Occurrence of ALS among Gulf War Veterans: Using the Epidemiology as a Guide to Intervention

Ronnie D. Horner, PhD
Department of Public Health Sciences
University of Cincinnati Academic Health Center

Financial Support and Contributors
This presentation is based on studies supported through grants or in-kind contributions from the following sources:

- Department of Defense and Department of Veterans Affairs through grants from the VA Cooperative Studies Program, CSP 500 (original study) and CSP 500a (surveillance study)

- HSR&D Program, Durham VA Medical Center
 - Drs. Allen, Coffman, Grambow and Oddone, and Ms. Linquist;
 - Dr. Miranda and her research staff

- Lexington VA Medical Center
 - Dr. Edward Kasarskis

- National Institutes of Health and University of Cincinnati
 - Drs. Ronnie D. Horner and Jun Ying
Presentation Objectives

- Review Current Understanding of the Epidemiology of ALS among Gulf War Veterans
- Present Current Thoughts on the Emerging Evidence Relevant to the Etiology of the Outbreak (and hence Mechanism and Intervention)

I. Overview
Clinical Description of ALS

- A neuro-degenerative disease involving the death of motor neurons
- Invariably terminal with death typically occurring within 2-5 years post-onset
- Incidence increases with age, especially after 55 years of age
- Etiology is uncertain, although 10% of cases have a familial history

Unique Aspects of the ALS Cluster among 1991 Gulf War Veterans

- Relatively Young Men Affected (i.e., approximately 50% of cases under 25 years of age at onset)
- Individuals Fit for Combat (i.e., Healthy Warfighter Effect – Expected Rate below that of the General Population)
- Family History of ALS in ~10% of Cases (3 of 40 cases in original cohort)
- One of Largest Contemporary Clusters of Cases
Intervention Through Epidemiology

- Current Cluster Represents an Unusual Occurrence
- Epidemiologist Study High-risk or Unusual Outbreaks to Discover Etiology
- Etiologic Knowledge may Suggest the Mechanism by which the Agent Exerts Its Effect
- Mechanism May Point to Therapies

II. Brief Review of the Epidemiology of the 1991 Gulf War Outbreak
Reports on Occurrence of ALS among 1991 Gulf War Military Personnel

<table>
<thead>
<tr>
<th>Study</th>
<th>Case Ascertainment Time Period</th>
<th>Number of ALS Cases: Deployed</th>
<th>Number of ALS Cases: Non-deployed</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith, 2000</td>
<td>1991 - 1997</td>
<td>6</td>
<td>12</td>
<td>1.66 (0.62, 4.44)</td>
</tr>
<tr>
<td>Horner, 2003</td>
<td>1990 - 2000</td>
<td>40</td>
<td>67</td>
<td>1.92 (1.29, 2.84)</td>
</tr>
<tr>
<td>Coffman, 2005</td>
<td>1990 - 2000</td>
<td>42*</td>
<td>76*</td>
<td>1.77 (1.21, 2.69)</td>
</tr>
<tr>
<td>Horner, 2008 Update</td>
<td>1991 - 2001</td>
<td>48</td>
<td>76</td>
<td>1.90 (1.34, 2.69)</td>
</tr>
<tr>
<td>Barth, 2009</td>
<td>1991 - 2004</td>
<td>23</td>
<td>38**</td>
<td>0.96 (0.56, 1.62)</td>
</tr>
</tbody>
</table>

* Best estimate from capture-recapture analysis ** Based on 50% sample of non-deployed

Why So Few ALS Deaths among Deployed in Barth et al. ?

- **Definition of Study Population?**
 - Deployment: 8/1/90 – 3/31/91 vs. 8/2/90 – 07/31/91
 - Result: N=621,902 vs. N=696,118 (∆=74,216)
 - Non-deployed: 50% sample so equivalent to other studies

- **Definition of Case?**
 - Motor Neuron Disease (335.2) or ALS (335.20)
Epidemic Curve for Deployed Military Personnel (vs. Non-deployed Military)

- **Solid Line:** All Cases
- **Dashed Line:** Cases under 45 yrs of age at onset
- **Expected cases:** Non-deployed military personnel

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Horner et al. *Neuroepidemiology* 2008; 31: 28-32

Descriptive Epidemiologic Studies

- No Persian Gulf Variant of ALS is Apparent (Dr. Kasarskis)
 - Shorter survival for Deployed versus Non-deployed Cases

- No Known Data on ALS as Endemic or Epidemic in Native Middle East Populations
Survival of ALS Cases by Deployment Status: A Distinguishing Characteristic

![Graph showing survival curves for ALS cases by deployment status.](graph.png)

Survival curves adjusted for age and type: bulbar vs. non-bulbar. Kasarskis et al. ALS, 2008; 16: 1-7

Fig. 1. Incidence of MS in Kuwait according to sex and nationality, 1993–2000.

Source: Alshubaili et al, Eur Neurol 2005; 53: 125-131
III. Update on the Inquiry into the Etiology of the Outbreak

Quest for Clues to the Etiology

- Military Service as a General Risk for ALS (Dr. Weiskopf)
- Sartwell’s Model to Assess Likelihood of Common Source or Common Time Point of Exposure
 - Shape of Cumulative Distribution of Case Onset
- GIS Analysis of Spatial “Hot Spots” in the Theater of War (Dr. Miranda)
 - Common Points of Exposure in Geographical Space (and Time)
Why Military Service Does Not Explain the 1991 Gulf War Outbreak

- Weiskopf Study: Higher risk of ALS among those with any military service.
 - Overall risk: 1.53 (95% CL = 1.12, 2.09); Highest risk: Army and Navy, but not Air Force
 - Increasing risk with increasing number of wars during military service; no association with years of service
 - Population was older individuals: Mean age was 64.7 yrs for “Never Served” versus 62.8 years for “Served”
 - Horner Study: Approx. 50% under 25 yrs of age; 98% under 55 yrs of age

Military Service and ALS Risk: Evidence from a Civilian Population

- W. Washington State Study: Additional Evidence?
 - Half of the men had served in the military
 - Observed rate: 2.12 per 100,000 per year
 - Anecdotal report: 2-fold greater risk among men who had served in military
 - If 2-fold risk with military service, observed rate is an average; “civilian” rate enhanced by 50%
 - Comparison of enhanced civilian rate to military rate should “drive” risk ratio toward the null
“Epidemic Curve” for Non-Deployed Military Personnel vs. W. Washington State Men

![Graph showing epidemic curve]

Horner et al. Neuroepidemiology 2008; 31: 28-32

Assumptions of Sartwell’s Model

- Multiplicative (growth) Process in Pathogenesis of Agent or Toxic By-products
 - Threshold at which Symptoms Appear
 - Incubation Period = Time from Symptom Onset – Time of Exposure

- Inherent Individual Variation in Incubation Period

- Functional Form of Onset Distribution Independent of Incubation Period Length and Agent Dosage

- A Lognormal Distribution Infers:
 - Common Source of Exposure
 - Common Time of Exposure
Distribution of Time of Onset Among All Deployed ALS Cases

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>D</td>
<td>0.075</td>
</tr>
<tr>
<td>Cramer-von Mises</td>
<td>W-Sq</td>
<td>0.091</td>
</tr>
<tr>
<td>Anderson-Darling</td>
<td>A-Sq</td>
<td>0.042</td>
</tr>
</tbody>
</table>

Distribution of Time of Onset Among Deployed ALS Cases <45 yrs at Onset

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>D</td>
<td>0.041</td>
</tr>
<tr>
<td>Cramer-von Mises</td>
<td>W-Sq</td>
<td>0.092</td>
</tr>
<tr>
<td>Anderson-Darling</td>
<td>A-Sq</td>
<td>0.041</td>
</tr>
</tbody>
</table>

Unpublished data
Spatial GIS Findings on Potential Etiologic Agents

- Elevated Risk Associated with Khamisiyah: OR = 1.7 (95% CL = 0.7, 3.7)
- Exposure to Oil Well Fire Smoke not Modeled
- Current Effort is a Spatio-temporal GIS Analysis
 - Determine if Exposures Match in Time as well as Space
 - Model the Oil Well Fire Smoke Exposure

Other Potential Causes of Outbreak

- Exposure to Cyanobacteria which Produce Neurotoxic BMAA (Cox et al. Amyotrophic Lat Sclerosis 2009, Suppl 2: 109-117)
- Neurotoxicity via Heavy Metals in Desert Soil (Based on Conversations with Capt. Mark Lyles, DMD, PhD)
- Head Trauma (Schmidt et al. J Neurol Sci 2010; 291: 22-29)
Adjuvants in Anthrax Vaccine and Motor Neuron Death

- Murine Model: Adjuvants Injected at Doses Equivalent to Those Received by US Military
- Progressive Decrease in Strength (~50% of strength of controls) via “hang time” Test
- Cognitive Deficits: 4.3 errors per trial vs. 0.2 errors in Water Maze
- 35% Loss of Motor Neuron and 350% Increase in Astrocytes in Spinal Cord

Gulf-specific Environmental Exposures

- Exposure to Cyanobacteria which Produce Neurotoxic BMAA (Cox et al. *Amyotrophic Lat Sclerosis* 2009, Suppl 2: 109-117)
 - Cyanobacteria produce beta methylamino-L-alanine
 - “Mats” and “Crusts” wide-spread in Deserts of Qatar and yield BMAA in Dust
- High Concentrations of Heavy Metals in Desert Soil of Kuwait and Iraq (Per Conversations with Capt. Mark Lyles, DMD, PhD)
Lead, Head Trauma and ALS in Military Veterans

- **Lead and ALS** (Fang et al. Am J Epidemiol 2010; 171: 1126-1133)
 - Blood Lead Levels Higher in 184 Cases vs. 194 Controls with Doubling of Blood Lead: Risk of ALS 1.9 (95% CI=1.3-2.7)

- **Head Trauma and APOE-4** (Schmidt et al. J Neurol Sci 2010; 291: 22-29)
 - In 241 Cases and 597 Controls: ALS Odds=2.33 (95% CI=1.18-4.61) if Injury within Prior 15 yrs
 - Strongest Risk in APOE-4 Carriers

Further Thoughts on the Etiology

- **Dose-Response or Threshold Effect?**
 - Multiple Exposures to One Agent
 - Exposures to Multiple Agents
 - Rapid Time to Toxic Dose

- **Agent or Mechanism: Which is Most Salient?**
 - Human Body has Limited Arsenal to Deal with Exposures
 - E.g., 8-10 liver enzymes to metabolize most drugs
Thoughts on the Mechanism

- Could the Pathology of Neurodegenerative Conditions Reflect a Common Mechanism to Protect Neurons:
 - Detoxification of Neuro-toxicants
 - Anti-Oxidative Stress
 - Anti-Inflammation
 - Anti-Apoptosis

- Is there Genetically Mediated Variation in Neuro-protective Response to Neuro-toxicants?

IV. Concluding Thoughts
Evidence and Next Steps

- 2-fold Higher Risk of ALS among 1991 Gulf War Veterans
- Elevated Risk Probably Not Explained by Methodological Biases
- Etiology Remains Uncertain; Exposures Immediately Prior to or During Deployment May Be Involved
- Perhaps It Will Be More Useful to Focus on Mechanism vs. Specific Etiologic Agent(s)