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Introduction 
 

The goal of this VA project is to interface small, portable vitals signs monitors with the Vitals 

application within VistA.  These monitors are produced by many companies and yet are very 

similar in their functionality.  All provide the same basic set of vitals measurements, though 

there is some expected variety in the methods they use to acquire these values.   

 

Many of these devices are capable of interfacing with outside software systems.  The first two 

that were examined use an RS232 port but there is no expectation that this will be the case with 

all such monitors.  In the future there may be a need to interface with devices that use different 

physical interconnects.  The first two devices also provide slightly different mechanisms and 

command sets for software interfacing.  One requires commands to be sent in ASCII text directly 

over the serial port.  The other provides a Windows Software Development Kit (SDK) that 

handles these low level details for the programmer and allows easier construction of Windows 

applications that request information from the monitor. 

 

Rather than write a custom interface for each device used within the VA system, this 

specification is being provided.  The goal is that a vendor will implement this specification for its 

own devices and that any software that meets this specification will automatically work with the 

Vitals package. The specification is intended to be short, simple and easy to implement as well as 

being platform and development language independent. 
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Definitions 
 

 DLL:  A Microsoft Windows Dynamic Link Library.  A library of software functions that 

can be linked to anther program at runtime, as opposed to compile time.  For the purposes of 

this project, DLL is defined as a Standard Microsoft dynamic link library – not an ActiveX 

DLL.  It is acceptable, however, to “wrap” an ActiveX component into a Standard Microsoft 

DLL. 

 RS232:  A standard interface connection that provides for only modest transmission rates & 

is often used with modems.  For the purposes of this specification, RS232 cables are taken as 

9-pin cables with D-type connectors on either end and, connect to the COM port(s) on a 

personal computer. 

 Vendor Software:  A software program to be written by the vendor of a given small vital 

signs monitor, conforming to this specification and facilitating communication between the 

Vitals application and the given small vital signs monitor. 

 Vital Signs:  Measurements that can be taken on a patient that reflect the presence of life in 

that patient.  The set of vital signs typically includes pulse rate, respiratory rate, blood 

pressure, body temperature and oxyhemoglobin saturation (O2 sat). 

 Vitals Application:  A specific software program that is used to record vital signs taken from 

patients.  This VA application is written in M and Delphi. 

 Vitals Monitor (also known as “monitor”):  A small portable device produced by the vendor 

that can measure a small set of “Vital Signs” on a patient. 

 XML: Extensible Markup Language.  A flexible way to create common information formats 

and share both the format and the data on the World Wide Web, intranets, and elsewhere. 

XML is a formal recommendation from the World Wide Web Consortium (W3C) similar to 

the language of today's Web pages, the Hypertext Markup Language (HTML). 
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Interface 
  

The vendor shall supply a DLL that implements a simple interface as described in this document. 

The VA Vitals application will use the functions of the DLL supplied by the vendor.  The vendor 

software will then interact appropriately with the monitor.  The monitor may return results to the 

vendor software, and the vendor software will then return properly formatted results to the Vitals 

application. 

 

If the Vitals application requests vital signs measurements, the vendor software will respond with 

a pointer to a small XML document representing the results of the request.  The XML document 

will conform to the Document Type Definition (DTD) supplied in this specification.  For other 

requests the vendor software will respond with the appropriate value as described in this 

specification.  Please refer to the diagram below for typical function call order: 
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Commands 

 

Due to the simplicity of the interaction required, at this point only four commands are specified 

that the software must accept from the Vitals application. 

 

1. checkReadiness.  This is the first command the Vitals software will issue to the vendor 

software.  It is to check if the software is in a state in which it can return results.  To be in 

a ready state, the software must be running (powered on) and able to interact with its 

monitor.  This function must return false if the software (or firmware) version of the 

device is earlier than the Vitals certified version, even if it is capable of communication. 

Parameters: none 

Return type: Boolean 

Return values:  True if the software is in contact with one of the vendor’s 

monitors, False otherwise. If another vendor’s monitor is connected to the PC 

(and not this vendor’s monitor) this command must return false. 

 

2. getBufferLength.  The vendor will allocate a buffer that can accommodate any length of 

string for any XML documents that are possible output of a single instrument read.  This 

method allows the Vitals application to discover how much memory the vendor 

application has allocated for this buffer.  The Vitals application will call this method once 

at startup, so the vendor application cannot change its size after this method is called. 

Parameters: none 

Return type: 32 bit integer 

Return values: The (unchanging) size of the buffer the vendor software has 

allocated for XML return strings. 

 

3. getState.  This command is a request to retrieve the current state of the monitor.  Any 

values for any vitals signs should be read from the monitor, expressed in the XML return 

format placed in the buffer, and returned to the Vitals application. 

Parameters: none 

Return type: pointer 

Return value:  A pointer to the beginning of the buffer containing the string which 

is an XML document conforming to this specification and containing the 

information about the current state of the monitor, i.e. the vital signs currently in 

the monitor.  The string is represented by a null terminated character array and is 

encoded as ASCII text. 

 

4. resetMonitor.  The Vitals application has successfully read the state of the monitor and, 

to avoid reading the same values a second time, requests that all the values in the monitor 

be reset.  This function must also clean any buffers or memory used in the construction or 

passing of information. 

Parameters: none 

Return type: Boolean 

Return value:  True if the monitor was reset; False otherwise. 
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DTD for Vital Signs Results 
 

Below is the XML DTD: 
 

<?xml version="1.0> 

 <!ELEMENT Vitals (Vendor,Model,Serial_Number,Result*)> 

 <!ELEMENT Vendor (#PCDATA)> 

 <!ELEMENT Model (#PCDATA)> 

 <!ELEMENT Serial_Number (#PCDATA)> 

 <!ELEMENT Result (Value,Units,Time_stamp)> 

 <!ATTLIST Result name(Systolic_blood_pressure| 

    Diastolic_blood_pressure| 

    Mean_arterial_pressure| 

    Oxygen_saturation| 

    Body_temperature|Pulse) #REQUIRED 

         > 

 <!ELEMENT Value (#PCDATA)> 

 <!ELEMENT Units (#PCDATA)> 

 <!ATTLIST Units name (F|C|mmHg|BPM|%) #REQUIRED> 

 <!ELEMENT Time_stamp (#PCDATA)> 

 <!ATTLIST Time_stamp year CDATA #REQUIRED 

         month CDATA #REQUIRED 

         day CDATA #REQUIRED 

    hour CDATA #REQUIRED 

    minute CDATA #REQUIRED 

    second CDATA #REQUIRED 

    > 

 <!ELEMENT Method (#PCDATA)> 

 <!ATTLIST Method  name CDATA #REQUIRED> 

 

 



 

6 

Example Results Document 
 

This is an example of the results document that comes from the vendor. 
 

<?xml version="1.0" encoding="ASCII"?> 

<Vitals> 

 <Vendor>Welch-Allyn</Vendor> 

 <Model>Vitals 4000</Model> 

 <Serial_Number>1122992929</Serial_Number> 

 <Result name="Systolic_blood_pressure"> 

  <Value>120</Value> 

  <Units name="mmHg"></units> 

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30"> 

</Time_stamp> 

 </Result> 

 <Result name="Diastolic_blood_pressure"> 

  <Value>80</Value> 

  <Units name="mmHg"></units> 

 <Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30"> 

</Time_stamp> 

 </Result> 

 <Result name="Mean_arterial_pressure"> 

  <Value>103</Value> 

  <Units name="mmHg"></units> 

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30"> 

</Time_stamp> 

 </Result> 

 <Result name="Oxygen_saturation"> 

  <Value>95</Value> 

  <Units name="%"></units> 

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30"> 

</Time_stamp> 

 </Result> 

 <Result name="Body_temperature"> 

  <Value>98.6</Value> 

  <Units name="F"></units> 

  <Method>predicted</Method> 

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30"> 

</Time_stamp> 

 </Result> 

 <Result name="Pulse"> 

  <Value>84</Value> 

  <units name="BPM"></units> 

  <Method>pulse_ox</Method> 

<Time_stamp year="2004" month="7" day="30" hour="13" minute="15" second="30"> 

</Time_stamp> 

 </Result> 

</Vitals> 
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Requirements 

 XML Document Tags and Requirements 

 

1. Spacing:  The spacing used in the example results document is to be followed exactly 

paying particular attention to the spacing within the Time_stamp tag. 

 

2. Capitalization:  The capitalization used in the example results document is to be 

followed exactly. 

 

3. Empty Results:  The XML document shall not include any result blocks for readings that 

were not measured.  If, for example, temperature, SpO2, and pulse are taken but not 

blood pressure, the two results blocks pertaining to blood pressure are to be omitted 

altogether as opposed to sending a value of 0 or an empty tag. 

 

4. Vendor tag.  This contains the name of the vendor as PCDATA.  The vendor shall 

decide what to put for name.  Once decided it should never be changed without notice to 

the VA.  This name is case sensitive. 

 

5. Model tag.  PCDATA within this tag indicates the model name or number of the 

monitor.  This is set at the vendor’s discretion. 

 

6. Serial Number tag.  PCDATA within this tag indicates the serial number assigned to the 

monitor by the vendor.  This should uniquely identify the device. 

 

7. Result tag.  This is the parent tag of all elements that, taken together, describe the result 

of a single vital sign measurement. 

 

8. name attribute.  Contains CDATA indicating the name of the vital sign.  These names 

are set and defined by this specification, i.e. vendor specific names will not be passed in 

this attribute.  The vendor is responsible for deciding the appropriate translation from its 

internal naming scheme to the naming scheme described in this document.  

 

9. Value tag.  This contains PCDATA representing the value of the measurement.  It should 

be text for the decimal number of the value.  None of these measurements require 

scientific notation and it is not intended that the program encode the binary value of the 

number in any way.  It should be represented as human readable text for the number in 

Arabic numerals.  It should follow the convention that a “.” separates the whole number 

part from the decimal fraction. No commas (“,”) should be used to separate digits in the 

whole number portion (e.g. 10000 not 10,000).  The number of digits after the decimal 

point should reflect the precision of the monitor for the given measurement, i.e. this 

specification does not limit this. 

 

10. Units tag.  This contains PCDATA indicating the units that apply to the value of the 

measurement.  The DTD specifies these units and if the monitor uses different units the 
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vendor software is responsible for translating them to the units allowed by the DTD.  

Acceptable units are: 

a. F stands for “Fahrenheit,” the most common unit of measure for body 

temperature. 

b. C stands for “Celsius” or “Centigrade,” the metric unit for body temperature. 

c. mmHg stands for “millimeters of mercury” and is a unit of pressure commonly 

used to report blood pressure. 

d. BPM stands for “Beats per Minute” and is the most common way of reporting the 

pulse or heart rate. 

e. % in this system is used to report the Oxygen saturation of the blood. 

 

11. Method tag.  This contains PCDATA that represents the method used to produce the 

result.  It is vendor specific and a method code and name may combine several concepts.  

Examples: 

a. The predicted vs. the actual measured temperature.  Many vitals monitors can 

extrapolate the body temperature from the temperature change in the temperature 

probe, before the probe temperature has equalized with that of the surrounding 

body. 

b. Pulse can be taken from the pulse oximetry finger clip or from the blood pressure 

cuff. 

 

12. Time_stamp tag.  This has attributes that indicate the time the parent result was 

produced by the monitor, using the monitor’s clock which is not guaranteed to be 

synchronized with the PC’s system time.  Each attribute contains CDATA that indicates 

the number of years, months, days etc. as text.  The numbers will be base ten integers 

expressed in standard Arabic numerals, i.e. not hexadecimal. 
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Coding Requirements 
 

The vendor application is not responsible for supplying the Vitals application with standard 

codes such as LOINC or SNOMED.  The vendor shall supply the VA with mappings of their 

result types to standard codes.  The combination of the result name, the result method and the 

vendor should be sufficient to code the result.  The Vitals application will be responsible for 

using or not using this information. 

 

 

Hardware Support Requirements 
 

A Pentium Class system capable of running Microsoft Windows XP (or greater) with available 

RS232 (COM) port is the only hardware requirement. 

 

 

Installer Requirements 
 

The vendor will supply a graphical installer for the given PC platform.  This installer must be 

easy to use.  If the user accepts the default settings, it should result in a successful install under 

most circumstances. 

 

1. The installer should also be capable of updating an existing installation to a new version. 

2. The installer should be a “single” installer that consists of a single executable. 

3. The installer shall install the DLL responsible for communication into the  

/program files/VistA/Vitals/Plugins/ folder. 

4. The installer shall install all other supporting files needed by the above DLL into the 

/program files/<vendor name>/ folder.  The vendor name used here must be consistent 

throughout all subsequent installations. 

5. The installer shall NOT install any extraneous files nor overwrite any critical system files. 

 

 

Failure Mode Requirements 
 

1. Vendor software loses connection with vitals monitor. 

a. The software should attempt to re-establish connection.  

2. Vendor software crashes. 

a. The rest of the system should be unaffected by a vendor software crash. 

b. The Vitals software should be able to attempt a re-start of the vendor software. 

3. The Vitals application crashes. 

a. When re-started the Vitals application is responsible for requesting a re-establishment of 

the socket between it and the vendor application.  The vendor software shall support this.  

The unexpected termination of the connection to the Vitals application should be handled 

well.  The vendor software must not crash under such circumstances and be immediately 

available for new connection attempts by the Vitals software. 

 



 

10 

General Requirements 
 

The vendor software must flawlessly identify its own monitors and never attempt to acquire or 

return results read from another vendor’s monitor. 

 

 

Multi-Threading 
 

It is recognized that the construction of the return XML will take a finite time.  The interface 

must be a single-threaded interface where each request will be processed and returned in the 

same order that is was transmitted. 

 

 

Instrument Operating Modes 
 

1. Request-Response Mode:  This is the default operating mode for the software.  In this mode 

the vendor software waits for a request from the Vitals software before sending a response.  

This involves the vendor software listening on the socket for incoming text commands and 

responding to valid ones. 

2. Monitor mode: When the instrument is set to monitor mode it will take readings at intervals 

and send them to the software.  This mode is not supported by the Vitals application and 

therefore not supported by this specification. 


