PAMPs, DAMPs and our evolving understanding of Sepsis and SIRS

Carl J. Hauser MD, FACS, FCCM

Gulf War Subcommittee

Disclosures / Competing interests

FUNDING

• NIH
• DoD (CDMRP)
• CIMIT
• No commercial funding
Systemic Inflammatory Response Syndrome (SIRS)

≥ 2 of the following:
- Temp >38°C, <36°C
- Pulse >90
- RR >20, PCO2 <32
- WBC >12,000, <4000 or >10% bands

Inflammatory response to illness of any source

Burden of SIRS

1/3 of all hospitalized patients
- More than half of all ICU patients
- Nearly all SICU patients
- Morbidity and mortality 2° organ failure
 - Lung (ALI / ARDS) > liver/kidney
Inflammation can reflect Infection or ‘Sterile SIRS’

Hemoperitoneum vs bacterial peritonitis

Aspiration vs bacterial pneumonia

Mechanistic understanding of SIRS

'\textit{DANGER}' molecules

Infection vs Fractures vs Shock vs Trauma

WRONG!
In non-infective conditions

In the setting of infections

- PAMPs
 - TLR / GPCR
 - Recognized by Pattern Recognition Receptors (PRR)

In non-infective conditions

- Ancient (invertebrates, multi-celled)
 - PMN, Mφ, DC, NKC

- No clonal expansion
 - PRR on germ-line (TLRs, GPCRs)
 - multi-functional

- Immediate response to danger motifs

- Rapid responses in trauma, sepsis

Innate immunity

- Fractures
- Shock
- Inflammation

- Redundant cytokine cascade

Injury → DAMPs → PRR
Exogenous *infective* motifs

(LPS, FPs, bacterial sugars, ‘CpG’ DNA, dsRNA, flagellin…)

- **Bind PRRs → immune activation**
 - **Cytokines etc**
- **Symptomatic infective SIRS (“sepsis”)**
 - ↑ NO• release → vasodilatation
 - ↑ PMN-EC interactions → capillary leak

PAMPs

?? DAMPs…

Non-infective motifs

? **Endogenous** products of tissue injury
 - Intracellular motifs released by mechanical injury
 - Membrane motifs changed by toxins
 - New motifs 2’ to metabolic, I/R stress

Bind PRRs → immune activation

Cytokines etc

?? …symptomatic *non-infective SIRS*
Intracellular DAMPs

<table>
<thead>
<tr>
<th>Putative DAMP</th>
<th>PRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMGB-1</td>
<td>TLR4</td>
</tr>
<tr>
<td>S-100</td>
<td>RAGE</td>
</tr>
<tr>
<td>HSP 30/60</td>
<td>TLR4</td>
</tr>
<tr>
<td>B7-H3</td>
<td>TREM</td>
</tr>
</tbody>
</table>

- Few known
- Signal through PRR’s like PAMPs

Mitochondria as DAMPs

...why are clinical sepsis and SIRS so often indistinguishable?

- Mitochondria were saprophytic bacteria
 - Became endo-symbionts
 - Evolved into organelles

- ‘Septic’ response to MT?
Do mitochondria contain DAMPs?

- 13 ‘endogenous’ peptides
 - begin with n-formyl-met
 - *Do they activate FP receptors*
- ‘Bacteria-like’ DNA
 - *Unmethylated ‘CpG’ repeats*
 - *Do they activate TLR-9*

Does mechanical tissue injury cause circulation of mitochondrial debris? (MTD)
Do shock / ischemia-reperfusion injury result in circulation of MTD?
Plasma mtDNA in rat HS

<table>
<thead>
<tr>
<th></th>
<th>Naïve</th>
<th>3h</th>
<th>1d</th>
<th>3d</th>
<th>7d</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtDNA (µg/ml)</td>
<td>0.00</td>
<td>0.05</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
</tr>
</tbody>
</table>

*P<0.01 vs vol plasma (ANOVA)

mtDNA appears in plasma of FFx patients

Plasma Cyto B in Femur Fx

<table>
<thead>
<tr>
<th></th>
<th>Volunteer Plasma</th>
<th>Patient Plasma</th>
<th>Reaming Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ct count (cycles)</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

2^{14} -fold increase

*P<0.01 vs vol plasma (ANOVA)
Do MTD activate inflammatory cell signaling?

mtFPs activate $[\text{Ca}^{2+}]_i$ (via FPR1)

Zhang, Hauser, Nature 2010
mtDNA activates p38 via TLR9

mtDNA (μg/ml) 5 10
ODN - + - +
p-p38
p-p38
p38

TLR9 blocked by CQ, ODNs

Zhang, Hauser, Nature 2010

Does MTD activate inflammatory cell phenotypes?
MTD activates cytokine production

- **MTD (µg/ml)**: 0, 10, 20, 40, 100, 200, 400
- **LPS (µg/ml)**: 1, 10

- **IL-8 (µg/ml)**
 - **4hr**: MTD activates cytokine production
 - **24hr**: MTD activates cytokine production

mtDNA activates PMN / EC interactions

- Zhang, Hauser *Nature* 2010
Do mitochondrial DAMPs activate innate immunity in vivo?

MTD → PMN attack on lung

MMP-8 in lung

PMN in BALF

Zhang, Hauser *Nature* 2010
MTD causes ALI

Zhang, Hauser Nature 2010
MTD ALI is oxidant-related

4-HNE stains

Zhang, Hauser *Nature* 2010

Evolutionary conservation of PAMPs and DAMPs in bacteria and mitochondria cause many similarities between sepsis and SIRS

Nature editorial March 4, 2010
So what is ‘septic’ SIRS?

PAMPs from infection cause SIRS

What is non-infectious SIRS?

2° Sepsis perpetuates SIRS → MOF → death
Treatment of *infective* SIRS

1) Remove PAMPs (bio-markers)
 - Antibiotic Tx
 - Drainage, source control
2) Rx SIRS *after* source control
 - Target PRR, signal cascades
 - Steroids, aPC, anti-cytokine Tx
 - (All *dangerous* w/o source control)

Treatment of *endogenous* SIRS

1) Remove DAMPs (bio-markers)
 - *Debride / drain* sources
 - *Avoid* antibiotics
2) *Prevent / treat* SIRS *early*
 - Target DAMPs and PRR
 - Interrupt inflammatory signaling
 - Safe w/o infection (*but ??healing*)
Acknowledgements

Hauser Lab
Kiyoshi Itagaki
Qin Zhang
Mustafa Raoof
Tolga Sursal

Junger Lab
Yu Chen
Yuka Sumi

London
Karim Brohi