Chronic Traumatic Encephalopathy (CTE) and its connection with ALS

Neil W. Kowall, M.D.
Chief of Neurology
VA Boston Healthcare System

Chronic Traumatic Encephalopathy

- A rediscovered disease
- Unique neuropathology
- Molecular signature
- Pathogenic mechanism: recurrent trauma
CASE STUDY
Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury

ERN D. BEILER
Department of Psychology and Neuroscience, Brigham Young University, Provo, Utah, LDS Hospital, Salt Lake City, Utah, and Department of Psychiatry and Neurology, University of Utah, Salt Lake City, Utah
(RECEIVED May 31, 2005; REVISED May 11, 2005; ACCEPTED May 16, 2006)

Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS

Daryl A Bosco1,2, Gerardo Morfini1,3,4, N Murat Karabacak5, Yuya Song5,7, François Gros-Louis4, Piera Pasinelli2, Holly Goobab4, Benjamin A Fontaine1, Nathan Legay3, Diane McKenna-Yasek5, Matthew P Frosch6, Jeffrey N Agar1, Jean-Pierre Julien4, Scott T Brady,2,7 & Robert H Brown Jr1

Many mutations confer one or more toxic function(s) on copper/zinc superoxide dismutase 1 (SOD1) that impair motor neuron viability and cause familial amyotrophic lateral sclerosis (FALS). Using a conformation-specific antibody that detects misfolded SOD1 (C4F6), we found that oxidized wild-type SOD1 and mutant SOD1 share a conformational epitope that is not present in normal wild-type SOD1. In a subset of human sporadic ALS (SALS) cases, motor neurons in the lumbar spinal cord were markedly C4F6 immunoreactive, indicating that an aberrant wild-type SOD1 species was present. Recombinant, oxidized wild-type SOD1 and wild-type SOD1 immunopurified from SALS tissues inhibited kinesin-based fast axonal transport in a manner similar to that of FALS-linked mutant SOD1. Our findings suggest that wild-type SOD1 can be pathogenic in SALS and identify an SOD1-dependent pathogenic mechanism common to FALS and SALS.

NATURE NEUROSCIENCE ADVANCE ONLINE PUBLICATION

Received 19 July, accepted 10 September, published online 17 October 2010; doi:10.1038/nn.2660
Common Pathogenic Mechanisms

- Oxidative Injury
- Inflammation
- Protein Aggregation
- Vasculopathy
- Cell death pathways (Apoptosis)
- ?Transcriptional/translational abnormalities (miRNA)
- ?Epigenetic modifications

Conclusions

- Basic Discoveries continue to revolutionize our understanding of pathophysiology
- Much is yet to be learned by studying postmortem human brain tissue
- This is why it is essential to encourage brain autopsy and donation for research