Neurological complications and sequalae of COVID-19

Avi Nath Chief, Section of Infections of the Nervous System National Institute of Neurological Diseases and Stroke, NIH Bethesda, Maryland, USA

COVID-19

Global Infections: 608 Million Global Deaths: 6.8 Million

US Infections: 95 Million US deaths: 1,050,000; 2-4,000/day

All coronaviruses can cause neurological complications

Human Coronavirus	Genus	Receptor
HCoV-OC43	betacoronavirus	O-acetylated Sialic Aicd (Protein Receptor Unknown)
HCoV-229E	alphacoronavirus	APN
HCoV-HKU1	betacoronavirus	O-acetylated Sialic Aicd (Protein Receptor Unknown)
HCoV-NL63	alphacoronavirus	ACE2
SARS-CoV-1 and 2	betacoronavirus	ACE2
MERS-CoV	betacoronavirus	DPP4

Variants of Concern

The variants have become more transmissible

Neurological complications seem similar with all of them

More infectious less virulent

Cerebral complications from COVID-19

Acute

Anosmia

Metabolic/hypoxic encephalopathy

Strokes

Viral Encephalitis (rare)

Sudden death (Ondine's curse)

Subacute

Chronic

Inflammatory Syndromes

Acute disseminated encephalomyelitis

Acute necrotizing hemorrhagic encephalopathy

Limbic encephalitis

Multisystem Inflammatory Syndrome

Long COVID

VASCULAR INJURY

Strokes and vascular disease with COVID-19

Berlin et al., NEJM 2020 DOI: 10.1056/NEJMcp2009575 Cool en et al., MedRxiv 2020 DOI:10.1101/2020.10.18.20214221v1

ECHMO (external heart lung machine)

Abdalkader et al., J Stroke and Cerebrovascular Diseases 2021 DOI:10.1016/j.jstrokecerebrovasdis.2021.105733

Autoantibodies can raise the risk of strokes

Zuo et al.:

Looked for antiphospholipid (aPL) antibodies in blood of patients hospitalized with COVID-19.

About half the patients tested positive for these potentially pathogenic autoantibodies Science Translational Medicine

Cite as: Y. Zuo et al., Sci. Transl. Med. 10.1126/scitranslmed.abd3876 (2020).

CORONAVIRUS

Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19

Yu Zuo¹, Shanea K. Estes¹, Ramadan A. Ali¹, Alex A. Gandhi¹, Srilakshmi Yalavarthi¹, Hui Shi^{1,2}, Gautam Sule¹, Kelsey Gockman¹, Jacqueline A. Madison¹, Melanie Zuo³, Vinita Yadav⁴, Jintao Wang⁵, Wrenn Woodard⁶, Sean P. Lezak⁶, Njira L. Lugogo⁷, Stephanie A. Smith⁸, James H. Morrissey⁸, Yogendra Kanthi^{4,5‡}, and Jason S. Knight^{1‡}

Table 1. Prevalence of antiphospholipid antibodies in serum from COVID-19 patients (n=172)

aPL antibody	Number positive (manufacturer's cut-off)	%	Number positive (titer ≥40 units)	%
aCL IgG	8	4.7%	2	1.2%
aCL IgM	39	23%	13	7.6%
aCL IgA	6	3.5%	1	0.58%
aβ2GPI IgG	5	2.9%	3	1.7%
aβ2GPI IgM	9	5.2%	7	4.1%
aβ2 GPI IgA	7	4.1%	3	1.7%
aPS/PT IgG	42	24%	21	12%
aPS/PT IgM	31	18%	21	12%
any positive aPL	89	52%	52	30%

Chronic Long-COVID

PATTERNS OF LONG-COVID

Recovery is unlikely after 3-6 months of persistent symptoms

Symptomatic at onset: n=79,155 at 4 wks: n=39,737 (52%) at 12wks: n=28,713 (38%)

Imperial College London

Post-Intensive Care Syndrome

Balcom, et al., Brain 2021

Neurological Symptoms following Mild COVID

Mina et al., unpublished

SCIENTIFIC INVESTIGATIONS

Restless legs syndrome is associated with long-COVID in women

Leonard B. Weinstock, MD, FACG¹; Jill B. Brook, MA²; Arthur S. Walters, MD³; Ashleigh Goris, RN, BSN, MPH, CIC, FAPIC⁴; Lawrence B. Afrin, MD⁵; Gerhard J. Molderings, MD⁶

N=136 in each group Pre-COVID-19 Participants Post-COVID-19 Participants with Long-COVID with Long-COVID Controls RLS prevalence, n (%) 6 (6.7%) 7 (5.7%) 18 (14.8%)^c RLS Severity Score, mean (SD)^a d 18.1 (7.8) 14.0 (4.5) d RLS Sleep Impact Score, mean (SD)^a 5.0 (1.4) 9.6 (3.8)

¹⁸FDG PET scans in subacutely ill hospitalized patients with COVID-19

Hosp et al., Brain 2021

¹⁸FDG PET scans in long-COVID patients with COVID-19

Regions of hypometabolism (n=44)

Guedj et al., European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:2823–2833

nature

https://doi.org/10.1038/s41586-022-04569-5

Accelerated Article Preview

SARS-CoV-2 is associated with changes in brain structure in UK Biobank

COVID cases: 401 Controls: 384

Douaud et al., 2022

DIRECT VIRAL INFECTION

Image credit: KATERYNA KON/SCIENCE PHOTO LIBRARY via Getty Images

Can the virus enter the brain through the olfactory pathways?

Images: McQuaid et al., 2021 DOI: 10.1186/s12987-021-00267-y; Brann et al., 2020 DOI:10.1126/sciadv.abc5801

There is a route the virus can follow to get from the nose to the brainstem

Robust infection in olfactory mucosa

Images: Meinhardt et al., 2020 DOI:0.1038/s41593-020-00758-5

Detection of virus in brain at autopsy

- Rarely detected; in small quantities
- We and others have not been able to detect virus by
 - Immunostaining
 - PCR
 - RNA in situ hybridization
 - RNA sequencing
 - RNA hybridization followed by PCR

Lee et al., NEJM 2021; Lee et al., Brain 2022

SARS-CoV-2 persistence in human body

Tissue Category	DOI (days)	Avg. N gene copies/ng RNA (SD)
	≤14	9,210.10 (43,179.20)
Respiratory Tract	15-30	19.67 (77.98)
	≥31	0.65 (2.61)
Cardiovascular	514	38.75 (106.08)
	15-30	0.59 (3.43)
	≥31	0.42 (2.51)
Lymphoid	≤14	30.01 (157.86)
	15-30	0.35 (1.28)
	≥31	0.73 (3.83)
	≤14	24.68 (99.37)
Gastrointestinal	15-30	0.87 (4.38)
	≥31	0.24 (2.17)
	≤14	12.76 (59.01)
Renal & Endocrine	15-30	0.03 (0.16)
	≥31	0.04 (0.33)
	≤14	0.36 (0.58)
Reproductive	15-30	1.87 (6.72)
	≥31	0.01 (0.02)
Muscle, Nerve, Adipose, & Skin	≤14	27.50 (101.13)
	15-30	50.65 (284.46)
	≥31	0.54 (3.03)
	≤14	57.40 (242.40)
Ocular	15-30	0.07 (0.24)
	≥31	0.03 (0.12)
	≤14	32.93 (121.69)
Central Nervous System	15-30	2.37 (7.34)
	≥31	0.39 (1.40)

Chertow et al., Research Square 2021

Detection of Spike protein in blood of patients with PASC (Long-COVID)

IMMUNE MEDIATED PATHOGENESIS

Antibodies

Macrophages

Control

COVID-19

Activation of endothelial cells (PECAM-1) Deposition of complement Deposition of IgG and IgM

Lee at al., Brain 2022

Platelets are activated and form clots in small blood vessels

Anti-CD61 (activated platelets)

Lee et al., Brain 2022

Perivascular fibrinogen leakage indicates vascular injury

Lee et al., Brain 2022

Lee et al., Brain 2022

Diffuse microglial cell activation in Long-COVID

Visser et al., Med Rxiv 2022

Immunity

Heming et al., 2021, Immunity 54, 164–175 January 12, 2021 © 2020 Elsevier Inc.

Article

Neurological Manifestations of COVID-19 Feature T Cell Exhaustion and Dedifferentiated Monocytes in Cerebrospinal Fluid

Michael Heming,^{1,9} Xiaolin Li,^{1,9} Saskia Räuber,¹ Anne K. Mausberg,² Anna-Lena Börsch,¹ Maike Hartlehnert,¹ Arpita Singhal,³ I-Na Lu,¹ Michael Fleischer,² Fabian Szepanowski,² Oliver Witzke,⁴ Thorsten Brenner,⁵ Ulf Dittmer,⁶ Nir Yosef,^{3,7,8} Christoph Kleinschnitz,² Heinz Wiendl,¹ Mark Stettner,^{2,10,*} and Gerd Meyer zu Hörste^{1,10,11,*}

Increased dedifferentiated monocytes

Increased T cell exhaustion

Post-mortem MRI (11.4T scanner) 100 micron sections

Neuronal Injury in Brainstem

TPre-Botzinger complex

Neuronophagia

CD68

MARKERS OF NEURONAL INJURY

Ziff et al., J Neurochem 2021

SARS-CoV-2 causes brain inflammation and induces Lewy body formation in macaques

Philippens et al.,

THE PREPRINT SERVER FOR BIOLOGY

Increased pTau in COVID brain

Peripheral Neuropathy Evaluations of Patients With Prolonged Long COVID

Anne Louise Oaklander, MD, PhD, Alexander J. Mills, BS, Mary Kelley, DO, Lisa S. Toran, MD, Bryan Smith, MD, Marinos C. Dalakas, MD,* and Avindra Nath, MD*

Correspondence Dr. Oaklander aloaklander@mgh.harvard.edu

Neurol Neuroimmunol Neuroinflamm 2022;9:e1146. doi:10.1212/NXI.00000000001146

N=17 Mild COVID (n=16) Age: 43<u>+</u>3 yrs Female: 68.8% Small fiber neuropathy

<u>Treatment:</u> corticosteroids n=6 IVIG: n=6

Multisystem Involvement in Post-Acute Sequelae of Coronavirus Disease 19

ANN NEUROL 2022;91:367-379

Peter Novak, MD, PhD ⁽⁰⁾,^{1,2} Shibani S. Mukerji, MD, PhD ⁽⁰⁾,^{2,3} Haitham S. Alabsi, DO,^{2,3} David Systrom, MD,^{2,4} Sadie P. Marciano, PA-C,¹ Donna Felsenstein, MD,^{2,5} William J. Mullally, MD,^{1,2†} and David M. Pilgrim, MD^{1,2†}

N=9

Small fiber neuropathy with autonomic dysfunction

N=6

Female COVID-19-positive participants
Male COVID-19-positive participants
Female control participants
Male control participants

Pain syndromes with Long-COVID

COVID (N=4231)

Controls (N=8462)

Ballering et al. Lancet; 400: 452-61; 2022

FUTURE DIRECTIONS

Biomarkers

Neuronal injury NfL, pNfH, GFAP, SNAP25 Vascular injury sICAM, VEGF, P-selectin, E-selectin, MMP-3, antibodies to ACE2, Immune activation

Virological markers proteins: nucleocapsid, spike RNA: antibodies for epitope mapping

Clinical Trials

Immunomodulatory agents

Potential Therapeutic Targets

- Innate immune responses:
 - IVIg; anti-IL-1 and anti-IL-6 antibodies; BTK inhibitors, GM-CSF inhibitors
- Anti-T cell therapies
 - Mycophenolate; azathioprine; methotrexate
- Reverse immune exhaustion
 - Checkpoint inhibitors
- Anti-B cell therapies
 - Rituximab

Non-specific immune modulators

• Corticosteroids

Challenges

Subjective endpoints

Natural history unknown

Conclusions

- Direct invasion of the brain by SARS-CoV-2 is rare and does not explain the neurological complications
- Neuroimmune dysfunction is driven by activation of innate immunity, immune exhaustion and antibody mediated phenomenon
- Endothelial cell damage by immune complexes is the primary pathophysiological process in Neuro-COVID
- Neuroinflammation may accelerate protein aggregation

Acknowledgements

Marco Hefti (University of Iowa)

Rebecca Folkerth (NY medical examiner)

Daniel Perl (USUHS)

Eliezer Masliah (NIA)

Serena Spudich (Yale U)

NINDS, NIH

Myoughwa Lee, Wenxue Li, Dragan Marac (Neuropath)

Yair Mina, Farinaz Safavi, Bryan Smith, Brain Walitt, David Goldstein, Stave Jacobson, Amanda Weibold Ladifatou Fouanta Govind Nair, Alan Koretsky, Helen Murray (MRI)

Walter Koroshetz