Background

Gulf War Illness (GWI): multi-system chronic disorder.
- Unexplained cognitive, musculoskeletal and fatigue symptoms.
- Of ~700,000 Gulf War troops deployed estimated 10% PTSD,
- 2.5% satisfied the criteria for FM
- 3-5% met the modified case definition for CFS¹.

Evidence supporting some basic components…
- Immune imbalance: abnormal T cell proliferation, NK cell function…
- Neuroendocrine imbalances: blunted mediation of innate immunity and cortisol

¹ Bourdette et al, J Occup Environ Med. 2001;43:1026–1040
Looking at the Bigger Picture in Wichita

Immunity’s ripple effect on 30 major hormones and neurotransmitters

Significant Local Remodeling

Immune cell-specific gene sets:
- Altered B cell function
- Monocytes, neutrophils more central

Free thyroxin T4:
- Increased immune activity
Mapping Neuroendocrine-immune Interaction

Key findings

• Emergent immune network aligning with known model of persistent inflammation.
• Increased path length between ACTH and cortisol: decoupled HPA?
• Surge in immune interaction with active T4; thyroid autoimmunity?

Open questions…

• Increase survey of immune signals: cytokine and cell population assays
• How do these immune network changes apply to Gulf War Illness?
• What about response dynamics?

Introduction

Hypothesis.

• GWI subjects can be distinguished from healthy veterans (and CFS) by their neuroendocrine-immune status.
• More specifically by modifications to the cell-cell communication networks used to regulate function
• Differences can be amplified by studying response to exercise.

Cohort.

• Subset of 10 GWI and 11 healthy controls recruited from the Miami Veterans Administration Medical Center;
• All male and ranging in age 30-55; matched by age, BMI, ethnicity
• Exclusionary criteria based on Fukuda et al (1998)
Experimental Assessment

Sample collection and analysis.

- Standard Graded eXercise Test (GXT)
- Collection of peripheral blood at 3 points: pre-exercise, at peak effort (max VO\textsubscript{2}), and 4 hours post-exercise
- Assessment of 6 cytokines, soluble CD26, NPY and cortisol
- Repeated 3 cytokines in plasma (IL-6, 10 and TNFa)
- Flow cytometry detailing 11 subsets of T, T-helper, NK, and B lymphocyte populations

Numerical analysis.

- Differences in expression at each time point (pseudo steady state)
- Differences in association patterns:
 - Combinatorial expression: “Grey Box” Linear Discriminant Classifier
 - Network architecture: redistribution and extent of connectivity

• Looking for diagnostic features and illness processes
3 Levels of Resolution

- Intercellular signal (ELISA)
- Cellular response (flow cytometry)
- Intracellular signal (microarray)

Individual Intercellular Signals

<table>
<thead>
<tr>
<th>Signal molecule</th>
<th>GW-01-Ctr(0)</th>
<th>GW-01-Ctr(1)</th>
<th>GW-01-Ctr(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropeptide Y (NPT)</td>
<td>-16.38 (0.14)</td>
<td>-16.28 (0.54)</td>
<td>-14.38 (0.36)</td>
</tr>
<tr>
<td>Cortisol (Blood)</td>
<td>0.12 (0.21)</td>
<td>0.05 (0.30)</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>

RAC-GWVI Meeting Minutes
June 29-30, 2009
Page 82 of 248

Some first observations:
- Significantly higher IL-5 and IFNγ at all 3 conditions; borderline IL-6 in plasma
- Significantly higher TNFα at rest,
- Significantly *higher* cortisol post-exercise but borderline *lower* at peak effort
Cytokines Good Building Blocks for Distinguishing GWI

- A simple classifier could start by using IL-5 and IFNg at a single time point
- What is best time point? IL-5 levels get closer under effort while IFNg levels diverge

Ideally Use Entire Cytokine Response over Time

- Multiple cytokines have a de-noising or averaging effect!
- Using entire time course profile adds additional discrimination
Separating Specific Details from the General Response

- Composite feature 1 is a general upset in all cytokines
- Composite feature 2 is additional coordinated cortisol ↓, IL-1α ↑, IL-10 ↓ and IL-6 ↓

GWI Subjects are Distinct in Immune Response to Exercise

- Feature 1 and 2 are defined by combinations of cytokines
- Each point captures the complete time course for that subject
GWI Subjects are Distinct in Their Cytokine Response to Exercise

- Feature 1 is a general upset in all cytokines
- Higher with transient increase in GWI; lower and slow rise in Controls
- Differences in this general upset are significant throughout the challenge

GWI Subjects are Distinct in Their Cytokine Response to Exercise

- Feature 2 is an additional coordinated cortisol ↓, IL-1α ↑, IL-10 ↓ and IL-6 ↓
- Changes in this pattern are best distinguished post-exercise (T2)
A First Synopsis

- Cytokines used in combination and across time respond to exercise completely separates diagnostic groups.
- Broad spectrum changes (Feature 1): distinguishable throughout challenge but insufficient for optimal separation.
- Changes in co-expression of cortisol, IL-1α, IL-6 and IL-10 (Feature 2) improve separation of subjects and are best distinguishable post-exercise.

Cell Proliferation in the Context of Immune Signaling

- Uniformly depressed NK populations exacerbated by effort,
- Significantly higher CD8+/CD26+, CD2+ at rest and at peak effort; delayed response.
Bringing It Together: An Immune Response Network

1(a). Ctrl at rest (t0)

Cell abundance
- Cortisol
- NK cytotoxicity

Edit D(t1) = 3.89 (0.036); 44 pooled std error

1(b). GWI at rest (t0)

1(c). Ctrl at peak effort (t1)

1(d). GWI at peak effort (t1)

Edit D(t2) = 4.65 (0.038); 60 pooled std error
Bringing It Together: An Immune Response Network

1(e). Ctrl 4hrs post-exercise (t2)

Edit D(t3) = 3.75 (0.046); 42 pooled std error

1(f). GWI 4 hrs post-exercise (t2)

GWI: A very Different Immune Response Strategy

GWI: more abundant active connections

HC: Not much change in general architecture

GWI: more diffuse, less organized, fewer hubs

Broderick Laboratory for Computational Medicine
Agents of Change

- Altered NPY, TNFα, CD26 energy usage?
- Delayed IL-6 response to exercise (insulin sensitive)

A Second Synopsis

- GWI networks *bigger and less organized (less efficient?)*
- At rest NPY, IL-1, and TNF-α with CD2+/CD26+ abundance exert broad influence on GWI network.
- Under exercise the GWI network promotes IL-5, sCD26 stimulation of CD19+ B cells
- Exercise induces IL-6-mediated Th2 differentiation and/or Th17 responsiveness.
- Post exercise see delayed plasma IL-6 response suggesting shift in fat regulation and energy metabolism.
A Working Model?

- Increased IL-6, TNFa in plasma support low-grade persistent inflammation.
- High IFNg responsiveness supports active Th1 response (as in most autoimmune)
- High IL-5 responsiveness and increased linking of CD19+, IL-5, sCD26 and Il-6 supports active Th2 response (conventional allergic).
- Foreign antigen mimicking intracellular self known to induce mixed Th1/Th2 response
- i.e. Hom s1, Hom s4 both IgE-reactive and induce IFNg response.

A Working Model?

Exogenous

- Cross-reactive allergens

IgE-mediated allergic tissue inflammation

Endogenous

- Autoimmune tissue damage

Cell damage and release of autoantigens

Cross-reactive T cell activation
A Working Model?

- IL-6 is "exercise cytokine"; flag for low local energy reserves
- Altered IL-6 co-expression with NPY, IL-1, IL-10: blunted insulin sensitization response.
- Soluble CD26 also recruited; inhibits amplification of insulin response
- Elevated TNFα responsiveness promoting insulin resistance.
- Low NPY with high TNFα also seen is anorexia

Autoimmune inflammatory environment also limiting adequate access to metabolic energy?

Ongoing work: Propagation through Time

Healthy Controls

GWI Patients
Ongoing Work: Propagation through Time

Propagation through Time of NPY
Propagation through Time of CD2+/26+

- At rest (t0)
- Peak effort (t1)
- Post-exercise (t2)

Healthy Controls

GWI Patients

Propagation through Time of IL-1a

- At rest (t0)
- Peak effort (t1)
- Post-exercise (t2)

Healthy Controls

GWI Patients
Ongoing Work: Comparison of Intracellular Signal

Feature 1
- \(R_{probe}^2 = 0.18 \)
- \(R_{class}^2 = 0.69 \)

Feature 2
- \(R_{probe}^2 = 0.07 \)
- \(R_{class}^2 = 0.26 \)

Feature 3
- \(R_{probe}^2 = 0.07 \)
- \(R_{class}^2 = 0.04 \)

Top 1000 probe set instances: 171 at T0, 612 at T1, 217 at T2
Median signal to noise: 3.97

Comparison of Intracellular Signal

Feature 1 & 2
- \(R_{probe}^2 = 0.24 \)
- \(R_{class}^2 = 0.95 \)
- \(Q^2 = 0.52 \)

++ Signal transduction, Cell communication

++ Nucleic acid metabolism / cell cycle
Protein metabolism and modification

Nucleic acid metabolism/ transcription regulation
Peroxisome transport / Oxidative phosphorylation
Protein lipid, fatty acid and steroid metabolism
Interferon-mediated immunity

Probe weight \(t > 2.0 \)
All processes \(p < 0.05 \)
Panther Classification
Comparison of Intracellular Signal

KIFAP3 kinesin-associated protein 3 (probe set 203333_at)

GWI Ctrl

Gene POP5 (probe set 204839_at)

ABCC2 ATP-binding cassette (probe set 206155_at)

Team Effort

Jim Fuite, PhD Research Associate
Sadiq Alyanka PhD student
Andrea Kreitz Y3 Medical Student
Christina Yang Y2 Medical Student
Ann Aspler, MSc Y4 Medical Student
Carly Bolshin Y4 Medical Student

Helping training the next generation of clinician