[image: image1.png]Healthel/et*

Electronic Signature (ESig)
Version 1.0

Developer Guide

November 2006
U.S. Department of Veterans Affairs

Health Systems Design & Development
Revision History
	Date
	Revision
	Description
	Contacts

	November 2006
	1.0
	Release
	Project Manager and Analyst:

Dawn Clark

Developer:

Michael Ogi

Technical Writer:

Jim Alexander

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

11
Introduction

11.1
ESig Overview

11.1.1
VistALink 1.5 Dependency

21.1.2
Installation

31.1.3
ESig Technical Summary

31.2
Using this Guide

31.2.1
Purpose/Audience

31.2.2
Text Conventions

41.3
Additional Resources

41.3.1
ESig Reference Materials

51.3.2
Online Technical Information

51.3.2.1
VistA/M Help

61.3.2.2
VistA/M Data Dictionary Listings

61.3.2.3
Javadocs

72
ESig APIs

72.1
ESig Java Classes

72.1.1
esig-1.0.0.nnn.jar

72.1.1.1
Package: gov.va.med. esig.utilities

82.1.2
esigSamples-1.0.0.nnn.jar

82.1.2.1
Package: gov.va.med. esig.samples

82.2
ESig Java APIs – Details

82.2.1
Class ESigDataAccess

132.2.2
Class ESigEncryption

152.2.3
Class ESigValidation

193
ESig Exception Hierarchy

214
Using the ESig Sample Applications

214.1
Prerequisites

214.1.1
User Requirements

214.1.2
Client Workstation Requirements

214.1.2.1
Hardware

214.1.2.2
Operating System

224.1.2.3
Network Communications Software

224.1.3
J2EE System Requirements

224.1.3.1
Application Server

224.1.3.2
Operating System

224.2
J2SE Sample Applications

224.2.1
Required Java Software

244.2.2
Deploying the Sample Apps

244.2.2.1
Unzip the Distribution File

244.2.2.2
Confirm Distribution Files

254.2.2.3
Create Samples Directory

254.2.2.4
Copy J2SE Samples Folder

254.2.2.5
Copy Required JARs

254.2.3
Configuring ESig Files

264.2.3.1
Modify the setESigEnvironment.bat File

264.2.3.2
Modify the jaas.config File

284.2.3.3
Modify the runESigSample.bat File

284.2.4
Accessing ESig Remote Procedures

294.2.5
Running the Sample Applications

294.2.5.1
Check that the VistALink Service is Enabled

294.2.5.2
Run the Electronic Signature Sample Console Application:

324.2.5.3
Run the Electronic Signature Sample Swing Application:

334.3
Sample J2EE Application

344.3.1
Deploying the J2EE Sample App

354.3.2
Running the J2EE Sample App

39Glossary

List of Figures
2Figure 1-1. ESig Architecture

33Figure 4-1. Successful Sample J2SE Swing Application Login

35Figure 4-2. ESIG Exploded EAR deployed to WLS

36Figure 4-3. Electronic Signature Login Page

37Figure 4-4. Electronic Signature Sample J2EE Application (top)

38Figure 4-5. Electronic Signature Sample J2EE Application (bottom)

List of Tables

3Table 1-1. ESIG Technical Information

4Table 1-2. Text Conventions

8Table 2-1. ESig API Classes

23Table 4-1. Required Electronic Signature Supporting Libraries

24Table 4-2. ESig Installation Distribution Files for Client Workstation

1 Introduction

1.1 ESig Overview

As HealtheVet-VistA developers migrate VistA applications to modern technologies, interim solutions may be required until enterprise solutions are mature and stable. The Electronic Signature (ESig) service provides an interim solution for the use of electronic codes in place of wet signatures while HealtheVet-VistA’s security infrastructure and architecture are being defined. The service duplicates for Java applications (J2EE or J2SE) the Kernel 8.0 electronic signature functionality currently used by VistA/M applications.

ESig furnishes a standard, consistent set of APIs that HealtheVet-VistA developers can implement to provide users access to electronic signature data stored on VistA/M systems. ESig APIs make calls from Java applications to VistA/M systems to retrieve, validate, and store electronic signature codes and signature block information (name, title, office phone, etc.). Additional Java APIs provide encoding/decoding, hash, and checksum calculation utilities, but do not interact with the VistA/M system.

Applications that implement the ESig service must provide a user interface (UI) to prompt users for their secret codes when authorizing orders, prescriptions, financial transactions, or other business processes. Users may also need the UI to create or modify their code or signature block data.
1.1.1 VistALink 1.5 Dependency

ESig requires the VistALink 1.5 service, which provides the transport layer enabling communication between a Java application and a VistA/M system.
The figure below shows ESig APIs communicating with VistA through VistALink 1.5. When a HealtheVet user signs on successfully, the connection from the application to VistA via VistALink is established. Consuming applications pass the VistaLinkConnection object to the ESig APIs that communicate with the VistA server.

[image: image2.emf]ESig APIS

-validate

-confirm existence

-retrieve

-store

These APIs do not interact

with M server:

-check format

-encrypt

-decrypt

-hash

-checksum

VistA M

ESig M Component

-M routine

-Broker option

-RPCs

VistALink 1.5

NEW PERSON File

-Electronic signature code

-Electronic signature block

Java

Applications

HealtheVet-VistA

Figure 1-1. ESig Architecture

1.1.2 Installation

HealtheVet ESig consists of three parts:

· An M package containing a routine, a Broker option, and a set of Remote Procedures for accessing electronic signature codes and related data in the Kernel’s NEW PERSON (#200) file

· A JAR file containing a set of Java APIs for passing and receiving electronic signature related information from M, and for performing hashing, encryption, and decryption of strings. For ESig functionality to work, the ESig JAR file must be present on an application’s classpath.

· Sample Java Swing, client console, and JSP utility applications to test or verify installation and configuration of the ESig components. These are included in the ESig distribution.

Although ESig is a HealtheVet-VistA application, the only installation required is the KIDS build on the VistA/M server. HealtheVet-VistA applications requiring electronic signature functionality will include the ESig JAR file in their classpath. The JAR file contains APIs to perform ESig functions, including calling the VistA/M database.

Application developers and testers may want to deploy the sample ESig applications to client workstations (J2SE) or application servers (J2EE) to test the installation of the M server pieces. Instructions for deploying the sample applications are included in this guide.

1.1.3 ESig Technical Summary

The table below summarizes technical information about ESig in Development and Production environments.

Table 1-1. ESIG Technical Information

	Overview
	Technologies Used
	Dependencies
	Development Tools

	· Provides HealtheVet applications access to Kernel electronic signature APIs

· Supports J2EE and J2SE implementations

· Requires ESIG KIDS build installation on VistA/M server

· HealtheVet application provides any necessary user interfaces

· Distributed with feature-complete sample applications (J2SE and J2EE)

· Sample J2EE application can be deployed to admin/managed servers/clusters

	· Caché 5.x (NT and VMS)

· BEA WebLogic Server 8.1.4 (on Windows and Linux)

· J2EE 1.3

· J2SE SDK 1.4

· Log4j

· Windows 2000/XP

· Red Hat Linux

· XML
	· VistALink 1.5

· Kernel 8.0

· Kernel Toolkit 7.3

· VA FileMan 22.0

· RPC Broker 1.1
	· Apache Ant

· Eclipse IDE with MyEclipse IDE Plug-in

· IBM Rational ClearQuest

· IBM Rational Rose/XDE

· IBM Rational Unified Process

· JUnit

· Microsoft Visual SourceSafe

· XDoclet

1.2 Using this Guide

1.2.1 Purpose/Audience

This document provides detailed information about ESig APIs and exceptions for developers intending to use ESig functionality in their applications. It also contains instructions for deploying sample J2EE (application server) and J2SE (client-server) applications. These sample applications can be used by developers and testers to exercise ESig APIs from the host application.
1.2.2 Text Conventions

The table below summarizes specialized use of typographical styles in this document.

Table 1-2. Text Conventions

	Convention
	Explanation
	Example

	ALL CAPS
	M file, routine, variable, field, menu, field, and security key names.
	Developers should be assigned the XUPROGMODE security key.

The option [XOBE ESIG USER] may be added to the menu.

	Boldface
	Java file and directory names, particularly the first time they are mentioned in a passage.
	Locate the javadoc folder and open your browser to the index.html file.

	
	Java GUI buttons.
	Press Enter.

	
	Used in M dialog examples to show user entries.
	Enter a Host File: XOBE_1_.KID

	Courier font
	Java class, method, or variable names
	ESigConnectionException

	<Angle brackets>
	M key entries.
	<Enter>

	
	In Java-related text, indicates information that is unknown or must be supplied by the user.
	Locate the jaas.config file in the <ESIG_SAMPLE_APP> folder.

	“Quotation marks”
	Verbatim user entries in Java-related instructions.
	You should name the file “log4j.xml”.

The following symbols appear throughout the documentation to alert the reader to special information or conditions.

	Symbol
	Description

	[image: image3.png]

	Used to inform the reader of general information and reference material.

	
[image: image4.png]

	Used to caution the reader to take special notice of critical information

1.3 Additional Resources

1.3.1 ESig Reference Materials

The following documents are included in the ESig documentation set:

· ESig 1.0 Installation Guide – Prerequisites and instructions for installing the ESig KIDS build on a VistA/M server.

· ESig 1.0 Developer Guide – Detailed information about ESig APIs and exceptions, for developers intending to use ESig APIs in their applications. This document includes instructions useful to developers, quality assurance, and testers for deploying sample J2EE (application server) and J2SE (client-server) applications. These sample applications test the ESig APIs used by the host application.

· ESig 1.0 System Management Guide – VistA/M-side system and security information.

Because ESig APIs communicate with VistA/M systems through VistALink and Kernel RPCs, the following documentation is highly recommended:

· VistALink 1.5 documentation: Developer Guide, Installation Guide, and System Management Guide.

· RPC documentation: RPC Broker Getting Started with the Broker Development Kit (BDK,) RPC Broker Developer's Guide (i.e., BROKER.HLP, online help designed for programmers, distributed in the BDK)

· Kernel v.8.0 Systems Manual

ESig, VistALink, and RPC Broker documents are available on any of the Office of Information FTP directories as well as the VHA Document Library (VDL) at http://www.va.gov/vdl/.
1.3.2 Online Technical Information

1.3.2.1 VistA/M Help

After the ESig KIDS build is installed on the VistA/M server, developers and system administrators can use the standard Kernel/FileMan utilities for printouts of the installed components.

VistA software has online help and commonly used system default prompts. In roll-and-scroll mode, users are strongly encouraged to enter question marks at any response prompt. At the end of the help display, you are immediately returned to the point from which you started. This is an easy way to learn about any aspect of VistA software.

To retrieve online documentation in the form of Help in VistA roll-and-scroll software:

· Enter a single question mark ("?") at a field/prompt to obtain a brief description. If a field is a pointer, entering one question mark ("?") displays the HELP PROMPT field contents and a list of choices, if the list is short. If the list is long, the user is asked if the entire list should be displayed.

 A YES response invokes the display. The display can be given a starting point by prefacing the starting point with an up-arrow ("^") as a response. For example, ^M would start an alphabetic listing at the letter M instead of the letter A, while ^127 would start any listing at the 127th entry.

· Enter two question marks ("??") at a field/prompt for a more detailed description. Also, if a field is a pointer, entering two question marks displays the HELP PROMPT field contents and the list of choices.

· Enter three question marks ("???") at a field/prompt to invoke any additional Help text that may be stored in Help Frames.
1.3.2.2 VistA/M Data Dictionary Listings

Technical information about files and the fields in files is stored in data dictionaries. To print formatted data dictionaries, go to the VA FileMan v.22.0 Advanced User Documentation (http://vista.med.va.gov/fileman/docs/u2/index.shtml) and click on the List File Attributes link on the left frame.

1.3.2.3 Javadocs

Java class and package documentation is included in the ESig distribution file. Locate the javadoc folder and open your browser to the index.html file.

	[image: image5.png]

	To learn more about Javadoc files, refer to Sun’s Javadoc Tool Home Page at: http://java.sun.com/j2se/javadoc/.

	
[image: image6.png]

	DISCLAIMER: The appearance of external hyperlink references in this manual does not constitute endorsement by the Department of Veterans Affairs of the information, products, or services on the Website. The VHA does not exercise any editorial control over the information you may find at these locations.

2 ESig APIs

2.1 ESig Java Classes
ESig 1.0 includes the Java classes described in the sections below. (For more information about ESig Java packages and classes, see the Javadocs contained in the javadoc folder of the ESig distribution.)

2.1.1 esig-1.0.0.nnn.jar
2.1.1.1 Package: gov.va.med. esig.utilities

This package contains the following classes for validating, retrieving, and setting electronic signature codes and related data:
· ESigDataAccess – This class contains the static methods that access electronic signature data on the server.

· ESigEncryption – This class implements the static methods that provide the encoding and decoding algorithms for electronic signatures.

· ESigValidation – This class implements the static methods for validating a user-supplied electronic signature code.

The package also contains the following exceptions:

· ESigConnectionException – This exception class is thrown when an error occurs while attempting to connect to the server that contains the electronic signature data.

· ESigException – This base exception class implements exception nesting.

· ESigInvalidFormatException – This exception class is thrown if an attempt is made to save an electronic signature code on the server when its format invalid.

· ESigNoElectronicSignatureDefinedException – This exception class is thrown if an attempt is made to validate a user-supplied electronic signature code when the user has no electronic signature code currently defined on the server.

· ESigNotAValidUserException – This exception class is thrown if an attempt is made to access the electronic signature data on the server when the user is not defined on the server.

· ESigUnchangedElectronicSignatureException – This exception class is thrown if an attempt is made to update the electronic signature code for the user on the server when the new electronic signature is the same as the old one.

2.1.2 esigSamples-1.0.0.nnn.jar
2.1.2.1 Package: gov.va.med. esig.samples

This package contains the ESig sample programs, which exercise the ESig toolset for validating, retrieving, and setting electronic signature codes and related data. The sample programs are composed of the following classes:
· DialogConfirm – This class is a Swing Dialog to display information to the user.

· ESigApiSwingTester – This is a Swing-based developer example application that demonstrates the ESig toolset functionality.

· ESigSample – This is a console application that runs in a DOS window and demonstrates the ESig toolset functionality.
2.2 ESig Java APIs – Details
The package gov.va.med.esig.utilities contains the three classes in the following table.
Table 2-1. ESig API Classes

	ESigDataAccess
	Implements static methods that access electronic signature code data on the M server

	ESigEncryption
	Implements static methods to provide the encoding and decoding algorithms similar to those provided by Kernel v. 8.0.

	ESigValidation
	Implements static methods that validate a user-supplied electronic signature code.

	[image: image7.png]

	The APIs in these classes are also documented in the Javadoc documentation included with the Electronic Signature distribution. To view Javadoc, open the file <DISTRIBUTION_HOME>/javadoc/index.html in your web browser.

2.2.1 Class ESigDataAccess

The ESigDataAccess class contains static methods that access electronic signature codes and related data on the VistA M server.

isDefined

The isDefined method returns true if the user has an electronic signature code defined on the M server.

public static final boolean isDefined
(gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

throws ESigConnectionException,

ESigNotAValidUserException

Parameters:

connection - The VistaLinkConnection handle.

Returns:

true if the user has an Electronic Signature Code defined on the M server.

Throws:

ESigConnectionException - if the RPC request fails.

ESigNotAValidUserException - if the DUZ of the user does not correspond to a valid entry in the New Person file.

Example:
try {

if (ESigDataAccess.isDefined(myConnection)) {

System.out.println("Your electronic signature code is defined on the M server.");

} else {

System.out.println("You currently have no electronic signature code defined.");

}

} catch (FoundationsException e) {

System.out.println(e.getMessage());

}

getESigCode

The getESigCode method retrieves the encrypted electronic signature code from the M server.

public static final java.lang.String getESigCode
(gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

throws ESigConnectionException,

ESigNotAValidUserException

Parameters:

connection - The VistaLinkConnection handle.

Returns:

A String that contains the user's encrypted Electronic Signature Code.

Throws:

ESigConnectionException - if the RPC request fails.

ESigNotAValidUserException - if the DUZ of the user does not correspond to a valid entry in the New Person file.
Example:
try {

String eSig = ESigDataAccess.getESigCode(myConnection);

System.out.println(" ESig obtained from VistA: " + eSig);

} catch (Exception e) {

System.out.println(e.getMessage());

saveESigCode

The overloaded saveESigCode method take the unencrypted electronic signature code either in a character array or a String, and saves the encrypted form of the electronic signature code in the New Person file on the M server.

public static final void saveESigCode(char[] eSigCode, gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

throws ESigConnectionException,

ESigNotAValidUserException,

ESigUnchangedElectronicSignatureException,

ESigInvalidFormatException

public static final void saveESigCode(java.lang.String eSigCode, gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

throws ESigConnectionException,

ESigNotAValidUserException,

ESigUnchangedElectronicSignatureException,

ESigInvalidFormatException

Parameters:

eSigCode - An array of characters or a String that contains the user-supplied (unencrypted) electronic signature code.

connection - The VistaLinkConnection handle.

Throws:

ESigConnectionException - if the RPC request fails.

ESigNotAValidUserException - if the DUZ of the user does not correspond to a valid entry in the New Person file.

ESigUnchangedElectronicSignatureException - if the electronic signature on the M server is the same as the electronic signature code passed in.

ESigInvalidFormatException - if the format of the electronic signature code passed in is not valid. VistA electronic signatures codes must be between 6 and 20 characters in length, and cannot contain control characters. That is, they must contain only the printable characters in the 7-bit ASCII character set, decimal ASCII values 32 through 126
Example:
try {

String esig = "NEW ESIG VALUE";

System.out.println("Value attempting to save: " + esig);

ESigDataAccess.saveESigCode(esig, myConnection);

System.out.println("Value " + esig + " saved successfully.");

} catch (Exception e) {

System.out.println(e.getMessage());

}

getESigData

The getESigData method obtains other electronic signature related data from the M server and returns it in a HashMap. The key values in the HashMap are:

· initial

· signature block printed name

· signature block title

· office phone

· voice pager

· digital pager

public static final java.util.HashMap getESigData
(gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

throws ESigConnectionException,

ESigNotAValidUserException

Parameters:

connection - The VistaLinkConnection handle.

Returns:

A HashMap that contains the user's data.

Throws:

ESigConnectionException - if the RPC request fails.

ESigNotAValidUserException - if the DUZ of the user does not correspond to a valid entry in the New Person file.

Example:
Map oldValues = null;

try {

oldValues = ESigDataAccess.getESigData(myConnection);

System.out.println("Values of Map returned:");

System.out.println(" INITIAL: " + oldValues.get("initial"));

System.out.println("SIGNATURE BLOCK PRINTED NAME: " + oldValues.get("signature block printed name"));

System.out.println(" SIGNATURE BLOCK TITLE: " + oldValues.get("signature block title"));

System.out.println(" OFFICE PHONE: " + oldValues.get("office phone"));

System.out.println(" VOICE PAGER: " + oldValues.get("voice pager"));

System.out.println(" DIGITAL PAGER: " + oldValues.get("digital pager"));

} catch (Exception e) {

System.out.println(e.getMessage());

}

saveESigData
The saveESigData method accepts the following values in a Map, and saves the values in the New Person file on the M server:

· initial

· signature block printed name

· signature block title

· office phone

· voice pager

· digital pager

public static final void saveESigData(java.util.Map values, gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

throws ESigConnectionException, ESigNotAValidUserException, ESigInvalidFormatException
Parameters:

values - The values passed in a HashMap

connection - The VistaLinkConnection handle.

Throws:

ESigConnectionException - if the RPC request fails.

ESigNotAValidUserException - if the DUZ of the user does not correspond to a valid entry in the New Person file.

ESigInvalidFormatException - if the format of any of the data passed in is not valid. In this case, none of the data is filed.

Example:
HashMap newValues = new HashMap();

newValues.put("initial", "TAS");

newValues.put("signature block printed name", "Test A. Smith");

newValues.put("signature block title", "Dietician");

newValues.put("office phone", "(123) 123-4567");

newValues.put("voice pager", "(234) 234-5678");

newValues.put("digital pager", "(345) 345-6789");

try {

ESigDataAccess.saveESigData(newValues, myConnection);

LOGGER.info("New values saved successfully.");

} catch (Exception e) {

System.out.println(e.getMessage());

}

2.2.2 Class ESigEncryption

The ESigEncryption class contains static methods to provide the checksum calculation. This class also implements encoding and decoding APIs comparable to those provided in VA Kernel v.8.0.

checksum

The checksum method calculates a checksum number for a String using the same algorithm as the Kernel $$CHKSUM^XUSESIG1 function.

public static final java.lang.String checksum
(java.lang.String document)

Parameters:

document - A String containing the document for which to calculate a checksum value.
Returns:

The checksum value.

Example:
String aDocument = "This is a sample document.\nA second line.\n";

String checksum = ESigEncryption.checksum(aDocument);

System.out.println(" Java checksum: " + checksum);

System.out.println(" aDocument:\n" + aDocument);

encrypt

This method encrypts a String using the same algorithm as the Kernel EN^XUSHSHP entry point.

public static final java.lang.String encrypt(java.lang.String text, double idNumber, double docNumber)

Parameters:

text - The String to be encrypted.

idNumber - An identification number, such as DUZ.

docNumber - A document number (or the number one).

Returns:

The encrypted version of the input String.

Example:
String aStringToEncrypt = "John A. Smith, MD";

double id = 101.0;

double doc = 53684791;

String encryptedText = ESigEncryption.encrypt(aStringToEncrypt, id, doc);

System.out.println(" aString: " + aStringToEncrypt);

System.out.println(" Java encrypted value: " + encryptedText);

decrypt

This method decrypts a String using the same algorithm as the Kernel DE^XUSHSHP entry point.

public static final java.lang.String decrypt(java.lang.String text, double idNumber, double docNumber)

Parameters:

text - The String to be decrypted.

idNumber - The identification number used as the idNumber input parameter to the encrypt call.

docNumber - The document numbers used as the docNumber input parameter to the encrypt call.
Returns:

The decrypted version of the input String.

Example:
String decryptedText = ESigEncryption.decrypt(encryptedText, id, doc);

System.out.println(" aString: " + encryptedText);

System.out.println(" Java decrypted value: " + decryptedText);

hash

This overloaded method hashes a String or characters in a character array using the same algorithm as the Kernel HASH^XUSHSHP entry point. This method is used to hash an electronic signature code entered by the user.

public static final java.lang.String hash(java.lang.String text)

public static final java.lang.String hash(char[] text)

Parameters:

text - The text to hash, contained in a String or character array.

Returns:

A String that is the hashed form of the text in the input array.

Example:
String aString = "AnESigForTesting";

String hashedText = ESigEncryption.hash(aString);

System.out.println(" aString: " + aString);

System.out.println(" Java hashed string: " + hashedText);

2.2.3 Class ESigValidation
The ESigValidation class contains static methods that validate a user-supplied electronic signature code.

isValid

The overloaded isValid method validates a user-supplied electronic signature code against the electronic signature code stored in the New Person file (#200) on the M server. It returns true if the electronic signature code passed matches the code stored on the M server.

A VistALink connection is assumed, and the VistaLinkConnection object must be passed to the method along with the electronic signature code being validated.

public static final boolean isValid(char[] code, gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

throws ESigConnectionException,

ESigNotAValidUserException,

ESigNoElectronicSignatureDefinedException

public static final boolean isValid(java.lang.String code, gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

throws ESigConnectionException,

ESigNotAValidUserException,

ESigNoElectronicSignatureDefinedException

Parameters:

code - A character array or String containing the unencrypted user-supplied electronic signature code.

connection - The VistaLinkConnection handle.

Returns:

true if the electronic signature code matches the code store on the M server.

Throws:

ESigConnectionException - if an error occurred while attempting to make an RPC call on the M server.

ESigNotAValidUserException - if the user identified by DUZ on the M server does not correspond to an entry in the New Person file.

ESigNoElectronicSignatureDefinedException - if the user has no electronic signature defined on the M server.

Example:
try {

boolean valid = ESigValidation.isValid(userESig.toCharArray(), myConnection);

if (valid) {

System.out.println("Electronic signature code is valid.");

} else {

System.out.pritnln("Electronic signature is not valid.");

}

} catch (ESigConnectionException e) {

System.out.println(e.getMessage());

} catch (ESigNotAValidUserException e) {

System.out.println(e.getMessage());

} catch (ESigNoElectronicSignatureDefinedException e) {

System.out.println(e.getMessage());

}

isValidFormat

The overloaded isValidFormat method checks whether the format of the user-supplied electronic signature code is valid. Electronic signatures codes must be between 6 and 20 characters in length, and cannot contain control characters; that is, they must contain only the printable characters in the 7-bit ASCII character set, decimal ASCII values 32 through 126.
public static final boolean isValidFormat(char[] code)

public static final boolean isValidFormat(java.lang.String code)

Parameters:

code - A character array containing the unencrypted user-supplied electronic signature code.

Returns:

true if the format of the electronic signature code is valid.
Example:
String[] validESigCodes =

{ "6CHARS",

"LENGTH 20 CHARACTERS",

"`~!@#$%^&*()-_=+",

"[]\\{}|;:'\",./<>?",

"VALID_INCL.PUNC" };

String[] invalidESigCodes =

{ "SHORT", "", "THIS ELECTRONIC SIGNATURE IS TOO LONG", "Invalid mixed case", };

System.out.println(" Valid e-sig codes:");

for (int i = 0; i < validESigCodes.length; i++) {

System.out.println(" " + validESigCodes[i]);

System.out.println(" --> " + (ESigValidation.isValidFormat(validESigCodes[i]) ? "valid" : "invalid"));

}

System.out.println("");

System.out.println(" Invalid e-sig codes:");

for (int i = 0; i < invalidESigCodes.length; i++) {

if (invalidESigCodes[i].equals("")) {

System.out.println(" <null> string");

} else {

System.out.println(" " + invalidESigCodes[i]);

}

System.out.println(" --> " + (ESigValidation.isValidFormat(invalidESigCodes[i]) ? "valid" : "invalid"));

}
3 ESig Exception Hierarchy
ESig, like any other Java application, uses exceptions to indicate various error conditions that could occur during execution.

ESigException is the super class of the more specific exceptions thrown by the electronic signature code utilities. When using the utilities, you can catch the more general ESigException, in addition to the specific exceptions that may be thrown.

The following is the inheritance hierarchy of the Exceptions used by ESig:
java.lang.Object

java.lang.Throwable

java.lang.Exception

gov.va.med.exception.FoundationsException

gov.va.med.esig.utilities.ESigException

ESigConnectionException

ESigInvalidFormatException

ESigNoElectronicSignatureDefinedException

ESigNotAValidUserException

ESigUnchangedElectronicSignatureException

4 Using the ESig Sample Applications

Once ESig has been successfully installed on the VistA/M server, you can use the Electronic Signature sample applications to verify that everything is installed correctly on the VistA/M server. The sample applications also exercise the ESig APIs and demonstrate how they can be used.

Three sample applications are included in the distribution:

· A command-line J2SE sample application.
· A Swing J2SE sample application.
· A J2EE sample application, which is deployed to the J2EE application server.
4.1 Prerequisites

The sample applications are run from the application server (J2EE) and/or the client workstation (J2SE) to exercise the ESig APIs.

4.1.1 User Requirements

Developers and testers of applications using ESig may need to set up M and Java environments to test ESig functionality. Some familiarity with the following areas is required to do this:

· VistA computing environment

· Installing software and managing a VistA/M system

· Setting up a VistALink 1.5 listener and confirming that the service is enabled
· Kernel Installation and Distribution System (KIDS)

· VA FileMan data structures and terminology

· Microsoft Windows

· Red Hat Linux

· M programming language

· Deploying software and managing a J2EE application server

· Configuring and managing a server cluster.
4.1.2 Client Workstation Requirements

Applications that use Electronic Signature on a client workstation require the hardware and software tools listed below.

4.1.2.1 Hardware

The client workstation is the only hardware requirement.

4.1.2.2 Operating System

Microsoft Windows 2000/XP

4.1.2.3 Network Communications Software

Electronic Signature requires networked client workstations running Microsoft's native TCP/IP stack.

4.1.3 J2EE System Requirements
4.1.3.1 Application Server

BEA WebLogic Server 8.1, service pack 4 or greater. (The ESig J2EE sample application has been tested only on WebLogic at this time.)

4.1.3.2 Operating System

Windows or Linux as the platform operating system for WebLogic Server

	
[image: image8.png]

	Electronic Signature has not been tested and is not supported on BEA WebLogic Server 9.x

4.2 J2SE Sample Applications
Two J2SE (client/server) applications are included in the samples\J2SE directory of the Electronic Signature distribution:

· runEsigSample.bat - A sample command-line application that runs in a DOS window.
· runEsigApiSwingTester.bat - A sample Swing application.
Both sample applications make calls to all the ESig APIs. Some of these calls use VistALink to connect to the VistA/M server and invoke RPCs installed via the KIDS build.

Before running the sample applications, you will need to deploy them on the client workstation and reconfigure three of the ESig distribution files. This section presents instructions for deploying and running the sample applications and reconfiguring these files.

4.2.1 Required Java Software

For the ESig J2SE sample application to work properly, you must have the proper environment and supporting libraries already installed on the client workstation, as follows:

· J2SE Java Runtime Environment (JRE) 1.4.2
The complete Java 2 Standard Edition (J2SE) environment, version 1.4.2 or higher, must be installed on the client workstation. You can obtain the complete J2SE environment from http://java.sun.com/.
· Required Supporting Libraries
The libraries listed in the table below are required by VistALink 1.5, and therefore must also be on the classpath of applications using ESig.
Table 4-1. Required Electronic Signature Supporting Libraries

	Library
	Minimum
Version
	JAR File Name
and Description
	Obtain From

	J2EE core library
	1.3.1
	j2ee.jar
Part of the Java 2 Enterprise Edition (J2EE) Standard Development Kit (SDK)
	http://java.sun.com

	Jaxen
	1.0FCS
	jaxen-full.jar
Java XPath engine
	http://sourceforge.net/projects/jaxen/

	SAXPath
	1.0FCS
	saxpath.jar
Simple API for XPath
	Included in Jaxen distribution

	JAXP-Compatible XML Parser
	JAXP 1.1
	(various)
Any XML parser that implements the JAXP interface. For example:

· Xerces

· Crimson

· Oracle XDK
	Xerces:
Included in Jaxen (xerces.jar)
Crimson: http://xml.apache.org/crimson/
Oracle XDK:
http://technet.oracle.com/tech/xml/

	JAXP-Compatible XSLT Processor
	JAXP 1.1
	(various)
Any XSLT processor that implements the JAXP interface. For example:

· Xalan-Java

· Saxon
	Xalan-Java:
included in j2ee.jar (v. 1.3.1), or
http://xml.apache.org/xalan-j/
Saxon: http://saxon.sourceforge.net/

	Log4J
	1.2.8
	log4j-x.x.x.jar
Java Logging Utility.
	http://jakarta.apache.org/log4j/docs/

	VistALink
	1.5
	vljConnector-1.5.x.nnn.jar

vljFoundationsLib-1.5.x.nnn.jar

vljSecurity-1.5.x.nnn.jar
	Office of Information ANONYMOUS directories (XOB* namespace).

4.2.2 Deploying the Sample Apps
4.2.2.1 Unzip the Distribution File

Unzip the Electronic Signature distribution file (XOBE_1.0.zip) to a directory of your choice on the client workstation (e.g., c:\esig-1.0.0.xxx). The directory in which you extract the zip file is referred to below as <DISTRIBUTION_HOME>.

4.2.2.2 Confirm Distribution Files

You need the distribution files listed in the table below to run the sample Electronic Signature J2SE applications on the client workstation:

Table 4-2. ESig Installation Distribution Files for Client Workstation

	File Name
	Location
	Description

	esig-1.0.0.xxx.jar
	<DISTRIBUTION_HOME>\jars

<DISTRIBUTION_HOME>\samples\J2SE

	Contains the Electronic Signature library classes.

	esigSamples-1.0.0.xxx.jar
	<DISTRIBUTION_HOME>\jars

<DISTRIBUTION_HOME>\samples\J2SE
	Contains the classes for the J2SE sample application.

	jaas.config
	<DISTRIBUTION_HOME>\samples\J2SE
	A JAAS configuration file used by the sample console and Swing applications to connect to the M server. You must modify this file to reflect your environment.

	runESigApiSwingTester.bat
	<DISTRIBUTION_HOME>\samples\J2SE
	Runs the sample Swing application. Uses the settings defined in setEsigEnvironment.bat and jaas.config.

	runESigSample.bat
	<DISTRIBUTION_HOME>\samples\J2SE
	Runs the sample console application. You must modify this file to specify the server alias, an access and verify code pair, and a division IEN for a valid user.

	setESigEnvironment.bat
	<DISTRIBUTION_HOME>\samples\J2SE
	Sets the JAVA_HOME and CLASSPATH environment variables to reflect the name and locations of the java.exe executable and the JAR files used by the sample console and Swing applications. You must modify this file reflect your environment.

	jaxen_core.jar

jaxen_dom.jar

log4j-1.2.8.jar

saxpath.jar
	<DISTRIBUTION_HOME>\samples\J2SE
	JARs required by Electronic Signature and/or VistALink 1.5.

4.2.2.3 Create Samples Directory

Create a directory to hold the sample ESIG application files (e.g., C:\Program Files\esig-1.0\samples). This directory will be referred to “<ESIG_SAMPLE_APP>.”
4.2.2.4 Copy J2SE Samples Folder

Copy the contents of the <DISTRIBUTION_HOME>\samples\J2SE folder to the <ESIG_SAMPLE_APP> directory.

4.2.2.5 Copy Required JARs

ESig requires specific supporting libraries on the client workstation.

1. You need either weblogic.jar or j2ee.jar. Do one of the following:

· Download and install the 1.3.x J2EE SDK (http://java.sun.com/j2ee/sdk_1.3/), to obtain the j2ee.jar file. (The SDK can then be un-installed.)

· If you have access to an installed WebLogic server, you can use the weblogic.jar file from the WebLogic server installation directory's lib subdirectory.

2. Copy j2ee.jar or weblogic.jar to the <ESIG_SAMPLE_APP> directory.
3. Copy the VistALink 1.5 JAR files:

vljConnector-1.5.x.nnn.jar

vljFoundationsLib-1.5.x.nnn.jar

vljSecurity-1.5.x.nnn.jar

to the <ESIG_SAMPLE_APP> directory.
4.2.3 Configuring ESig Files
Before you can run the sample ESig J2SE applications, the following three files must be modified to reflect your environment:

setESigEnviornment.bat

jaas.config

runESigSample.bat XE "J2SE sample apps:configuring" \b
4.2.3.1 Modify the setESigEnvironment.bat File

The setESigEnvironment.bat file sets the CLASSPATH and the JAVA_HOME environment variables. This batch file is called by the two sample application batch files. To configure the CLASSPATH and JAVA_HOME variables for both applications, you need to modify only this one file.

1. Locate the setESigEnvironment.bat file in the <ESIG_SAMPLE_APP> folder (e.g., c:\Program Files\esig-1.0\samples).
2. Use a text editor such as Notepad or WordPad to set the JAVA_HOME and CLASSPATH environment variables to reflect the location of the Java installation on the workstation and the names and locations of the JAR files used by Electronic Signature.
3. Save the file when you are finished.

Example:

REM -- Set the JAVA_HOME and the CLASSPATH environment variables.

REM

REM -- You will need to modify the following lines to match the names and

REM -- locations of the jars and other files on your system.

REM

REM -- Set the directory location containing java.exe executable.

REM -- (Don't include the \bin subdirectory.)

REM -- set JAVA_HOME=c:\program files\java\j2re1.4.2

set JAVA_HOME=c:/j2sdk1.4.2_12

REM

REM -- Set CLASSPATH for J2EE (j2ee.jar or weblogic.jar)

REM set CLASSPATH=./weblogic.jar

set CLASSPATH=./j2ee.jar

REM

REM -- classpath for XML libraries

set CLASSPATH=%CLASSPATH%;./jaxen-core.jar

set CLASSPATH=%CLASSPATH%;./jaxen-dom.jar

set CLASSPATH=%CLASSPATH%;./saxpath.jar

REM

REM -- classpath for log4j

set CLASSPATH=%CLASSPATH%;./log4j-1.2.8.jar

REM

REM -- class path for VistALink

REM -- Replace the following with the correct names of the VistALink 1.5 jars

REM -- you are using.

set CLASSPATH=%CLASSPATH%;./vljConnector-1.5.X.XXX.jar

set CLASSPATH=%CLASSPATH%;./vljFoundationsLib-1.5.X.XXX.jar

set CLASSPATH=%CLASSPATH%;./vljSecurity-1.5.X.XXX.jar

REM

REM -- classpath for Electronic Signature

set CLASSPATH=%CLASSPATH%;./esig-1.0.0.024.jar

REM

REM -- classpath for ESigSample app

REM -- (Replace 1.0.0.024.jar with the correct version #)

REM -- (assumes the samples jar is in the current directory)

set CLASSPATH=%CLASSPATH%;./esigSamples-1.0.0.024.jar
4.2.3.2 Modify the jaas.config File

1. Locate the jaas.config file in the <ESIG_SAMPLE_APP> folder (e.g., c:\Program Files\esig-1.0\samples).
2. Use a text editor to modify the ServerAddressKey and ServerPortKey fields to reflect the settings for connecting to your M system. The settings specify the IP address and port on which the VistALink listener is running.

· ServerAddressKey = Host IP Address or DNS name
· ServerPortKey = VistALink Listener Port Number

3. The jaas.config file contains two sample configuration entries: DemoServer and LocalServer. The runESigSample.bat file is hard-coded to load a configuration named “LocalServer” from the jaas.config file. You can do one of the following:

· Modify the LocalServer configuration with the settings needed for your M system.
· If you use a different configuration and configuration name, modify runEsigSample.bat to use your configuration name. (The configuration name is specified via the -s parameter at the end of the command line that launches the application.)

	[image: image9.png]

	For more information on defining login configurations in the jaas.config file, see Appendix A “Installing and Running J2SE Sample Apps” of the VistALink 1.5 Installation Guide.

Example:
DemoServer {

gov.va.med.vistalink.security.VistaLoginModule requisite

gov.va.med.vistalink.security.ServerAddressKey="localhost"

gov.va.med.vistalink.security.ServerPortKey="8001";

};

LocalServer {

gov.va.med.vistalink.security.VistaLoginModule requisite

gov.va.med.vistalink.security.ServerAddressKey="127.0.0.1"

gov.va.med.vistalink.security.ServerPortKey="8001";

};
	[image: image10.png]

	Either the DNS name or an IP address may be used as the ServerAddressKey value.

	
	Check with your VistA system manager for the VistALink port assignment on your system. While port 8000 is suggested for Production and 8001 for Test environments, any available port number may be assigned to the VistALink Listener(s).

4.2.3.3 Modify the runESigSample.bat File

1. Locate the runESigSample.bat file in the <ESIG_SAMPLE_APP> folder (e.g., c:\Program Files\esig-1.0\samples).

2. Use a text editor to modify the -s, -a, -v, and -d program arguments to reflect an appropriate server alias (configuration name from jaas.config), an access and verify code pair, and division IEN for a valid user.

3. Save the file when you are finished.

Example:

REM -- Runs the ESigSample application, in esigSamples-1.0.0.xxx.jar.

REM

REM -- Depends on variables CLASSPATH and JAVA_HOME, both set in

REM -- setESigEnvironment.bat.

REM

REM -- You will need to adjust the locations of the various jars and other files

REM -- in setESigEnvironment.bat to match the locations of these files on your

REM -- system.

REM

call setESigEnvironment.bat

REM

REM -- Run the sample application. (Assumes the jaas.config file is in the

REM -- current directory.)

REM -- You will need to provide values for the following flags:

REM -- -s server alias to use from the JAAS config file

REM -- -a access code

REM -- -v verify code

REM -- -d division ien (if more than one division can be selected)

REM -- For example:

REM -- java -Djava.security.auth.login.config=./jaas.config VistaLinkRpcConsole

REM -- -s MyServer -a ac!@#$12 -v vc123!@# -d 999

"%JAVA_HOME%\bin\java" -Djava.security.auth.login.config="./jaas.config" -cp "%CLASSPATH%" gov.va.med.esig.samples.ESigSample -s LocalServer -a joe.123 -v ebony.432 -d 999

pause

4.2.4 Accessing ESig Remote Procedures

The Kernel "B"-type option, Context for Electronic Signature Users [XOBE ESIG USER], was created as part of the M-side KIDS install. To use the ESig APIs and to run the sample ESig applications, you will need to grant yourself access to [XOBE ESIG USER] on the VistA/M server to which you will be connecting (unless you already have Kernel programmer access on the M server).

Note: For more information on granting yourself access to remote procedures, see the RPC Broker Systems Manual at http://www.va.gov/vdl/.
4.2.5 Running the Sample Applications
4.2.5.1 Check that the VistALink Service is Enabled

In a production scenario, VistALink is configured as a TCP/IP service in VMS. Here is an example of the service (VLINK) in its enabled state:

01$TCPIP

TCPIP> SHO SERVICE VLINK /FULL

Service: VLINK State: Enabled
Port: 8000 Protocol: TCP Address: 0.0.0.0

Inactivity: 1 User_name: XMINET Process: VLINK

Limit: 50 Active: 0 Peak: 2

4.2.5.2 Run the Electronic Signature Sample Console Application:

1. Locate the runESigSample.bat in the <ESIG_SAMPLE_APP> folder (e.g., c:\Program Files\esig-1.0\samples).

2. Double-click the file to launch the sample application and to test your installation of Electronic Signature.

Here is a portion of the output from executing the runESigSample.bat file:

Starting sample application...

This application defaults to using the following connection values:

 Server appname: LocalServer

 Access code: access.1234

 Verify code: verify.1234

 Override defaults with the following optional flags:

 -s server alias to use from the JAAS config file

 -a access code

 -v verify code

 -d division ien

e.g.: java -Djava.security.auth.login.config=./jaas.config VistaLinkRpcConsole -

s MyServer -a ac!@#$12 -v vc123!@#

Also, for Log4J initialization, the Log4J config file 'log4JConfig.xml' is expec

ted to be in the classpath location

props/log4jConfig.xml

Logging in...

JAAS configuration name: LocalServer

93 [main] INFO Creating managed connection factory, VistALink adapter versio

n 1.5.0.026.

93 [main] WARN gov.va.med.environment.servertype is not defined for this JVM

. For J2EE systems only -- check this -D JVM arg; MBeans required for the VistaL

ink console will not be loaded.

281 [main] INFO Socket xfer (milli-secs): 16

281 [main] INFO gov.va.med.vistalink.adapter.spi.VistaLinkManagedConnection[]

127.0.0.1[]8001[]1[]J2SE[fdi]1[mdi]1 M $JOB=3292

 getConnection(...) processing time = 0

3421 [main] INFO Socket xfer (milli-secs): 3125

6593 [main] INFO Socket xfer (milli-secs): 3156

9968 [main] INFO Socket xfer (milli-secs): 15

===

Calling ESigEncryption.hash(aString)

 aString: AnESigForTesting

 Java hashed string: {]nYPg_u;G)p<rcN]/WC

===

9999 [main] INFO Socket xfer (milli-secs): 0

===

Calling ESigEncryption.checksum(aDocument)

 Java checksum: 53684791A

 aDocument:

==================

Gettysburg Address

==================

Four score and seven years ago our fathers brought forth,

upon this continent, a new nation, conceived in liberty,

and dedicated to the proposition that 'all men are

created equal'.

Now we are engaged in a great civil war, testing whether that

nation, or any nation so conceived, and so dedicated, can long

endure. We are met on a great battle field of that war. We come

to dedicate a portion of it, as a final resting place for those

who died here, that the nation might live. This we may, in all

propriety do. But, in a larger sense, we can not dedicate -- we

can not consecrate -- we can not hallow, this ground -- The brave

men, living and dead, who struggled here, have hallowed it, far

above our poor power to add or detract. The world will little

note,nor long remember what we say here; while it can never

forget what they did here."

It is rather for us, the living, we here be dedicated to the great

task remaining before us -- that, from these honored dead we take

increased devotion to that cause for which they here, gave the

last full measure of devotion -- that we here highly resolve these

dead shall not have died in vain; that the nation, shall have a

new birth of freedom, and that government of the people by the

people for the people, shall not perish from the earth.

===

===

Calling ESigEncryption.encrypt(aString, 101.0, 5.3684791E7)

 aString: John A. Smith, MD

 Java encrypted value: YRV24~drC#V6xN"m$

===

===

Calling ESigEncryption.decrypt(aString, 101.0, 5.3684791E7)

 aString: YRV24~drC#V6xN"m$

 Java decrypted value: John A. Smith, MD

===

===

Calling ESigValidation.isValid(aString, VistaLinkConnection)

 E-sig code being validated: MY ESIG CODE

10031 [main] INFO Socket xfer (milli-secs): 16

Electronic signature code is valid.

===

===

Calling ESigValidation.isValidFormat(String)

 Valid e-sig codes:

 6CHARS

 --> valid

 LENGTH 20 CHARACTERS

 --> valid

 `~!@#$%^&*()-_=+

 --> valid

 []\{}|;:'",./<>?

 --> valid

 VALID_INCL.PUNC

 --> valid

 Invalid e-sig codes:

 SHORT

 --> invalid

 <null> string

 --> invalid

 THIS ELECTRONIC SIGNATURE IS TOO LONG

 --> invalid

 Invalid mixed case

 --> valid

===

===

Calling ESigDataAccess.getESigCode(VistaLinkConnection)

10140 [main] INFO Socket xfer (milli-secs): 16

 ESig obtained from VistA: !JqN[Ww:HN&J,(MT/qeJ

===

===

Calling ESigDataAccess.saveESigCode(String, VistaLinkConnection)

Value attempting to save: NEW ESIG VALUE

10171 [main] INFO Socket xfer (milli-secs): 15

Value NEW ESIG VALUE saved successfully.

Value attempting to save: MY ESIG CODE

10187 [main] INFO Socket xfer (milli-secs): 16

Value MY ESIG CODE saved successfully.

===

===

Calling ESigDataAccess.getESigData(VistaLinkConnection)

10203 [main] INFO Socket xfer (milli-secs): 16

Values of Map returned:

 INITIAL: tat

SIGNATURE BLOCK PRINTED NAME: Mr. Test A. Testing

 SIGNATURE BLOCK TITLE:

 OFFICE PHONE: (415) 111-2222

 VOICE PAGER:

 DIGITAL PAGER:

===

===

Calling ESigDataAccess.saveESigData(Map, VistaLinkConnection)

Attempting to save new values:

 INITIAL: TAz

SIGNATURE BLOCK PRINTED NAME: Test A. TEST

 SIGNATURE BLOCK TITLE: Dietician

 OFFICE PHONE: (123) 123-4567

 VOICE PAGER: (234) 234-5678

 DIGITAL PAGER: (345) 345-6789

10218 [main] INFO Socket xfer (milli-secs): 15

New values saved successfully.

Attempting to save original values:

 INITIAL: tat

SIGNATURE BLOCK PRINTED NAME: Mr. Test A. Testing

 SIGNATURE BLOCK TITLE:

 OFFICE PHONE: (415) 111-2222

 VOICE PAGER:

 DIGITAL PAGER:

Original values saved successfully.

10249 [main] INFO Socket xfer (milli-secs): 15

===

Logging out...

10249 [main] INFO Socket xfer (milli-secs): 0

10265 [main] INFO Socket xfer (milli-secs): 0
4.2.5.3 Run the Electronic Signature Sample Swing Application:

1. Locate the runESigApiSwingTester.bat in the <ESIG_SAMPLE_APP> folder (e.g., c:\Program Files\esig-1.0\samples).

2. Double-click the file to launch the sample J2SE application and test your installation of Electronic Signature.

3. Select the name of the configuration (obtained from jaas.config) of the VistA/M server you wish to connect to and enter your VistA Access and Verify codes. A successful login will render a screen capture similar to the one shown below:

[image: image11.png]=lo/x|

Flo et Look and Feel

Vit Server

Enter JAAS Config Name: [o-aserer — Conrezt
Status: [Connected Discannect

G | et Code | Gefedt Data | Hash | Encryptfoecrypt | checsm |

Check IF Defined
0 you have an electronic signsture code defined on the Mserver? _ Defined?
Valdate

Message: é‘

Figure 4-1. Successful Sample J2SE Swing Application Login

4.3 Sample J2EE Application

The samples\J2EE directory in the ESig 1.0 distribution contains a sample JSP application that does the following:

· Uses VistALink 1.5 (and the DUZ re-authentication mechanism) to connect to your VistA/M server

· Makes Electronic Signature API calls.

The enterprise application archive file, EsigDuzSample-1.0.0.nnn.ear (or the exploded EAR) can be deployed to the J2EE application server. The default Web binding (URL) is /EsigDuzSample, and is provided in the EAR file. The same application is packaged in a Web application archive file, EsigDuzSample-1.0.0.nnn.war, which can be used if your application server supports web application deployments.

The sample application requires a VistALink adapter with the JNDI lookup name of “vlj/testconnector.” The adapter is deployed on the application server where the ESig sample application is installed.

	[image: image12.png]

	For information on configuring vlj/testconnector, see “Testing the Sample Application with Your Own VistA/M Server” in the VistALink 1.5 Installation Guide.

4.3.1 Deploying the J2EE Sample App
The sample application is included in the Electronic Signature distribution zip file, in the <DIST FOLDER>/samples/J2EE folder. Both packaged and exploded EAR formats are provided. Follow the steps below to deploy the sample application on the application server:

1. Copy either the packaged EAR or the contents of the <DIST FOLDER>/samples/J2EE/exploded folder to the <STAGING FOLDER>.

	[image: image13.png]

	<STAGING FOLDER> designates a folder somewhere on the file system of each WebLogic server from which you are deploying the sample application (e.g., /bea-stage).

2. Use the WLS console to deploy either the packaged or exploded EAR (via the <domain name> | Deployments | Applications node):

a. Select Deploy a new Application
b. Navigate to the location where you copied the packaged or exploded EAR file (e.g., <STAGING FOLDER>)

c. Select the radio button for the packaged or exploded EAR, and deploy the application to the target server.
3. EsigDuzSample will be listed under the applications node in the WLS console (see the figure below).

 [image: image14.png]@ Console

5 @ o mydomain> Applications> EsigDuzSample-1.0.0.024
Dseners :
Somer onnacter o Iocahost 7001 | Nou srsogget n a5 sysiem | Lgas
S yces
Cortguatin | Targes | PRSI fotes
5 Deploymerts sl
S appliatons TH e 3130 Y0 10 e the deplyrnen Staus o esch e in the
9 88 EsgDuzsanpie 00020

5 aplication. You may aisc chece to ctag and redegloy all madules within the
9 VilaLrkSamples- 150 aplication using the bullans a1 the bolior of he page. (To configure sodiions!
B0 Modles dopleymet targats for this apgietion, click the Targate tas.)

@ 23 wob Agplication Modkios et

B e Hepeaton Deployment Status for Web Application Modules

22 gierup & Shatdown
[Spe

. arget| Deployment| Status of
=8 socuny 9 | Type | Stalus |LastAction
(3 pomain Lo Fitters.

@ Tasks
& Stk

EsiqDuzsample | myserver | Server | MAvailable Success
Stop Application Radaploy Application

Figure 4-2. ESIG Exploded EAR deployed to WLS
4.3.2 Running the J2EE Sample App

The sample J2EE application can be run on either Linux or Windows, and on either administration or managed servers. Follow these steps to run the sample J2EE sample application:

1. Point your browser to http://<yourserver:yourport>/EsigDuzSample.
If the deployment was successful, a new page titled “Electronic Signature Test – DUZ Logon” will load in your browser.

2. Enter a DUZ and a division number (e.g., station number) for a user on the VistA/M system to which the vlj/testconnector resource adapter is pointed.
Note: Since the Electronic Signature code of this user will be changed by the sample application, the user selected should be a test user.
3. Click on the Submit button.

The figure below shows an example of an end user’s DUZ and division entry.

[image: image15.jpg]Please enter end-user re-anthentication identification.
(This is different from the connector login credentials specified in ra xunl)

DUZ 11668
}Dmmn* |[ss2
Submit

* Every reauthentication must explicitly specify the user division.
s all Healthe'Vet VistA applications should be muli-divisional-
aware, all such applications track what division a user is logged on
under. Pass this value as the external station aumber of the
division, e.g., "523A7". This corresponds to STATION
NUMBER field (#99) value for the division, as standardized in the
VistA Tnstimtion fle (#4)

Figure 4-3. Electronic Signature Login Page

The sample application will attempt to make Electronic Signature API calls. A successful installation and deployment, with a valid DUZ and division entry for the logged in user, will result in a display similar to the two figures below.

[image: image16.jpg]Electronic Signature Sample - Results
Report Generated on Tue Nov 22 14:32:14 PST 2005.
Credentials used:

Duz: 11668
Division : 662

Testing ESig APIs that do not connect to the VistA/M Server

Calling E51gEnerypt ion. hash (esigString)
esigString: A String for hashing
Tava hashed siring: (+212WHREd9 WG

Calling ESigEnCryption.encrypt (astring, 101.0, 5.3684791E7)
aString John A. Smith, MD
Tava encrypted value: YRV24-

(C#V6XN"m$

Calling E5igEncryption.decrypt (aString, 101.0, 5.3684791E7)
aString YRV24-drCAV6xN'"m$
Tava decrypted value: John A. Smith, MD

Calling E1gEnerypt ion. checksun (aString)
aString: ADocumentFor Testing
Tava checksum: 140084

Calling £51gVaLidat ion. 1sValidFornat (String)
Valid e-sig codes
SCHARS --> valid

VALID_INCL PUNC --> valid
Mixed Case --> valid

Tnvalid e-sig codes
SHORT --> invalid

‘null string --> invalid

THIS ELECTRONIC SIGNATURE IS TOO LONG --> invalid

Figure 4-4. Electronic Signature Sample J2EE Application (top)

[image: image17.jpg]Testing ESig APIs that use VistALink to connect to the VistA/M Server

Calling £51gDatadconss. LaDef insd (VistalinkConnect ion)
User has an e-sig defined: frue

Callng £S1gValidation. isValid{aString, VistalinkConnection)
E-sig code being validated: MY ESIG CODE
Electronic signafure code is valid.

Calling ES1gDataiccess. getEsigtode (Vistal inkConnect ion)
ESig obtained from Vist: 1qN[Wav: HN&J, (MT/qed

Calling £51gDatatconss . saveESigCade (String, VistalinkConnection)
Value attempting to save: MY NEW ESIG CODE

Value MY NEW ESIG CODE saved successfily.

Note: The user's clectronic signature cods was changed to the above value

Value attempting to save: MY ESIG CODE
Value MY ESIG CODE saved successfilly.
Note: The user's clectronic signature cods was changed to the above value

Calling ESigDataiccess. gerEsighata (Vistal inkConnect ion)
Values of Map refumed:

INITIAL SU

SIGNATURE BLOCK PRINTED NAME: SAMPLE USERONE
SIGNATURE BLOCK TITLE:

OFFICE PHONE,

VOICE PAGER:

DIGITAL PAGER:

Calling Es1gDatalccess. saveESighata(tap, VistalinkConnection]
Aftemping to save new vales

INITIAL: TAz

SIGNATURE BLOCK PRINTED NAME: Changed SAMPLE USERONE
SIGNATURE BLOCK TITLE: Dietician

OFFICE PHONE (123) 123-4567

VOICE PAGER: (234) 234-5678

DIGITAL PAGER: (345) 345-6789

New values saved successfilly.

Aftempting to save original values
INITIAL: SU

SIGNATURE BLOCK PRINTED NAME: SAMPLE USERONE
SIGNATURE BLOCK TITLE:

OFFICE PHONE,

VOICE PAGER:

DIGITAL PAGER:

Original values saved successfily.

Figure 4-5. Electronic Signature Sample J2EE Application (bottom)
Glossary
	Term
	Definition

	Access Code
	A code, that along with the Verify code allows the Kernel to identify a user as authorized to gain access to a VistA system.

	API
	Application Programming Interface. The set of public classes a package uses. Intended to prevent duplication of utilities and limit the number of callable entry points.

	ASCII
	American Standard Code for Information Interchange

	Authentication
	Verification of a user’s identity.

	Authorization
	Checking the permissions of a user to allow or disallow the performance of some function.

	CCE
	Computer Code Entry. A password/PIN technology for asserting electronic signature intent in a health-care environment. Computer Code Entry (CCE) is explicitly endorsed in existing medical records practice/regulation and is permitted by JCAHO IM7 standards.

	Client
	A single term used interchangeably to refer to a user, the workstation (e.g., PC), and the portion of the software that runs on the workstation.

	Data Dictionary
	The structure of a file, table, or group of related information as defined for and by VA FileMan

	Database Integration Agreement (DBIA)
	A formal, documented understanding between two or more application packages that describes how data is shared or information is exchanged. The Database Administrator (DBA) maintains these agreements. Documented agreements are available via the DBIA menu on FORUM

	DBA
	Data Base Administrator

	Decrypt
	To decipher, decode, or unlock encrypted or encoded messages/data to make them readable.

	DUZ
	DUZ represents the internal entry number (IEN) for a user’s record in File #200, the New Person file and is designated as a system-wide variable in the VistA environment.

DUZ is used as a re-authentication mechanism.

	EAR
	Enterprise ARchive file.

	EJB
	Enterprise Java Bean.

	Electronic Signature
	A secret, user-supplied PIN or code that is used to authorize business processes and is a legally binding equivalent of an individual’s handwritten signature. For the VA Kernel 8.0 an electronic signature must be 6-20 characters in length and can contain letters, numbers, and punctuation.

	Encrypt
	To encode messages or data so that they are unreadable unless they are decoded.

	ESig
	Electronic Signature.

	EVS
	Enterprise VistA Support

	FOIA
	Freedom of Information Act

	FTP
	File Transfer Protocol

	GUI
	Graphical User Interface. The graphical elements on the screen through which the user interacts with the computer.

	Hash
	To encrypt data by substituting a shorter fixed-length value or key to represent the original. Hashing algorithms are one-way functions, so that it is not possible to decrypt the substitute values to generate the original data.

	IP
	Internet Protocol

	IRM
	Information Resources Management. A service at each VAMC responsible for computer management and system security.

	ISO
	Information Security Officer

	J2EE
	Java TM 2 Platform, Enterprise Edition

	J2SE
	Java 2 Standard Edition

	JAAS
	Java Authentication and Authorization Service

	Javadoc
	Javadoc is the tool from Sun Microsystems for generating API documentation in HTML format from doc comments in Java source code.

	JNDI
	Java Naming Directory Interface

	JSP
	Java Server Page

	JVM
	Java Virtual Machine

	Kernel
	VA Kernel 8.0 is a suite of VistA software that provides a standard and consistent user and programmer interface between application packages, the OS, and users.

	M
	MUMPS

	Option
	A selectable software function: a menu item.

	PIN
	Personal Identification Number

	PKI
	Public Key Infrastructure

	RPC
	Remote Procedure Call

	SAC
	Standards and Conventions

	SACC
	Standards and Conventions Committee

	SDK
	Java Software Development Kit. APIs and tools for developing applications.

	Signature Block
	Data associated with an electronic signature user, stored in the New Person file. Signature block data consists of the user’s initials, printed name, title, office phone, voice pager, and digital pager.

	TBD
	To Be Determined

	TCP/IP
	Transmission Control Protocol / Internet Protocol

	URL
	Uniform Resource Locator

	User
	This term generally refers to VA employees and volunteers with active records established in File #200, the New Person file, who are authorized to access a VistA system.

	VA
	Veterans Affairs

	VA ITSCAP
	VA Information Technology Security Certification and Accreditation Program (VA Directive 6214)

	VAMC
	Department of Veterans Affairs Medical Center

	VAX
	VAX (Virtual Address eXtension) is an established line of mid-range server computers from the Digital Equipment Corporation (DEC).

	VHA
	Veterans Health Administration

	VistA
	Veterans Health Information Systems and Technology Architecture

	VistA/M Server
	The computer where the M data and the RPC Broker remote procedure calls (RPCs) reside.

	VistALink
	A standardized, portable, and secure mechanism for establishing synchronous connections between Java (J2SE and J2EE) and VistA/M servers.

	VMS
	Virtual Machine System (operating system for VAX computers)

	WAN
	Wide Area Network

	WAR
	Web ARchive

	WLS
	WebLogic Server

	XML
	Extensible Markup Language

ii
ESig 1.0 Developer Guide
November 2006

_1198671059.vsd

ESig APIS
- validate
- confirm existence
- retrieve
- store

These APIs do not interact with M server:

- check format
- encrypt
- decrypt
- hash
- checksum

VistA M

ESig M Component
- M routine
- Broker option
- RPCs

VistALink 1.5

NEW PERSON File
- Electronic signature code
- Electronic signature block

HealtheVet-VistA

Java Applications

_933674135

