"Overview of the Department of Veterans Affairs Surveillance and Research Activities in the Depleted Uranium and Embedded Fragment Cohorts"

> Melissa A. McDiarmid, MD, MPH, DABT Baltimore VA Medical Center University of Maryland, School of Medicine

Historical Timeline of Fragment Related Events

Mission:

 Since 1993: To provide clinical surveillance for the 'friendly fire' DU-exposed GWI Veterans

• Since 1998: To provide biologic monitoring by mail to assess DU exposure for all GWI and OIF Veterans

Conducted at the Baltimore VA, the most recent evaluations included:

- Detailed history
- Physical examination
- Exposure assessment Urine U concentrations
- Extensive laboratory studies (hematology, serum chemistry, neuroendocrine, urinalysis, renal markers, bone metabolism)
- Special imaging to survey for local effects
- Neurocognitive test battery
- Lung function tests

Prior evaluations included:

- Semen analysis
- Skin patch testing for U hypersensitivity
- Whole body radiation counting
- Markers of genotoxic effect
- Chromosomal analysis
- Focus groups
 Sunsetted

Summary of 'Friendly-Fire' Surveillance Visits Through 2020

Visit Year	Gulf War 1		OIF	Total
	DU-exposed	Non-exposed	DU-exposed	
1993-4	33			33
1997	29	38		67
1999	21+29 new			50
2001	31+8 new			39
2003	32			32
2005	30+4 new		3	37
2007	32+3 new		2 (1 new)	37
2009	38+2 new		2	40
2011	36+1 new		2	39
2013	35			35
2015	36			36
2017	41+1 new			42
2019	36			36

Why are fragments not removed?

Image provided by: Dr. Richard Breyer, Baltimore VAMC

Demographic Characteristics of the DU Surveillance 2019 Participants Compared to All Participants

	2019 Cohort (N=36)		All GW1 Participa (N=81)	
	N	(%) ^a	N	(%) ^a
Race/Ethnicity				
African American	11	(30)	24	(30)
Asian American	1	(3)	1	(1)
Caucasian	21	(58)	46	(56)
Hispanic	3	(8)	8	(10)
Native American	0	(0)	1	(1)
Age ^b				
Mean	54		52	
s.d.	4.98		4.67	

^a May not add to 100% due to rounding

^b Age at 2019 visit

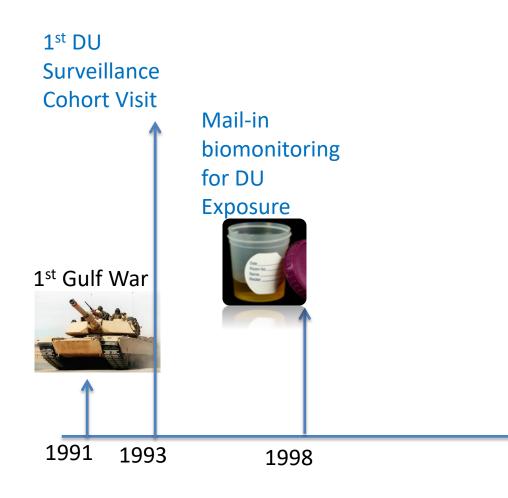
Mean uU Concentrations Across 13 visits by 2019 Surveillance Visit Participation

	2019	9 DU	Rest	of DU	Mann
	Coł	nort	Co	<u>hort</u>	Whitney
			(did no	ot attend	р
			<u>in 2</u>	2019)	
Low uU	Mean	0.031			
group*	SE	0.011	Mean	0.019	0.813
	Ν	26	SE	0.004	
			N	40	
High uU	Mean	7.900			
group**	SE	3.690	Mean	4.650	0.440
9 . 2 3. It	N	10	SE	2.582	
	. •	_0	N	5	

^{*} Urine U <0.10 mcg/g creatinine during most recent visit

^{**}Urine U ≥0.10 mcg/g creatinine during most recent visit

CLINICAL FINDINGS


- Sustained elevated urine U excretion seen in Veterans with DU fragments >20 years after time of injury
- No clinically significant differences detected between low and high U exposure groups for:
 - Hematology parameters
 - Urine chemistry parameters
 - Semen characteristics
 - Neuroendocrine measures
 - Neurocognitive measures

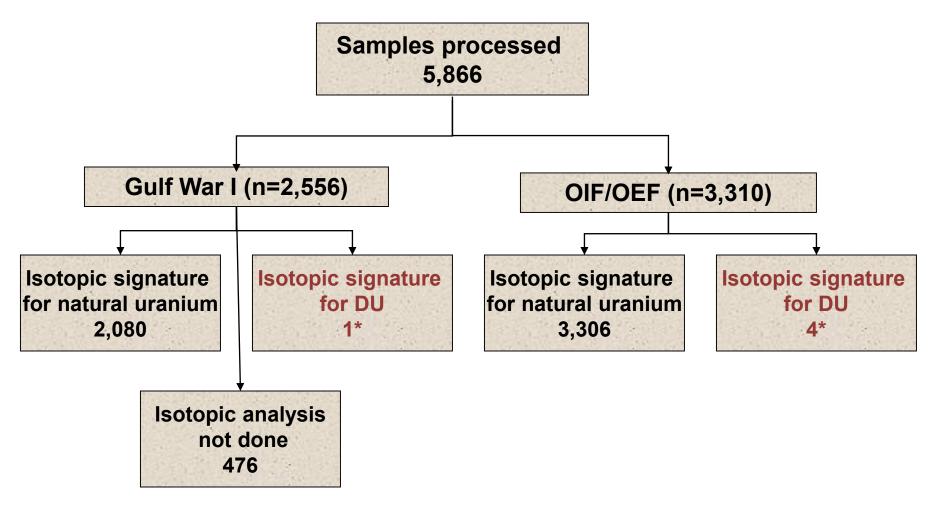
- But signals for proximal tubule effects and abnormal bone mineral density as a function of U level.
- On-going accrual of U, co-morbidities and aging of the cohort recommend continued surveillance.

Historical Timeline of Fragment Related Events

Mission:

• Since 1993: To provide clinical surveillance for the 'friendly fire' DU-exposed GWI Veterans

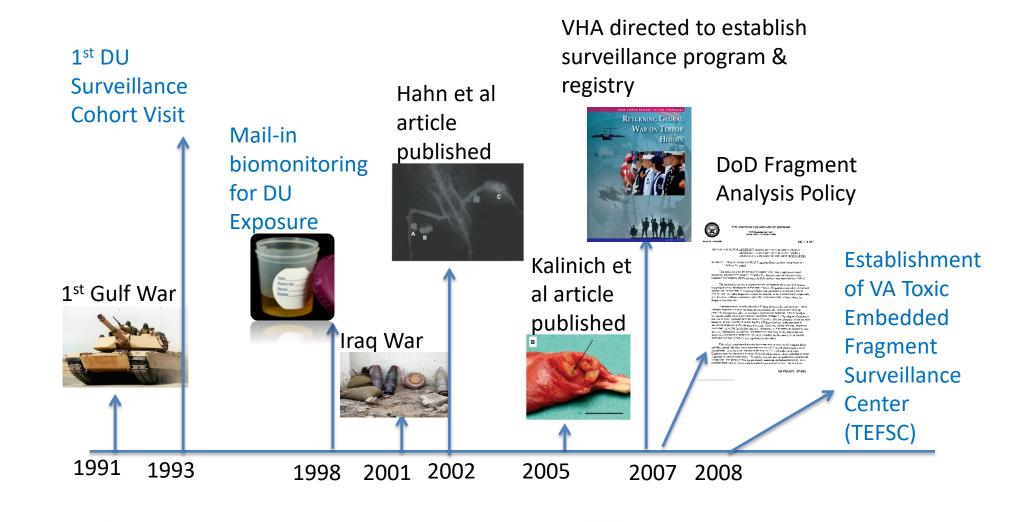
 Since 1998: To provide biologic monitoring by mail to assess DU exposure for all GWI and OIF Veterans



PURPOSE OF THE DU URINE BIOMONITORING PROGRAM

- Determine urine uranium concentrations in any Veteran who requests testing
- Perform passive surveillance for exposure scenarios linked to DU exposure other than friendly fire
- Provide assistance to Veterans' primary care providers in interpreting results and answering Veterans questions

RESULTS OF DU URINE SURVEILLANCE (AS OF DECEMBER 31 2018)



*All with DU signature were invited to enter the DU Follow-up Program.

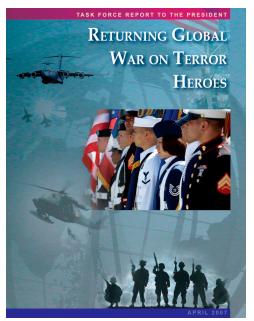
Three from OIF/OEF declined but may be interested in future follow-up.



Historical Timeline of Fragment Related Events

Background

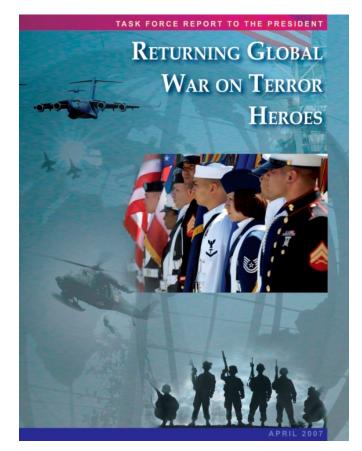
- Traumatic injuries via contact with improvised explosive devices (IEDs) are a "signature injury" for those who served in Iraq and/or Afghanistan.
 - More than 44,000 Veterans may have embedded fragments; many from Improvised Explosive Devices (IEDs)
 - IEDs are packed with heterogeneous material that may lead to local and systemic adverse health effects



Photos: wikipedia

• 2008: Established to provide care and active medical surveillance for Veterans with retained embedded fragments

• Concerns:

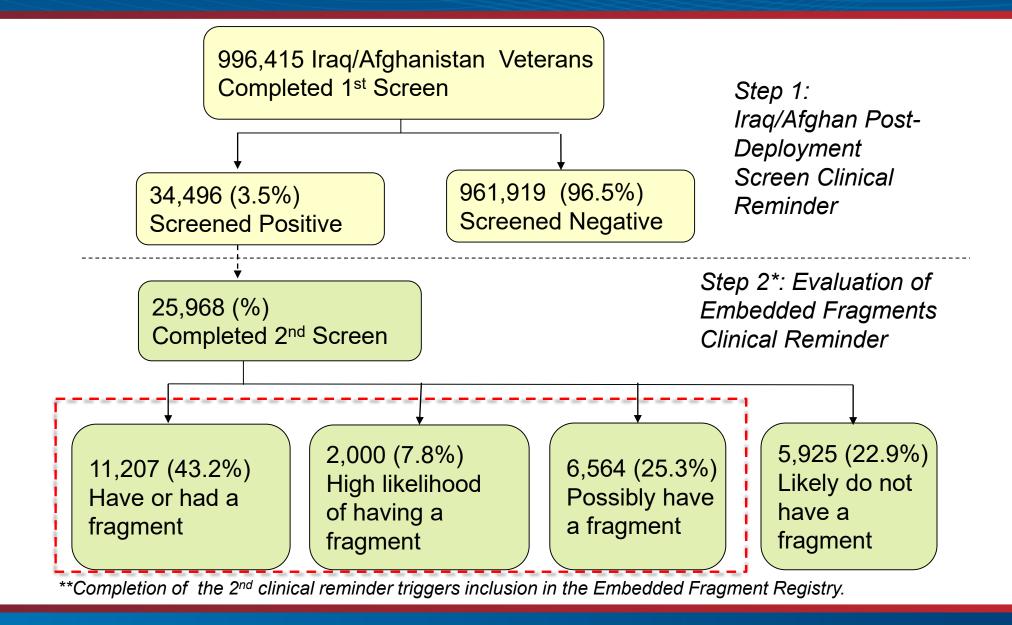

- Local effects: risk of developing tumors at fragment sites
- Systemic effects: risk of target organ effects arising from chemicals released from fragments

Toxic Embedded Fragment Surveillance Center

- **Mission:** To track, monitor, provide follow-up care and active medical surveillance for Veterans with embedded fragments
- Functions of the TEFSC:
 - Registry development
 - Fragment Characterization
 - Biomonitoring & Medical Surveillance
 - Clinical Consultation

April 2007

VA's Embedded Fragment Registry


• Eligible Veterans:

- -Served in Iraq and/or Afghanistan
- Have or likely have a retained fragment from an injury received while serving in the area of conflict
- Identified using a series of screening questions
- Almost 17,000 Veterans currently enrolled

SCREENING RESULTS AS OF DECEMBER 31 2018

Surveillance Protocol for Veterans with Embedded Fragments

- Characterization of removed fragments
- Urine biomonitoring via mail
- Imaging surveillance of embedded fragment location and shape
- Target organ surveillance for toxicants of concern

1995 film 2001 film

Change in DU fragment appearance over time; suggests oxidation in situ and additional imaging is warranted.

Urine Biomonitoring

- Spot urine collection to measure concentrations of 14 metals
- Specimens and exposure questionnaires mailed to Baltimore VA
- Metal analyses conducted by the Joint Pathology Center
- Interpretation letters provided to Veteran and VA provider

Toxicants of Interest

- Aluminum (Al)
 Manganese (Mn)
- Arsenic (As)
- Molybdenum (Mo)
- Cadmium (Cd)
- Nickel (Ni)
- Chromium (Cr) Lead (Pb)
- Cobalt (Co)
- Uranium (U)
- Copper (Cu)
- Tungsten (W)
- Iron (Fe)
- Zinc (Zn)

Systemic Exposure from Retained Metal in other Populations

- Elevated blood lead levels (BLLs) documented in gunshot victims who have retained bullets.

 (Dillman et al., 1979; Bustamante et al., 2016; McQuirter et al., 2001, 2004, Mago 1999)
- Sustained urine uranium concentrations in Veterans with retained depleted uranium (DU) fragments. (McDiarmid et al., 2015, 2017)
- Elevated concentrations of cobalt and chromium in metal-on-metal hip implant patients.

Interpretation of Urine Biomonitoring Results

Metal	Ref. Value (ug/g cre)	Level of "Concern"	Additional Notes	Key Points:		
Al	30 ^a	150 ug/g cre	Based on neurobehavioral outcomes ^a			
As	53.90 ^b	35 ug/L	BEI for Inorganic As	 Prefer to use NHANES 		
Cd	1.02 ^b	3ug/g cre	OSHA Action Level based on renal damage	data to establish		
Cr	2.0°	25ug/L	BEI for Cr(VI) based on respiratory outcomes	reference values		
Со	0.98 ^b	15 ug/L	BEI based on respiratory outcomes	- 1 1 1 1 1 1 1 1 1		
Cu	50 ^d	>60 mcg/L	Concerns of Wilsons Disease	 Levels linked to health 		
Fe	300 ^d	-		effects are often based on		
Pb	1.94 ^b	-	Obtain BLL if urine elevated	different exposure		
Mn	2 ^e	-	1-8ug/L in general population (ATSDR/CDC)			
Мо	127 ^b	-		pathways		
Ni	10 ^c	10ug/L	Based on renal effects (FDA, unpublished)			
W	0.28 ^b	-	0.48-1.19 ug/L in drinking H20 exposed pop (ATSDR/CDC) 10.6-168.6ug/g cre in healthy W-exposed workers (Kraus et al, 2001)			
U	0.03 ^b	-	70 ug/g cre reported in DU-exposed cohort (McDiarmid et al 2015,2017)			
Zn	1300 ^e	-				

^a Lauwerys RR and Hoet P. 2001. Industrial Chemical Exposure Guidelines for Biological Monitoring, 3rd edition. Boca Raton, FL: Lewis Publishers. ^b CDC. NHANES 2003-2004 data. ^c Burtis CA and Ashwood ER (Eds.) 2001. Tietz Fundamentals of Clinical Chemistry (5th edition), Philadelphia: WB Saunders Co. ^d University of Iowa Lab, 2012. ^e Cleveland Clinic Labs, 2012.

Interpretation of urine biomonitoring results What if results are above reference value?

Consider other sources of exposure

- Occupation

- Piercings

- Hobbies

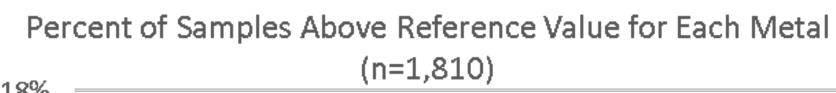
- Tattoos

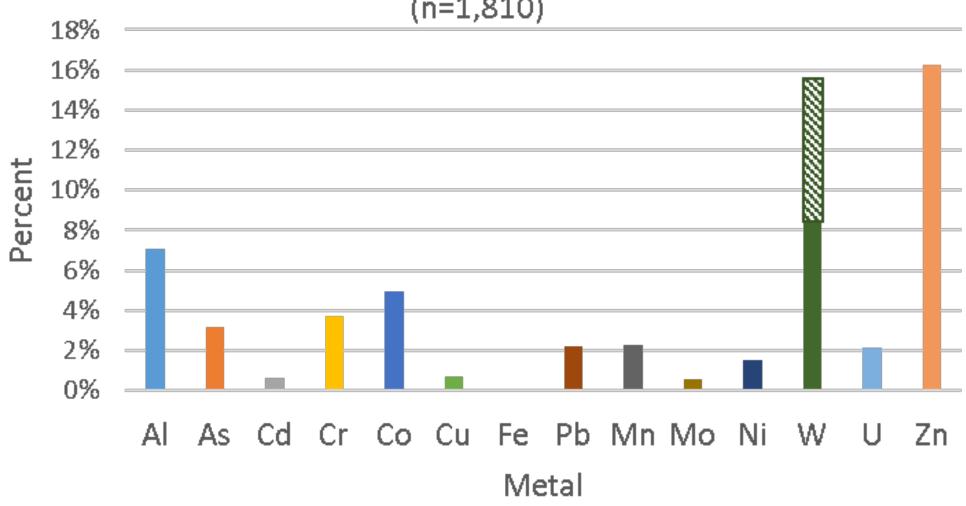
- Metal implants - Diet

- Supplements

- BLLs if urine Pb is elevated
- Speciation testing to determine if As is inorganic vs. organic
- Recommend repeat urine biomonitoring

• Values are compared to:


- Our reference values
- Levels linked to health effects
- Distribution of results


Recommended timeframe for obtaining another urine sample	If
5 years	All values are below are reference values
2 years	"Slightly above" reference values
3-6 months	Above reference values but below a level linked to health effects
Repeat now	At or above a level linked to health effects

F

Majority of samples (~60%) have no metal elevations.

SUMMARY OF TEF PROGRAM KEY POINTS

- Embedded fragments pose **potential local and systemic health effects**.
- Current VA efforts assist in:
 - Identifying the at-risk population
 - Characterizing systemic metal exposure related to retained fragments
 - Anticipating potential health effects
 - Optimizing the care provided to affected Veterans
- Major findings to date:
 - Majority of urine results all within established reference ranges and will serve as a baseline for future follow-up
 - To date, no recommendation has been made to remove a fragment based on metal elevation

Conclusion

Urine biomonitoring, performed at intervals over the long-term, is a non-invasive method to help better identify and characterize fragment-related exposures and associated systemic metal body burden.

QUESTIONS?

