

Portable Vital Signs Monitors Interface
Specifications

Exchanging Information with the VistA Vitals Application

October 2005

Department of Veterans Affairs
Office of Information & Technology
Office of Enterprise Development

Revision History

Date Description Author

6/8/2005 Created interface specifications E. Lickerman and B.

Ackerman

6/13/2005 Edited content C. Peterson

6/27/2005 Minor content modification C. Peterson

10/18/2005 Minor content modification C. Peterson

This page intentionally left blank for double-sided printing.

 i

Table of Contents

Introduction ... 1

Definitions .. 2

Interface ... 3

Commands .. 4

DTD for Vital Signs Results ... 5

Example Results Document .. 6

Requirements... 7

XML Document Tags and Requirements ... 7

Coding Requirements.. 9

Hardware Support Requirements .. 9

Installer Requirements .. 9

Failure Mode Requirements .. 9

General Requirements ... 10

Multi-Threading .. 10

Instrument Operating Modes .. 10

 ii

This page intentionally left blank for double-sided printing.

1

Introduction

The goal of this VA project is to interface small, portable vitals signs monitors with the Vitals

application within VistA. These monitors are produced by many companies and yet are very

similar in their functionality. All provide the same basic set of vitals measurements, though

there is some expected variety in the methods they use to acquire these values.

Many of these devices are capable of interfacing with outside software systems. The first two

that were examined use an RS232 port but there is no expectation that this will be the case with

all such monitors. In the future there may be a need to interface with devices that use different

physical interconnects. The first two devices also provide slightly different mechanisms and

command sets for software interfacing. One requires commands to be sent in ASCII text directly

over the serial port. The other provides a Windows Software Development Kit (SDK) that

handles these low level details for the programmer and allows easier construction of Windows

applications that request information from the monitor.

Rather than write a custom interface for each device used within the VA system, this

specification is being provided. The goal is that a vendor will implement this specification for its

own devices and that any software that meets this specification will automatically work with the

Vitals package. The specification is intended to be short, simple and easy to implement as well as

being platform and development language independent.

2

Definitions

 DLL: A Microsoft Windows Dynamic Link Library. A library of software functions that

can be linked to anther program at runtime, as opposed to compile time. For the purposes of

this project, DLL is defined as a Standard Microsoft dynamic link library – not an ActiveX

DLL. It is acceptable, however, to “wrap” an ActiveX component into a Standard Microsoft

DLL.

 RS232: A standard interface connection that provides for only modest transmission rates &

is often used with modems. For the purposes of this specification, RS232 cables are taken as

9-pin cables with D-type connectors on either end and, connect to the COM port(s) on a

personal computer.

 Vendor Software: A software program to be written by the vendor of a given small vital

signs monitor, conforming to this specification and facilitating communication between the

Vitals application and the given small vital signs monitor.

 Vital Signs: Measurements that can be taken on a patient that reflect the presence of life in

that patient. The set of vital signs typically includes pulse rate, respiratory rate, blood

pressure, body temperature and oxyhemoglobin saturation (O2 sat).

 Vitals Application: A specific software program that is used to record vital signs taken from

patients. This VA application is written in M and Delphi.

 Vitals Monitor (also known as “monitor”): A small portable device produced by the vendor

that can measure a small set of “Vital Signs” on a patient.

 XML: Extensible Markup Language. A flexible way to create common information formats

and share both the format and the data on the World Wide Web, intranets, and elsewhere.

XML is a formal recommendation from the World Wide Web Consortium (W3C) similar to

the language of today's Web pages, the Hypertext Markup Language (HTML).

3

Interface

The vendor shall supply a DLL that implements a simple interface as described in this document.

The VA Vitals application will use the functions of the DLL supplied by the vendor. The vendor

software will then interact appropriately with the monitor. The monitor may return results to the

vendor software, and the vendor software will then return properly formatted results to the Vitals

application.

If the Vitals application requests vital signs measurements, the vendor software will respond with

a pointer to a small XML document representing the results of the request. The XML document

will conform to the Document Type Definition (DTD) supplied in this specification. For other

requests the vendor software will respond with the appropriate value as described in this

specification. Please refer to the diagram below for typical function call order:

4

Commands

Due to the simplicity of the interaction required, at this point only four commands are specified

that the software must accept from the Vitals application.

1. checkReadiness. This is the first command the Vitals software will issue to the vendor

software. It is to check if the software is in a state in which it can return results. To be in

a ready state, the software must be running (powered on) and able to interact with its

monitor. This function must return false if the software (or firmware) version of the

device is earlier than the Vitals certified version, even if it is capable of communication.

Parameters: none

Return type: Boolean

Return values: True if the software is in contact with one of the vendor’s

monitors, False otherwise. If another vendor’s monitor is connected to the PC

(and not this vendor’s monitor) this command must return false.

2. getBufferLength. The vendor will allocate a buffer that can accommodate any length of

string for any XML documents that are possible output of a single instrument read. This

method allows the Vitals application to discover how much memory the vendor

application has allocated for this buffer. The Vitals application will call this method once

at startup, so the vendor application cannot change its size after this method is called.

Parameters: none

Return type: 32 bit integer

Return values: The (unchanging) size of the buffer the vendor software has

allocated for XML return strings.

3. getState. This command is a request to retrieve the current state of the monitor. Any

values for any vitals signs should be read from the monitor, expressed in the XML return

format placed in the buffer, and returned to the Vitals application.

Parameters: none

Return type: pointer

Return value: A pointer to the beginning of the buffer containing the string which

is an XML document conforming to this specification and containing the

information about the current state of the monitor, i.e. the vital signs currently in

the monitor. The string is represented by a null terminated character array and is

encoded as ASCII text.

4. resetMonitor. The Vitals application has successfully read the state of the monitor and,

to avoid reading the same values a second time, requests that all the values in the monitor

be reset. This function must also clean any buffers or memory used in the construction or

passing of information.

Parameters: none

Return type: Boolean

Return value: True if the monitor was reset; False otherwise.

5

DTD for Vital Signs Results

Below is the XML DTD:

<?xml version="1.0>

 <!ELEMENT Vitals (Vendor,Model,Serial_Number,Result*)>

 <!ELEMENT Vendor (#PCDATA)>

 <!ELEMENT Model (#PCDATA)>

 <!ELEMENT Serial_Number (#PCDATA)>

 <!ELEMENT Result (Value,Units,Time_stamp)>

 <!ATTLIST Result name(Systolic_blood_pressure|

 Diastolic_blood_pressure|

 Mean_arterial_pressure|

 Oxygen_saturation|

 Body_temperature|Pulse) #REQUIRED

 >

 <!ELEMENT Value (#PCDATA)>

 <!ELEMENT Units (#PCDATA)>

 <!ATTLIST Units name (F|C|mmHg|BPM|%) #REQUIRED>

 <!ELEMENT Time_stamp (#PCDATA)>

 <!ATTLIST Time_stamp year CDATA #REQUIRED

 month CDATA #REQUIRED

 day CDATA #REQUIRED

 hour CDATA #REQUIRED

 minute CDATA #REQUIRED

 second CDATA #REQUIRED

 >

 <!ELEMENT Method (#PCDATA)>

 <!ATTLIST Method name CDATA #REQUIRED>

6

Example Results Document

This is an example of the results document that comes from the vendor.

<?xml version="1.0" encoding="ASCII"?>

<Vitals>

 <Vendor>Welch-Allyn</Vendor>

 <Model>Vitals 4000</Model>

 <Serial_Number>1122992929</Serial_Number>

 <Result name="Systolic_blood_pressure">

 <Value>120</Value>

 <Units name="mmHg"></units>

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30">

</Time_stamp>

 </Result>

 <Result name="Diastolic_blood_pressure">

 <Value>80</Value>

 <Units name="mmHg"></units>

 <Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30">

</Time_stamp>

 </Result>

 <Result name="Mean_arterial_pressure">

 <Value>103</Value>

 <Units name="mmHg"></units>

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30">

</Time_stamp>

 </Result>

 <Result name="Oxygen_saturation">

 <Value>95</Value>

 <Units name="%"></units>

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30">

</Time_stamp>

 </Result>

 <Result name="Body_temperature">

 <Value>98.6</Value>

 <Units name="F"></units>

 <Method>predicted</Method>

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30">

</Time_stamp>

 </Result>

 <Result name="Pulse">

 <Value>84</Value>

 <units name="BPM"></units>

 <Method>pulse_ox</Method>

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30">

</Time_stamp>

 </Result>

</Vitals>

7

Requirements

 XML Document Tags and Requirements

1. Spacing: The spacing used in the example results document is to be followed exactly

paying particular attention to the spacing within the Time_stamp tag.

2. Capitalization: The capitalization used in the example results document is to be

followed exactly.

3. Empty Results: The XML document shall not include any result blocks for readings that

were not measured. If, for example, temperature, SpO2, and pulse are taken but not

blood pressure, the two results blocks pertaining to blood pressure are to be omitted

altogether as opposed to sending a value of 0 or an empty tag.

4. Vendor tag. This contains the name of the vendor as PCDATA. The vendor shall

decide what to put for name. Once decided it should never be changed without notice to

the VA. This name is case sensitive.

5. Model tag. PCDATA within this tag indicates the model name or number of the

monitor. This is set at the vendor’s discretion.

6. Serial Number tag. PCDATA within this tag indicates the serial number assigned to the

monitor by the vendor. This should uniquely identify the device.

7. Result tag. This is the parent tag of all elements that, taken together, describe the result

of a single vital sign measurement.

8. name attribute. Contains CDATA indicating the name of the vital sign. These names

are set and defined by this specification, i.e. vendor specific names will not be passed in

this attribute. The vendor is responsible for deciding the appropriate translation from its

internal naming scheme to the naming scheme described in this document.

9. Value tag. This contains PCDATA representing the value of the measurement. It should

be text for the decimal number of the value. None of these measurements require

scientific notation and it is not intended that the program encode the binary value of the

number in any way. It should be represented as human readable text for the number in

Arabic numerals. It should follow the convention that a “.” separates the whole number

part from the decimal fraction. No commas (“,”) should be used to separate digits in the

whole number portion (e.g. 10000 not 10,000). The number of digits after the decimal

point should reflect the precision of the monitor for the given measurement, i.e. this

specification does not limit this.

10. Units tag. This contains PCDATA indicating the units that apply to the value of the

measurement. The DTD specifies these units and if the monitor uses different units the

8

vendor software is responsible for translating them to the units allowed by the DTD.

Acceptable units are:

a. F stands for “Fahrenheit,” the most common unit of measure for body

temperature.

b. C stands for “Celsius” or “Centigrade,” the metric unit for body temperature.

c. mmHg stands for “millimeters of mercury” and is a unit of pressure commonly

used to report blood pressure.

d. BPM stands for “Beats per Minute” and is the most common way of reporting the

pulse or heart rate.

e. % in this system is used to report the Oxygen saturation of the blood.

11. Method tag. This contains PCDATA that represents the method used to produce the

result. It is vendor specific and a method code and name may combine several concepts.

Examples:

a. The predicted vs. the actual measured temperature. Many vitals monitors can

extrapolate the body temperature from the temperature change in the temperature

probe, before the probe temperature has equalized with that of the surrounding

body.

b. Pulse can be taken from the pulse oximetry finger clip or from the blood pressure

cuff.

12. Time_stamp tag. This has attributes that indicate the time the parent result was

produced by the monitor, using the monitor’s clock which is not guaranteed to be

synchronized with the PC’s system time. Each attribute contains CDATA that indicates

the number of years, months, days etc. as text. The numbers will be base ten integers

expressed in standard Arabic numerals, i.e. not hexadecimal.

9

Coding Requirements

The vendor application is not responsible for supplying the Vitals application with standard

codes such as LOINC or SNOMED. The vendor shall supply the VA with mappings of their

result types to standard codes. The combination of the result name, the result method and the

vendor should be sufficient to code the result. The Vitals application will be responsible for

using or not using this information.

Hardware Support Requirements

A Pentium Class system capable of running Microsoft Windows XP (or greater) with available

RS232 (COM) port is the only hardware requirement.

Installer Requirements

The vendor will supply a graphical installer for the given PC platform. This installer must be

easy to use. If the user accepts the default settings, it should result in a successful install under

most circumstances.

1. The installer should also be capable of updating an existing installation to a new version.

2. The installer should be a “single” installer that consists of a single executable.

3. The installer shall install the DLL responsible for communication into the

/program files/VistA/Vitals/Plugins/ folder.

4. The installer shall install all other supporting files needed by the above DLL into the

/program files/<vendor name>/ folder. The vendor name used here must be consistent

throughout all subsequent installations.

5. The installer shall NOT install any extraneous files nor overwrite any critical system files.

Failure Mode Requirements

1. Vendor software loses connection with vitals monitor.

a. The software should attempt to re-establish connection.

2. Vendor software crashes.

a. The rest of the system should be unaffected by a vendor software crash.

b. The Vitals software should be able to attempt a re-start of the vendor software.

3. The Vitals application crashes.

a. When re-started the Vitals application is responsible for requesting a re-establishment of

the socket between it and the vendor application. The vendor software shall support this.

The unexpected termination of the connection to the Vitals application should be handled

well. The vendor software must not crash under such circumstances and be immediately

available for new connection attempts by the Vitals software.

10

General Requirements

The vendor software must flawlessly identify its own monitors and never attempt to acquire or

return results read from another vendor’s monitor.

Multi-Threading

It is recognized that the construction of the return XML will take a finite time. The interface

must be a single-threaded interface where each request will be processed and returned in the

same order that is was transmitted.

Instrument Operating Modes

1. Request-Response Mode: This is the default operating mode for the software. In this mode

the vendor software waits for a request from the Vitals software before sending a response.

This involves the vendor software listening on the socket for incoming text commands and

responding to valid ones.

2. Monitor mode: When the instrument is set to monitor mode it will take readings at intervals

and send them to the software. This mode is not supported by the Vitals application and

therefore not supported by this specification.

