Neural correlates of mindfulness practice

Britta K. Hölzel, PhD

Relaxation and well-being that last beyond the time spent meditating
Improved mood and ability to deal with difficult / challenging situations
Improved concentration and memory
Effects of mindfulness practice

- Improved immune function (e.g., Davidson et al., 2003)
- Reduced blood pressure (e.g., Carlson et al., 2007)
- Reduced cortisol levels (e.g., Carlson et al., 2007)

Mindfulness effective in the treatment of...

- Anxiety (Hofmann et al., 2010)
- Depression (Teasdale et al., 2000)
- Substance abuse (Bowen et al., 2010)
- Chronic pain (Grossman et al., 2007)
Mindfulness in the treatment of PTSD

- Preliminary study on mindfulness-based exposure therapy (King et al., 2012)
 - Intervention appeared acceptable and veterans showed compliance
 - PTSD symptoms improved significantly in completers (N=16, p=.03)

Definition

- Non-judgmental awareness of experiences in the present moment
- Attitude of acceptance, curiosity and openness
What are the neural mechanisms that might underlie its beneficial effects?

Magnetic resonance imaging (MRI)

Imaging of function and structure of the brain

Function: oxygenation of blood
 → activation of brain regions
Structure: morphometry of the brain
Brain gray matter

Greater gray matter correlates with better performance of tasks associated with that brain region

(Critchley et al., 2004; Milad et al., 2005; Mechelli et al., 2004)
Difference in brain structure

... between experienced meditators and non-meditators

Lazar et al. (2005)
Pagnoni & Cekic (2007)
Hölzel et al. (2008)
Luders et al. (2009)
Vestergaard-Poulsen et al. (2009)
Grant et al. (2010)

Some different and some overlapping findings

- Hippocampus
 - Hölzel et al. (2008);
 - Luders et al. (2009);
 - Lazar et al. (unpublished)

- Right insula
 - Hölzel et al. (2008);
 - Lazar et al. (2005)

Cross-sectional studies!
Study 1

Does gray matter concentration increase following mindfulness practice?
Mindfulness-Based Stress Reduction (MBSR, Jon Kabat-Zinn)

- Body Scan
- Yoga
- Sitting meditation
- Daily homework practice for 8 weeks

Methods

Participants: healthy, meditation-naïve
- 16 MBSR
- 17 waitlist control group

Structural MRIs
- Before and after the course
Hippocampus

- Susceptible for neurotoxic effect of stress
- Lower gray matter in PTSD, and other disorders (e.g., depression, Alzheimer’s)
- Ability to form new synapses and generate new neurons
- Involved in
 - Learning and memory
 - Emotion regulation
Increase in gray matter concentration

Posterior cingulate cortex Temporo-parietal Junction Cerebellum

Increase in gray matter concentration

Posterior cingulate cortex Temporo-parietal Junction Cerebellum

Self Change in perspective Coordination of movement & emotion

Open questions

- Preliminary finding – replication is necessary
- Cellular mechanisms are unknown
- Is meditation the primary cause for the changes? (social contacts, movement, diet, etc.)
- How are changes in the brain related to well-being?

Stress

- MBSR reduces stress (Chiesa & Serretti, 2009)
- Amygdala activation in response to stress inducing stimuli
- Rodent studies: Stress leads to growth of dendrites (Vyas et al., 2002)
Study 2

Are changes in perceived stress related to gray matter changes in the amygdala?

Perceived stress

- 26 healthy, stressed participants
- Perceived stress scale (Cohen & Williamson, 1983)
- Before and after MBSR program
- Significant reduction in stress \(p < 0.001 \)
- Regression analysis

Decrease in perceived stress correlates with decrease in amygdala gray matter concentration.

Hölzel et al. (2010). *Social Cognitive and Affective Neuroscience.*

Summary

- Increase in gray matter concentration, e.g., in hippocampus, following mindfulness training.
- Decrease in perceived stress correlates with decrease in amygdala gray matter concentration.
- Specific neural mechanisms of mindfulness-induced pain analgesia.
Acknowledgement

• Lab
 Sara Lazar
 Tim Gard
 Narayan Brach
 Vincent Brunsch
 Patricia Pop
 Thomas Callahan

• Sponsors
 • European Commission
 (7th framework program)
 • National Institutes of Health
 • Mind and Life Institute
 • IGPP Freiburg
 • John Templeton Foundation

• Collaborators
 Elizabeth Hoge
 Mohammed Milad
 Douglas Greve
 Ulrich Ott
 Dieter Vaitl
 David Vago
 David Creswell
 Kirk W. Brown
 Carl Schwartz

Thank you for your attention!