Q10 for Gulf War Veterans:
A double-blind randomized pilot study
Beatrice A. Golomb, MD, PhD

RAC Meeting
June 2011

Abbreviations

AChEi: acetylcholinesterase inhibitor
EN: Energetics/ bioenergetics.
GWI: Gulf War illness.
GWV: Gulf War veterans.
MD: Mitochondrial dysfunction.
Mt: Mitochondrial
OS: Oxidative stress.
PB: pyridostigmine bromide, a nerve agent pretreatment adjunct given to many GW personnel that acts as an AChEi
Q10: Coenzyme Q10 (ubiquinone)
RCT: randomized controlled trial
RFs: Risk factors
ROS: reactive oxygen species (free radicals that mediate OS)
Sx: symptoms
Mg: milligrams
Tid: three times a day
Q100: Q10 at 100mg/d
Q300: Q10 at 300mg/d
What is Rationale for Q10?

- OS: Q10 is the primary endogenous lipophilic antioxidant
- MD: Q10 bypasses many mt respiratory chain abnormalities, to improve EN.
- Q10 has been reported to reduce symptoms in MD – variably, depending e.g. on the mt defect; & degree to which not OSMD now, but consequences of OSMD like cell loss, are responsible for sx
- MD, once triggered, leads to more OS: -> cell dysfunction & cell death.
- If severe & targeting relevant tissues, these processes can trigger a vicious cycle, culminating in neurodegenerative conditions like ALS (in which these mechanisms – and some GW exposures – are implicated) – increased in GWI.
- Q10 may reduce OS, & MD, & sx arising from these now.
- Q10 will not help all sequelae like those from already dead cells (from postmitotic tissues with low replication or where satellite cell replication has been exhausted) – e.g. atrophy. Not envisaged as “cure” – as not a cure in MD.
- It will not likely unscar already ischemically scarred tissue, reverse autoimmunity once induced, or address toxicity to mito transport.
- But at favorable dose – which depends on the person –, it may help sx arising from current OS; and EN deficit from MD per se; and may retard progression from causes including some of those it will not reverse.

Methods:
Subjects: 46 GWV randomized, who meet CDC and Kansas criteria for GWI
Design:
2 week placebo run-in
Double blind, placebo-controlled crossover w 3-mo periods
Q10 100, 300, or placebo
Visits: Run-in, baseline, 3, 6, 9, & 12 mo visits

Intervention
Q10 at 0,100, or 300mg/d in divided doses (tid)
PharmaNord Q10 (myoquinone) chosen:
Excellent quality control
No stearates, titanium, other untoward ingredients
High bioavailability
High tolerance by intolerant
Existing FDA IND (Investigational New Drug status)
Everyone got 3 pills/d in two bottles. Take 1 pill from small bottle, two from large, distributed across day (tid), preferably not too close to bedtime.
Choice of Dose & Timing

Considerations:
Divided doses -> improved blood levels BUT
Evening use esp hi dose can -> “Activation Insomnia” (rev up cell energy)

We considered higher dose BUT:
a. Most antioxidants become prooxidant at “high” dose. What is “high” depends on the person. More OS tolerates higher Q10.
b. High bioavailability of this brand – higher effective dose
c. PharmaNord’s recommendation: ~100mg

Outcomes Presented

1°: GSRH
2°: Symptoms (Sx): What GWI is all about.
 Sx Score
 Individual Sx
Sx change scores used: reduce recalibration impact

ALSO:
Physiological: SBP: HTN incr in GWV*. Low BP also a risk.
Physical: SPS = Summed score of 3 items: timed # chair rises; timed balance 3 ways; 4 meter walking velocity. Each scored 0-4, max score 12.

*Unwin, 1999; Kang, 2000; Gray, 2002; McCauley, 2002; Ismail, 2007
Parallel design, 1st Phase analysis shown. Least # drops, no carryover effects. Important if bidirectional rx.

No adjustment for multiple hypotheses that are principled:
 a) Presumes chance=1st order explanation.
 b) Pilot study (type 2 error is the greater risk)

Pilot + hypoth supported by benefits in other samples: will generally present 1-sided p-values (will “stray” and give 2-sided sometimes)

Findings must rest on replication.

Rothman 1990 Epidemiology 1: 43-6 No adjustments are needed for multiple comparisons

Subjects:

Baseline Characteristics

- **%Male:** 85%
- **Ethnicity:**
 - White 60%
 - AA 13%
 - Hispanic 13%
 - “other” 7%
 - Native Am 4%
 - Asian 2%
- **Highest Education (all HS grads):**
 - 46% some college
 - 28% college grad
 - 15% masters
 - 2% doctorate
- **Branch:**
 - Army 24%
 - Marines 35%
 - Navy 37%
 - Air Force 4%
- **Enlisted:** 85%; **Officer:** 15%
- **Health Before Gulf:**
 - Excellent 74%
 - Very Good 21%
 - Good 2%
 - Fair 2%
 - Poor 1%
- **Health Now:**
 - Excellent 2%
 - Very Good 4%
 - Good 22%
 - Fair 56%
 - Poor 15%
Baseline: Top 20 Symptoms

<table>
<thead>
<tr>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHES-PAINS</td>
</tr>
<tr>
<td>JOINT PAIN</td>
</tr>
<tr>
<td>TIRED</td>
</tr>
<tr>
<td>SLEEP PROBLEMS</td>
</tr>
<tr>
<td>GO BACK RECHECK THINGS</td>
</tr>
<tr>
<td>MUSCLE PAIN</td>
</tr>
<tr>
<td>WORD RECALL PROBS</td>
</tr>
<tr>
<td>IRRITABILITY</td>
</tr>
<tr>
<td>IMPATIENCE</td>
</tr>
<tr>
<td>ATTENTION/ CONC. PROBS</td>
</tr>
<tr>
<td>INAD. ENERGY TO START THGS</td>
</tr>
<tr>
<td>HEADACHE</td>
</tr>
<tr>
<td>ANXIETY</td>
</tr>
<tr>
<td>MUSCLE FATIGUE</td>
</tr>
<tr>
<td>FATIGUE W EXERTION</td>
</tr>
<tr>
<td>RINGING EARS</td>
</tr>
<tr>
<td>zRECALL WHR GOING/WHAT DOING</td>
</tr>
<tr>
<td>DRY SKIN</td>
</tr>
<tr>
<td>COLD HANDS & FEET</td>
</tr>
<tr>
<td>READING COMPREHENSION TROUBLE</td>
</tr>
</tbody>
</table>

Baseline: Key Measures

<table>
<thead>
<tr>
<th>Msr</th>
<th>Mean± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSRH</td>
<td>2.2 ± .84</td>
<td>1-5*</td>
</tr>
<tr>
<td>SBP</td>
<td>123 ± 15</td>
<td>97-181.5 (LOW to HIGH)</td>
</tr>
<tr>
<td>SPS</td>
<td>10.0 ±1.69</td>
<td>0-12 (almost max)</td>
</tr>
</tbody>
</table>

GSRH = single item general self-rated health
*Poor, Fair, Good, Very Good, Excellent
SBP = systolic bp (mm Hg)
SPS = summary performance score
GSRH: Primary Provisional

Rated Poor, fair, good, very good, excellent (5-point scale)

Examined change *from run-in*

Baseline around 2 (fair), so ~3 points poss

<table>
<thead>
<tr>
<th></th>
<th>Chg</th>
<th>SD</th>
<th>1-sided P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo:</td>
<td>+.32</td>
<td>.32</td>
<td>--</td>
</tr>
<tr>
<td>Q100:</td>
<td>+.70</td>
<td>.82</td>
<td>0.12</td>
</tr>
<tr>
<td>Q300:</td>
<td>+.60</td>
<td>1.1</td>
<td>0.21</td>
</tr>
<tr>
<td>Q:</td>
<td>+.65</td>
<td>.93</td>
<td>0.12</td>
</tr>
</tbody>
</table>

So the direction of difference is favorable, but the change is not significant.

Symptom Score

Cannot improve a sx that isn’t present.

Thus, target Sx present in at least 50%: N=20 sx (so, present in at least 23 at baseline)

These sx are balanced at baseline Q100 v placebo

Create Symptom Score:

- Sum effect across sx present (top 20 sx) (-2 to +2).
- Divide by # sx for that person.

Compare Mean Effect Per Sx:

- Placebo +0.083 (± .42) (more sx)
- Q10 100 - 0.32 (± .57) (less sx)

1-sided P = 0.016

∴ Q10 100mg benefits sx in GWI
Direction of Sx Change Individually:
Null Hypothesis Expectation: half the sx trend better, half trend worse.
Finding: 20 out of 20 better on Q100
Likelihood by chance (2-sided):
1/2^{19}: p<0.000001
Provides (further) rationale for use of 1-sided p-values for indiv sx.

Individual Symptoms
RX1: 1-sided P-values.

<table>
<thead>
<tr>
<th></th>
<th>Q100</th>
<th>Placebo</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>-.66</td>
<td>< +.13</td>
<td>.0019**</td>
</tr>
<tr>
<td>AttnxPrb</td>
<td>-.5</td>
<td>< +.13</td>
<td>.023*</td>
</tr>
<tr>
<td>Energy2do</td>
<td>-.44</td>
<td>< +.13</td>
<td>.046</td>
</tr>
<tr>
<td>Impatient</td>
<td>-.5</td>
<td>< +.18</td>
<td>.048</td>
</tr>
<tr>
<td>Ringears</td>
<td>-.25</td>
<td>< +.25</td>
<td>.054</td>
</tr>
<tr>
<td>Dryskin</td>
<td>-.5</td>
<td>< +.5</td>
<td>.041</td>
</tr>
<tr>
<td>Tired</td>
<td>-.3</td>
<td>< +.06</td>
<td>.05</td>
</tr>
</tbody>
</table>

RECALL: “-” is lessening of sx
SYMPTOMS

RX1: 1-sided P.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Q100</th>
<th>Placebo</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety</td>
<td>-.71</td>
<td>< 0</td>
<td>.067</td>
</tr>
<tr>
<td>Trblrec</td>
<td>-.43</td>
<td>< -.07</td>
<td>.09</td>
</tr>
<tr>
<td>Readcomp</td>
<td>-.5</td>
<td>< 0</td>
<td>.097</td>
</tr>
<tr>
<td>Slprb</td>
<td>-.5</td>
<td>< 0</td>
<td>.10</td>
</tr>
<tr>
<td>Irritable</td>
<td>-.29</td>
<td>< +.16</td>
<td>.10</td>
</tr>
<tr>
<td>Msclpn</td>
<td>-.1</td>
<td>< +.23</td>
<td>.14</td>
</tr>
<tr>
<td>Memtask</td>
<td>-.33</td>
<td>< +.08</td>
<td>.17</td>
</tr>
</tbody>
</table>

RECALL: “-” is lessening of sx

Headache

Baseline: HA balanced across arms

Treatment:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>1-sided P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>+.13</td>
<td></td>
</tr>
<tr>
<td>Q100</td>
<td>-.67</td>
<td>.002</td>
</tr>
<tr>
<td>Q300</td>
<td>-.5</td>
<td>.03</td>
</tr>
<tr>
<td>Q</td>
<td>-.57</td>
<td>.0049</td>
</tr>
</tbody>
</table>

Extends prior finding of benefit to migraine (on 100mg tid)

Diarrhea

Not in the top 20sx: but GI sx are in Kansas criteria and this was the most common GI sx.

Baseline comparable
- Placebo: .36 (SD .49); Q100: .36 (SD .50)

Treatment Effect:
- W/o adjustment for baseline: p = 0.045 1-sided
- Ologit adjusted for baseline diarrhea rating:
 - Beta = -.27 (SD 1.34)
 - 1-sided P: 0.022

SBP (mmHg) on Q10 100

Normalize low ~& high SBP?

<table>
<thead>
<tr>
<th>Treatment Gp</th>
<th>Placebo</th>
<th>100mg Q10</th>
<th>Diff</th>
<th>1-sided P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low SBP: <120</td>
<td>-6.9 (7.8)</td>
<td>+7 (10.4)</td>
<td>+14</td>
<td>0.0044</td>
</tr>
<tr>
<td>High SBP: >125</td>
<td>-13 (16.3)</td>
<td>-23 (12.8)</td>
<td>-10</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Q10 300mg: No relationship
Q10 approved in Japan for CHF; poor heart pumping a factor in low BP
Q10 benefits high BP in prior meta-analysis*

Primary Q10 AE: Sleep Prb

Sleep problems direction: Better Q100, worse Q300:

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>P (vs placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0</td>
<td>.71</td>
<td></td>
</tr>
<tr>
<td>Q100</td>
<td>-0.5</td>
<td>1.2</td>
<td>.05</td>
</tr>
<tr>
<td>Q300</td>
<td>+.63</td>
<td>.74</td>
<td>.025 (2-sided)</td>
</tr>
</tbody>
</table>

100 vs 300 (same means) .02

Logit adj baseline sleep problems:
Q300 β 2.3, SE 1.0., p = 0.012
(regress slpprb on Q300 & baseline: β.78 (.30) 0.008)

Sleep Mediates Q300 Probs that were Seen w Some Sx

<table>
<thead>
<tr>
<th></th>
<th>Sleep alone</th>
<th>Q3 alone</th>
<th>Q3 adj sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recheck</td>
<td>+***</td>
<td>+*</td>
<td>Ø</td>
</tr>
<tr>
<td>Jtpain</td>
<td>Ø</td>
<td>Ø</td>
<td>-3.0*</td>
</tr>
<tr>
<td>ReadComp</td>
<td>+**</td>
<td>+2.4*</td>
<td>-1.6</td>
</tr>
<tr>
<td>Musclpn</td>
<td>+**</td>
<td>-1.3</td>
<td>-2.7*</td>
</tr>
<tr>
<td>Impatient</td>
<td>+****</td>
<td>+**</td>
<td>Ø</td>
</tr>
<tr>
<td>Energy</td>
<td>+****</td>
<td>+*</td>
<td>Ø</td>
</tr>
<tr>
<td>Headache</td>
<td>+**</td>
<td>-1.7*</td>
<td>-2.5*</td>
</tr>
<tr>
<td>Memtask</td>
<td>+****</td>
<td>+***</td>
<td>Ø</td>
</tr>
<tr>
<td>Dry Skin</td>
<td>+*</td>
<td>Ø</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

Ologit analyses adjusted for baseline
*≤ 0.1 **≤0.05 ***≤0.01 ****≤0.001
Physical Fxn

SPS: Sum of: 1) timed # chair rises; 2) timed balance 3 ways; 3) 4-meter walking velocity. Each scored 0-4, max score 12.

SPS: higher score, or + change, is better.

Designed for elderly: Not much room to improve (baseline ave 10 on 12 point scale)

Placebo: +0.5 (SD 1.2)
Q100: + 1.1 (SD .83)

Q100: 73% improved, 0% worse (rest no change)
Placebo: 35% improved, 15% worse (rest no change)

1-sided P = .05 (chi-squared)

(Fatigue w Exertion)

Cross-over design in general a problem given nonmonotonic Q10 effects (+ use of change). Analyzed for this vbl tho:

Q100 vs Placebo, 1-sided P-values

<table>
<thead>
<tr>
<th></th>
<th>T-test</th>
<th>Sign Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs Placebo 1</td>
<td>.0003</td>
<td>.0005</td>
</tr>
<tr>
<td>Vs Placebo 2</td>
<td>.0088</td>
<td>.016</td>
</tr>
</tbody>
</table>

Every person whose change score differed btn Q100 and placebo – against each placebo – did better on Q100.

11:0 and 6:0. (just over half reported fatigue w exertion.)

Q100 also superior to Q300 (p = 0.0195)
Discussion:

Dose Consideration

Nonmonotonic.
This is the norm for antioxidants: many are prooxidant at higher doses. BUT point of transition varies.

This is common for nutrients: Supplement trials often err by thinking if some is good, more is better*

Limitations

1. Small Sample: But some key findings sig
2. Short Duration: But some key findings sig
3. Switch to 1st phase parallel design: but strengthens authority given carry-over
4. Findings: Require replication
5. Analyses not yet complete
Conclusions

1. PharmaNord Q100 significantly benefited leading symptoms on average in GWV with GWI.
2. Q300 did not benefit sx score on average. It led to sleep problems & (apparently “via” this) was unfavorable on some sx. Can’t distinguish dose per se, vs proximity to bedtime.
3. Q100 separately, significantly benefited headache & attention + benefit or trend for other sx including fatigue, mood/personality, autonomic, skin, muscle (+ GI). Direction vs placebo=favorable for all.
4. Fatigue w Exertion: A key issue given the salience of exercise to sleep, cognition, muscle fxn, pain, mood (and BP!). Need ability to exercise. Exercise and/or ex tolerance protects vs heart, cancer, dementia; & improves outcomes in illness, injury, surgery etc.

Implications

Though study is small, and findings must be viewed as provisional, these findings support widespread benefits of Q10 at 100mg/d, modest but material in magnitude, across numerous symptoms and domains of relevance to GWV.

They support the need for a carefully conducted larger scale study to replicate & extend these findings, using – as here – a high quality, high bioavailability coQ10 preparation.
Thank You