Institute for Neuro-Immune Medicine

Institute mission statement

☐ To advance knowledge and care for people with complex neuro-inflammatory illnesses through research, clinical care and education

Nova Southeastern University
Institute for Neuro-Immune Medicine
Gulf War Illness

>25% of veterans returned from the first Gulf War Illness with a chronic often disabling multisymptom illness

ME/Chronic Fatigue Syndrome

- 800,000 to 2.5 million Americans are affected with ME/CFS
- Five times more common in women
- Long-lasting, debilitating illness (heart disease, end stage renal, MS, AIDS)
- 25% unemployed or receiving disability
NSU Institute for Neuro-Immune Medicine: Clinical Team

NSU/COM Institute in partnership with the Miami VAMC
Nancy Klimas, MD, Director
Nick Lewis, Institute Administrator
Irma Rey, MD Director, Medical Education
Maria Vera, MD Clinician
Lynn Lafferty, PharmD, ND , CNC, Integrative Medicine
Connie Sol, Exercise Physiologist
Irina Rosenfeld, ARNP , Phyllis Wagner, ARNP
Ernesto Martinez, MD Research Associate

NSU Institute for Neuro-Immune Medicine: Research Team

• Mariana Morris, PhD (Wright State)
• Gordon Broderick, PhD (Univ Alberta)
• Travis Craddock, PhD (Univ Alberta)
• Paula Waziry PhD (NSU)
• Lubov Nathanson, PhD (Univ of Miami)
• Maria Vera, MD (University of Miami)
• Mary Ann Fletcher, PhD (University of Miami)
Institute: Integrative Medicine with a Research Backbone

- Immunology
- Neuro-immunology
- Genomics
- Computational Biology
- Animal Modeling
- Biorepository Development

- Clinical Care
- Exercise physiology
- Nutrition
- Complementary Medicine

Institute mission

- An integrated program, which will not separate the clinical, research, and education missions

- NSU investigators/clinicians/educators working through an international platform for collaboration with a wider network of institute fellows
Institute mission

Nova Southeastern University
Institute for Neuro-Immune Medicine

clinical care clinical research laboratory research computational research

Education, Research, Clinical Care

Nova Southeastern University Institute for Neuro-Immune Medicine

Finding New Interventions

Targeted therapies:
• improving cellular energy
• Enhancing antiviral functions
• Reducing neuroinflammation
• Reducing pain
• Quieting immune activation
• Enhancing adrenal function
• Correcting autonomic dysfunction

Nova Southeastern University Institute for Neuro-Immune Medicine
Testing New Interventions

New strategies in design:
• RedCAP platform for assessment
• Nanostring platform, multiplex cytokines, immune function
• Dynamic Challenge to test response at clinical and biologic levels
• Computational biology / modeling analysis

Treating Gulf War Illness
A Pathogenesis Based Approach

Nancy Klimas, MD
Nova Southeastern University and Miami VAMC
<table>
<thead>
<tr>
<th>Gulf War Illness</th>
<th>Chronic Fatigue Syndrome***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>Disabling fatigue</td>
</tr>
<tr>
<td>Depression</td>
<td>Exercise induced relapse</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>Arthralgia</td>
</tr>
<tr>
<td>Myalgia</td>
<td>Myalgia</td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td>Non restorative sleep</td>
</tr>
<tr>
<td>Cognitive dysfunction</td>
<td>Cognitive dysfunction</td>
</tr>
<tr>
<td>Headache</td>
<td>Headache</td>
</tr>
<tr>
<td>Diarrhea, intermittent</td>
<td>Sore throat</td>
</tr>
<tr>
<td>Wheezing, Cough, Chest pain,</td>
<td>Tender lymph nodes</td>
</tr>
<tr>
<td>Shortness of breath*</td>
<td></td>
</tr>
<tr>
<td>Weight loss, low grade fever***</td>
<td></td>
</tr>
</tbody>
</table>

Model of Pathogenesis

Genetic Predisposition

Triggering event / infection

Mediators (Immune, endocrine, neuroendocrine, sleep, psychosocial, viral reactivation or persistence)

GWI
Autonomic Dysfunction

Neurally mediated hypotension (Rowe)
Orthostatic hypotension (Streeten)
Parasympathetic dysfunction (Sisto)
Sympathetic over activation (Pagini, De Becker)

Balancing Act

sympathetic parasympathetic

Autonomic Nervous System

• Decreased cerebral perfusion at rest and after pyrostigmine challenge in GWI (Lui et al 2011)
• Haemodynamic Instability Score taken during tilt table testing predicts CFS with 90% sensitivity. (Naschitz et al 2003)
• Heart Rate variability as a predictor of CFS (Yamamoto et al 2003)
• HRV reduced in female GWI (Stein et al 2004)
• Gastric emptying delayed in 23/32 CFS subjects (Burnet et al 2004)
Autonomic Nervous System

• CFS/ME patients have a low blood volume state – nearly one liter lower than normal. Peckerman’s GWI echo studies also suggests low volume state in GWI.

• In ME/CFS this reflects a matched RBC mass and plasma volume decrease, resulting in a misleading normal ratio, thus a normal CBC

Implications for treatment - NMH

Remember: On a good day your patient is a liter short on blood volume

“Pipes and a pump”, wired by the autonomic nervous system

• Fill the space – increase plasma volume (electrolyte or fludrocortisone)

• regulate the pump - beta blockers

• compress the space - alpha 1 agonists (e.g. midodrine),
 anti-phlebitic stockings, core muscle strengthening

• Reconditioning

Consider referral to cardiology or neurology for tilt table study
Immune modulation in GWI

• Largely untested in GWI
• Evidence suggests two targets: reducing inflammation, particularly neuroinflammation and enhancing antiviral function, particularly cytotoxic function.

Reducing inflammation

• While biologic response modifiers are promising avenues for study there are some drugs and supplements that have been shown to quiet inflammation to some level in similar illnesses.
• Omega 3 in high dosing ranges quiets TNF α; low dose naltrexone to quiet neuro-inflammation pathways
• Reducing exposure to known immune stimulants such as allergens. Vaccine use has a different risk/benefit ratio than in healthy veterans and should be weighed based on past experience.
Improving antiviral function

- Work up should include quantitative immunoglobulins, immunoglobulin subclasses. Our work also suggests cytotoxic functional assays are useful, and viral serologies.
- Enhancing cytotoxic function is a focus of our work. Supplements with placebo control dat in related illnesses:
 - inosine or isoprinosine,
 - mushroom extracts,
 - Equilibrant (Sophora root extract with immune modulatory effects).
Caution in the setting of autoimmune comorbid illness.

Viral Persistence/Reactivation

GW1: Increased titers to EBV6, HHV6, HSV, reduced T and NK cell function (Vojdani et al 2004, Klimas et al 2009)

CFS/ME:
- HHV6 virus is present in 22 to 54% of patients in cross sectional studies (Ablashi, Krueger, Knox), HHV6 virus is present in 79% of CFS patients in longitudinal studies (HHV6 PCR assay, Knox)
- HHV6 virus is present in the spinal fluid of 28 of 120 CFS patients (Peterson), and 7 of 35 CFS samples (Knox).
- Enterovirus is present in 13% of CFS muscle samples (Douche-Aourik, 2003) 60% gastric biopies (Chia 2007)
- EBV – dUTPase as a immune modulator, up regulating inflammatory cytokines (Glaser, 2005, 2012)
Antimicrobials

- No antiviral work done in GWI,
- mycoplasma study definitively negative

- In CFS/ME:
 - Phase 1 study and a small phase 2 study of valgancyclovir, in CFS patients with very high serology for EBV and HHV6. In the phase 2 study improvement was seen in mental fatigue, note the need for high titer serology to predict response (Montoya et al)
 - In vitro studies acyclovir derivative drugs have some anti-HHV6 effect at high dosage (e.g. acyclovir 800 tid)

HPA HPG HPT axis interventions: –

- Growth hormone studies in ME/CFS showed early promise, nothing similar in GWI
- Cortisol – conflicting phase 2 study results in ME/CFS (Cleare, Strauss), Cleare notes responders showed normalization of DHEA, Leptin
- Estrogen, testosterone – normalizing hormone levels in low risk patients reasonable.
- Restoration of sleep cycle is not enough to correct HPA access dysregulation
Sleep Physiology

• Sleep disordered breathing in GWI – phase 1 of CPP promising

• In CFS/ME Circadian Sleep - Wake neuroendocrine and immune functions in CFS (Modolfsky)
• altered diurnal patterns in cortisol, prolactin
• altered diurnal patterns of NK cell function
• alpha wave intrusion on sleep EEG, reduced stage III (SWS)
• Higher %REM (Twin study, 22 discordant twins)¹

¹ Watson et al Sleep 2003 26(3):32-8

Sleep: Treatment

• Re-establish circadian rhythm
• Consider CPAP for upper airway dysfunction

Conditioned response to bed - avoid bed for resting, reading, use bed for sleeping. Establish “bedtime”.
• Avoid short acting hypnotics except in true insomnia (alpha trappers)
• tricyclics, doxepan are longer acting, and don’t trap in alpha wave
• mirtazapine (Remeron), gamma hydroxybutyrate, (Xyrem) act as SWS inducers, ?melatonin,
• eszopiclone (Lunesta), zaleplon (Sonata), and zolpidem (Ambien) sleep neutral

• Sleep studies very helpful as many as 50% of profoundly fatigued people have sleep apnea

Nova Southeastern University Institute for Neuro-Immune Medicine
Pain and Sleep

Clinical dogma “restorative sleep is key to improvement”
The trials in FM report pain improvement with sleep restoration and vice versa
Experience has taught us that this is not always generalizable – it would be helpful if there were studies in GWI

Fibromyalgia

- Lower neck in front
- Edge of upper breast
- Below side bone at elbow
- Just above knee on inside
- Base of the skull
- Neck and shoulder
- Upper inner shoulder
- Upper outer buttock
- Hip bone
Pain

In Fibromyalgia patients and FM subset of GWI or CFS there are 3 labeled pain medications and 1 pipeline sleep medication

- Pregabulin (Lyrica)
- Duloxetine (Cymbalta)
- Milnacipran (Savella)

Finishing trials: sodium oxybate (Xyrem), low dose naltrexone (1.5 to 4.5 mg)

- Opiates, alcohol increase neuroinflammation and reinforce central pin processing upregulation
Low Dose Naltrexone

Ideally, LDN will quiet down activated microglia while not significantly inhibiting the body’s natural pain-relieving opioids.

<table>
<thead>
<tr>
<th>Examples of MULTI-USE DRUGS</th>
<th>SLEEP</th>
<th>MH</th>
<th>PAIN</th>
<th>MIGRAINE</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA: amitriptyline, doxepin</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>wt gain, OL, dry mouth</td>
</tr>
<tr>
<td>trazodone</td>
<td>++++</td>
<td>+</td>
<td></td>
<td></td>
<td>daytime sedation</td>
</tr>
<tr>
<td>SSRI: fluoxetine, sertraline, escitalopram, mirtazapine</td>
<td>+/-</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>daytime sedation</td>
</tr>
<tr>
<td>SNRI: venlafaxine, duloxetine</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>weight loss</td>
</tr>
<tr>
<td>NSRI: Milnacipran</td>
<td>?</td>
<td>+</td>
<td>+++</td>
<td>?</td>
<td>nausea – take with food</td>
</tr>
</tbody>
</table>

Nova Southeastern University Institute for Neuro-Immune Medicine
Examples of MULTI-USE DRUGS

<table>
<thead>
<tr>
<th></th>
<th>SLEEP</th>
<th>MH</th>
<th>PAIN</th>
<th>MIGRAINE</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACD anticonvulsants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hair loss some ACD’s</td>
</tr>
<tr>
<td>divalproex</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>weight gain</td>
</tr>
<tr>
<td>gabapentin</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>brain fog</td>
</tr>
<tr>
<td>pregabalin</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>brain fog, wt gain</td>
</tr>
<tr>
<td>lamotrigine</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>rash</td>
</tr>
<tr>
<td>topiramate</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>weight loss, brain fog</td>
</tr>
<tr>
<td>zonisamide</td>
<td>+/-</td>
<td>+/+</td>
<td>+</td>
<td>++</td>
<td>weight loss</td>
</tr>
<tr>
<td>ANTIPSYCHOTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sulfa allergy</td>
</tr>
<tr>
<td>olanzapine</td>
<td>++++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>Weight gain</td>
</tr>
<tr>
<td>(Zyprexa)</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quetiapine</td>
<td>++++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Seroquel)</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nova Southeastern University Institute for Neuro-Immune Medicine
Nutritional interventions

Dangers:
• Licorice root – potassium deficiencies
• “supplements” that are actually hormones
• “supplements” that have iffy contents – eg. St John’s wort, melatonin
• Products that make unsubstantiated claims
• Under and over hydration

Nova Southeastern University Institute for Neuro-Immune Medicine

Nutritional interventions

- Oxidative stress studies suggest interventions such as glutathione, N-acytylcysteine, alpha lipoic acid, NADH
- Vitamin studies suggest B vitamins, Vitamin C, magnesium, sodium, zinc, l-tryptophan, L carnitine, co-Q10, and essential fatty acids
- CoQ 10 is the only medication with favorable GWI data in palcebo control studies
- Highlighted interventions have randomized clinical trials published

Nova Southeastern University Institute for Neuro-Immune Medicine
CoQ10 and GWI

- Placebo control studies at 100 bid and 300 bid
- 100 bid showed efficacy
- 300 bid lost the presumed benefit due to hs dosing activating and reducing quality of sleep
- So - don’t take coq10 at bedtime
- Ubiquinol 100 bid or ubiquinone 300 bid

Nutritional interventions

- Vitamin D optimized to a level of 60 or greater
- Omega 3 fatty acids (fish oil, flaxseed) 2000 mg bid
- Sublingual B complex daily
- Ubiquinol 100 mg BID or 200 q am
Reconditioning/ CBT

Poor orthostatic resilience leads to substantial challenges to usual reconditioning programs

- Concentrate on muscle bulking exercises, increasing metabolic rate (weight training, light weights)
- Flexibility, stretching and balance as core component.
- When possible obtain VO2 max and use pulse meter to keep effort below aerobic threshold
- If not, then limit upright head up time to 5 minutes aerobic alternating with 10 minutes flat rest, use flat or near flat aerobic conditions (swimming, recumbent bike)
Conclusion

• GW era vets are at high risk for GWI and CFS/ME like illness
• There has been significant progress in our understanding of GWI and CFS/ME.
• The neuroendocrine, immune, and central nervous system are linked, and can’t be considered separately. Seeing the illness as a homeostasis reset has important treatment implications.
• Subgroups, including virally infected patients suggest targeting therapies.
• More effective therapies, based on this new understanding are available, with others under study.

Nova Southeastern University Institute for Neuro-Immune Medicine

Practical Implications based on our groups work thus far

Medications directed at reducing inflammation, and oxidative stress, particularly neuroinflammation - e.g. low dose naltrexone (Dr Meggs recruiting), high dose omega 3 fatty acids, antioxidants, e.g. CoQ 10 (work of Beatrice Golumb et al)

Avoidance of toxins particularly naphthalene, petroleum product derivatives based on abnormal detoxification pathways

Repeated stress responses help to potentiate the illness, buffering stress makes a difference (e.g. CBT)

Exercise intolerance is very real and exercising to VO2 max will cause relapse. Working within an “energy envelop” can be helpful – we use pulse alarms set below VO2 max.

Optimize cellular energy/repair mechanisms – measure and optimize vitamin D, B12. work on nutrition and judicious use of supplements

Nova Southeastern University Institute for Neuro-Immune Medicine
Primary care, GWI and VA resources

• Without an “expert” GWI clinic, care is still accessible in the VA
• PCP to manage endocrine, pain, sleep
• Sleep clinic to rule out apnea and assist in restorative sleep
• Rehab/PT/chiropractic/acupuncture to help with pain management and develop rehab program. MOVE would need adaptation to the limits of the illness
• Cardiology for autonomic dysfunction if needed
• Endocrine for complex endocrine management, metabolic disorder
• Comorbid conditions management as needed; watch for PTSD and situational depression

Part 3

• Are men and women different? Does it matter?
Are men and women different? Does it matter?

- Although men with GWI have been extensively studied, we know less about women veterans with GWI due to the limited numbers of female veterans in pathogenesis studies.
- Large survey studies, particularly those evaluating fertility and risk of birth defects have revealed inconclusive results per OIM Reports (OIM, 2009).
- However, a few studies assessing gender differences have revealed that women appear to present with increased autonomic abnormalities, as measured by heart rate variability (Stein et al 2004) some differences in symptom cluster (Kang et al 2005), as compared to their male counterparts.

Neuroendocrine, Autonomic, Immune interactions in GWI and CFS/ME: Implications for Women

- Previous research efforts revealed that endocrine, autonomic and immune abnormalities were more prevalent in GW deployed veterans as compared to HC.
- These systems co-regulate each other, and dysregulation in one system will impact the others.
<table>
<thead>
<tr>
<th>Hormone</th>
<th>Examples of Immune Cells with Receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucocorticoids</td>
<td>T and B-lymphocytes, neutrophils, monocytes/macrophages</td>
</tr>
<tr>
<td>Substance P</td>
<td>T and B-lymphocytes, eosinophils, mast cells, monocytes/macrophages</td>
</tr>
<tr>
<td>Neuropeptide Y</td>
<td>T-lymphocytes, monocytes/macrophages</td>
</tr>
<tr>
<td>Corticotropin Releasing Hormone</td>
<td>T and B-lymphocytes, mast cells, monocytes/macrophages</td>
</tr>
<tr>
<td>Prolactin</td>
<td>T and B-lymphocytes, granulocytes, precursor cells, monocytes/macrophages</td>
</tr>
<tr>
<td>Growth Hormone</td>
<td>T and B-lymphocytes, monocytes/macrophages</td>
</tr>
<tr>
<td>Catecholamines (epinephrine/norepinephrine)</td>
<td>T and B-lymphocytes, neutrophils, NK cells, monocytes/macrophages</td>
</tr>
<tr>
<td>Serotonin</td>
<td>T and B-lymphocytes, NK cells, monocytes/macrophages</td>
</tr>
</tbody>
</table>

Nova Southeastern University Institute for Neuro-Immune Medicine

From 650 potential pathways

-1. Immune response_IL-3 activation and signaling pathway
-2. Development_ERBB-family signaling
-3. Immune response_NF-AT signaling and leukocyte interactions
-4. Development_HGF signaling pathway
-5. Immune response_Immunological synapse formation
-6. Development_EGFR signaling pathway
-7. Immune response_CD40 signaling
-8. Chemotaxis_Leukocyte chemotaxis
-9. Immune response_Antigen presentation by MHC class II
-10. Immune response_MIF-mediated glucocorticoid regulation
Top Gene Go Processes GWI T0T2

<table>
<thead>
<tr>
<th>4 hours post exercise: GWI</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>regulation of multicellular organismal process</td>
<td>5.082e-11</td>
</tr>
<tr>
<td>negative regulation of blood pressure</td>
<td>3.656e-10</td>
</tr>
<tr>
<td>regulation of sensory perception of pain</td>
<td>3.640e-09</td>
</tr>
<tr>
<td>regulation of sensory perception</td>
<td>3.640e-09</td>
</tr>
<tr>
<td>positive regulation of nitric oxide biosynthetic process</td>
<td>3.115e-08</td>
</tr>
<tr>
<td>positive regulation of nitrogen compound metabolic process</td>
<td>4.041e-08</td>
</tr>
<tr>
<td>response to stress</td>
<td>6.203e-08</td>
</tr>
<tr>
<td>regulation of developmental process</td>
<td>6.445e-08</td>
</tr>
<tr>
<td>regulation of nitric oxide biosynthetic process</td>
<td>8.186e-08</td>
</tr>
<tr>
<td>regulation of blood pressure</td>
<td>9.707e-08</td>
</tr>
</tbody>
</table>

GWI and CFS: Comparisons

• Both defined by symptoms which overlap
• Significant overlap in research findings
• Study of GW veterans showed a 16 fold increase risk of CFS, but no other increased risk over controls

• Issues surrounding the study of a multi-symptom illness with a multisystem pathogenesis are the same
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis

• HPA dysregulation has been implicated in the pathophysiology of GWI (Golier et al., 2006; 2007; Unwin et al., 1999) and CFS/ME (Crofford et al., 2004), with potential different regulatory mechanisms between genders, though insufficient numbers of women having been studied.

• The influence of sex hormones on these findings has yet to be determined.

Nova Southeastern University Institute for Neuro-Immune Medicine

Dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis

• Steroid hormones are generally implicated in the immune response, with estrogens serving as enhancers, at least, of the humoral immunity and androgens and progesterone (and glucocorticoids) as natural immunosuppressors. (Cutillo, review 2004).

• Sexual dimorphism in human immune systems is most apparent in the female predominance of certain autoimmune diseases (ADs) like systemic lupus erythematosus and rheumatoid arthritis.

Nova Southeastern University Institute for Neuro-Immune Medicine
Discordant models – male and female predominance

- In our modeling studies, the male GWI model there is up regulation of signaling pathways, and traffic through the sex hormone nodes.
- These impact immune and cellular pathways

- In the predominantly female CFS/ME model quite the opposite is true, signaling is reduced or shut down and the is a down regulation of signaling and metabolic pathways, again trafficking through sex hormone nodes in a regulatory network that can be clearly defined.

HPA HPT and HPG axis and immune regulation

- HPA influences immune function in well recognized ways: cortisol regulation, thyroid mediated metabolic dysfunction and through regulatory networks, autonomic and immune function.
Gender and steady states

- Gender effects have a major impact on available steady states...

Sex hormone regulation and Healthy Individuals

- Male HPG axis typically inhibits HPA activity: a little more complex in women...
Cytokines, disease and gender: GWI

- Initially the literature suggested a Th-2 shift (Rook and Zumla 1997) though later work suggested a mixed abnormal cytokine pattern involving both Th1 and Th2 cytokines. Zhang et al. (1999), Skowera et al. (2004), Allen et al. (2006), Peakman et al., (2006)
- Brimacombe et al. (2002) concluded that while Th-1 markers described CFS/ME status in GW veterans, a Th-2 response factor produces an effect on cognitive function in this population.
- A mixed Th-1: Th-2 immune status is also consistent with our recent work in a small cohort of male subjects (n=11, age 43 ± 2.1 years [30-55 years]) where we found higher response to PHA stimulation in GWI subjects for TNF-α at rest as well as in IL-5 and IFN-γ during the course of a maximal exercise challenge (Broderick et al., 2011).

Th17 and GWI

- Described in 2007, T helper 17 cells (T_h17) are a subset of T helper cells producing IL17. They are developmentally distinct from Th1 and Th2 cells.
- They create inflammation and tissue in autoimmune disease such as multiple sclerosis, autoimmune uveitis, juvenile diabetes, rheumatoid arthritis, and Crohn’s disease.
- Their normal role is to provide anti-microbial immunity at the epithelial/mucosal barriers.
A comparison of sex-specific immune signatures in Gulf War illness and chronic fatigue syndrome
Anne Liese Smylie, Gordon Broderick, Henrique Fernandes, Shirin Razdan, Zachary Barnes, Fanny Collado, Connie Sol, Mary Ann Fletcher, and Nancy Klimas

Method:

• Subjects were assessed using a Graded eXercise Test (GXT) with blood drawn prior to exercise, at peak effort (VO2 max) and 4-hours post exercise.
• Using chemiluminescent imaging we measured the concentrations of
• IL-1α, 1b, 2, 4, 5, 6, 8, 10, 12 (p70), 13, 15, 17 and 23, IFNγ, TNFα and TNFβ in plasma samples from each phase of exercise.
• Linear classification models were constructed using stepwise variable selection to identify cytokine co-expression patterns characteristic of each subject group.

Gender differences, Healthy controls
GWI, Gender and Cytokines: conclusions

• In both GWI and ME/CFS IL-10 and IL-23 expression contribute to illness in a time-dependent manner, accompanied in male subjects by NK and Th1 markers IL-12, IL-15, IL-2 and IFNγ.

• In female GWI and ME/CFS subjects IL-10 was again identified as a delineator but this time in the context of IL-17 and Th2 markers IL-4 and IL-5.

• Exercise response also differed between sexes: male GWI subjects presented characteristic cytokine signatures at rest but not at peak effort, the opposite was true for female subjects.

• Conclusions: Though individual markers varied, results collectively supported involvement of the IL-23/Th17/IL-17 axis in the delineation of GWI and ME/CFS in a sex-specific way.
Women, Men, GWI and ME/CFS

• The results suggest that GWI and CFS/ME are mediated differently, and the mediators of relapse and persistence in women with GWI are different than those in men.

• Currently this is in cytokine networks only, additional GWI female subjects are necessary to allow adequate power for the genomic analysis and networking analyses necessary to model and locate therapeutic targets.

Acknowledgement of Funding