Epidemiology of Adult Glioma

Joseph Wiemels, PhD
San Francisco, CA

August 2, 2017
Proportion of Primary Brain Tumors by Histologic Type

- Glioma: 44%
- Meningioma: 27%
- Other: 29%

Total Number Cases for 2004 = 41,130
What is glioma?

• Glioma refers to primary brain tumors that are thought to arise from glial tissue
• Nervous system composed of two primary cell types: neurons and glia (nerve glue)
• Main glial types are astrocytes, oligodendrocytes, ependyma
• Glioblastoma (aka astrocytoma, grade 4) is the most common (about 52% of gliomas)
Percentage of Gliomas by Histologic Type

- Glioblastoma 52%
- Astrocytoma 26%
- Other 22%

CBTRUS 2002-03
Glioma age distribution by histology

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Number of cases per 100,000 population</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td></td>
</tr>
<tr>
<td>20-34</td>
<td></td>
</tr>
<tr>
<td>35-44</td>
<td></td>
</tr>
<tr>
<td>45-54</td>
<td></td>
</tr>
<tr>
<td>55-64</td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td></td>
</tr>
<tr>
<td>75-84</td>
<td></td>
</tr>
<tr>
<td>85+</td>
<td></td>
</tr>
</tbody>
</table>

Source: CBTRUS
Gliomas are more common in men

* Incidence Rate is significantly different in males and females.
† All or some of this histology are included in the CBTRUS definition of gliomas, including ICD-O-3 histology codes 9380-9384, 9391-9460, 9480.
a. ICD-O-3 Histology Codes: 9381, 9384, 9424, 9400, 9401, 9410, 9411, 9420. b. ICD-O-3 Histology Codes: 9450, 9451, 9460.
c. ICD-O-3 Histology Codes: 9530/0, 9530/1, 9531/0, 9532/0, 9533/0, 9534/0, 9537/0, 9538/1, 9539/1. d. ICD-O-3 Histology Codes: 9530/3, 9538/3, 9539/3.

Fig. 12. Incidence Rate Ratios by Gender (Males:Females) for Selected CBTRUS Histology Groupings and Histology, CBTRUS Statistical Report: NPCR and SEER, 2007–2011.
Socioeconomic status

Trends in SEER Brain Cancer Incidence (Three-Year Moving Averages), 1975-2000

Percent of County Population Below Poverty Level in 1990

Note: Rates are age-adjusted to the 2000 U.S. standard population

Gopal Singh, PhD
National Cancer Institute
Cancer Statistics Branch
Brain Cancer Incidence Rates by Census Tract Socioeconomic Status (SES) Index, 1988-92 (N = 7,650 Tracts in 11 SEER Registries)

<table>
<thead>
<tr>
<th>1990 SES Index in Deciles</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (Low SES)</td>
<td>4.74</td>
<td>3.59</td>
</tr>
<tr>
<td>II</td>
<td>6.19</td>
<td>4.04</td>
</tr>
<tr>
<td>III</td>
<td>6.30</td>
<td>5.12</td>
</tr>
<tr>
<td>IV</td>
<td>7.25</td>
<td>4.91</td>
</tr>
<tr>
<td>V</td>
<td>6.44</td>
<td>4.84</td>
</tr>
<tr>
<td>VI</td>
<td>6.85</td>
<td>4.82</td>
</tr>
<tr>
<td>VII</td>
<td>7.64</td>
<td>5.30</td>
</tr>
<tr>
<td>VIII</td>
<td>7.94</td>
<td>5.43</td>
</tr>
<tr>
<td>IX</td>
<td>7.81</td>
<td>5.39</td>
</tr>
<tr>
<td>X (High SES)</td>
<td>8.35</td>
<td>5.73</td>
</tr>
</tbody>
</table>

The SES index was derived by factor analyzing 17 census tract variables on education, income, occupation, wealth, unemployment, poverty, household composition, and housing condition.

Gopal Singh, PhD
National Cancer Institute
Cancer Statistics Branch
Race and ethnicity

Percent of County Population Below Poverty Level in 1990
- <10%
- 10% to 19.99%
- 20% or higher

Note: Rates are age-adjusted to the 2000 U.S. standard population. Rates for Hispanics and Non-Hispanic whites are based on 1997-2000 data.

Gopal Singh, PhD
National Cancer Institute
Cancer Statistics Branch
Gliomas are more common in whites

Fig. 13. Incidence Rate Ratios by Race (Whites:Blacks) for Selected CBTRUS Histology Groupings and Histologies, CBTRUS Statistical Report: NPCR and SEER, 2007–2011.
Cancer in Gulf War Veterans

Are glioma rates higher?

Volume 10 committee states that the evidence continues to be inadequate/insufficient to determine whether deployed Gulf War veterans are at increased risk of developing any cancer, including lung cancer and brain cancer. The relative rarity of cancers such as brain cancer argues for larger studies with adequate statistical power. This may require pooling data where feasible and the use of a variety of data sources such as state cancer registries.
Causes of Brain Tumors

Environment

Genetics
Evaluating Associations

• Is an association (or the absence of an association) between a disease and a factor real?

• If it’s real, is it a causal association?
Association Caveats

- Chance (statistical significance and power)
- Bias
- Confounders
- Heterogeneity
- Real associations not necessarily causal

Strength of association; Consistency from study to study; Appropriate temporal relationship; Dose-response; Plausibility; Coherence; Experiment; Analogies; Specificity
Summary of Basic Epi of Gliomas

- Incidence increases with age up to a point and then declines
- About 50% more common in males than females
- More common in whites than non-whites
 - 2-3 fold excess in whites vs blacks
- Some geographic variation—4-5 fold difference between high and low risk areas
- Substantial heterogeneity of tumors between and within histologic categories
Challenges in Brain Tumor Epidemiology

- Relatively rare disease
 - Mainly rely on case-control studies (not cohort)
- Very poor survival
 - Proxy informants required in population based studies for substantial proportion of cases
 - Rapid case ascertainment
 - Hospital based studies
- Substantial disease heterogeneity
 - Uniform neuropathology review and meaningful tumor markers necessary
Additional Challenges in Brain Tumor Epidemiology among Veterans

- Long latency of disease…. 30 years plus
- Incomplete exposure information
- “healthy worker” effect
- Loss to follow up – registry data complete?
Review of Non-occupational Risk Factors For Adult Glioma

Indicates San Francisco Bay Area Glioma Study has published results on factor

<table>
<thead>
<tr>
<th>Established Risk Factors</th>
<th>Association (size and direction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Dose Radiation</td>
<td>+++</td>
</tr>
<tr>
<td>Hereditary Syndromes</td>
<td>+++</td>
</tr>
<tr>
<td>Male vs Female Gender</td>
<td>+</td>
</tr>
<tr>
<td>White vs African American ethnicity</td>
<td>+</td>
</tr>
<tr>
<td>Increasing Age</td>
<td>+++</td>
</tr>
<tr>
<td>Epilepsy, seizures, convulsions (probably early symptom)</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probable Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family history of brain tumors</td>
</tr>
<tr>
<td>Mutagen sensitivity</td>
</tr>
<tr>
<td>Allergies/Asthma/Elevated IgE</td>
</tr>
<tr>
<td>Chicken pox/anti-VZV IgG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probable Not Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic radiation</td>
</tr>
<tr>
<td>Head injury</td>
</tr>
<tr>
<td>Residential power frequency EMF</td>
</tr>
<tr>
<td>Prior cancers</td>
</tr>
<tr>
<td>Filtered cigarette smoking</td>
</tr>
<tr>
<td>Alcohol consumption</td>
</tr>
<tr>
<td>Cell phone use</td>
</tr>
</tbody>
</table>

Too Few Studies to Assess Consistency

<table>
<thead>
<tr>
<th>Association (size and direction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary intake:</td>
</tr>
<tr>
<td>UC</td>
</tr>
<tr>
<td>UC</td>
</tr>
<tr>
<td>UC</td>
</tr>
<tr>
<td>NSAIDs</td>
</tr>
<tr>
<td>Exogenous hormones/ menstrual factor</td>
</tr>
</tbody>
</table>

Constitutive polymorphisms:
(Associations observed for some histologic or molecular glioma subtypes or for some combinations of polymorphisms.)

- Carcinogen/oxidative metabolism:
 - UC|SF -Glutathione transferases
 - UC|SF -CYP2E1
 - DNA repair:
 - UC|SF -ERCC1, ERCC2
 - UC|SF -MGMT
 - UC|SF -XRCC7

Immune function:
- Polymorphisms positively associated with asthma risk:
 - IL4Ralpha, IL13

- GLTSCR1
 (same region as ERCC1 and ERCC2)

+++ relative risk > 3
+ 1 < relative risk < 3
- 0.3 < relative risk < 1
Occupational causes of brain cancers

Petrochemical

Electrical and electronics workers

Agrobusiness

Reduction of occupational exposures has not reduced the risk of brain cancers at the population level.
Immunological Associations

Allergies

Viruses:

Cytomegalovirus

Varicella (chicken pox)
Brain cases exhibit fewer allergies compared with healthy controls.
Varicella (chicken pox)

<table>
<thead>
<tr>
<th>Model A* (odds ratios for risk of glioma adjusted by age, ethnicity, and gender by immunoglobulin G antibodies)</th>
<th>Cases vs. controls</th>
<th>Glioblastoma cases vs. controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio</td>
<td>95% confidence interval</td>
</tr>
<tr>
<td>Varicella-zoster virus, continuous†</td>
<td>0.49</td>
<td>0.32, 0.75</td>
</tr>
<tr>
<td>Varicella-zoster virus, quartiles‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>0.61</td>
<td>0.37, 1.00</td>
</tr>
<tr>
<td>3rd</td>
<td>0.66</td>
<td>0.40, 1.10</td>
</tr>
<tr>
<td>4th</td>
<td>0.41</td>
<td>0.24, 0.70</td>
</tr>
<tr>
<td>Herpes simplex virus</td>
<td>1.24</td>
<td>0.80, 1.91</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>1.25</td>
<td>0.86, 1.84</td>
</tr>
<tr>
<td>Epstein-Barr virus</td>
<td>0.82</td>
<td>0.40, 1.67</td>
</tr>
</tbody>
</table>

Comparison of antibody levels against varicella in glioma cases compared to healthy controls
Cytomegalovirus

Consensus on the role of human cytomegalovirus in glioblastoma

Kristine Dzurzynski, Susan M. Chang, Amy B. Heimberger, Robert F. Kalejta, Stuart R. McGregor Dallas, Martine Smit, Liliana Soroceanu, and Charles S. Cobbs, the HCMV and Gliomas Symposium

Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D., A.B.H.); Neurological Surgery, the University of California at San Francisco, San Francisco, California (S.M.C., C.S.C.); Institute for Molecular Virology and McArdle Laboratory for Cancer Research, the University of Wisconsin-Madison, Madison, Wisconsin (R.F.K.); Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey (S.R.M.D.); Department of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands (M.I.S.); and California Pacific Medical Center Research Institute, San Francisco, California (C.S.C., L.S.)

Fig. 1. Correlation of patterns of immunohistochemical localization of human cytomegalovirus (HCMV) immediate early 1 (IE1) protein with in situ hybridization for HCMV DNA in a glioblastoma (GBM) that invades normal brain. (A) Low-power view of anti-IE1 immunostain demonstrates GBM invading normal brain cortex (cortical surface at far right; bar, 200 μm). (B–D)boxed areas in (A) at higher power demonstrate IE1 immunoreactivity moving from an area of frank tumor (B) to an area of invading tumor (C) to an area of normal brain (D). Detection of HCMV DNA by in situ hybridization using an HCMV total genome probe (on an adjacent section and similar regions of the same tumor in B–D) reveals a similar pattern, moving from malignant (E) to invasive (F) to normal (G) brain. Bar, 10 μm.

In summary, existing evidence supports an oncomodulatory role for HCMV in malignant gliomas, but future studies need to focus on determining the role of HCMV as a glioma-initiating event.
UCSF Adult Glioma Study (1991-present) Contributions to Glioma Epidemiology Margaret Wrensch and John Wiencke, Co-PIs

- Discovery of inherited risk factors for glioma
- Delineation of tumor markers of distinct glioma subtypes
- Determining mechanisms of risk loci for glioma subtypes
- Determination and clarification of biologic basis of immunologic risk factors for glioma
- Discovery of new inherited, immunologic and somatic prognostic or predictive factors in glioma
Glioma GWAS discover 8 risk regions
UCSF AGS Glioma GWAS

Variants in the \textit{CDKN2B} and \textit{RTEL1} regions are associated with high-grade glioma susceptibility

Margaret Wrensch1,2,11, Robert B. Jenkins3,12, Jeffrey S. Chang4,12, Ru-Fang Yeh4,12, Yuanyuan Xiao4, Paul A. Decker3, Karla V. Ballman2, Mitchell Berger1, Jan C. Buckner2, Susan Chang1, Caterina Giannini3, Chandralekha Halder1, Thomas M. Kollmeyer2, Matthew L. Kosel1, Daniel H. LaChance2, Lucie McCoy1, Brian P. O’Neill2, Joe Patoka1, Alexander R. Pico5, Michael Prados1, Charles Quensenberry9, Terri Rice2, Amanda L. Rynearson3, Ivan Smirnov4, Tarik Tihan10, Joe Wiemels2,4, Ping Yang11,11 & John K. Wiencke1,2,11

A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendrogial tumors and astrocytomias with \textit{IDH1} or \textit{IDH2} mutation

Robert B. Jenkins1,12, Yuanyuan Xiao1,11, Hugues Sicotte6,11, Paul A. Decker3,11, Thomas M. Kollmeyer1,11, Helen M. Hansen3,11, Matthew L. Kosel1,11, Shichun Zheng1, Kyle M. Walsh4,11, Terri Rice2, Paige Braccio9, Lucie S McCoy1, Ivan Smirnov4, Joseph S Patoka5, George Huang1, Joe L. Wiemels2,6, Tarik Tihan1, Alexander R. Pico5, Michael D. Prados1, Susan M. Chang1, Mitchell S. Berger5, Alissa A. Caron1, Stephanie R. Fink1, Chandralekha Halder1, Amanda L. Rynearson3, Brooke L. Fridley1, Jan C. Buckner2, Brian P. O’Neill9, Caterina Giannini3, Daniel H. Lachance2,10, John K. Wiencke1,12, Jeanette E. Eckel-Passow3,12 &

Variants near \textit{TERT} and \textit{TERC} influencing telomere length are associated with high-grade glioma risk

Kyle M. Walsh1,3, Veryan Codd1,4, Ivan V. Smirnov3, Terri Rice1, Paul A. Decker6, Helen M. Hansen1, Thomas Kollmeyer1, Matthew L. Kosel6, Annette M. Molinaro2, Lucie S. McCoy1, Paige M. Braccio9, Belinda S. Cabrera3, Melike Pekmezci5, Shichun Zheng1, Joseph L. Wiemels4,10, Alexander R. Pico11, Tarik Tihan9, Mitchell S. Berger5, Susan M. Chang1, Michael D. Prados1, Daniel H. Lachance2, Brian P. O’Neill9, Hugues Sicotte6, Jeanette E. Eckel-Passow4, ENGAGE Consortium Telomere Group13, Pim van der Harst14,15, John K. Wiencke1,10, Nilesh J. Samani3,4, Robert B. Jenkins7 & Margaret R. Wrensch1,10

A germline variant in the \textit{TP53} polyadenylation signal confers cancer susceptibility
Glioma Risk Variants

<table>
<thead>
<tr>
<th>Chromosome region</th>
<th>Genes</th>
<th>Odds Ratios</th>
<th>Year discovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>3q26</td>
<td>TERC</td>
<td>1.3</td>
<td>2014</td>
</tr>
<tr>
<td>5p15</td>
<td>TERT</td>
<td>1.5</td>
<td>2009</td>
</tr>
<tr>
<td>7p11</td>
<td>EGFR</td>
<td>1.2</td>
<td>2011</td>
</tr>
<tr>
<td>8q24</td>
<td>CCDC26</td>
<td>1.4/6.3</td>
<td>2009/2012</td>
</tr>
<tr>
<td>9p21</td>
<td>CDKN2B/ANRIL</td>
<td>1.4</td>
<td>2009</td>
</tr>
<tr>
<td>11q23</td>
<td>PHLDB1</td>
<td>1.2</td>
<td>2009</td>
</tr>
<tr>
<td>17p13</td>
<td>TP53</td>
<td>2.4</td>
<td>2011</td>
</tr>
<tr>
<td>20q13</td>
<td>RTEL1</td>
<td>1.5</td>
<td>2009</td>
</tr>
</tbody>
</table>

Blue highlights SNPs with known/suspected function: TERC and TERT SNPs associated with longer telomeres; base pair substitution in polyadenylation site impairs processing of TP53 mRNA.
Lifetime risk of oligodendroglial tumors and IDH mutated astrocytomas (grades II-IV) associated with rs55705857

- **Overall** lifetime risk is \(~1.2\) per thousand
- **Having one G** variant in rs55705857 confers a lifetime risk of \(~7.5\) per thousand
- **Having two G** variants in rs55705857 confers a lifetime risk of \(~27\) per thousand

A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with \(IDH1\) or \(IDH2\) mutation

Robert B Jenkins\(^1\,12\), Yuanyuan Xiao\(^2\,11\), Hugues Sicotte\(^3\,11\), Paul A Decker\(^3\,11\), Thomas M Kollmeyer\(^1,11\), Helen M Hansen\(^4\,11\), Matthew L Kosel\(^5,11\), Shichun Zheng\(^1\), Kyle M Walsh\(^8,5\), Terri Rice\(^6\), Paige Bracci\(^5\), Lucie S McCoy\(^4\), Ivan Smirnov\(^4\), Joseph S Patoka\(^4\), George Hsuang\(^4\), Joe I Wiemels\(^2,6\), Tarik Tihan\(^7\), Alexander R Pico\(^8\), Michael D Prados\(^4\), Susan M Chang\(^1\), Mitchell S Berger\(^4\), Alissa A Caron\(^1\), Stephanie R Fink\(^1\), Chandralekha Halder\(^1\), Amanda I Rynearson\(^1\), Brooke L Fridley\(^3\), Jan C Buckner\(^3\), Brian P O’Neill\(^10\), Caterina Giannini\(^3\), Daniel H Lachance\(^1,10\), John K Wiencke\(^4,6,12\), Jeanette E Eckel-Passow\(^3,12\) & Margaret R Wrench\(^4,6,12\)
Implications

This is the first identification of a strong genetic risk factor for these tumor types.

No environmental risk factors have been found for these tumors. Although this type of tumor can occur in people who have had radiation treatment for other brain tumors, very few people who get these tumors have had such prior radiation.

Understanding what this and other inherited variants do will provide insight into the mechanisms of gliomagenesis and thereby provide potential new targets for intervention and treatments.
Comparison of lifetime risk for BRCA1 and breast cancer and for rs55705857 and oligodendroglial/IDH mutated gliomas

Understanding Inherited Risk of Glioma; Rice et al. Neuro-onc Practice 2016
The 11q23 risk variant is only associated with IDH+ gliomas regardless of grade or type.

Rice et al. Neuro-oncology 2013; using 1102 cases and 5299 controls from AGS, Mayo clinic and iControls
Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors

This article was published on June 10, 2015, at NEJM.org.

DOI: 10.1056/NEJMo1407279

Copyright © 2015 Massachusetts Medical Society.
Improving glioma classification using 3 tumor markers: TERT mutation, IDH mutation, 1p/19q deletion

Data from Eckel-Passow et al. NEJM 2015
Histological distribution of GrII/III gliomas by molecular subgroups

- IDH Mutation only: 51%
- Triple positive: 20%
- TERT only: 12%
- TN: 7%
- TERT & IDH: 7%
- Other: 3%

- Astro Gr II-III
- Oligoastro Gr II-III
- Oligo Gr II-III-IV
Age adjusted survival by molecular groups in GrII-III and GrIV gliomas

Survival by molecular group is significant and independent of age, histology and grade in those with GrII-III glioma.
Understanding Inherited Risk of Glioma; Rice et al. Neuro-onc Practice 2016
Inborn genetic risk and glioma

New loci
1p31.3 (rs12752552, RAVER2)
1q32.1 (rs4252707, MDM4)
1q44 (rs12076373, AKT3)
2q33.3 (rs7572263, near IDH1)
3p14.1 (rs11706832, LRIG1)
10q24.33 (rs11598018, OBFC1)
11q14.1 (rs11233250)
11q21 (rs7107785, MAML2)
14q12 (rs10131032, AKAP6)
16p13.3 (rs2562152, near MPG)
16p13.3 (rs3751667, LMF1)
16q12.1 (rs10852606, HEATR3)
22q13.1 (rs2235573, SLC16A8)

Known loci
3q26.2 (rs3772190, near TERC)
5p15.33 (rs10069690, TERT)
7p11.2 (rs75061358, near EGFR)
7p11.2 (rs723527, EGFR)
8q24.21 (rs55705857, CCDC26)
9p21.3 (rs634537, CDKN2A, CDKN2B)
10q25.2 (rs11599775, VT11A)
11q23.2 (rs648044, ZBTB16)
11q23.3 (rs12803321, PHLDB1)
12q21.2 (rs1275600)
12q23.33 (rs12227783, POLR3B)
15q24.2 (rs77633900, ETFA)
17p13.1 (rs78378222, TP53)
20q13.33 (rs2297440, RTE1)

Melin, Nat Genet 2017
Review of Non-occupational Risk Factors for Glioma after GWAS

<table>
<thead>
<tr>
<th>Established Risk Factors</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Dose Radiation</td>
<td>+++</td>
</tr>
<tr>
<td>Hereditary Syndromes</td>
<td>+++</td>
</tr>
<tr>
<td>Male vs Female Gender</td>
<td>+</td>
</tr>
<tr>
<td>White vs African American ethnicity</td>
<td>+</td>
</tr>
<tr>
<td>Increasing Age</td>
<td>+++</td>
</tr>
</tbody>
</table>

UCSF

- Epilepsy, seizures, convulsions (probably early symptom) +
- Inherited variants in **RTEL1, TERT, TERC, EGFR, TP53, 9p21, 8q24, and 11q23** +
- **G** allele in rs55705857 +++

Relative Risk

- **+++** relative risk > 3
- **+** 1 < relative risk < 3
- **-** 0.3 < relative risk < 1
Ongoing topics in adult glioma epidemiology

• Discover inherited risk factors for glioma
• Delineate tumor markers of distinct glioma subtypes
• Define risk loci for glioma subtypes and how they help to understand networks and pathways involved in gliomagenesis
• Determine and understand biologic basis of immunologic and viral risk factors for glioma
• Discover new inherited, immunologic and somatic prognostic or predictive factors in glioma
Large epidemiologic studies are helpful for genetic studies but somewhat disappointing for environmental risk factors

A role for cancer cluster investigation?

- Example: Fallon Nevada
 - 16 leukemia cases in a town of 8000 over 3 years
Fallon, Nevada leukemia cluster

16 leukemia cases within 3 years 1/22,000 chance occurrence

Figure 2

Francis, et al 2011
Leukemia Incidence in military dependents

Francis, et al 2011
Brain cancer clusters?

Mortality in US Army Gulf War Veterans Exposed to 1991 Khamisiyah Chemical Munitions Destruction

Tim A. Bollman, MA, Clare M. Mahan, PhD, Han K. Kang, DrPH, William F. Page, PhD

<table>
<thead>
<tr>
<th>Underlying Cause of Death (ICD-9)</th>
<th>1 Day Exposure (n = 86,167)</th>
<th>≥ 2 Day Exposure (n = 14,320)</th>
<th>All Nonesposed (n = 224,980)</th>
<th>1-Day Exposure, RR (95% CI)</th>
<th>≥ 2 Day Exposure, RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All causes</td>
<td>1020 (12.34)</td>
<td>159 (11.51)</td>
<td>2696 (12.47)</td>
<td>0.97 (0.90, 1.04)</td>
<td>0.96 (0.82, 1.13)</td>
</tr>
<tr>
<td>All diseases (001–799)</td>
<td>427 (5.17)</td>
<td>69 (5.00)</td>
<td>1093 (5.05)</td>
<td>0.95 (0.85, 1.06)</td>
<td>1.06 (0.83, 1.36)</td>
</tr>
<tr>
<td>Infectious and parasitic disease (001–139)</td>
<td>24 (0.29)</td>
<td>5 (0.36)</td>
<td>56 (0.26)</td>
<td>1.11 (0.69, 1.80)</td>
<td>1.49 (0.59, 3.74)</td>
</tr>
<tr>
<td>Malignant neoplasm (140-208)</td>
<td>156 (1.80)</td>
<td>28 (2.03)</td>
<td>391 (1.81)</td>
<td>0.94 (0.78, 1.13)</td>
<td>1.25 (0.85, 1.84)</td>
</tr>
<tr>
<td>Brain cancer (191, 192)</td>
<td>19 (0.23)</td>
<td>6 (0.43)</td>
<td>27 (0.12)</td>
<td>1.72 (0.95, 3.10)</td>
<td>3.26 (1.33, 7.96)</td>
</tr>
<tr>
<td>Disease of circulatory system (390-459)</td>
<td>147 (1.78)</td>
<td>23 (1.67)</td>
<td>407 (1.88)</td>
<td>0.88 (0.73, 1.07)</td>
<td>0.94 (0.61, 1.43)</td>
</tr>
<tr>
<td>Disease of respiratory system (469-519)</td>
<td>18 (0.22)</td>
<td>4 (0.29)</td>
<td>45 (0.21)</td>
<td>0.97 (0.56, 1.67)</td>
<td>1.58 (0.56, 4.42)</td>
</tr>
<tr>
<td>Disease of digestive system (520-579)</td>
<td>21 (0.25)</td>
<td>3 (0.22)</td>
<td>46 (0.21)</td>
<td>1.11 (0.66, 1.87)</td>
<td>1.02 (0.32, 3.31)</td>
</tr>
<tr>
<td>All external causes (E900-E999)</td>
<td>550 (6.68)</td>
<td>87 (6.30)</td>
<td>1460 (6.75)</td>
<td>1.01 (0.92, 1.12)</td>
<td>0.95 (0.77, 1.18)</td>
</tr>
<tr>
<td>All accidents (799-E929)</td>
<td>308 (3.73)</td>
<td>40 (2.90)</td>
<td>807 (3.73)</td>
<td>1.02 (0.89, 1.16)</td>
<td>0.79 (0.58, 1.09)</td>
</tr>
<tr>
<td>Motor vehicle accident (E810-E929)</td>
<td>213 (2.58)</td>
<td>26 (1.88)</td>
<td>546 (2.52)</td>
<td>1.04 (0.69, 1.22)</td>
<td>0.77 (0.52, 1.15)</td>
</tr>
<tr>
<td>Suicide (E950-E959)</td>
<td>142 (1.72)</td>
<td>32 (2.32)</td>
<td>386 (1.78)</td>
<td>1.00 (0.83, 1.21)</td>
<td>1.29 (0.90, 1.86)</td>
</tr>
</tbody>
</table>

Note: ICD-9 = International Classification of Diseases, Ninth Revision; RR = adjusted relative risk; CI = 95% confidence interval. Exposure is to nerve gas as a result of demolition of weapons at Khamisiyah, Iraq. Exposure is based on the 2000 exposure model developed by the US Department of Defense.

*Crude death rates per 10,000 person-years at risk.
1Estimates of relative risk were derived from a proportional hazards multivariate model, with adjustment for age at entry to follow-up, race, sex, rank, and unit component.
Gulf War and Brain Cancer

The relative rarity of cancers such as brain cancer argues for larger studies with adequate statistical power. This may require pooling data where feasible and the use of a variety of data sources such as state cancer registries.

Also, creative examination of highly exposed subpopulations may reveal new associations.
San Francisco Bay Area Adult Glioma Study: 1991-2016 and Adult Glioma Survival Study: 2002-2018

Accrual to date: ~3000 people with glioma; ~2000 controls

Collaborators have included scientists and students from:
UCSF (Wrensch, Wiencke, Co-PIs)
Brown
Duke University
Harvard
Kaiser Division of Research
KUMC
Mayo Clinic (Robert Jenkins, MD, PhD)
MD Anderson
Moffitt Cancer Center (Kathy Egan, PhD)
New York Health Dept
Northern California Cancer Center
Stanford University
Texas A&M
University of Alabama
University of Colorado HSC
University of Southern California
University of North Carolina
University of Washington
Wayne State

Funding Sources:
National Cancer Institute (R01CA52689, Wrensch PI, P50CA097257 Berger and Prados, PIs, R01CA126831, Wiencke PI)
Loglio collective
National Institute of Environmental Health Sciences
Accelerate Brain Cancer Cure
Brain Tumor Society
National Brain Tumor Foundation
American Cancer Society
Families and Friends of John Berardi, Helen Glaser, and Elvera Olsen