
ICER ICER Biostatistics Biostatistics UnitUnit

Introduction to the
SAS Data Step

Presented by:
Tara Dudley,Mstat
Jennifer Hoff, MS

SASSAS

What is SAS?What is SAS?

✽ Statistical Analysis Software*
developed by SAS Institute in Cary, NC

✽ Main uses of SAS
- Data Management
- Analysis
- Reporting techniques

Introduction to SAS Introduction to SAS
Data StepData Step

✽ General overview of Basic components
✽ Temporary vs. Permanent SAS data sets
✽ Set and Merge
✽ Creating new variables
✽ Working with Dates
✽ If then else
✽ Reducing a data set
✽ Formats and Labels

Basics about SASBasics about SAS

✽ SAS is composed of three windows
– Program Editor

where you write and submit programs
– Log

where SAS displays messages which indicate any
errors that may be in the program

– Output
where results appear after submitting program

Basic Components of Basic Components of
SASSAS

✽ Every SAS program is constructed
using the Data step and/or Procedures

✽ Any combination of Data steps and/or
Procedures may be used

✽ Run statements should be used
throughout program

Basic Components of Basic Components of
SAS, ContinuedSAS, Continued

✽ Data step
- SAS statements that read data, create new data
sets or variables, modify data sets, perform
calculations

✽ Procedures
- SAS statements that can perform statistical
analyses, create graphs

Basic Components of Basic Components of
SAS, ContinuedSAS, Continued

✽ Run statement

– Tells SAS that the Data step or Procedure has
ended

– Good practice to end each Data step or Procedure
with a run statement

– Must still SUBMIT the SAS program for it to be
processed

Most Common Most Common
Programming MistakeProgramming Mistake

✽ Failing to end a SAS statement with
a semi-colon

;
✽ Must end every SAS statement with

a semi-colon!!!!

Getting Data into a SAS Getting Data into a SAS
Data SetData Set

✽ Text or ASCII file
- Infile command (or Data line if small data set) and

the input statement

✽ Data from another software program
- Use import wizard
- May need to save data in another format as an
intermediate step

✽ Existing SAS dataset ⇐ Today’s focus

Types of SAS Data SetsTypes of SAS Data Sets

✽ Temporary
− Only exist during the SAS session
− One-part data set name (for example, lab)

✽ Permanent
− Can be saved to disk or to computer hard drive
− Available for use anytime
− Two-part data set name (for example, mydata.lab)

Permanent Data Sets Permanent Data Sets --
LibrariesLibraries

✽ Permanent SAS data sets are saved in
a pre-designated subdirectory or folder

✽ SAS refers to as a Library

✽ Libraries can be specified through a
graphic interface or by using the
libname statement

Permanent Data Sets Permanent Data Sets --
Libname Libname StatementStatement

✽ Libname statement
- Tells SAS where the permanent data set is to be

stored or is already stored

✽ Syntax
- Libname mydata ‘c:/sasdata’;

keyword libref directory

Permanent Data Sets Permanent Data Sets --
Libname Libname StatementStatement

✽ Syntax
Data mydata.lab;

Two level name
− Library reference.data set name
− Creates a permanent data set, lab, located in

directory c:\sasdata

Data StatementData Statement

✽ Indicates the beginning of a SAS Data step

✽ Begins with the word DATA followed by the
name of the SAS data set (should begin with
a letter and be 8 or fewer characters long)

✽ Example
- Data lab;

Using Existing SAS Using Existing SAS
Data Set Data Set

✽ Set statement
- Copy: creates a data set with all the variables and

observations of the data set named in the set
statement

- Append: stacks 2 or more data sets together

Set Statement Set Statement
Example 1Example 1-- CopyCopy

✽ SAS code
Libname in ‘c:\’;

data white;
set in.sourceA;

run;

data yellow;
set sourceB;

run;

Set Statement Set Statement
Example 1 Example 1 -- Copy Copy

✽ Output Data sets

White Data set
ID GROUP DOB GENDER

1 A 01JAN1910 F
2 A 02FEB1920 M
3 A 03MAR1930 M
4 A 04APR1940 F
5 A 05MAY1950

Yellow Data set
ID GROUP GENDER

3 B Fem
5 B Male
6 B Fem

Set StatementSet Statement
Example 2 Example 2 -- AppendAppend

✽ SAS code
data twosets;

set white yellow;
run;

✽ SAS log
- NOTE: The data set WORK.TWOSETS has 8 observations
and 4 variables.

- NOTE: The DATA statement used 0.02 seconds.

Existing SAS Data Sets Existing SAS Data Sets

White Data set
ID GROUP DOB GENDER

1 A 01JAN1910 F
2 A 02FEB1920 M
3 A 03MAR1930 M
4 A 04APR1940 F
5 A 05MAY1950

Yellow Data set
ID GROUP GENDER

3 B Fem
5 B Male
6 B Fem

Set Statement Set Statement
Example 2 Example 2 -- AppendAppend

✽ SAS Output
ID GROUP DOB GENDER
1 A 01JAN1910 F
2 A 02FEB1920 M
3 A 03MAR1930 M
4 A 04APR1940 F
5 A 05MAY1950
3 B . Fem
5 B . Male
6 B . Fem

Using Existing SAS Using Existing SAS
Data SetData Set

✽ Merge statement
− Combines two or more data sets

− Often used in conjunction with the By statement

− Leaving off the By statement can lead to
unexpected and possibly disastrous results

− Warning: if a variable exists in both data sets, the
output data set will contain the value of the
variable from the rightmost data set in the merge
statement

Merge Statement Merge Statement
Example 3Example 3

✽ WARNING - RARELY USED !!!
✽ SAS code

data mergeset;
merge white yellow;

run;

✽ SAS log
- NOTE: The data set WORK.MERGESET has 5 observations
and 4 variables.

- NOTE: The DATA statement used 0.02 seconds.

Existing SAS Data Sets Existing SAS Data Sets

White Data set
ID GROUP DOB GENDER

1 A 01JAN1910 F
2 A 02FEB1920 M
3 A 03MAR1930 M
4 A 04APR1940 F
5 A 05MAY1950

Yellow Data set
ID GROUP GENDER

3 B Fem
5 B Male
6 B Fem

Merge Statement Merge Statement
Example 3Example 3

✽ SAS output
ID GROUP DOB GENDER
3 B 01JAN1910 Fem
5 B 02FEB1920 Male
6 B 03MAR1930 Fem
4 A 04APR1940 F
5 A 05MAY1950

Matched Merge Matched Merge --
By StatementBy Statement

✽ Almost always used in conjunction with
the By statement

✽ When using a matched merge, the variable
you want to match on is identified

✽ Each data set must be sorted by the match
variable before the merge

Merge Statement with Merge Statement with
By By -- Example 4Example 4

✽ SAS code - sorting data sets
Proc sort data=yellow;

by id;
run;

Proc sort data=white;
by id;

run;

Merge Statement with Merge Statement with
By By -- Example 4Example 4

✽ SAS log - sorting data sets
- NOTE: The data set WORK.YELLOW has 3 observations
and 3 variables.

- NOTE: The PROCEDURE SORT used 0.02 seconds.

- NOTE: The data set WORK.WHITE has 5 observations and 4
variables.

- NOTE: The PROCEDURE SORT used 0.02 seconds.

✽ SAS code - merging with By statement
data mergeby;

merge white yellow;
by id;
run;

✽ SAS log - merging with By statement
- NOTE: The data set WORK.MERGEBY has 6 observations
and 4 variables.

- NOTE: The DATA statement used 0.02 seconds.

Merge Statement with Merge Statement with
By By -- Example 4Example 4

Existing SAS Data Sets Existing SAS Data Sets

White Data set
ID GROUP DOB GENDER

1 A 01JAN1910 F
2 A 02FEB1920 M
3 A 03MAR1930 M
4 A 04APR1940 F
5 A 05MAY1950

Yellow Data set
ID GROUP GENDER

3 B Fem

5 B Male
6 B Fem

Merge Statement with Merge Statement with
By By -- Example 4Example 4

✽ SAS Output
ID GROUP DOB GENDER
1 A 01JAN1910 F
2 A 02FEB1920 M
3 B 03MAR1930 Fem *
4 A 04APR1940 F
5 B 05MAY1950 Male *
6 B . Fem *

Matched Merge Matched Merge --
In OptionIn Option

✽ When merging data sets, it is sometimes
necessary to know what data came from
which data set

✽ In option with merge statement can be
used for this purpose

✽ Syntax - after the data set name
(in=temporary variable)

Merge Statement with Merge Statement with
In Option In Option -- Example 5Example 5

✽ SAS code
data mergecom;

merge white (in=inwt) yellow (in=inyel);
by id;
if inwt=inyel;

* Alternate if inwt=1 and inyel=1;
run;

Merge Statement with Merge Statement with
In Option In Option -- Example 5Example 5

✽ SAS log
- NOTE: There were 5 observations read from the dataset
WORK.WHITE.

- NOTE: There were 3 observations read from the dataset
WORK.YELLOW.

- NOTE: The data set WORK.MERGECOM has 2
observations and 4 variables.

- NOTE: DATA statement used:
real time 0.02 seconds
cpu time 0.02 seconds

Merge Statement with In Merge Statement with In
Option Option -- Example 5Example 5

✽ SAS output

ID GROUP DOB GENDER
3 B 03MAR1930 Fem
5 B 05MAY1950 Male

Overwriting in MergesOverwriting in Merges

✽ If the two data sets have variables with the
same name, the value of the variable in the
data set named last will overwrite the value of
the variable in the data set named first.

✽ Option - rename those variables in the
merging

✽ Syntax - after the data set name (rename =
(oldvariable = newvariable))

Merge Statement with Merge Statement with
Rename Rename -- Example 6Example 6

✽ SAS code
data mergeren;

merge white (rename=(gender=wgender))
yellow (rename=(gender=ygender));

by id;
run;

Merge Statement with Merge Statement with
Rename Rename -- Example 6Example 6

✽ SAS log
- NOTE: There were 5 observations read from the dataset
WORK.WHITE.

- NOTE: There were 3 observations read from the dataset
WORK.YELLOW.

- NOTE: The data set WORK.MERGEREN has 6
observations and 5 variables.

- NOTE: DATA statement used:
real time 0.01 seconds
cpu time 0.01 seconds

Merge Statement with Merge Statement with
Rename Rename -- Example 6Example 6

✽ SAS output
ID GROUP DOB WGENDER YGENDER
1 A 01JAN1910 F
2 A 02FEB1920 M
3 B 03MAR1930 M Fem
4 A 04APR1940 F
5 B 05MAY1950 Male
6 B Fem

Types of MergesTypes of Merges

✽ One to One - Today’s focus

✽ Many to One

✽ One to Many

✽ Many to Many - Need SQL code

Modifying the DataModifying the Data

✽ Good practice not to overwrite the original
data set or variables

✽ Can use arithmetic operations and functions
to create new variables

✽ Can use IF Then (IF Then Else) statements
to create new variables

Dates in SASDates in SAS

✽ Dates are stored internally as integers
- Referenced from January 1,1960

✽ Allows for easy sorting and calculations

Dates in SASDates in SAS

Date Internally
June 30,1959 -185
Jan 1,1960 0
Jan 20, 1960 19
Feb 20, 1960 50
Dec 31, 1960 365
Nov 30, 2000 14944

Calculating AgeCalculating Age
Attempt 1Attempt 1

✽ SAS code
data wtage;

set white ;
refdate=‘30Nov00’d;
agetemp=refdate-dob;

run;

Calculating Age Calculating Age
Attempt 1Attempt 1

✽ SAS output
ID DOB AGETEMP
1 01JAN1910 33206
2 02FEB1920 29522
3 03MAR1930 25840
4 04APR1940 22155
5 05MAY1950 18472

Calculating Age Calculating Age
Attempt 2Attempt 2

✽ SAS code
data wtage;

set white;
refdate=‘30Nov00’d;
agetemp=(refdate-dob)/365.25;

run;

Calculating Age Calculating Age
Attempt 2Attempt 2

✽ SAS Output
ID DOB AGETEMP
1 01JAN1910 90.9131
2 02FEB1920 80.8268
3 03MAR1930 70.7461
4 04APR1940 60.6571
5 05MAY1950 50.5736

Calculating Age Calculating Age
Attempt 3Attempt 3

✽ SAS code
data wtage;

set white ;
refdate=‘30Nov00’d;
age=int((refdate-dob)/365.25);

run;

Calculating Age Calculating Age
Attempt 3Attempt 3

✽ SAS Output
ID DOB AGE
1 01JAN1910 90
2 02FEB1920 80
3 03MAR1930 70
4 04APR1940 60
5 05MAY1950 50

Multitude of FunctionsMultitude of Functions

✽ Arithmetic - abs,max,mix,mod,sqrt,sign
✽ Array-dim,hbound,lbound
✽ Character - compress,index,scan,substr
✽ Date & Time - date,intck,mdy,timepart
✽ Mathematical - log ordinal
✽ Probability - poisson,probchi,probnorm
✽ Random Number - normal ranuni
✽ Sample statistic - mean,n,std,sum

If If -- Then Then -- ElseElse

✽ Another way to create new variables from
existing variables

✽ Syntax
- IF <Condition> THEN <Action>

ELSE <Different Action>

IfIf--ThenThen--Else ExampleElse Example
Attempt 1Attempt 1

✽ SAS code
data wtage2;

set wtage;
if age<65 then agecat=1;
else agecat=2;

run;

IfIf--ThenThen--Else ExampleElse Example
Attempt 1Attempt 1

✽ SAS output
Obs AGE AGECAT
1 90 2
2 80 2
3 70 2
4 60 1
5 50 1

“Realistic” Data Set“Realistic” Data Set

✽ Data set - AgeEx

ID AGE
10 27
20 65
30 .
40 777

IfIf--ThenThen--Else ExampleElse Example
Attempt 1Attempt 1

✽ Data set - AgeEx
ID AGE AGECAT
10 27 1
20 65 2
30 . 1
40 777 2

IfIf--ThenThen--Else Example Else Example
Attempt 2 (Better)Attempt 2 (Better)

✽ SAS code
data cat2;

set ageex;
agecat=0; *Set an initial value;
if 0<age<65 then agecat=1;

else if 65<=age<100 then agecat=2;
*Designate ranges;

if age=. then agecat=.;
run;

IfIf--ThenThen--Else Example Else Example
Attempt 2 (Better)Attempt 2 (Better)

✽ SAS output
Obs AGE AGECAT
1 27 1
2 65 2
3 . .
4 777 0

Reducing the Size of a Reducing the Size of a
Data SetData Set

✽ Occasionally, may want to reduce the
size of a data set by:

- reducing the number of observations (rows)
using the where statement

- reducing the number of variables (columns)
using drop and keep statements

Where StatementWhere Statement

✽ Where statement can be used to create
a subset data set

✽ Selects observations which meet
the specified criteria - reducing the
number of observations (rows)

Where Statement Where Statement
ExampleExample

✽ SAS code
data xy;

set white yellow;
where gender=:’M’;

run;

Existing SAS Data Sets Existing SAS Data Sets

White Data set
ID GROUP DOB GENDER

1 A 01JAN1910 F
2 A 02FEB1920 M *
3 A 03MAR1930 M *
4 A 04APR1940 F
5 A 05MAY1950

Yellow Data set
ID GROUP GENDER

3 B Fem

5 B Male *
6 B Fem

Where Statement Where Statement
ExampleExample

✽ SAS log
- NOTE: There were 2 observations read from the dataset
WORK.WHITE. WHERE gender=:'M';

- NOTE: There were 1 observations read from the dataset
WORK.YELLOW. WHERE gender=:'M';

- NOTE: The data set WORK.XY has 3 observations
and 4 variables.

Where Statement Where Statement
ExampleExample

✽ SAS output

ID GROUP DOB GENDER
2 A 02FEB1920 M
3 A 03MAR1930 M
5 B . Male

Reducing the Data Set Reducing the Data Set
SizeSize

✽ Reduce the number of observations
(rows) - Where statement

✽ Reduce the number of variables
(columns) - Keep or Drop statements

Keep and Drop Keep and Drop
StatementsStatements

✽ Bringing data into the data step
- Syntax
(keep = <list of variables>) or
(drop=<list of variables>)
after the data set name in the set or merge
statement

✽ Deciding variables to retain in data set
- Syntax

keep <variable list>

Keep and Drop Keep and Drop
StatementsStatements

✽ SAS code
data wtage;

set white (keep= id dob);
refdate=‘30Nov00’d;
age=int((refdate-dob)/365.25);
drop refdate;

* Alternate keep id dob age;
run;

Formatting the DataFormatting the Data

✽ Creating labels
− Describe what variable names represent

✽ Creating formats
− Control how the data are displayed
− Do not affect the actual values of the data

Formatting the Data, Formatting the Data,
ContinuedContinued

✽ SAS code
proc format;

value catfmt
1=’1: younger than 65'
2=’2: 65 and Over';

run;

Formatting the Data, Formatting the Data,
ContinuedContinued

✽ SAS code
data wtage2;

set wtage;
agecat=0;
if 0<age<65 then agecat=1;

else if 65<=age<100 then agecat=2;
format agecat catfmt.;
label agecat=“Age Category”;

run;

Formatting the Data, Formatting the Data,
ContinuedContinued

✽ SAS output

Age Category
Cumulative Cumulative

Agecat Frequency Percent Frequency Percent
--
1:younger than 65 2 40.00 2 40.00
2:65 and Over 3 60.00 5 100.00

Formatting the Data Formatting the Data
with Rangeswith Ranges

✽ SAS code
proc format;

value age2_
20-<30='Age 20-29'
30-<40='Age 30-39'
40-<50='Age 40-49'
50-<60='Age 50-59'
60-<70='Age 60-69'
70-<79='Age 70-79'
80-<100='Age 80 or Over ’;

run;

Formatting the Data Formatting the Data
with Ranges, Continuedwith Ranges, Continued

✽ SAS code
data ageinfo;

set agedata;
age2=age;
format age2 age2_.;

run;

Formatting the Data Formatting the Data
with Ranges, Continuedwith Ranges, Continued

✽ SAS output
AGE AGE2 AGE AGE2
23 Age 20-29 82 Age Over 80
34 Age 30-39 200 200
36 Age 30-39
48 Age 40-49
52 Age 50-59
58 Age 50-59
62 Age 60-69
71 Age 70-79
73 Age 70-79

SummarySummary

✽ Temporary vs. Permanent SAS data sets
✽ Set and Merge
✽ Creating new variables
✽ Dates
✽ If then else
✽ Reducing a data set
✽ Formats and Labels

Analyzing the DataAnalyzing the Data

✽ Proc univariate and Proc means
− Provide descriptive statistics such as the sample

size, mean, standard deviation, median, mode,
percentile

✽ Proc freq
− Produces counts and percentages for one variable

and two variable tables

✽ Proc plot
− Produces a simple plot of two variables

