia IJ, ChuL, Younger JW, Tato CM, and Davis MM

Unbiased Proteomic Analysis Provides Evidence of Persistent Immune Activation in ME/CFS

PLOS ONE

RESEARCH ARTICLE – July 21, 2020 https://doi.org/10.1371/journal.pone.0236148

Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS

Milica Milivojevic, Xiaoyu Che, Lucinda Bateman, Aaron Cheng, Benjamin A. Garcia, Mady Hornig, Manuel Huber, Nancy G. Klimas, Bohyun Lee, Hyoungjoo Lee, Susan Levine, Jose G. Montoya, Daniel L. Peterson, Anthony L. Komaroff, W. Ian Lipkin

antigen-driven clonal B cell expansion

ME/CFS is associated with increased levels (>4x) in plasma levels of specific immunoglobulins

- IGHV3-23/30: OR = 4.439; p-value = 0.0182
- IGKV3(D)-11: OR = 4.527; p-value = 0.032
- IGHV3-23/30: OR = 4.545; p-value = 0.019

IGHV3-23/30

- Associations to lymphomas, anti-myelin associated glycoprotein neuropathy
- Induction: chronic stimulation from either microbial or autoantigens
- Therapeutic implications: identify and remove stimulant, use kinase inhibitors
- ME/CFS patients are at an increased risk for lymphoma

BRAIN, BEHAVIOR, and IMMUNITY

Skewing of the B cell receptor repertoire in myalgic encephalomyelitis/chronic fatigue syndrome

RESEARCH ARTICLE – July 2021 | https://doi.org/10.1016/j.bbi.2021.03.023

Wakiro Sato, Hirohiko Ono, Takaji Matsutani, Masakazu Nakamura, Isu Shin, Keiko Amano, Ryuji Suzuki, Takashi Yamamura

Independent confirmation of our findings

"Recently, an association between IGHV3-23/30 and ME/CFS has been shown using a plasma proteomic approach (Milivojevic et al., 2020). Despite differences in methodology, the fact that the expression of the same IGHV region was significantly increased in ME/CFS patients provides further evidence of the importance of IGHV3-30."

Implications: Finding and eliminating the trigger(s) may mitigate disease

Microbiology of ME/CFS

Microbiology of ME/CFS

Implications: A rationale for clinical trial of prebiotics and probiotics?

Indirect Methods for Microbe Discovery and Implication High-Throughput Serology Using Peptide Microarrays

Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assay

Identification of an immunoreactive 20-amino-acid ZIKV NS2B peptide

Average receiver operating characteristic (ROC) curves over 1,000 runs using the 9 overlapping peptides identified (comprising 20-aa ZIKV NS2B peptide), with an average area under the curve (AUC) of 0.931

ZIKV-NS2B-concat ELISA sensitivity comparison with Euroimmun anti-ZIKV IgG ELISA and ZIKV-ELISA

Antibodies to Enteroviruses in Cerebrospinal Fluid of Patients with Acute Flaccid Myelitis

Identification of an immunoreactive peptide sequence region in VP1 protein of reference sequence entries for EV-A, EV-B, EV-C, and EV-D

Immunoreactivity against an EV-D68specific 22-aa VP1 capsid peptide in patients with AFM, non-AFM controls (NAC), Kawasaki disease controls (KDC), and adult CNS disease controls (AC).

ME/CFS and Herpesviruses: Rationale and Previous Studies

Studies associating EBV and HHV6 with ME/CFS

Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness

Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; Board on the Health of Select Populations; Institute of Medicine

Washington (DC): National Academies Press (US); 2015 Feb 10.

Annals of Internal Medicine [®]	Diagnostic Methods for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Systematic Review for a National Institutes of Health Pathways to Prevention Workshop
Reviews 16 June 2015	Haney E, Smith MEB, McDonagh M, Pappas M, Daeges M, Wasson N, Nelson H

Annals of Internal Medicine [®]	Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Systematic Review for a National Institutes of Health Pathways to Prevention Workshop
Reviews 16 June 2015	Smith MEB, Haney E, McDonagh M, Pappas M, Daeges M, Wasson N, Fu R, Nelson H

Samples

Forty samples tested on ELISAs and peptide array and incubated with anti human IgG and IgM antibodies.

- n= 20 ME/CFS subjects who had evidence of immune activation consistent with infection (levels of CD56bright/CD16dim NK cells higher than control)
- n= 20 age and sex matched healthy controls.

Derya Unutmaz in the ME/CFS Center at Jackson Laboratories

CE ID	JAX ID	Status	Year of Collection	Age at Collection	Sex	CD56hi CD16-
JPL-002	MECFS-018	case	2016	47	F	21.3
JPL-003	MECFS-037	case	2016	37	F	12.1
JPL-005	MECFS-073	case	2016	55	F	10.1
JPL-006	MECFS-104	case	2016	54	F	14.1
JPL-007	MECFS-120	case	2016	63	F	11
JPL-008	MECFS-133	case	2016	36	F	14.4
JPL-011	MECFS-172	case	2016	62	F	23.7
JPL-018	MECFS-285	case	2017	33	F	20.2
JPL-019	MECFS-296	case	2017	62	F	14.7
JPL-020	MECFS-302	case	2017	26	F	20.5
JPL-021	MECFS-121	Case	2016	56	F	19.9
JPL-022	MECFS-081	Case	2016	28	F	18
JPL-023	MECFS-170	Case	2016	50	м	15.4
JPL-024	MECFS-136	Case	2016	30	F	14
JPL-025	MECFS-132	Case	2016	37	F	12.2
JPL-026	MECFS-210	Case	2016	25	F	11.8
JPL-027	MECFS-021	Case	2016	22	F	11.4
JPL-028	MECFS-085	Case	2016	33	F	10.3
JPL-029	MECFS-100	Case	2016	30	F	10.3
JPL-030	MECFS-151	Case	2016	41	F	10.2
JPL-001	MECFS-016	control	2016	48	F	1.81
JPL-004	MECFS-049	control	2016	62	F	1.7
JPL-009	MECFS-157	control	2016	39	F	6.08
JPL-010	MECFS-158	control	2016	63	F	2.87
JPL-012	MECFS-178	control	2016	55	F	2.28
JPL-013	MECFS-197	control	2016	37	F	4.06
JPL-014	MECFS-214	control	2017	26	F	2.41
JPL-015	MECFS-215	control	2016	62	F	5.02
JPL-016	MECFS-243	control	2017	54	F	4.92
JPL-017	MECFS-270	control	2017	33	F	1.71
JPL-031	MECFS-HC-28	Control	2016	55	F	3.65
JPL-032	MECFS-HC-30	Control	2016	28	F	3.97
JPL-033	MECFS-204	Control	2016	52	м	1.87
JPL-034	MECFS-HC-42	Control	2016	31	F	7.33
JPL-035	MECFS-HC-191	Control	2016	38	F	7.55
JPL-036	MECFS-HC-41	Control	2016	25	F	6.9
JPL-037	MECFS-HC-27	Control	2016	22	F	3.65
JPL-038	MECFS-HC-161	Control	2016	33	F	3.13
JPL-039	MECFS-HC-165	Control	2016	32	F	0.8
JPL-040	MECFS-HC-65	Control	2016	41	F	4.89

Recombinant Protein EBV ELISAs Revealed No Differences Between ME/CFS and Healthy Controls

Multi-dimensional Analysis Plots of IgG Reactivity in Peptide Chips Discriminated ME/CFS Cases and Healthy Controls

A MDS plot was created for IgG analysis using IgG signal data for each peptide. Signal data points were filtered such that only peptides that showed signal > threshold in any sample were retained. Threshold was calculated by calculating mean+2*SD of random peptides.

This step reduced the initial number of peptides from 376,388 to 108,107

Stats for IgG

Total number of peptides on chip: 376,388 Number of random peptides: 500 Number of filtered peptides at threshold 10K: 108,107

ME-CFS-Case vs ME-CFS-Controls

Number of peptides significant for MECFS_Case: 22,023 Number of peptides significant for MECFS_Controls: 29,415

Number of epitopes: IgG MDS: 1745

Multiplex Serology Using Phage Display

Concordance Between Peptide Array and Granular Phage Display Opportunities to Discriminate Between Infections With Related Viruses and Find Evidence of Reactivation

Reaction of Herpesvirus in ME/CFS Patients

Virus	Protein	CASE1	CASE2	CASE3	CASE4	CASE5	CASE6	CASE7	CASE8
HHV4	BZLF1								
HHV4	C M protease								
HSV1	E- Protein								
HHV-6A	Helicase								
HHV3	Large Tegument Protein								
HHV3	UL32								

Convalescent COVID-19 Patients

Virus	Protein	Sample1	Sample 2	Sample3	Sample4	Sample 5	Sample6
Coronavirus	NP						
	GP						

TruCulture System

Exercise Tolerance Testing (ETT)

Blood draw before and 24 hours after ETT PBMC incubated with SEB, poly I:C, LPS, HKCA, control buffer Supernatant assayed for cytokines, metabolites

Higher IL6 Responses to the Superantigen SEB in Women with ME/CFS Highest response in women >45Y

Cytokine Analyses

- ME/CFS: 1.5x higher concentrations (p<0.05) of T-cell cytokines (GM-CSF, IL-17) after *Staphylococcus* enterotoxin B stimulation
- Cytokine levels higher in ME/CFS females having lower plasma levels of 17β-estradiol (notably higher in females>45y)

Bulk RNASeq Analyses

- ME/CFS: 1.25x (p<0.05) higher levels of T-cell surface receptor beta variable 14 (TRBV14) mRNA
- ME/CFS: 1.3x (p<0.05) lower levels of the programmed cell death 1 ligand 1 (PD-L1) mRNA

Interpretation

- Sex- and age-associated differences in ME/CFS are consistent with the function of 17β-estradiol as a regulator of inflammation
- T-cells in ME/CFS subjects are more sensitive to superantigens
- Potential mechanisms for enhanced sensitivity to superantigens may include increased density of TRBV14 receptors and reduced levels of PD-L1

Mitochondria in ME/CFS Patients are Slow to Recover After Exercise

TCA cycle impairment Mitochondrial damage Oxidative stress Inflammation

Accumulation of citric acid indicates that the cycle is blocked

GWI Proteomic Subject Demographics

Demographics		Group 1 (n=27)	Group 2 (n=36)	p-value	
Sex p (%)		25 (92.6%) 32 (88.9%)		0.620	
Sex II (70)	F	2 (7.4%)	4 (11.1%)	0.020	
Site p (0/) NJ		9 (33.3%) 18 (50.0%)		0 196	
Sile II (70)	WI	18 (66.7%)	18 (50.0%)	0.100	
Age me	an (SD)	52.8 (5.7)	52.8 (4.2)	0.976	

Methods

Plasma collected **before**, **immediately after**, and **24 hours after exercise in GWI subjects and matched controls**

Somalogic panel established to detect **1,512 protein analytes**, implicated in **inflammation**, **metabolic disorders**, and **neurological diseases**

Levels of individual proteins log-transformed and compared between GWI cases and controls using generalized linear mixed models adjusted for age, sex, and site. (*Similar analyses performed with ME/CFS subjects and matched controls before and 24 hours after exercise.*)

Differences in protein levels between case and control groups at the three time points

Trajectories of protein levels in case and control groups between each of the three time points

Results

No *individual* proteins were significantly associated with the outcome (case vs control, FDR > 0.1) at any of the three time points

Ingenuity Pathway Analysis (IPA) revealed significant group-specific difference in biological pathways (FDR < 0.1)

Baseline Before Exercise

GWI v. Control	ME/CFS v. Control			
Metabolic Pathways				
Mitochondrial function	Ceramide signaling			
Glucocorticoid receptor signaling	Circadian rhythm signaling			
Inflammatic	on Signaling			
HIF1α signaling	HIF1α signaling			
STAT3 pathway	STAT3 pathway			
PI3K/AKT signaling	PI3K/AKT signaling			
p38 MAPK signaling	p38 MAPK signaling			
Pathogen-induced cytokine signaling pathway	Pathogen-induced cytokine signaling pathway			
FXR/RXR activation	LXR/RXR activation			
Complement system	IL-17 signaling			
	GM-CSF signaling			
	LI-8 signaling			
	HMGB1 signaling			
	TGF-β signaling			
Neuronal Signaling				
Axonal guidance signaling	Axonal guidance signaling			
Neuregulin signaling	Neuregulin signaling			
Neuroinflammation signaling				

24 Hours After Exercise

GWI v. Control	ME/CFS v. Control				
Metabolic Pathways					
Glucocorticoid receptor signaling Glucocorticoid receptor signaling*					
Mitochondrial function					
Oxidative phosphorylation					
Glutathione redox					
Inflammatio	n Signaling				
HIF1α signaling	HIF1α signaling				
STAT3 pathway	STAT3 pathway				
Pathogen-induced cytokine signaling pathway	Pathogen-induced cytokine signaling pathway				
FXR/RXR activation	LXR/RXR activation				
	IL-17 signaling				
	GM-CSF signaling				
	LI-8 signaling				
	HMGB1 signaling				
	TGF-β signaling				
	PI3K/AKT signaling				
	p38 MAPK signaling				
Neuronal	Signaling				
Neuroinflammation signaling					

*Meyer JD, ..., Stegner A, Cook D. Fatigue: Biomedicine, Health & Behavior, 2013

Trajectories: Before \rightarrow Immediately After Exercise

GWI Cases* – Increased	Controls – Increased		
Cellular communication network factor 1 (O00622)	Cellular communication network factor 1 (O00622)		
Lymphocyte-specific protein 1 (P33241)	Lymphocyte-specific protein 1 (P33241)		
Transaldolase (P37837)	Transaldolase (P37837)		
T-cell surface antigen CD2 (P06729)	T-cell surface antigen CD2 (P06729)		
Neutrophil cytosol factor 1 (P14598)	Neutrophil cytosol factor 1 (P14598)		
Protein S100-A12 (P80511)	Protein S100-A12 (P80511)		
	Aldo-keto reductase family 1 member C3 (P42330)		
	NAD(P)H dehydrogenase [quinone] 1 (P15559)		
	Hexokinase-2 (P52789)		
	Myeloblastin (P24158)		
GWI Cases* – Decreased	Controls – Decreased		
Pancreatic triacylglycerol lipase (P16233)	None		

*No comparable ME/CFS data

Trajectories: Before \rightarrow 24 Hours After Exercise

GWI Cases – Increased	ME/CFS Cases – Increased	Controls – Increased
Triggering receptor expressed on myeloid cells 1 (Q9NP99)	No significant findings	No significant findings
GWI Cases – Decreased	ME/CFS Cases – Decreased	Controls – Decreased
Succinate dehydrogenase assembly factor 1, mitochondrial (A6NFY7)	No significant findings	No significant findings
Peroxisome proliferator-activated receptor gamma (P37231)		
Glutathione S-transferase theta-2 (P0CG29)		

Summary

There are significant similarities in plasma proteomic profiles between GWI and ME/CFS subjects at baseline and 24 hours after an exercise challenge

Abnormalities are found in pathways associated with inflammation, mitochondria, peroxisomes, and neural signaling

Pending Deliverables

Metabolomic analyses Biogenic amines Complex Lipids Oxylipins

<u>Transcriptomics</u> Pre-, immediately post, 24 hours post exercise

Enterovirus serology Other serology?