Java Coding Standards
Version 2.0
[image: image3.png]
Software Engineering – Standards Division
Office of Enterprise Development

Office of Information & Technology

Department of Veterans Affairs

Abstract

The importance and benefits of a consistent coding style are well known. Today, more than 80% of the lifetime cost of a piece of software goes to maintenance. Hardly any software is maintained for its whole life by the original author. Code conventions improve the readability of the software, allowing engineers to understand new code more quickly and thoroughly.

This document describes a set of coding standards for programs written in the Java language. It is intended for all Java software developers. Feedback in the form of corrections or suggestions for improvement is very welcomed.

Comments may be sent to VHITTRM@va.gov
"Any fool can write code that a computer can understand.

Good programmers write code that humans can understand."

--- Martin Fowler, Refactoring: Improving the Design of Existing Coed

Version History

	Date
	Version
	Description
	Author
	Contributors

	Mar-4-05
	1.0
	Document Created
	Sachin Sharma
	

	Apr-7-05
	1.2
	Document Updated
	Sachin Sharma
	Mai L Vo
Lyn D Teague
Rajesh Somannair

Katherine Stark
Niharika Goyal
Ron Ruzbacki

	Dec-1-09
	2.0
	Document Revised
	Michael Huneycutt Sr
	

Table of Contents

11
Overview

11.1
Introduction

21.2
Intended Audience

21.3
Technology

21.4
Acknowledgements

31.5
Source File Organization

31.6
Source File Naming

42
Naming Conventions

42.1
Package Names

42.2
Type Names

52.3
Member Names

62.4
Method Names

62.5
Constant Names

72.6
Parameter Names

72.7
Static Variable Names

72.8
Specific Naming Conventions

93
Documentation

103.1
Beginning Comments

103.2
General Comment Formats

123.3
Javadoc Comments

154
Style

154.1
Coding Size Limits

164.2
Whitespace

174.3
Modifier Order

195
Design

195.1
Statements

225.2
Class Design

235.3
Coding Metrics

245.4
Potential Coding Issues

275.5
Imports

306
CheckStyle Installation

327
References

327.1
Web Resources

338
Naming Convention Reference

1 Overview

1.1 Introduction

Most developers agree that proper coding conventions and standards can lead to higher quality software artifacts, which are easier to support and maintain. The key to organizational adoption of coding conventions is making them easy to deploy and relevant to those who have to use them. This document is designed to provide Java developers with a set of coding conventions and standards to be followed when developing applications using the Java Programming Language. This document focuses on coding standards and coding conventions, which by themselves do nothing. However, when combined with other coding practices such as proper design and analysis, code reviews, test driven development, continuous integration and other good programming practices, consistent and thorough coding standards can help improve communication, reduce learning times for new team members, minimize common coding issues or improper code usage that lead to defects and encourage code reuse.

The importance and benefits of a consistent coding style are well known. This document draws from some of the industry standard Java coding practices published by Sun. A consistent style:

· Improves the readability, and therefore, maintainability of code.

· Facilitates sharing of code among different programmers, especially teams of programmers working on the same project.

· Allows easier development of automated tools to assist in program development, such as tools that automatically format or “pretty-print” source code.

· Makes it easier to conduct code reviews, another software engineering process with well-known benefits. In turn, a practice of regular code reviews can help enforce a consistent style.

· Saves development time, once the guidelines are learned, by allowing programmers to focus on the semantics of the code, rather than spend time trying to determine what particular format is appropriate for a given situation.

Unlike the guidelines and best practices, the concise set of standards outlined in this document, are meant to be enforced without exception. When a situation falls out of the scope of this document, experience and informed judgment should be used wherever doubt exists. Consistency of coding style is more important than using a particular style.

This document is broken down into four broad categories of standards:

· Naming – The very first aspect of development that requires convention is how development artifacts are named. Consistent and proper naming of packages, types, variables and other code artifacts will help to insure that any skilled Java developer can pick up a piece of code and understand its function.

· Documentation – All languages provide the ability to create inline comments, which can be viewed while looking through the code. Java also provides the ability to formally document code inline, in a manner that allows for that documentation to be extracted and presented in the form of a browsable reference guide.

· Style – Coding style for most developers is a matter of preference. However there are certain coding conventions that should be standardized to insure proper readability and to produce software artifacts that are easier to maintain.

· Design – Though detailed design is outside of the scope of this document there are some coding standards and conventions related to design, which can be outlined that may lead to defects. An example is the use of Boolean.TRUE, Boolean.FALSE as opposed to new Boolean(true), new Boolean(false).

1.2 Intended Audience

This document is primarily intended for Java developers, but may also be of interest to development team managers, systems architects, Software Quality Assurance (SQA), and technical writers.

1.3 Technology
There are a number of technologies which can be used within the Java Development Environment to aid developers in compliance with the Java Coding Standards. The Standards Division has chosen to leverage CheckStyle, an open source technology for defining and enforcing coding standards within Java Integrated Development Environments and Continuous Integration/Build environments. The Standards Division has implemented the standards in this document in the form of a CheckStyle configuration file which can be loaded into the IDE and used to aid in compliance (see Section 7).
1.4 Acknowledgements

This document is based on the coding style that is prevalent in most Sun Java example code, and should already be familiar to most Java developers. The guidelines presented here were not created in a vacuum. In the process of creating this document, the authors have scanned numerous amounts of existing Java code conventions and guideline documents to determine the styles being used in current practice. This document builds upon and borrows heavily from several sources listed in the “References” section at the end of this document. The most heavily used sources are The Java Language Specification [1] and C++ Style Guide [3] (see References).

The language and terminology used here, as well as several suggested naming conventions, are taken directly from The Java Language Specification [1].

Source Files

1.5 Source File Organization

A Java source file shall contain a single public class or interface. When private classes and interfaces are associated with a public class, you can put them in the same source file as the public class. A public class should be the first class or interface declaration in the file.

A Java source file shall contain the following elements, in the following order:

1. Package declaration.

2. Import declarations.

3. Class comment including description, author and version.

4. One or more class/interface declarations. Starting with the Public class or interface declaration.

1.6 Source File Naming

A Java source file name shall use the prefix of the name of the class or interface defined in the source file. Java Source file name shall use the suffix: .java.
1.6.1 Package Declaration

A Java source file shall contain a package declaration specifying the namespace to which the class belongs. Omitting the package declaration causes the types to be part of an unnamed package, with implementation-defined semantics.
For example:

package gov.va.sample
2 Naming Conventions

Naming conventions make programs more understandable by making them easier to read and ensuring consistency. Naming conventions also provide information about the function of the identifier-for example, whether it's a constant, package, or class-which can be helpful in understanding the code. The following lists the Java naming standards to be used when coding Java applications.

2.1 Package Names

A package name shall contain only lower-case letters and digits with no underscore characters.
For example:
java.lang

java.awt.image

dinosaur.theropod.velociraptor
A unique package prefix is constructed by using the components of the VA Internet domain name of the host site in reverse order. The top two levels of the package prefix shall be: gov.va.
For example:

gov.va.security

gov.va.med.pharmacy
Currently COM, EDU, GOV, MIL, NET, ORG, or one of the English two-letter codes identifying countries as specified in ISO Standard 3166, 1981 are considered valid for a top level package name. For more information, refer to the documents stored at ftp://rs.internic.net/rfc, for example, rfc920.txt and rfc1032.txt.

Rule:

Regex Check: ^[a-z]+(\.[a-z_][a-z0-9_]*)*$
Violation:

Error

2.2 Type Names

Type names (classes and interfaces) shall use the InfixCaps style. InfixCaps naming starts with an uppercase letter and capitalize the first letter of any subsequent word in the name as well as any letters that are part of an acronym. All other characters in the name are lowercase. Underscore characters are not to be used to separate words.

Note: InfixCaps is not to be confused with infixCaps naming which starts with a lowercase letter and capitalizes the first letter of any subsequent word in the name.
Rule:

Regex Check: ^[A-Z][a-zA-Z0-9]*$

Violation:

Error

 Class names shall be nouns or noun phrases. Interface names depend on the salient purpose of the interface. If the purpose is primarily to endow an object with a particular capability, then the name shall be an adjective (ending in -able or -ible if possible), which describes the capability (e.g., Searchable, Sortable, NetworkAccessible). Otherwise, use nouns or noun phrases.

For example:

// GOOD type names:

LayoutManager, AWTException, ArrayIndexOutOfBoundsException

// BAD type names:

ManageLayout

// verb phrase

awtException

// first letter lower-case

array_out_of_bounds_exception
// underscores

2.3 Member Names

Member variables or non-static fields (reference types, or non-final primitive types) should begin with a lowercase letter and continue with the InfixCaps style and capitalize the first letter of any subsequent word in the name. If an acronym is used then all letters in the acronym should be capitalized. All other characters in member names should be lowercase. Underscores or other special characters should not be used to separate words.

For example:

boolean resizable;

char recordDelimiter;
Rule:

Regex Check: ^[a-z][a-zA-Z0-9]*$

Violation:

Warning

Member names shall be nouns or noun phrases. One-character field names should be avoided except for temporary and looping variables. In these cases, use the following:

· b for a byte

· c for a char

· d for a double

· e for an Exception object

· f for a float

· g for a Graphics object

· i, j, k, m, n for integers

· p, q, r, s for String, StringBuffer, or char[] objects

An exception is where a strong convention for the one-character name exists, such as x and y for screen coordinates.

The single character variable l (“el”) should not be used because it is hard to distinguish it from 1 (“one”) on some printers and displays.

2.4 Method Names

Method names should use the InfixCaps style. In Java, constructors are not considered methods; constructors of course always have the same name as the class. Start with a lowercase letter and capitalize the first letter of any subsequent word in the name as well as any letters that are part of an acronym. All other characters in the name are lowercase. Underscores or other special characters should not be used to separate words.
Rule:

Regex Check: ^[a-z][a-zA-Z0-9]*$
Violation:

Warning

Method names shall be imperative verbs or verb phrases.

Note: This is identical to the naming convention for non-constant fields. However, it will be easy to distinguish the two by their context (verbs or nouns).
For example:

// GOOD method names:

showStatus(), drawCircle(), addLayoutComponent()

// BAD method names:

mouseButton() // noun phrase; doesn’t describe function

DrawCircle() // starts with upper-case letter

add_layout_component() // underscores

// The function of this method is unclear. Does it start the

// server running (better: startServer()), or test whether or not

// it is running (better: isServerRunning())?

serverRunning() // verb phrase, but not imperative

2.5 Constant Names

It is important to differentiate class or instance constant variables from regular instance variables. The names of fields being used as constants should be all uppercase characters and individual words should be separated using an underscore.
For example:
static final int HTTP_OK_RESPONSE = 200;
static final String GNUTELLA_CONNECT = “GNUTELLA CONNECT\n\n”;

The following are considered to be constants:

5. All static final primitive types. (Remember that all interface fields are inherently static final.)

6. All static final object reference types that are never followed by "." (dot).

7. All static final arrays that are never followed by "[" (square bracket).

For example:
MIN_VALUE, MAX_BUFFER_SIZE, OPTIONS_FILE_NAME

Rule:

Regex Check: ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$

Violation:

Warning

2.6 Parameter Names

Parameter names should be short yet meaningful. The choice of a parameter name should indicate what is being passed. Parameter names for public and protected methods often become part of the class/interface contract and are published in the JavaDoc, therefore meaningful names are extremely important. Name such as arg0 or single character parameters names should be avoided. Parameter names should begin with a lower case letter and follow InfixCaps style.

Rule:

Regex Check: ^[a-z][a-zA-Z0-9]*$

Violation:

Warning

2.7 Static Variable Names

Static Variable names should be short yet meaningful. The choice of a variable name should be mnemonic- that is, designed to indicate to the casual observer the intent of its use. One-character variable names should be avoided. Static variable name should begin with a lower case letter and follow InfixCaps style.

Rule:

Regex Check: ^[a-z][a-zA-Z0-9]*$

Violation:

Warning

2.8 Specific Naming Conventions

8. The terms get or set shall be used where an attribute is accessed directly.

This is the naming convention for accessor methods used by Sun for the Java core packages and actually mandatory for Java and is part of the Bean Pattern. A method to get or set a property of the class should be called getProperty() or setProperty() respectively, where Property is the name of the property.
For example:

getHeight(), setHeight()
9. The is prefix shall be used for boolean variables and methods.
This is the naming convention for boolean methods and variables used by Sun for the Java core packages. When writing Java beans this convention is actually enforced for methods.

Using the is prefix solves a common problem of choosing bad boolean names like status or flag. isStatus or isFlag simply does not fit, and the programmer is forced to chose more meaningful names.
For example:

isSet, isVisible, isFinished, isFound, isOpen

There are a few alternatives to the is prefix that works better in some situations. These are has, can and should prefixes.
For example:

boolean hasLicense();
boolean canEvaluate();
boolean shouldAbort = false;

10. JFC (Java Swing) variables should be suffixed by the type of the JFC element.

This convention enhances readability since the name gives the user an immediate clue of the type of the variable and thereby the available resources of the object.

widthScale, nameTextField, leftScrollbar, mainPanel,
fileToggle, minLabel, printerDialog

11. Negated Boolean variable names should not be used.

A problem arises when the logical not operator is used and a double negative arises. It is not immediately apparent what !isNotError means.

boolean isError; // NOT: isNotError

boolean isFound; // NOT: isNotFound

12. Exception classes should be suffixed with Exception.

class AccessException
{
 :
{

Exception classes are really not part of the main design of the program, and naming them like this makes them stand out relative to the other classes. This standard is followed by Sun in the basic Java library.

3 Documentation

Java supports two kinds of comments: documentation and general. General comments are comments which are delimited by /*...*/, and //. Documentation comments (known as "doc comments") are comments, which adhere to the requirements of the Javadoc technology to allow documentation to be extracted to HTML files.

General comments are meant to aid developers in further understanding code and implementation decisions. Documentation comments are meant to describe the specification of the code and it is intended use from an implementation-free perspective..

Comments should be used to give overviews of code and provide additional information that is not readily available in the code itself. Comments should contain only information that is relevant to reading and understanding the program. For example, information about how the corresponding package is built or in what directory it resides should not be included as a comment.

Discussion of nontrivial or unobvious design decisions is appropriate, but avoid duplicating information that is present in (and clear from) the code. It is too easy for redundant comments to get out of date. In general, avoid any comments that are likely to get out of date as the code evolves.

Comments should not be enclosed in large boxes drawn with asterisks or other characters and should not include special characters such as form-feed and backspace.

· General guidelines for comment usage are listed below. These are described separately in the subsequent sections:

· Comments should help a reader understand the purpose of the code. They should guide the reader through the flow of the program, focusing especially on areas which might be confusing or obscure.

· Avoid comments that are obvious from the code, as in this famously bad comment example:

· i = i + 1;

// Add one to i

· Remember that misleading comments are worse than no comments at all.

· Avoid putting any information into comments that is likely to become out-of-date.

· Temporary comments that are expected to be changed, or removed later, shall be marked with the special tag “XXX:” so that they can easily be found afterwards. Ideally, all temporary comments shall have been removed by the time a program is ready to be shipped.
For example:

// XXX: Change this to call viewOrder() when the bugs in it
// are fixed

See References [11] and [13] for further guidance in proper comment usage.

3.1 Beginning Comments

Source files should begin with a comment that describes the class/interface and provides the name(s) of the author(s). Some source code control systems also provide the ability to leverage tags which are replaced with the last update date and version number.

For example:

/*

 * Description

 * Author

 * Usage Restrictions

 */

3.2 General Comment Formats

Programs can have four styles of implementation comments: block, single-line, trailing, and end-of-line.

3.2.1 Block Comments

Block comments are used to provide descriptions of files, methods, data structures and algorithms. Block comments may be used at the beginning of each file and before each method. They can also be used in other places, such as within methods. Block comments inside a function or method should be indented to the same level as the code they describe.

A block comment should be preceded by a blank line. This sets it apart from the rest of the code.

For example:
/*

 * Here is a block comment.

 */
indent(1) is a program that makes code easier to read by inserting or deleting whitespaces. Block comments can start with /*-, which is recognized by indent(1) as the beginning of a block comment that should not be reformatted.
For example:

/*-

 * Here is a block comment with some very special

 * formatting that I want indent(1) to ignore.

 *

 * one

 * two

 * three

 */

Note: If you don't use indent(1), you don't have to use /*- in your code or make any other concessions to the possibility that someone else might run indent(1) on your code.

3.2.1.1 Single-Line Comments

Short comments can appear on a single line indented to the level of the code that follows. If a comment can't be written in a single line, it should follow the block comment format (see Section 3.1.1). A single-line comment should be preceded by a blank line.
Here's an example of a single-line comment in Java code (also see "Documentation Comments" in section 3.4.2):
if (condition) {

 /* Handle the condition. */

 ...

}

3.2.1.2 Trailing Comments

Trailing comments are very short comments that appear on the same line as the code they describe. Trailing comments should be shifted far enough to the right in order to separate them from the statements. Multiple trailing comments contained in a section of code should be indented to the same tab setting.

Here's an example of a trailing comment in Java code:
if (a == 2) {

 return TRUE; /* special case */

} else {

 return isPrime(a); /* works only for odd a */

}

3.2.2 End-Of-Line Comments

The // comment delimiter can comment out a complete line or only a partial line. The // comment delimiter should not be used on consecutive multiple lines for text comments. However, it can be used in consecutive multiple lines for commenting out sections of code.
Examples of all three styles follow:

if (foo > 1) {

 // Do a double-flip.

 ...

}

else {

 return false; // Explain why here.

}

//if (bar > 1) {

//

// // Do a triple-flip.

// ...

//}

//else {

// return false;

//}

3.2.3 Comments with TODO or FIXME

In addition to general comments, some IDEs allow developers to place TODO and FIXME comments in code to indicate areas where there is additional work to be completed or a know issues needs to be corrected. These types of comments indicate that the code is not complete. Released source code shall not contain TODO and FIXME comments.

Rule:

Code check – looks for comments in the form:

//TODO: something needs to be done

//FIXME: something needs to be fixed

Violation:

Error

3.3 Javadoc Comments

Javadoc is not just another way of commenting your code. It provides a mechanism for documenting code through Javadoc style comments, which can then be extracted as documentation in the form of HTML pages using the Javadoc tool. Classes, public methods, and important fields shall be commented using Javadoc style comments. This does not mean that you should forget about normal commenting - normal comments and Javadoc comments can, and should, exist side by side in your program.
Classes are commented as:
/**
* Car represents cars ... A description of the class
* should be place here. Note that the description begins
* on the second line and that there is a space between
* the asterisk and the text. Next we will add some fields
* indicating who the authors of the class are and
* other useful information. Notice the newline!
*
* @author Sachin Sharma
* @version %I%, %G%
*/
public class Car{

Note: There is no extra newline between the end of the Javadoc comment and the beginning of the class.

Methods are commented as:

/**
* A description of what the method does...
*
* @param n a description of the parameter
* @return a description of the return value
*/
public int factorial(int n){

Some, but not all, fields are commented using Javadoc:

/**
* Short description of the variable (one line)
*/
type variable;

What should be commented using Javadoc and what should be commented normally? Well, think of it this way. Everything you comment using Javadoc will be seen on the document pages of your classes.

A person reading this documentation is interested in what the class represents, what methods it contains, how to use these methods (what type of arguments are to be given), and what they return. Some fields, such as public variables or constants, might also be of interest.

You should assume that a person only wants to use your class without knowing anything about what it really looks like inside. This is the information that you should provide, and this can be done using Javadoc comments. The things you should not comment using Javadoc are the things that are of interest to the programmer who wants to modify the contents of your class. Normal comments should help the reader of the code understand all its inner details and secrets.

3.3.1 Type Javadoc

It is important that every Type (Class or Interface) be documented outlining the role of the Type and its intended usage. Types that have a package, protected or public scope, should include a Javadoc comment that describes the Type.

Rule:

Code check – looks for missing Javadoc comments Classes and
Interfaces which have a scope of package, protected or public.

Violation:

Warning

3.3.2 Method Javadoc

A method that is scoped at a package, protected or public level should include a Javadoc comment. The Javadoc comment should describe the method, outlines the parameters, return types, and documents the exceptions thrown from the method. Methods that leverage the @Override tag and are not polymorphic in nature do not require a Javadoc comment. Methods which implement an interface should use the @see tag to refer to the documentation in the interface.

Rule:

Code check which looks for methods with a scope of package,
protected or public that do not have a Javadoc comment or have a
Javadoc comment that is missing the required annotations and does
not leverage the @Override tag or @see tag to refer to an
interface or super class that has the appropriate documentation.

Violation:

Warning
3.3.3 Variable Javadoc

Variables with a package, protected or public scope should be documented to insure proper understanding and usage. Though most variables are scoped private, to insure that variables are scoped properly and documented properly it is important to provide a Javadoc comment for all visible variables.
Rule:

Code check which looks for class or interface level variables
which are of package, protected or public scope, but do not have
a Javadoc comment associated.

Violation:

Warning

3.3.4 Style Javadoc

Javadoc comments are to be well formed and follow the proper style outlined by the Javadoc documentation. The following are general guidelines for well formed and proper Javadoc comments:

· The first sentence of a Javadoc comment should end with proper punctuation (That is a period, question mark, or exclamation mark, by default). Javadoc automatically places the first sentence in the method summary table and index. Without proper punctuation the Javadoc may be malformed. All items eligible for the {@inheritDoc} tag are exempt from this requirement.

· Javadoc statements should have a description. This includes both completely empty Javadoc, and Javadoc with only tags such as @param and @return.

· HTML tags should be completed and well-formed.
· HTML tags should have corresponding end tags.

· The use of package level HTML documentation is not strictly enforced. However, if used, it should follow HTML rules and be well-formed.

· Only tags approved for use in Javadoc should be used when using HTML tags. The list of valid HTML tags can be found in the Javadoc reference documentation.

These checks were patterned after the checks made by the DocCheck doclet available from Sun.
Rule:

Code check that looks for Type, Method, and Variable Javadoc
comments and insures that they are well formed and follow proper
style.

Violation:

Warning

4 Style

Coding style deals with issues not related to design or documentation, but related to the style of coding. These standards address readability and maintainability of code based on the developers style of coding.

4.1 Coding Size Limits

It has been proven that code readability and maintenance can be impacted by the style of coding which results in excessively long source files or coding artifacts. Some areas can result in defects downstream or maintenance problems, others have less of an impact, but need to be addressed. This section deals with size limits on various aspects of Java coding.

4.1.1 Maximum Line Length

Long lines may be hard to read in printouts or on the screen. If developers have limited screen space long lines may wrap or be cut-off making the code difficult to understand. The maximum length of a line shall be 128 characters.

Rule:

Limit Character Count 128

Violation:

Error

4.1.2 Maximum File Length

Source files that become excessively long can indicate a design issue and may be hard to understand or maintain. Java source files shall contain 2000 or less lines of code. Long classes require re-factoring into smaller classes.
Rule:

Line Count 2000

Violation:

Error

4.1.3 Maximum Anonymous Inner Class Length

Anonymous inner classes should be used for highly specialized cases. If an anonymous inner class is used, the maximum number of lines of code in the class should be limited to 40. Because an inner class is enclosed in a public class, very long inner classes can become hard to read and understand. It may be difficult for the developer to follow the flow of the method where the class is defined.
Rule:

Line Count 40

Violation:

Warning

4.1.4 Maximum Method Length

The body of a method shall be 150 lines or less. Where a method involves a large number of statements it must be broken up into additional methods called by the primary method. Long method bodies are hard to understand and maintain. Method bodies which exceed 150 lines will be flagged as an error requiring refactoring into smaller methods.

Rule:

Line Count 150

Violation:

Error

4.1.5 Maximum Number of Parameters

As an object oriented language Java developers have a number of approaches for passing parameters into a constructor or method. Methods and constructors that involve passing an excessive number of parameters can be hard to read and understand. The maximum number of constructor or method parameters should be seven. Methods and constructors exceeding this limit will be flagged with a warning and the developer should make every attempt to re-factor the code to reduce the number of parameters passed. This may involve introduction and class which carries the parameters.

Rule:

Parameter Count 7

Violation:

Warning

4.2 Whitespace

The use of whitespace within Java code is a matter of personal preference and style. However, some areas can result in code that is difficult to read and maintain. The following two standards are such areas.

4.2.1 Operator Wrap

The use of operators can lead to a need to wrap them on a different line. Defining a consistent mechanism for wrapping operators will help to insure that developers become accustomed to standard style for handling this area and improve overall readability and maintenance. Operators that are used in a statement that is continued on more than one line should be the first item on the continuing line.

For example:

//INCORRECT

Modifier.isPublic(member.getModifiers()) &&

 Modifier.isPublic(clazz.getModifiers());
//CORRECT
Modifier.isPublic(member.getModifiers())

&& Modifier.isPublic(clazz.getModifiers());

Rule:

Code Check – Check for lines ending with &&, ||, & and similar
characters

Violation:

Warning

4.2.2 Tab Character

Tab characters shall not be used in Java code. The use of the tab character (‘\t’) in Java coding can have a hidden impact on the readability of the code. The use of the tab character may require developers to configure tab widths in their editor to properly view and edit code. Additionally tabs can impact the source code control system and the ability to email code.
Rule:

Code Check – Existence of Character ‘\t’

Violation:

Error

4.3 Modifier Order

The order in which code appears based on the modifiers is a matter of style. However consistently ordering code based on visibility helps improve readability and maintenance by structuring the code in a manner where those items that have public visibility and therefore are the most relevant to the consumer appear first in the source code. The following order should be used:

1. public

2. protected

3. private

4. abstract

5. static

6. final

7. transient

8. volatile

9. synchronized

10. native

11. strictfp

Rule:

Code Check – the sequence of code based on scope is evaluated to
insure that it follows the outlined order with public scoped
items appearing first.

Violation:

Warning

5 Design

5.1 Statements

5.1.1 Simple Statements

A line of code shall contain at most one statement.
For example:
a = b + c; count++;

// WRONG

a = b + c;

// RIGHT

count++;

// RIGHT

Exceptions to this rule are compound looping statements.

5.1.2 Compound Statements

Compound statements are statements that contain lists of statements enclosed in braces "{ statements }". See the following sections for examples.

· The enclosed statements should be indented one more level than the compound statement.

· The opening brace should be at the end of the line that begins the compound statement; the closing brace should begin a line and be indented to the beginning of the compound statement.

· Braces should be used around all statements, even single statements, when they are part of a control structure, such as an if-else or for statement. This makes it easier to add statements without accidentally introducing bugs due to forgetting to add braces.

for (int i=0; i<aVariable; i++) {

doSomething(i);
}

5.1.3 Return Statements

A return statement with a value should not use parentheses unless they make the return value more obvious in some way.
For example:
return;

return myDisk.size();

return (size ? size : defaultSize);

5.1.4 if, if-else, if else-if else Statements

The if-else class of statements should have the following form:
if (condition) {

statements;

}

if (condition) {

statements;

} else {

statements;

}

if (condition) {

statements;

} else if (condition) {

statements;

} else {

statements;

}
Note: if statements always use braces {}. Avoid the following error-prone form:

if (condition) //AVOID! THIS OMITS THE BRACES {}!

statement;

5.1.5 for Statements

A for statement should have the following form:

for (initialization; condition; update) {

statements;

}

An empty for statement (one in which all the work is done in the initialization, condition, and update clauses) should have the following form:

for (initialization; condition; update);

When using the comma operator in the initialization or update clause of a for statement, avoid the complexity of using more than three variables. If needed, use separate statements before the for loop (for the initialization clause) or at the end of the loop (for the update clause).

5.1.6 while Statements

A while statement should have the following form:
while (condition) {

statements;

}
An empty while statement should have the following form:

while (condition);

5.1.7 do-while Statements

A do-while statement should have the following form:
do {

statements;

} while (condition);

5.1.8 switch Statements

A switch statement should always include a default statement. Switch statements without a default cause maintenance issues. A switch statement without a default may be a defect in the code, resulting from a missing default or it may be intentional. The problem is that a missing default does not convey the original intent. Additionally a missed default may result in a code path not intended by the developer..

Rule:

Code Check – Look for switch statements where no default has been
provided.

Violation:

Warning

A switch statement should have the following form:

switch (condition) {

case ABC:

statements;

/* falls through */

case DEF:

statements;

break;

case XYZ:

statements;

break;

default:

statements;

break;

}
Every time a case falls through (doesn't include a break statement), add a comment where the break statement would normally be. This is shown in the preceding code example with the /* falls through */ comment.

A switch statement should include a default case. The break in the default case is redundant, but it prevents a fall-through error if later another case is added.
5.1.9 try-catch Statements

A try-catch statement should have the following form:

try {

statements;

} catch (ExceptionClass e) {

statements;

}

A try-catch statement may also be followed by finally, which executes regardless of whether or not the try block has completed successfully.
try {

statements;

} catch (ExceptionClass e) {

statements;

} finally {

statements;

}

5.2 Class Design

5.2.1 Design for Extension

Java is an object oriented language. Java classes should be designed with extension in mind. Java classes that contain only non-private and non-static methods shall use an abstract, final, or have an implementation modifier.
A class that is not designed for extension will be flagged with a warning to allow the developer to reconsider the approach.

Rule:

Code Check – Class has non-private or non-static methods and does
not have an implementation or is not declared abstract or final

Violation:

Warning

5.2.2 Final classes

A class that does not have a public constructor shall be marked with a final modifier. This indicates that it is not intended to be extended and insures proper understanding of the extensibility of the class. Classes like this which do not declare the class final, will be marked with an error to help the developer re-evaluate whether the constructor needs to be marked protected and therefore extensible or final indicating that no specialization is expected.
For example:
Public final class xyz{}
Rule:

Code Check – Class has only private constructors and is not
marked final

Violation:

Error

5.2.3 Utility classes

If a class has only public methods it may be considered a utility class. The constructors of a utility class shall be marked private or protected to insure that it is not improperly used. An error will be flagged where a utility class has exposed the constructor as public and yet all methods are marked static.

Rule:

Code Check – Class with only static methods and does not have
constructors marked as private or protected.

Violation:

Error

5.3 Coding Metrics

5.3.1 Number of Conditions

The maximum number of Boolean conditions in a given expression should be 5. Expressions which have an large number of Boolean conditions chain together by &&, ||, &, | or ^ can result in code that is hard to read and maintain. If it is necessary to have more than 5 Boolean conditions, then it is recommended that the code should be broken up to make it more readable and easier to maintain.

Sample Violation:

if ((a == b || b == c) &&
c==d && (d == e || f == e) && x==y
) {

Remediation:

if ((a == b || b == c) {

 If (c==d && (d != e && f != e) && x==y) {

Rule:

Limit on Conditions in a single Expression 5

Violation:

Warning

5.3.2 Class fan out complexity

A class should be dependent on 20 or fewer classes. A factor of code complexity and overall maintenance complexity is the number of classes that a given class depends on. A class that has a dependency on more than 20 other classes indicates a level of effort in maintenance four or more times that of a class that has a dependency on 20 or fewer classes. As the number of dependencies increase the level of effort to maintain the code increase by the number of dependencies squared.

Rule:

Limit Class Dependency 20 Classes

Violation:

Warning

5.3.3 Cyclomatic Complexity

Cyclomatic or conditional complexity provides a metric which helps identify the number of linearly independent paths that can be taken through a given class. Higher numbers indicate greater code complexity and can indicate code that is difficult to read and maintain. Conditional complexity if difficult to avoid, but the overall cyclomatic complexity of a class should be 10 or less.

Rule:

Limit Cyclomatic Complexity 10

Violation:

Warning

5.3.4 Duplicate Code

Sequences of Java code should not be duplicated. Duplication of code, unless through code generation, can lead to code that is difficult to maintain. Even in the case of code generators maintenance can become burdensome if the code needs to be maintained outside of the context of the code generator. This is largely due to the independence of code segments, such as that a required change may need to be applied to all copies of the code and it is easily possible to miss changing one, which would cause a deviation and over time could lead to further deviation. Some duplication of code cannot always be avoided, but it should not be the norm. Avoid duplication of code by properly designing classes to allow for re-use or by leveraging utility classes.

Rule:

Code Check – Search for sequences of Java code which differ only
in indentation.

Violation:

Warning

5.4 Potential Coding Issues

5.4.1 Empty Statements/Empty Blocks

Java code should not contain an empty statement. Though empty statements and empty blocks may have their place, they generally make the code difficult to read and understand.

The following example of an empty statement is legal and very concise:

for (; in.available() != 0; sbuf.append(in.readline());

However the following is much easier to read

while (in.available() != 0)

{

sbuf.append(in.readline());

}

Empty statements generally indicate a misplaced semicolon and can point to a potential defect.
For example:
for (int i=0; i<; i++); <- Problem

Var[i]=”Some value”;

The above example points to two statements that should be linked, but are not because of the misplaced semicolon.

Empty blocks like empty statements may be valid, but generally point to potential problems. An example of an empty block most commonly seen is the empty catch block. Though there are valid cases when this is used such as ignoring exceptions in special cases, it does not indicate to other developers if this was intentional or a coding mistake. Java code should not contain an empty block. Empty bocks do not promote code readability and may create maintenance problems as other developers try to understand the intention of the empty block.
For example:

for (int i=0; i<x; i++) {} <- Empty

try {

….do something…

}

catch (Exception e) {} <- Empty

Rule:

Code Check – looks for cases where there are statements with no
action or blocks that have no action.

Violation:

Warning

5.4.2 Equals and HashCode

A common coding problem is overriding the implementation of equals() and not also overriding hashCode(). The contract of the equals() method depends on the hashCode() and therefore when overriding one the other should be overridden to provide clarity of intent in the code and to enforce the contract. Failure to properly implement equals() and hashCode() can lead to problems in other areas of the code which depend on these two methods.

Rule:

Code Check – Looks for override of the equals() method then
checks that the hashCode() method has also be overridden.

Violation:

Warning

5.4.3 Inner Assignment

Inner assignments should not be used. The use of inner assignments though elegant and concise create both code readability problems and may present problems in the debugger.
For example:

string sPos = Integer.toString(pos + 1);

This though perfectly legal may be difficult to read and within the debugger the value of what is passed in to toString() may not be visible. Avoid such inner assignments with the exception of “for” loops where they are legal.

Rule:

Code Check – Looks for assignments that have inner assignments
embedded.

Violation:

Warning

5.4.4 Magic Number

A numeric literal should only be used in an assignment to a constant. The use of numeric literals such as 0, 1, -1, 9999, etc. that are not defined as constants are considered a bad coding practice. The use of magic numbers can lead to code that is harder to maintain as the developers have to search for occurrences of a magic number when trying to debug or modify code.

Rule:

Code Check – Looks for instances of Integer, Float, Double and
Long where a number is used rather than a constant.

Violation:

Warning
5.4.5 Boolean expressions and returns

Complex Boolean expressions should not be used. The use of complex Boolean expressions and/or return statements that involve complex Boolean expressions can lead to code that is hard to read and maintain.
An example of complex Boolean expressions and return statements include the following:
Complex Boolean Expression:

if ((a == true || !b) && (c|| rt.isValid() ||

!rt.isValidMessage())){

 …

}

Complex Boolean Return:

if (rt.isValid()) {
 return false;

} else {

 return true;

}

Could be written:
 return rt.isValid();
Rule:

Code Check – Checks code for instance of Boolean expressions or

Boolean return statements with too many terms.

Violation:

Warning
5.4.6 Nested Blocks

Nested blocks should not be used. Nested blocks often confuse the reader. Most often nested blocks are the result of improper commenting or removal of debugging statements.
An example of a nested block:

public void someMethod() {

 string message=”Test Message”;

 {

 message=”My Message”;
 }
}

//if (logger.isDebugEnabled())
{

 Logger.debug(“This message”);

}

Rule:

Code Check – Code is searched for freely used blocks.
Violation:

Warning
5.5 Imports

5.5.1 Wildcard imports

Imports statements should contain fully qualified type names. Wildcard type-import-on-demand declarations (e.g. import java.util.*;) should not be used, unless Java reflection is used. Reasons for this include:

· Someone can later add new unexpected class files to the same package that you are importing. This new class can conflict with a type you are using from another package, thereby turning a previously correct program into an incorrect one without touching the program itself.

· Explicit class imports clearly convey to a reader the exact classes that are being used (and which classes are not being used).

· Explicit class imports provide better compile performance. While type-import-on-demand declarations are convenient for the programmer and save a little bit of time initially, this time is paid for in increased compile time every time the file is compiled.

 Most IDEs have a shortcut to format and organize the import statements (Ctrl+Shift+O). Use this function regularly and certainly before releasing the code for testing.

Rule:

Code Check – Looks for imports that leverage the * notation to
import dependent Types.
Violation:

Warning

5.5.2 Illegal imports

Import statements shall not contain a name of a sun.* package. Though Java is portable between Java Runtime Environments (JRE) it is possible to implement code that is dependent on a specific JRE, through the use of illegal imports. For example the direct import of sun.* packages will result in code that is no longer 100% pure Java, therefore limiting the portability between JREs.
Rule:

Code Check – Looks for imports of the sun.* packages within the
code.

Violation:

Error

5.5.3 Unused imports

Java code should not contain unused import statements. Most IDEs provide mechanism for automatic addition of imports and removal of unused imports. It is important to remove unused imports to eliminate artificial binding to Types (classes and interfaces) which are not used within the enclosing class. Failure to remove unused import can result in code that does not compile or drives developers to include class libraries that are not actually required.

Rule:

Code Check – Looks for instance of imports with the following
characteristics: Evaluates only direct imports, not wildcard
imports such as java.io.*; An import duplicates another import;
The class imported is from the java.lang package; A class
imported is from the same package; the class imported is not used
within the enclosing class

Violation:

Warning

6 CheckStyle Installation

The steps for installing CheckStyle may vary depending on the version of Eclipse or IBM Rational tool you are using. Prior to installation, please review the CheckStyle home page at the following link: http://checkstyle.sourceforge.net/index.html for specific information about your IDE.
For Rational and Eclipse developers the CheckStyle plug-in can be downloaded from the following link: http://eclipse-cs.sourceforge.net/.

Installation of CheckStyle involves downloading the Eclipse plug-in and extracting the contents. Within the Eclipse workbench you select Help -> Software Updates -> Add/Remove Software (see Figure 1).

[image: image1.png]
Figure 1 - Eclipse Screen Shot
You then select Add and in the dialog select Add Local. Browse to the folder where you extracted CheckStyle. Select it and then click next and agree to the license. This will add CheckStyle to your IDE. CheckStyle comes with a CheckStyle configuration based on the Sun Java Coding Standards.
To load the VA CheckStyle you need to download a copy of the VACheckStyle.xml configuration file: http://trm.oit.va.gov/files/VACheckstyle.xml. In the IDE, proceed to Preferences -> CheckStyle -> New. Select External Configuration and provide the Name VACheckStyle. You then browse to where you have saved VACheckStyle.xml and then select it. This will configure the VA CheckStyle. Once it is configured, select it as the default by clicking the Set As Default button. Once this is complete CheckStyle is fully configured with the VA CheckStyle configuration based on the standards in this document.

CheckStyle operates in two modes: continual or as needed. To activate continual checking you right click on your project and select CheckStyle -> Activate. To check code periodically as needed you can right click on your project and select CheckStyle -> Check code with CheckStyle. In both cases CheckStyle violations are displayed in the Problems View of Eclipse and Rational Tools.

7 Java Coding Rules

The following table is a summary of the coding rules contained in this document.
	Category
	Rule
	Required
	Automated

	Source File
	A Java source file shall contain a single public class or interface
	Yes
	No

	
	A public class should be the first class or interface declaration in the file
	No
	No

	
	A Java source file shall contain the following elements, in the following order: Package declaration, Import declarations, class/interface declarations.
	Yes
	No

	
	A Java source file class declaration shall start with the Public class declaration.
	Yes
	No

	
	Java source file names shall use the prefix of the name of the class or interface
	Yes
	No

	
	Java source file names shall use the suffix: .java
	Yes
	No

	
	A Java source file shall contain a package declaration specifying the namespace to which the class belongs
	Yes
	No

	Naming Conventions
	A package name shall contain only lower-case letters and digits with no underscore characters
	Yes
	Yes

	
	A package prefix shall be constructed by using the components of the VA Internet domain name of the host site in reverse order
	Yes
	No

	
	The top two levels of the package prefix shall be: gov.va.
	Yes
	No

	
	Type names (classes and interfaces) shall use the InfixCaps style
	Yes
	Yes

	
	Class names shall be nouns or noun phrases
	Yes
	No

	
	Member variables shall begin with a lowercase letter and continue with the InfixCaps style, capitalizing the first letter of any subsequent word in the name
	Yes
	Yes

	
	Member non-static fields (reference types, or non-final primitive types) should begin with a lowercase letter and continue with the InfixCaps style, capitalizing the first letter of any subsequent word in the name
	No
	Yes

	
	Underscores or other special characters should not be used to separate words in member names
	No
	Yes

	
	Member variables names shall be nouns or noun phrases
	Yes
	No

	
	Member non-static fields names shall be nouns or noun phrases
	Yes
	No

	
	The single character variable l (“el”) should not be used
	No
	No

	
	Method names should use the InfixCaps style, capitalizing the first letter of any subsequent word in the name as well as any letters that are part of an acronym
	Yes
	No

	
	Method names shall be imperative verbs or verb phrases
	Yes
	No

	
	The accessor method to get a property of the class should be called getProperty() where Property is the name of the property
	No
	No

	
	The accessor method to set a property of the class should be called setProperty() where Property is the name of the property
	No
	No

	
	The accessor method to test a boolean property of the class should be called isProperty(), where Property is the name of the property
	No
	No

	
	Constant variables should use all uppercase characters
	No
	Yes

	
	Individual words in a constant variable should be separated using an underscore character
	No
	Yes

	
	Parameter names should begin with a lower case letter and follow InfixCaps style
	No
	Yes

	
	Static variable names should begin with a lower case letter and follow InfixCaps style
	No
	Yes

	
	JFC (Java Swing) variables shall be suffixed by the type of the JFC element
	No
	No

	
	Negated Boolean variable names should not be used
	No
	No

	
	Exception classes should be suffixed with Exception
	No
	No

	Comments
	Comments should not be enclosed in large boxes drawn with asterisks or other characters
	No
	No

	
	Comments should not include special characters
	No
	No

	
	Source files should begin with a comment that describes the class and provides the name(s) of the author(s)
	No
	No

	
	Block comments inside a function or method should be indented to the same level as the code they describe
	No
	No

	
	A block comment should be preceded by a blank line
	No
	No

	
	A single-line comment should be preceded by a blank line
	No
	No

	
	Multiple trailing comments contained in a section of code should be indented to the same tab setting
	No
	No

	
	The // comment delimiter should not be used on consecutive multiple lines for text comments
	No
	No

	
	Released source code shall not contain TODO and FIXME comments
	Yes
	Yes

	
	Classes, public methods, and important fields shall be commented using Javadoc style comments
	Yes
	Yes

	
	Types with a scope of package, protected or public should include Javadoc comments
	No
	Yes

	
	Methods that are scoped at a package, protected or public level should include a Javadoc comment that described the method, outlines the parameters and return type and documents the exceptions thrown from the method
	No
	Yes

	
	Methods which implement an interface should use the @see tag to refer to the documentation in the interface
	No
	No

	
	Variables with a package, protected or public scope should be documented
	No
	Yes

	
	The first sentence of a Javadoc comment should end with proper punctuation
	No
	Yes

	
	Javadoc statements should have a description
	No
	Yes

	
	HTML tags should be completed and well-formed
	No
	Yes

	
	HTML tags should have corresponding end tags
	No
	Yes

	
	HTML tags used in comments should be valid Javadoc HTML tags
	No
	Yes

	Coding
	The maximum length of a line shall be 128 characters
	Yes
	Yes

	
	Java source files shall contain less than 2001 lines of code
	Yes
	Yes

	
	An anonymous inner class should contain less than 41 lines of code
	No
	Yes

	
	A body of a method shall contain less than 151 lines of code
	Yes
	Yes

	
	The maximum number of parameters that can be passed into a constructor should be 7
	No
	Yes

	
	The maximum number of parameters that can be passed into a method should be 7
	No
	Yes

	
	Operators that are used in a statement that is continued on more than one line should be the first item on the continuing line
	No
	Yes

	
	The tab character (‘\t’) shall not be used in Java code
	Yes
	Yes

	
	Java modifiers should be arranged in source code in the following order: public, protected, private, abstract, static, final, transient, volatile, synchronized, native, strictfp
	No
	Yes

	Class Design
	A line of code shall contain at most one statement
	Yes
	No

	
	Braces should be used around all statements, even single statements, when they are part of a control structure
	No
	No

	
	A switch statement should always include a default case
	No
	Yes

	
	Java classes that contain only non-private and non-static methods shall use an abstract, final, or have an implementation modifier
	No
	Yes

	
	A Java class that does not have a public constructor shall use a final modifier
	Yes
	Yes

	
	The constructors of a utility class shall be marked private or protected
	Yes
	Yes

	
	The maximum number of Boolean conditions in a given expression should be 5
	No
	Yes

	
	The maximum number of class dependencies for a class should be 20
	No
	Yes

	
	The cyclomatic complexity of a class should be less than 11
	No
	Yes

	
	Overidding the implementation of the equal() method must be done in conjunction with overriding the implementation of the hashcode() method
	No
	Yes

	
	Java code should not contain an empty statement
	No
	No

	
	Inner assignments should not be used
	No
	Yes

	
	A numeric literal should only be used in an assignment to a constant
	No
	Yes

	
	Complex Boolean expressions should not be used
	No
	Yes

	
	Imports statements should contain fully qualified type names
	No
	Yes

	
	Import statements shall not contain a name of a sun.* package
	Yes
	Yes

	
	Classes and interfaces should only ‘include’ required packages
	No
	Yes

8 References

[1] Gosling, J., Joy, B., Steele, G., “The Java Language

 Specification”, Addison-Wesley, 1996
[2] “Inner Classes Specification”.
[3] Reddy, A., “C++ Style Guide”, Sun Internal Paper

[4] Skinner, G., Shah, S., Shannon, B., “C Style and Coding Standards”, Sun Internal Paper,

[5] “Java Beans 1.0 Specification”, JavaSoft.

[6] Pike, R., “Notes on Programming in C”, Bell Labs technical paper.

[7] Cannon, L., Spencer, H., Keppel, D., et al, “Recommend C Style and Coding Standards”,

[8] Goldsmith, D., Palevich, J., “Unofficial C++ Style Guide”, develop, April 1990.

[9] Plocher, J., Byrne, S., Vinoski, S., C++ Programming Style With Rationale”, Sun Internal

[10] ISO Standard 3166, 1981

[11] Baecker, R., Marcus, A., Human Factors and Typography for More Readable Programs,

[12] Kernighan, B., Ritchie, D., The C Programming Language, Prentice-Hall, 1978

[13] McConnell, Steven, Code Complete, Chapter 19: Self-Documenting Code

[14] Flanagan, David, JAVA in a Nutshell, O’Reilly & Associates, 1997, Chapter 5 – Inner Classes and Other New Language Features

8.1 Web Resources

Java Coding Conventions - Sun Microsystems

Writing Javadoc Comments - Sun Micrososystems

Java Programming Style Guide - David Wallace Croft

Java Style Guide - Catharina Candolin

Java Programming Style Guide - Java Ranch

Design by Contract – JavaWorld

StringBuffer Example Take Three – WikiWeb

Metrics for netBeans - netBeans

9 Naming Convention Reference

	Identifier Type
	Rules for Naming
	Examples

	Package
	The prefix of a unique package name is always written in all-lowercase ASCII letters and should be one of the top-level domain names.

Subsequent components of the package name vary according to an organization's own internal naming conventions. Such conventions might specify that certain directory name components be division, department, project, machine, or login names.
	gov
gov.va
gov.va.vha

	Type (Class)
	Class names should be nouns, in mixed case with the first letter of each internal word capitalized. Try to keep your class names simple and descriptive. Use whole words-avoid acronyms and abbreviations (unless the abbreviation is much more widely used than the long form, such as URL or HTML).
	class Patient;
class PatientAllergy;

	Interface (Class)
	Interface names should be capitalized like class names.
	interface PatientDelegate;
interface Storing;

	Method
	Methods should be verbs, in mixed case with the first letter lowercase, with the first letter of each internal word capitalized.
	run();
runFast();
getBackground();

	Variable
	Except for variables, all instance, class, and class constants are in mixed case with a lowercase first letter. Internal words start with capital letters. Variable names should not start with underscore _ or dollar sign $ characters, even though both are allowed.

Variable names should be short yet meaningful. The choice of a variable name should be mnemonic- that is, designed to indicate to the casual observer the intent of its use. One-character variable names should be avoided except for temporary "throwaway" variables. Common names for temporary variables are i, j, k, m, and n for integers; c, d, and e for characters.
	int i;
char c;
float myWidth;

	Constant
	The names of variables declared class constants and of ANSI constants should be all uppercase with words separated by underscores ("_"). (ANSI constants should be avoided, for ease of debugging.)

	static final int MIN_WIDTH = 4;

static final int MAX_WIDTH = 999;

static final int GET_THE_CPU = 1;

[image: image2.png]
cxxvi
Java Coding Standards
30
12/8/2009

