
HealtheVet Web Services Client (HWSC) 1.0

Developer’s Guide

October 2016

Department of Veterans Affairs (VA)

Office of Information and Technology (OI&T)

Enterprise Program Management Office (EPMO)

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide ii October 2016

Revision History

Date Version Description Author

10/20/2016 2.0 Tech Edits:
• Updated the “Orientation” section.
• Updated Figure 1, Figure 2, and

Figure 5 for HTTPS.
• Updated/Renamed Section 1.6.

Added new subsections for HTTPS.
• Updated and reformatted Section 5,

APIS.
• Converted Word document to .docx

format.
• Reformatted document to follow

latest documentation standards and
formatting rules. Also, formatted
document for online presentation
vs. print presentation (i.e., for
double-sided printing). These
changes include:
o Revised section page setup.
o Removed section headers.
o Revised document footers.
o Removed blank pages between

sections.
o Revised all heading style

formatting.
• Updated organizational references

(e.g., “Product Development [PD]”
to “Enterprise Program
Management Office [EPMO]”).

• Redacted document for the
following information:
o Names (replaced with role and

initials).
o Production IP addresses and

ports.
o VA Intranet websites.
o Server geographic locations

and node names.

HealtheVet Web
Services Client
(HWSC) Project Team

05/--/2013 1.1 Changed reference to XOBT_1_0_Txx.zip
in Section 2.1.

HP VistA Maintenance
Team.
St Petersburg, Florida

• Developer—D.
E.

• Tech Writer—
B. S.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide iii October 2016

Date Version Description Author

02/--/2011 1.0 HealtheVet Web Services Client (HWSC)
Version 1.0 Initial release.

HWSC development
team.

Albany, NY OIFO:

• Developer—M.
K

• Developer—L.
D.

Bay Pines, FL OITFO:

• Development
Manager—C.
S.

Oakland, CA OITFO:

• Developer—K.
C.

• SQA—G. S.
• Tester—P. S.
• Tech Writer—

S. S.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide iv October 2016

Table of Contents

Revision History .. ii
List of Figures ... vii
List of Tables .. vii
Orientation ... viii
1 Introduction .. 1

1.1 Document Overview ... 1
1.2 Using SOAP and REST to Access HealtheVet from VistA M 1
1.3 Caché’s Web Services Client Features ... 3
1.4 Role of HWSC ... 3
1.5 HPMO Waiver for Use of Caché-Specific Features ... 4
1.6 Securing HWSC Applications Using SSL/TLS (HTTPS) 6

1.6.1 Support for Encryption and Certificate-Based Authentication 6
1.6.2 Support for Encryption and HTTP Basic Authentication 6

2 Sample SOAP and REST Client Applications 7
2.1 Installing the J2EE Sample Web Services EAR .. 7
2.2 Using the XOBT M Client Application ... 7

2.2.1 XOBT M-Side Installation ... 8
2.2.2 Create Web Server Entry ... 8
2.2.3 Sample Application User Interface ... 9
2.2.4 Ping the SOAP Tester Web Service from Caché.. 10
2.2.5 Demonstrating Server Lookup Keys: XOBT SAMPLE SERVER Lookup Key . 10

2.3 Sample Client Application Entry Points .. 10
2.4 Rebuilding the J2EE Sample Web Service Project ... 12

3 VistA M-Side Development Guide ... 13
3.1 Platform Considerations .. 13

3.1.1 Caché-Specific Considerations .. 13
3.1.2 WebLogic 8.1-Specific Considerations ... 13

3.2 How to Consume a SOAP-Style Web Service ... 14
3.2.1 Compile WSDL into Caché Proxy Classes (SOAP) .. 14
3.2.2 Passing Input Parameters to Web Services (SOAP) 15
3.2.3 Processing Web Service Return Types (SOAP) ... 15
3.2.4 Large Result Sets (SOAP) ... 15
3.2.5 Timeouts (SOAP) ... 16
3.2.6 How to Export an M Business Delegate (SOAP) .. 17
3.2.7 Manually Modify SOAP Client Proxies to Overcome Memory Limitations 17

3.3 How to Consume a REST-Style Web Service ... 18
3.3.1 Mainline (REST)... 18
3.3.2 Parsing XML Responses (REST) ... 19
3.3.3 Timeouts (REST) ... 20
3.3.4 How to Export an M Business Delegate (REST) .. 20

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide v October 2016

3.4 How to Handle Errors (SOAP and REST) .. 20
3.4.1 Business Delegate Level .. 21
3.4.2 Application (Caller to Business Delegate) Level ... 21
3.4.3 REST Error Handling Options .. 22
3.4.4 Automatic Retries ... 22

3.5 Troubleshooting ... 22

4 Java-Side Considerations ... 23
4.1 SOAP vs. REST Usage Scenarios ... 23
4.2 Supporting HWSC Availability Checking .. 23

4.2.1 SOAP Web Service .. 23
4.2.2 REST Web Service .. 23

5 VistA M-Side API Reference .. 24
5.1 HWSC Caché Classes .. 24

5.1.1 Accessing Caché “Documatic” for HWSC Caché Classes 24
5.2 HWSC APIs Overview ... 25
5.3 SOAP-Related APIs .. 26

5.3.1 $$GETPROXY^XOBWLIB(): Return Web Service Proxy 26
5.3.2 $$GENPORT^XOBWLIB(): Import/Register Web Service from WSDL 26
5.3.3 REGSOAP^XOBWLIB(): Register Web Service without WSDL 27
5.3.4 UNREG^XOBWLIB(): Un-Register/Delete a Web Service 28
5.3.5 $$GETFAC^XOBWLIB(): Return Web Service Proxy Factory 29
5.3.6 ATTACHDR^XOBWLIB(): Add VistaInfoHeader to a Web Service Proxy 29

5.4 REST-Related APIs ... 30
5.4.1 $$GETREST^XOBWLIB(): Return REST Service Request Object 30
5.4.2 REGREST^XOBWLIB(): Register a REST Service Definition 30
5.4.3 $$GET^XOBWLIB(): Make HTTP GET Call and Force Error if Problem

Encountered .. 31
5.4.4 $$POST^XOBWLIB(): Make HTTP POST Call and Force Error if Problem

Encountered .. 31
5.4.5 $$HTTPCHK^XOBWLIB(): Check HTTP Status; if Not OK Create HttpError

Object .. 32
5.4.6 $$HTTPOK^XOBWLIB(): Is Current HTTP Response Status “OK”? 32
5.4.7 $$GETRESTF^XOBWLIB(): Return REST Service Request Factory 33

5.5 Error Handling APIs .. 33
5.5.1 $$EOFAC^XOBWLIB(): Error Object Factory... 33
5.5.2 $$EOSTAT^XOBWLIB(): Create ObjectError from Caché Status Object 34
5.5.3 $$EOHTTP^XOBWLIB(): Create HttpError Object from %Net.Response

Object .. 35
5.5.4 ERRDISP^XOBWLIB(): Simple Display of Error to Screen 35
5.5.5 ERR2ARR^XOBWLIB(): Decompose Error Object into M Array 35
5.5.6 $$STATCHK^XOBWLIB(): Check Caché %Library.Status Object 36
5.5.7 ZTER^XOBWLIB(): Decompose Error Object and Call Error Trap 36
5.5.8 Example ... 37

5.6 Server Lookup APIs .. 37

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide vi October 2016

5.6.1 $$SKEYADD^XOBWLIB(): Add a Server Lookup Key 37
5.6.2 $$SNAME4KY^XOBWLIB(): Retrieve Server Name Associated with a Server

Lookup Key .. 38
5.7 APIs for Developer Test Account Use Only! ... 39

5.7.1 $$DISPSRVS^XOBWLIB: Display Server List to Screen 39
5.7.2 $$GETSRV^XOBWLIB: Prompt User to Select Server from List 39
5.7.3 $$SELSRV^XOBWLIB: Display Server List to Screen/Prompt for Selection .. 40

6 Appendix A—HWSC Error Codes ... 41
Glossary..42

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide vii October 2016

List of Figures

Figure 1: HWSC Logical View (SOAP-style) .. 2
Figure 2: HWSC Logical View (REST-style) ... 2
Figure 3: Technical Decisions Repository Record .. 4
Figure 4: Supporting Documentation: VWSC Architecture ... 5
Figure 5: Supporting Documentation: VWSC Proposed View ... 5
Figure 6: Sample Application Screen and Options ... 9
Figure 7: Code to invoke a doping method ..15
Figure 8: Sample M function that accesses a Ping resource ...19
Figure 9: Sample XML response ...19

List of Tables

Table 1: Documentation Symbol Descriptions .. ix
Table 2: Sample Application UI Actions ... 9
Table 3: HWSC Caché “Public Use” Classes ..24
Table 4: HWSC APIs...25
Table 5: Classes in the “xobw.error” package ...34
Table 6: HWSC APIs Error Codes...41
Table 7: Glossary ..42

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide viii October 2016

Orientation

How to Use this Manual
Throughout this manual, advice and instructions are offered regarding the installation and use of
HealtheVet Web Services Client (HWSC) and the functionality it provides for Veterans Information
Systems and Technology Architecture (VistA).

The developer instructions for HWSC are organized and described in this guide as follows:

1. Introduction

2. Sample SOAP and REST Client Applications

3. VistA M-Side Development Guide

4. Java-Side Considerations

5. VistA M-Side API Reference

Intended Audience
The intended audience of this manual is the following stakeholders:

• Enterprise Program Management Office (EPMO)—VistA legacy development teams.

• System Administrators—System administrators at Department of Veterans Affairs (VA) sites
who are responsible for computer management and system security on the VistA M Servers.

• Information Security Officers (ISOs)—Personnel at VA sites responsible for system security.

• Product Support (PS)—Personnel who support Kernel-related products.

Disclaimers
Software Disclaimer
 This software was developed at the Department of Veterans Affairs (VA) by employees of the Federal
Government in the course of their official duties. Pursuant to title 17 Section 105 of the United States
Code this software is not subject to copyright protection and is in the public domain. VA assumes no
responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied,
about its quality, reliability, or any other characteristic. We would appreciate acknowledgement if the
software is used. This software can be redistributed freely provided that any derivative works bear some
notice that they are derived from it.

 CAUTION: Kernel routines should never be modified at the site. If there is an immediate
national requirement, the changes should be made by emergency Kernel patch. Kernel
software is subject to FDA regulations requiring Blood Bank Review, among other
limitations. Line 3 of all Kernel routines states:

Per VHA Directive 2004-038, this routine should not be modified

 CAUTION: To protect the security of VistA systems, distribution of this software for use
on any other computer system by VistA sites is prohibited. All requests for copies of

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide ix October 2016

Kernel for non-VistA use should be referred to the VistA site’s local Office of Information
Field Office (OIFO).

Documentation Disclaimer
This manual provides an overall explanation of using Kernel; however, no attempt is made to explain how
the overall VistA programming system is integrated and maintained. Such methods and procedures are
documented elsewhere. We suggest you look at the various VA Internet and Intranet SharePoint sites and
websites for a general orientation to VistA. For example, visit the Office of Information and Technology
(OI&T) Enterprise Program Management Office (EPMO) Intranet Website.

 DISCLAIMER: The appearance of any external hyperlink references in this manual does
not constitute endorsement by the Department of Veterans Affairs (VA) of this Website
or the information, products, or services contained therein. The VA does not exercise
any editorial control over the information you find at these locations. Such links are
provided and are consistent with the stated purpose of this VA Intranet Service.

Documentation Conventions
This manual uses several methods to highlight different aspects of the material:

• Various symbols are used throughout the documentation to alert the reader to special information.
Table 1 gives a description of each of these symbols:

Table 1: Documentation Symbol Descriptions

Symbol Description

NOTE / REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION / RECOMMENDATION / DISCLAIMER: Used to caution the reader
to take special notice of critical information.

• Descriptive text is presented in a proportional font (as represented by this font).

• “Snapshots” of computer commands and online displays (i.e., screen captures/dialogues) and
computer source code, if any, are shown in a non-proportional font and may be enclosed within a
box.

o User’s responses to online prompts are boldface and (optionally) highlighted in yellow
(e.g., <Enter>).

o Emphasis within a dialogue box is boldface and (optionally) highlighted in blue
(e.g., STANDARD LISTENER: RUNNING).

o Some software code reserved/key words are boldface with alternate color font.

o References to “<Enter>” within these snapshots indicate that the user should press the Enter
key on the keyboard. Other special keys are represented within < > angle brackets. For
example, pressing the PF1 key can be represented as pressing <PF1>.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide x October 2016

o Author’s comments are displayed in italics or as “callout” boxes.

 NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box,
which point to specific areas of a displayed image.

• This manual refers to the M programming language. Under the 1995 American National
Standards Institute (ANSI) standard, M is the primary name of the MUMPS programming
language, and MUMPS is considered an alternate name. This manual uses the name M.

• Descriptions of direct mode utilities are prefaced with the standard M “>” prompt to emphasize
that the call is to be used only in direct mode. They also include the M command used to invoke
the utility. The following is an example:

>D ^XUP

• All uppercase is reserved for the representation of M code, variable names, or the formal name of
options, field/file names, and security keys (e.g., the XUPROGMODE security key).

 NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and file/folder
names can be written in lower or mixed case (i.e., CamelCase).

How to Obtain Technical Information Online
Exported VistA M Server-based software file, routine, and global documentation can be generated
through the use of Kernel, MailMan, and VA FileMan utilities.

 NOTE: Methods of obtaining specific technical information online are indicated where
applicable under the appropriate section.

Help at Prompts
VistA M Server-based software provides online help and commonly used system default prompts. Users
are encouraged to enter question marks at any response prompt. At the end of the help display, you are
immediately returned to the point from which you started. This is an easy way to learn about any aspect of
VistA M Server-based software.

Obtaining Data Dictionary Listings
Technical information about VistA M Server-based files and the fields in files is stored in data
dictionaries (DD). You can use the List File Attributes option [DILIST] on the Data Dictionary Utilities
menu [DI DDU] in VA FileMan to print formatted data dictionaries.

 REF: For details about obtaining data dictionaries and about the formats available, see the “List
File Attributes” chapter in the “File Management” section in the VA FileMan Advanced User
Manual.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide xi October 2016

Assumptions
This manual is written with the assumption that the reader is familiar with the following:

• VistA computing environment:

o Kernel 8.0—VistA M Server software

o Remote Procedure Call (RPC) Broker 1.1—VistA M Server software

o VA FileMan 22.0 data structures and terminology—VistA M Server software

o VistALink 1.6—VistA M Server and Application Server software

• Linux or Microsoft® Windows environment

• Java Programming language:

o Java Integrated Development Environment (IDE)

o J2SETM Development Kit (JDK)

o Java Authentication and Authorization Services (JAAS) programming

• M programming language

• WebLogic 9.2 or 10.x Application Server

Reference Materials
Readers who wish to learn more about HWSC should consult the following:

• HWSC 1.0 Installation Guide

• HWSC 1.0 Systems Management Guide

• HWSC 1.0 Developer’s Guide (this manual)

• HWSC 1.0 Patch XOBW*1.0*4 Release Notes

• HWSC 1.0 Patch XOBW*1.0*4 Installation, Back-Out, and Rollback Guide

• HWSC 1.0 Patch XOBW*1.0*4 Security Configuration Guide

VistA documentation is made available online in Microsoft® Word format and in Adobe® Acrobat
Portable Document Format (PDF). The PDF documents must be read using the Adobe® Acrobat Reader,
which is freely distributed by Adobe® Systems Incorporated at: http://www.adobe.com/

VistA documentation can be downloaded from the VA Software Document Library (VDL):
http://www.va.gov/vdl/

 REF: HWSC manuals are located on the VDL at:
http://www.va.gov/vdl/application.asp?appid=180

VistA documentation and software can also be downloaded from the Product Support (PS) Anonymous
Directories.

http://www.adobe.com/
http://www.va.gov/vdl/
http://www.va.gov/vdl/application.asp?appid=180

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 1 October 2016

1 Introduction
1.1 Document Overview
This document provides information for M application developers writing code to call Web services in
HealtheVet applications. It presents information on the following topics:

• HWSC architecture.

• Implementing Caché code with HWSC to consume to external Service Oriented Architecture
Protocol (SOAP)-based and Representational State Transfer (REST)-based Web services.

• HWSC Application Program Interface (API) reference.

This document assumes the reader is familiar with the following areas:

• M development

• HyperText Transport Protocol (HTTP)

• eXtensible Markup Language (XML)

• REST (for REST-style Web service consumption)

• SOAP (for SOAP-style Web service consumption)

• Caché Objects

Additional development resources include:

• Caché documentation

• SOAP: http://en.wikipedia.org/wiki/SOAP

• REST: http://en.wikipedia.org/wiki/Representational_State_Transfer

1.2 Using SOAP and REST to Access HealtheVet from VistA
M

Veterans Health Information Systems and Technology Architecture (VistA) M-based applications have a
need to synchronously access VistA application services and data (e.g., in-process during an end-user’s
session). HWSC uses Caché’s Web Services Client to invoke Web service methods on external servers
and retrieve results. It provides helper methods and classes to improve the use of Caché’s Web service
client in a VistA environment.

HWSC supports two modes of synchronous Web service access:

• SOAP (Service Oriented Architecture Protocol)—Formal XML-based protocol for accessing
services.

• REST (REpresentational State Transfer)—Architectural style of accessing services via
programmatic access to Web resources.

The SOAP and Rest approaches to calling VistA services are shown in Figure 1 and Figure 2.

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Representational_State_Transfer

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 2 October 2016

Figure 1: HWSC Logical View (SOAP-style)

Consuming
Application

Business
Delegate (if
provided)

Compiled
Web Service
Client Proxy

(VistA app)

(PRE)

(extends Caché
%SOAP.WebClient)

(PRE)

Web Service

(PRE)

https

J2EE Application Server

HeV Application

Caché Server

HWSC
Utilities

To illustrate Web service access using a SOAP example: imagine that a VistA M-based application needs
drug interaction information formerly available in VistA but now maintained in the J2EE-based Pharmacy
Re-Engineering (PRE) application. To retrieve the data from the HealtheVet side, the following steps
would be required:

1. The VistA M application makes a request to the PRE business delegate to obtain the information.

2. The PRE business delegate uses its compiled Web service client proxy class to make the drug
interaction request to the PRE Web service.

3. PRE’s Web service processes the request and returns a response.

4. The PRE business delegate receives the response, decomposes the needed data elements from the
return value, and returns the requested drug interaction data to the calling VistA application.

Figure 2: HWSC Logical View (REST-style)

Consuming
Application

Business
Delegate (if
provided)

Parse REST resource

(VistA app)

(PRE)

Controller
Servlet

(PRE)

https

J2EE Application Server

HeV Application

Caché Server

HWSC
Utilities

REST
Response
Parsers

parse REST
 resource
 requests

process
requests

return
responsesCaché

%Net.HttpClient

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 3 October 2016

1.3 Caché’s Web Services Client Features
The InterSystems Caché product provides a number of features (leveraged by the HWSC project) to
enable consumption of external Web services:

• SOAP: Caché provides APIs to compile proxy objects (in the form of Caché Objects)
corresponding to external Web services, from the Web Services Description Language (WSDL)
document describing the SOAP Web services, and invoke calls to the SOAP Web service
methods. Input and return values for the Web service are mapped to Caché object types, which
are used when invoking the service.

• REST: Caché provides APIs allowing invocation of an external URL via http and retrieval of the
response, supporting both POST and GET methods. This supports access to REST-style Web
services.

• XML Parsing: Caché provides an API to invoke a high-performance XML parser (useful for
processing very large XML results). Alternatively, Kernel’s XML parser can be used.

 NOTE: In order to use these features, use of non-standard M syntax (i.e., Caché Objects) is
required, and a waiver has been granted (see the “HPMO Waiver for Use of Caché-Specific
Features” section).

1.4 Role of HWSC
HWSC acts as an adjunct to the Web services client functionality provided in Caché, by:

• Leveraging Caché’s platform-provided Web services client capabilities.

• Adding a file and user interface (UI) to manage the set of external Web server endpoints (IP, port,
etc.).

• Adding a file and UI to register and manage the set of external Web services.

• Providing runtime API to invoke a specific Web service on a specific Web server.

• Providing a runtime API to facilitate error processing in a VistA environment.

• Providing a deployment API to install/register a Web service proxy from a WSDL file.

• Providing a management UI including the ability to “ping” (test) a given Web service/server
combination from VistA M.

• Supporting both SOAP- and REST-style Web services.

• Fostering consistent implementation of VistA M Web service consumers.

 NOTE: HWSC does not act as an all-inclusive wrapper shielding Web service consumers from
Caché Objects syntax. Rather, the recommended approach is for the application providing the
Web service, to also provide a Web service delegate for the VistA M systems consuming the Web
service. The Web service delegate should use Caché Objects syntax as needed to consume the
Web service, but should not expose non-standard M syntax to users of the business delegate.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 4 October 2016

1.5 HPMO Waiver for Use of Caché-Specific Features
In December 2006, the HPMO Change Control Board voted to move forward with the HWSC project,
and grant a waiver allowing the use Caché-specific features during the consumption of Web services. At
the time of writing, this decision is reproduced below (Figure 3):

Figure 3: Technical Decisions Repository Record

The waiver granted in the technical decision above is not intended to be carte blanche to bypass
adherence to 1995 M standard. Rather, it permits the use of non-standard M syntax insofar as to allow use
of the underlying features of the Caché 5.0 platform to consume external Web services.

To better understand the context of the waiver, it is also useful to examine the listed supporting
documentation for the technical decision (see Figure 4 and Figure 5).

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 5 October 2016

Figure 4: Supporting Documentation: VWSC Architecture

In Figure 4, HWSC (the HWSC run-time API) is positioned as an adjunct to the use of Caché’s Web
services client functionality, but is not positioned as a wrapper around that functionality. The M-side
business (service) delegate interacts directly with the Web service proxy.

Figure 5: Supporting Documentation: VWSC Proposed View

Similarly in the example shown in Figure 5:

• The external (J2EE) application providing the Web services is RSA.

• The Web service provider (RSA) also provides an (optional) M-side Web service delegate. The
delegate directly invokes the compiled Caché Object Web service proxy (which extends
%SOAP.WebClient).

• The actual application interested in the Web service (in this example Pharmacy) interacts with the
RSA-provided business delegate to access the RSA Web service.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 6 October 2016

As such, Figure 5 captures the recommended model for HealtheVet Web service providers: that is, to
provide an M-side business delegate:

• The M-side business delegate has permission via the waiver discussed above to use non-standard
M syntax (specifically, Caché Objects and Caché’s Web services client functionality) in its
consumption of the Web service.

• The Web service delegate should process the input values and return values, including a variety
of errors, as required using Caché Objects syntax. Some of these values can also be very large
(and therefore accessed via Caché stream-type interfaces).

• While the delegate needs to interact directly with Caché Objects to process the variety of input
and return values, users of the business delegate should be shielded by the delegate from the non-
standard M syntax.

1.6 Securing HWSC Applications Using SSL/TLS (HTTPS)
As of Patch XOBW*1.0*4, HWSC enabled the use of Secure Socket Layer/Transport Layer Security
(SSL/TLS) encryption. This allows VistA applications to make Hypertext Transfer Protocol (Secure)
HTTP(S) connections from VistA on all supported operating system (OS) platforms to remote HTTP(S)
servers. HWSC uses a Caché library that makes HTTP or HTTPS requests. A secondary benefit of using
SSL/TLS security is the use of Certificate-Based Authentication.

 REF: For more information and configuration setup instructions, see the HWSC 1.0 Patch
XOBW*1.0*4 Security Configuration Guide.

1.6.1 Support for Encryption and Certificate-Based Authentication
With the use of SSL/TLS to encrypt communication, VistA applications can make use of SSL/TLS
Certificate Authentication.

 REF: For instructions on setting up an HWSC application to use Certificate Based
Authentication, see the “Client Certificate Authentication Configuration” section in the HWSC
1.0 Patch XOBW*1.0*4 Security Configuration Guide.

1.6.2 Support for Encryption and HTTP Basic Authentication
Support for HTTP Basic Authentication existed with the initial release of HWSC; however, username and
password credentials were transported in clear text. With the use of SSL/TLS to encrypt the transmission
of credentials, VistA applications also have a secured alternative to using Certificate-Based
Authentication.

 REF: For instructions on setting up an HWSC application to use Encryption and HTTP Basic
Authentication, see the “Encryption-Only Setup” and “HTTP Basic Authentication
Configuration” sections in the HWSC 1.0 Patch XOBW*1.0*4 Security Configuration Guide.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 7 October 2016

2 Sample SOAP and REST Client Applications
HealtheVet Web Services Client (HWSC) provides a sample application that demonstrates how to
consume both Service Oriented Architecture Protocol (SOAP)- and Representational State Transfer
(REST)-style Web services.

The HWSC sample application code functions as example/sample code, and demonstrates many aspects
of calling external Web services, including:

• Parameter passing

• Return value processing

• Return values based on custom object types (SOAP)

• XML response parsing (REST)

• Timeout processing

• Error handling

 NOTE: Sample code is provided as an educational tool, and is not intended to be a template for
production code.

2.1 Installing the J2EE Sample Web Services EAR
Corresponding sample J2EE-based SOAP and REST Web services are provided in an Enterprise ARchive
file (EAR) in the HWSC distribution. They provide services for the Caché-based sample client
applications to access and retrieve results from.

The HWSC sample application’s SOAP Web services employ the XFire Web service framework; the
REST Web services are servlet-based.

The Web Services Description Language (WSDL) for the sample SOAP application is imported as part of
the M-side XOBT installation process for the sample Caché-based client application, and is used as the
basis to generate Caché proxy objects for the J2EE SOAP-based Web service sample.

 REF: For installation instructions, see the appendices in the HWSC 1.0 Installation Guide.

 REF: For more information on how to obtain the XOBT_1_0_Txx.zip distribution file, contact
the OIT PD VistA Maintenance HWSC Developers (Outlook Mail Group:
OITPDVistAMaintenanceHWSCDevelopers@va.gov).

2.2 Using the XOBT M Client Application
The Caché-based SOAP-style Web services client application is in the following namespaces:

• XOBTWSA*: Sample client application/business delegate caller.

• XOBTWSB*: Sample “business delegates” for each SOAP Web service call.

mailto:OITPDVistAMaintenanceHWSCDevelopers@va.gov

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 8 October 2016

HWSC also provides a sample Caché-based REST-style Web services client application, in the following
namespaces:

• XOBTWRA*: Sample client application/business delegate caller.

• XOBTWRB*: Sample “business delegates” for each REST-style Web service call.

All non-M-standard Caché Object code in the application samples has been isolated into the sample
business delegate routines. The sample “client application” routines (that call the business delegates)
employ standard M syntax.

2.2.1 XOBT M-Side Installation
For installation instructions, see the appendices in the HWSC 1.0 Installation Guide.

2.2.2 Create Web Server Entry
In order to access the sample application’s J2EE Web services, create an entry in the WEB SERVER file
(#18.12) for the Web server on which they are installed, using the XOBW WEB SERVER MANAGER
option and the “Add Server” action. The entry should correspond to the server on which you have
installed hwscSampleWs-1.0.0.xxx.ear.

Use the XOBW WEB SERVER MANAGER option and the “Add Server” action in the option to enter a
new entry in this file for the WebLogic server on which the sample Web service is installed.

Fields / Values

• NAME: Any value to name the target WebLogic server

• SERVER: Enter the domain name or IP address of WebLogic server

• PORT: Enter the WebLogic listener port

• STATUS: ENABLED

Security Credentials
• LOGIN REQUIRED: YES//

• USERNAME: Enter WebLogic username that is a member of WebLogic server’s
XOBW_Server_Proxies group

• Want to edit PASSWORD (Y/N): Y

• PASSWORD: Enter password associated with the WebLogic user

Authorize Web Services

• Select WEB SERVICE: (enter/authorize the following two Web services)

• WEB SERVICE: XOBT TESTER WEB SERVICE

• STATUS: ENABLED

• Select WEB SERVICE:

• WEB SERVICE: XOBT TESTER REST SERVICE

• STATUS: ENABLED

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 9 October 2016

2.2.3 Sample Application User Interface
A subset of the sample entry points can be executed from the XOBW WEB SERVER MANAGER
option’s user interface:

• PT Ping Test (PING^XOBTWSA)

• AT Array Test (GA^XOBTWSA)

• ET Echo Test (ECHO^XOBTWSA)

• SP Retrieve System Properties (SP^XOBTWSA)

A description of all actions available in the sample application user interface is provided in Table 2.
Table 2: Sample Application UI Actions

Action Description

PT (Ping Test) Ping the selected Web server.

AT (Array Test) Return an array of text from the selected Web server.

ET (Echo Test) Type in a phrase to echo back from the selected Web server.

SP (Retrieve System
Properties)

Retrieve the set of java system properties from the selected Web
server.

DE (Show Demographics) Display information about the selected Web server (name, address,
port and status)

To access the “samples” user interface:

1. Select option: XOBW WEB SERVER MANAGER.

2. Select Action: Test Server.

3. Select your server entry.

4. Select any of the options to run.
Figure 6: Sample Application Screen and Options

Web Server Tester Jun 07, 2007@16:04:56 Page: 1 of 1
 WEB SERVER: VHAISFZZZC
 Demographics

 NAME: VHAISFZZZC
 SERVER: vhaisfzzzc
 PORT: 7111
 STATUS: ENABLED

 Select Action/Test to Perform on Server
PT Ping Test SP Retrieve System Properties
AT Array Test DE Show Demographics
ET Echo Test
Select Item(s): Quit//

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 10 October 2016

2.2.4 Ping the SOAP Tester Web Service from Caché
Perform the following steps to ping the remote “test” Web server:

1. Select option: XOBW WEB SERVER MANAGER.

2. Select action: Test Server.

3. Select your server entry.

4. Select sub-action: Ping Test.

5. Successful result: “Response: Ping Successful!”

2.2.5 Demonstrating Server Lookup Keys: XOBT SAMPLE SERVER
Lookup Key

The server lookup XOBT SAMPLE SERVER security key is installed by the XOBT KIDS build, but is
not associated with a particular Web server by default.

To determine the Web server against which to access the sample Web services, the XOBT sample
applications first see if a Web server has been associated with the XOBT SAMPLE SERVER lookup
security key. The XOBT sample applications only prompt the end-user to specify a Web server if the
lookup key-server association is not defined. Similarly, applications using HWSC can define their own
server lookup keys, and avoid hard-coding a particular Web server file entry name.

To associate a server with the XOBT SAMPLE SERVER security key, use HWSC’s Lookup Key
Manager, accessed through the Web Server Manager:

1. Use the XOBW WEB SERVER MANAGER option to call up the HWSC Web Server
Manager.

2. Select the LK action to access the Lookup Key Manager.

3. Select the EK (Edit Key) action to edit the XOBT SAMPLE SERVER security key.

4. Associate it with the server on which you have installed the sample Web service.

5. Run the XOBT sample applications again. Web service calls are automatically made against the
associated server.

2.3 Sample Client Application Entry Points
The tags in the XOBTWSA*/XOBTWRA* routines invoke a single, corresponding Web service
operation in the J2EE-based tester Web service and display the results. Each call takes a one parameter,
which can be either empty (“”) or the name of a server in the WEB SERVER file (#18.12). If empty, you
are prompted to select a Web server against which to run the option.

You can test connectivity by executing any of the following tag^routines and invoking SOAP-style calls
(^XOBTWSA):

• PING

• ECHO

• ARRIN

• GA

• SP

• EI

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 11 October 2016

• EIVO

• ECHOEIVO

• EILIST

• SENDXML

Additional SOAP-style calls (^XOBTWSA1):

• DOI

• BOOLEAN

• FLOAT

• DOUBLE

• INT

• SHORT

• LONG

• DATE

• CAL

• TIMEOUT

• RETRY

REST-style calls (^XOBTWRA):

• PING

• SAMPLE

• GA

• EI

• EILIST

Additional REST-style calls (^XOBTWRA1):

• DICTGET

• DICTPOST

• DICTLST

To invoke ALL SOAP-style calls: ALL^XOBTWSA1

To invoke ALL REST-style calls (except DICTPOST): ALL^XOBTWRA

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 12 October 2016

2.4 Rebuilding the J2EE Sample Web Service Project
The distribution zip file’s “sample-prj” folder contains an ANT-buildable version of the sample Tester
Web service. You can optionally modify and rebuild the service as follows:

1. Check that ANT is set up on your system.

2. Ensure your JAVA_HOME environment variable is set to a JDK 1.4 location.

3. In the unzipped “sample-prj” folder, copy or rename
“uncommon-build.properties.template” to “uncommon-build.properties”.

4. Edit the two file location properties to point to “scratch” locations on your system for the files
generated by the build.

5. Update the WEBLOGIC.DIRPATH property to point to a WebLogic home on your system.

6. In the unzipped “sample-prj” folder, from the command line, run ANT (no arguments
necessary).

7. If the build is successful, the files are built in the location you specified in the
HWSC.DIST.PATH property.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 13 October 2016

3 VistA M-Side Development Guide
3.1 Platform Considerations
3.1.1 Caché-Specific Considerations
You should be aware of the following limitations in Caché, which you may encounter working with Web
services:

• Caché Object Property Length—Any one Caché Object property is restricted to a length of
32K (e.g., Service Oriented Architecture Protocol [SOAP] client input parameter and response
classes). This is important if you want to return a long string as the return value of a SOAP call
(e.g., an XML document), or pass a long (>32K) string as an input parameter. However, a
workaround to overcome this limitation is discussed in “Manually Modify SOAP Client Proxies
to Overcome Length Limits.”

• Length of REST-Style Returned Data—Because HealtheVet Web Services Client (HWSC)
returns the response to a Representational State Transfer (REST)-style Web service in a Caché
stream, there is no immediate limit on the length of the data that can be returned by a single call.
Of course, the larger the data that is returned, the longer it takes to process the return value.

• System Memory Maximum—The sum of the memory used by all objects and partition variables
cannot exceed the system maximum. The maximum varies from system to system, but is
currently set to 2 megabytes at most VA production sites. This is mostly an issue for SOAP calls,
since results are automatically returned as a Caché object in memory. (For REST calls, the results
are returned in an instance of the %Net.HttpResponse class, but large input values could also
cause a problem.) The workaround discussed in “Manually Modify SOAP Client Proxies to
Overcome Memory Limitations” can also help avoid exceeding memory partition size in some
cases.

• Package Name Length—Package names for Caché classes (including the generated Port classes
and SAX parser handlers) are limited to 31 characters in length.

• Unique Class Names—Within a Caché package, each class name must be unique within its first
25 characters

• No Punctuation in Caché Identifiers—Punctuation characters, including underscores and
hyphens, are not allowed in Caché identifiers, like class names. This becomes an issue when
proxy classes are generated based on Java class names: classes are still generated, but punctuation
is stripped. This can cause interoperability issues when interacting with the classes on the Java
side that still have punctuation in their names. We recommend using UpperCamelCase for Web
service names.

• Lack of Full HTTP 1.1 Support—Caché fully supports HTTP 1.0, but does not fully support
HTTP 1.1. This should be adequate for almost all Web services interactions. However, a few
small issues can crop up (e.g., the HTTP “Host” header is not required to contain the port number
in HTTP 1.0).

3.1.2 WebLogic 8.1-Specific Considerations
You should be aware of that when returning very large result sets (e.g., 10 megabytes or more) with Web
services, the J2EE server may drop the http connection. This happens when the client (Caché) cannot read
in the data stream fast enough to complete the transmission within WebLogic 8.1’s http “Duration” value.
This value has a maximum of 120 seconds, and can be set in the WebLogic console under:

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 14 October 2016

server | Protocols | http | Duration

WebLogic interprets the lack of completion as an inactive http connection, and drops the connection at
the specified duration limit.

3.2 How to Consume a SOAP-Style Web Service
3.2.1 Compile WSDL into Caché Proxy Classes (SOAP)
To build a Web service client to access a Web service other than the HWSC sample, in your development
account, call GENPORT^XOBWLIB to:

• Import your Web service’s Web Services Description Language (WSDL) by running the Caché
SOAP client wizard. This creates proxy classes for communicating with your Web service.

• Create an entry for your Web service in the WEB SERVICE file (#18.02).

When running GENPORT^XOBWLIB, you need to supply the following as input parameters:

• Name for the WEB SERVICE file entry to be created.

• File system location of your WSDL file (accessible from the Caché install account).

• Caché package name to use for the compiled proxy classes.

• Resource to HWSC to use for availability checks on the Web service (optional).

Once completed successfully, you can write M code that calls HWSC APIs to access your Web service.

 REF: For more details on the GENPORT^XOBWLIB API, see the
“$$GENPORT^XOBWLIB(): Import/Register Web Service from WSDL” section.

Mainline (SOAP)
Once the WSDL is imported/client proxy classes created, your code needs to perform the following main
steps to invoke and consume a Web service:

1. Get the name of the Web server entry in the WEB SERVER file (#18.12) on which to call the
Web service. For simplicity’s sake, in the example in Figure 7 the Web server name
(“VHASERVER1”) is hard-coded; for production code, you can instead use the
$$SNAME4KY^XOBWLIB(): Retrieve Server Name Associated with a Server Lookup Key API
and have your install sites associate a “server lookup key” with a specific Web server entry at
install-time.

2. Set an error trap.

3. Get Web service proxy object for a specific Web server and Web service.

4. Invoke Web service proxy methods on Web service proxy object to invoke methods on the
remote Web service.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 15 October 2016

For example, the code in Figure 7 invokes a doPing method on the MYAPP WEB SVC Web service, and
writes out the result:

Figure 7: Code to invoke a doping method

NEW MYPROXY,$ETRAP
; -- set error trap
SET $ETRAP=“DO ERROR^MYRTN” ; to catch/process errors
; -- obtain client proxy object (replace hard-coded server name ref
; w/ dynamic retrieval, or site param, or etc.)
SET MYPROXY=$$GETPROXY^XOBWLIB(“MYAPP WEB SVC”,“VHASERVER1”)
; -- call web method
WRITE !,“Ping result: ”,MYPROXY.doPing()

 REF: For complete details of the $$GETPROXY^XOBWLIB API, see the “VistA M-Side API
Reference” section.

3.2.2 Passing Input Parameters to Web Services (SOAP)
The HWSC sample applications demonstrate the use of a variety of “IN”-type input parameter types,
including:

• Standard Web service data types (string, short, int, float, double, boolean, dateTime, etc.).

• Arrays of standard data types (using Caché’s %ListOfDataTypes object).

• Service-defined complex types compiled as classes from WSDL.

3.2.3 Processing Web Service Return Types (SOAP)
Web service methods return a single object as the method return value. The HWSC sample applications
demonstrate retrieving and processing a variety of return types, including:

• Standard Web service return types (string, short, int, float, double, boolean, dateTime, etc.).

• Collections of standard return types.

• Service-defined complex types compiled as classes from WSDL.

• Collections of complex types compiled as classes from WSDL.

3.2.4 Large Result Sets (SOAP)
The role in the enterprise architecture currently envisioned for Web services, particularly for M/VistA
systems accessing HealtheVet systems, is to handle requests in “end-user-is-waiting-for-a-response”
scenarios. Web service invocations are typically made in real time, synchronously. To match the end-
user-is-waiting scenario, their results sets should be of a size that can be assembled and returned in a
reasonable amount of time.

For all other VistA-to-J2EE calls (e.g., bulk transfers of data, asynchronous messaging, guaranteed
delivery), the responsibility for handling requests falls instead to the messaging infrastructure and use of
the interface engine.

There are gray areas (e.g., when a large result set is created on the J2EE server), but the end-user is only
expected to look at small portion of the query results before making a decision and moving on. In this

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 16 October 2016

case, a J2EE pattern called Value List Handler can be used with Web services1 and HWSC. Optimizing
the implementation of a Value List Handler is query-specific. Essentially the implementer of the pattern
Caché’s the query results on the server and chunks the return value of any single call into a subset of the
query results.

In any case, with Caché and SOAP, there are unavoidable consequences to creating large requests and
returning huge query result sets, without chunking the requests or results into smaller sets first before
sending/returning them. Large requests and responses can cause timeouts and impact server resources on
both the sender and receivers sides, and impact overall reliability because:

• The size of data send or returned may exceed the memory size of the Cache partition (client) or
the Java virtual machine (JVM) (server). For Caché, at most VA production sites at the time of
writing, two megabytes of RAM is dedicated to each M process partition.

• While receiving a large request, the J2EE server may drop the http connection if the duration of
the request, or request size exceeds configurable limits.

• While returning a large result set, the J2EE server may drop the http connection if the client
(Caché) cannot read in the data stream fast enough.

3.2.5 Timeouts (SOAP)
The client timeout is the amount of time the Caché Web services client waits for a Web service invocation
to return over http before aborting. By default, the client timeout is set to 30 seconds in the current Caché
implementation used by the HWSC development team (although M administrators can also set a different,
per-web-server default timeout).

To explicitly set the client timeout (overriding the system and per-server default settings), use the
Timeout property on the Caché Web service proxy object in one of the following ways:

• SET XOBPROXY.Timeout=60

• SET XOBPROXY.Timeout=XOBPROXY.Timeout*2

(The second technique is probably the preferred one, because the site may have already adjusted the
default timeout to factor in any local environment situations.)

If a timeout occurs, an error is returned to the calling code. With the current Caché implementation used
by the HWSC development team, a Caché object error is returned with its error code set to code #5922
(“Timed out waiting for response”).

You can use the TIMEOUT^XOBTWSA sample application call to experiment with timeout behavior.

1 Lechiki, Alois and Kruse, Thomas, Handling Large Database Result Sets, WebLogic Journal, volume 3 issue 6, http://wldj.sys-
con.com/read/45563.htm.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 17 October 2016

3.2.6 How to Export an M Business Delegate (SOAP)
Assuming that your application is planning to export an M business delegate, it should export the
following items:

• WSDL file for the Web service (separate from the KIDS transport file)

• M business delegate routines to consume the Web service (in the KIDS transport file)

• Post-init routine (in the KIDS transport file) that calls $$GENPORT^XOBWLIB to:

o Import the WSDL file.

o Create an entry in the WEB SERVICE file (#18.02).

o Create the Web service proxy class.

You can examine HWSC’s KIDS post-init routines – XOBTPST and XOBWPST (and the “Install
Questions” section of the XOBT and XOBW KIDS build definitions) to see how they handle prompting
and reading files from the host file system.

3.2.7 Manually Modify SOAP Client Proxies to Overcome Memory
Limitations

The InterSystems Web service development team has noted that to overcome the 32K length limitation of
String result values in its SOAP clients (and to avoid overflowing partition memory), generated proxy
classes can be manually modified to use Cache streams for %String data types.

The Caché WSDL compiler automatically compiles all WSDL string return values in the proxy classes
as %Library.String, even though they could also be compiled as Caché stream types. Therefore, all string
return type objects are subject to the current 32K-length restriction. But a string return type (on the Web
service side) is exactly what many Web services would use to return an XML document result (that can
exceed 32K, or in some cases even exceed the memory partition size).

The developer can modify the return type in the generated proxy class for a given Web service method
to %GlobalCharacterStream in place of %Library.String:

1. Change the method return type from %Library.String to %GlobalCharacterStream in the
generated port proxy class.

2. Recompile the port proxy class; this causes other generated proxy classes to be re-compiled.

3. Modify the business delegate code to read the result off of a Caché stream.

The modified class should work correctly, but the (string) return value is placed by Caché into a stream,
overcoming normal memory limits.

This same approach can also work for %String input parameter types, which can help if large input
parameter strings are expected (e.g., a large XML document as an input parameter).

 NOTE: An alternative workaround in HWSC for long XML documents is to make a REST call
rather than a SOAP call.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 18 October 2016

3.2.7.1 Disadvantages of Manual Modification
Possible disadvantages, or issues to consider, with manually editing the generated classes, include:

• During the development cycle, whenever the WSDL changes and classes are generated,
developers need to remember to manually restore the modifications to the generated classes.

• The application needs to export the generated Caché Object proxy classes as a package
component (as opposed to something generated upon install). Export would be in a separate XML
file.

• WEB SERVICE file (#18.02) entry needs to be created or installed on target systems separately
from WSDL import, since WSDL is only imported at development time. The
REGSOAP^XOBWLIB API can be used to do this.

 NOTE: For normal situations, HWSC recommends that applications exporting a Web service
client, do so by exporting their WSDL and using the $$GENPORT^XOBWLIB call to generate
client classes on the target install systems (as opposed to exporting the compiled proxy delegate
classes themselves).

3.3 How to Consume a REST-Style Web Service
3.3.1 Mainline (REST)
To invoke and consume a REST-style Web service, an application needs to perform the following main
steps:

1. Get the name of the Web server entry in the WEB SERVER file (#18.12) on which to call the
Web service. For simplicity’s sake, in the example below the Web server name (“MY SERVER”)
is hard-coded; for production code, you can instead use the $$SNAME4KY API and have your
install sites associate a “server lookup key” with a specific Web server entry at install-time.

2. Set an error trap.

3. Get a REST proxy object for a specific REST-style Web server and Web service.

4. Invoke either the Get or Post proxy method(s) on Web service proxy object to invoke methods on
the remote Web service.

5. Process the result (e.g., parse the result if it an XML document).

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 19 October 2016

For example, the following M function accesses a Ping resource on the MYAPP REST SVC REST-style
service, using an HTTP GET, and writes out the result:

Figure 8: Sample M function that accesses a Ping resource
PING ; -- access a Ping response using REST-style Ping service
; resource: <http://server/context>/Ping
 NEW MYREST,PINGRES,MYERR,$ETRAP,X,XOBSTAT,XOBREADR,XOBREAK
 ; -- set error trap
 SET $ETRAP=“DO PINGEH^MYRTN”
 ; -- get client REST request object
 SET MYREST=$$GETREST^XOBWLIB(“MY REST SERVICE”,“MY SERVER”)
 ; -- retrieve the resource; execute HTTP GET method
 IF $$GET^XOBWLIB(MYREST, “/Ping”,.MYERR) DO
 . ;invoke Cache parser
 . SET XOBSTAT = ##class(%XML.TextReader).ParseStream(MYREST.HttpRespons
e.Data,.XOBREADR)
 . IF ($$STATCHK^XOBWLIB(XOBSTAT,.MYERR)) DO
 . . SET XOBREAK=0 FOR QUIT:XOBREAK!XOBREADR.EOF!’XOBREADR.Read() DO
 . . . IF (XOBREADR.NodeType = “element”),(XOBREADR.LocalName = “PingRes
ponse”) DO
 IF XOBREADR.MoveToContent() DO
 SET PINGRES=XOBREADR.Value
 SET XOBREAK=1
 . WRITE !!, “Ping Result: ”,PINGRES
 QUIT
PINGEH ; -- error trap handler for PING
 ; … display error, unwind error trap, set $ECODE=“”, etc.
 QUIT

There are some alternate paths that could be taken. For example, the Get method could be called on the
REST HTTP request object (%NET.HttpRequest) directly, rather than by using the
$$GETREST^XOBWLIB wrapper. The main advantage to using the $$GETREST^XOBWLIB wrapper
is being able to take advantage of built-in error detection and error trap triggering.

In addition, the above code serves as a mixture of both “business delegate” and “business delegate
consumer” code, in that it both kinds invoke the Web service and display the results to the end-user. The
HWSC sample application’s business delegate and business delegate consumer code, on the other hand,
are cleanly separated.

 REF: For complete details of each XOBWLIB API, see the “VistA M-Side API Reference”
section.

3.3.2 Parsing XML Responses (REST)
Suppose the XML response for the example in Figure 8 looks like:

Figure 9: Sample XML response
<?xml version=“1.0” encoding=“UTF-8” ?>
<PingResponse>Ping Successful!</PingResponse>

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 20 October 2016

There are several ways to parse documents, including:

• Use Caché’s SAX parser:

o Call %XML.TextReader methods (parsing is accomplished by traversing a Document Object
Model (DOM)-like but mostly forward-only representation of the document – InterSystems’
recommended approach.

o Extend %XML.SAX.ContentHandler (parsing is done via a SAX interface).

o Call %XML.Reader (parsing is accomplished via a mapped correlation between the XML
document and a Caché Object).

• Use the Kernel MXML parser (parsing is done via a SAX interface).

For parsing implementation examples, see the business delegate (XOBTWRB*) code used for the REST-
style Web service clients in the HWSC sample application.

3.3.3 Timeouts (REST)
To set the client timeout, set the Timeout property on the request object returned by the
$$GETREST^XOBWLIB() call.

3.3.4 How to Export an M Business Delegate (REST)
Assuming that your application is planning to export an M business delegate to access a REST Web
service, it should export the following items via KIDS:

• M business delegate routines to consume the REST Web service.

• A KIDS post-init M routine that:

o Calls the REGREST^XOBWLIB(): Register a REST Service Definition API to create an
entry in the WEB SERVICE file (#18.02).

o (Optionally) calls the $$SKEYADD^XOBWLIB(): Add a Server Lookup Key API to add a
server lookup key.

3.4 How to Handle Errors (SOAP and REST)
Handling errors is an intrinsic part of working with a distributed communication mechanism such as Web
services. With Caché Objects and Web service calls, there are additional error processing duties beyond
simply checking $ZERROR and $ECODE. Some errors can happen at the Caché Objects level, others can
be returned as SOAP faults or HTTP errors. Still others occur at the standard M level. Because of this,
HWSC is providing a set of utilities to encapsulate and organize the following types of errors:

• Standard M error

• Caché Objects error

• SOAP fault (SOAP)

• HTTP error (REST)

• HWSC “fault”/Dialog entry

Handling errors in Web service calls involves setting an error trap, writing the error handler code, and
determining in that code whether to continue or quit. The specifics of the error handling code can depend
in part on whether you are coding an application calling a Web service directly, a business delegate, or an
application calling a business delegate.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 21 October 2016

3.4.1 Business Delegate Level
A business delegate may want to do some processing on the error, but still preserve it so it can also be
handled by the actual caller. If so, the business delegate should set up an error handler as follows:

1. “New” $ETRAP (but not $ESTACK).

2. Set $ETRAP=error handler routine for the business delegate context.

The business delegate’s error handler routine, provided as a pair with business delegate, should:

1. Take corrective action if desired:

• Process the error condition in the partition and create the HWSC error object:

o For SOAP calls, call $$EOFAC^XOBWLIB to create the HWSC error object.

o For REST calls, if the call is made via $$GET^XOBWLIB and $$POST^XOBWLIB,
check first to see if the HWSC error object has already been created, in the error variable
specified in the call to $$GET or $$POST. Check. If not, call $$EOFAC create it.

• Examine the error object directly (using Caché Object syntax) and decide how to handle and
perform any other action appropriate for the error handler.

• Optionally, call ZTER^XOBWLIB to record the error in Kernel error trap.

2. Return control to the caller:

Call UNWIND^%ZTER to quit back to the caller of the business delegate.

3.4.2 Application (Caller to Business Delegate) Level
The application calling a Web service business delegate may want to handle the error itself without
necessarily aborting program execution and returning control to Kernel. If so, the calling application
should set up an error handler as follows:

1. “New” $ETRAP.

2. “New” $ESTACK to establish a new error context before invoking the Web service or business
delegate.

3. Set $ETRAP to an error handler routine for the current error context – that of your application.

The caller’s error handler routine, provided by the caller, should:

1. Take corrective action, if desired:

• Call ERRDISP^XOBWLIB to display the HWSC error object values (if preserved/returned
by business delegate) to the end-user (if in roll & scroll mode).

• Call ERR2ARR^XOBWLIB to decompose the HWSC error object (if preserved/returned by
business delegate) into an array, examine it without using Caché Object syntax, and decide
how to handle it.

2. Resume processing and/or return control to the caller:

• Clear the error stack by setting $ECODE=“” and continue processing in the error handler
(and eventually QUIT back to Kernel).

• Call UNWIND^%ZTER to immediately quit back to Kernel.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 22 October 2016

3.4.3 REST Error Handling Options
Depending on how you invoke your GET and POST calls, you can increase the convenience of error
trapping. In particular:

• If your code calls the GET^XOBWLIB or POST^XOBWLIB wrapper methods for your gets and
posts, error processing for all error types is built-in automatically, by default. If an error is
encountered, it is processed into a xobw.error object, and an error trap is forced.

• If instead your code calls the Get or Post methods directly on the xobw.RestRequest object, you
are responsible for capturing the %Library.Status return value and the HTTP status code, and for
processing them to see if an error occurred during the call.

3.4.4 Automatic Retries
A sample call is provided to demonstrate the use of error trapping to automatically retry a SOAP call a
specific number of times. This can be useful if you are expecting to encounter service failures of a short-
lived, transient nature. See RETRY^XOBTWSB1 (business delegate) and RETRY^XOBTWSA1 (caller
application) for sample code that retries a SOAP call based on trapping a specific type of error. Similar
code can be used to retry REST calls as well.

Factors to consider when deciding whether to wrap Web service method invocations in retry code
include:

• Is the Web method idempotent? Can it be retried safely without worry of causing duplicate
transactions?

• Is the type of failure likely to be resolved on a retry (e.g., connectivity problem), or does it require
client attention/intervention (e.g., application-level error such as “Employee with this ID already
exists”)?

3.5 Troubleshooting
• To display the most recent error information:

DO $System.OBJ.DisplayError(%objlasterror)

• To see set of Caché objects instantiated in the partition:

DO $SYSTEM.OBJ.ShowObjects(“d”)

• To view the contents of Web service messages being sent to and from your service, use a packet-
level TCP-IP trace/viewer tool. The tool should allow you to see the actual message requests and
responses in their entirety as Cache sends and receives them over TCP.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 23 October 2016

4 Java-Side Considerations
4.1 SOAP vs. REST Usage Scenarios
When building Web services to be consumed by Caché applications, you can choose to build either a
Service Oriented Architecture Protocol (SOAP)- or Representational State Transfer (REST)-style Web
service. In some cases, one type of call (SOAP or REST) can be more advantageous when accessed via a
Caché -based client.

• Automatic Parsing of Responses—Caché’s SOAP client automatically parses an XML SOAP
response and returns the results as a Caché object. No XML parsing is necessary by the
consuming application.

• Sending Long Responses (e.g., a long XML document)—Caché client object properties
(generated by its Web Services Description Language [WSDL] compiler) are currently limited to
32K. So the return of an XML document in a String property, for example, cannot exceed 32K.
REST-style calls, on the other hand, use a stream on the Caché side, so there is no theoretical
limit to the length of the response.

• Parsing Responses Manually—A REST-style service allows a Caché client to manually parse
the response as an XML document. With SOAP-style services, on the other hand, Caché
automatically parses the response, which it returns to the client as an object.

• Standards—SOAP is a formal (and complex) standard. REST is more of an architectural style
(although at the http level it is based on the http standard).

• Self-Documenting—SOAP services are self-documenting via their WSDL. REST-style services
are not currently self-documenting.

4.2 Supporting HWSC Availability Checking
HealtheVet Web Services Client (HWSC) provides an M-based console for M system managers to check
if a particular Web service is available through HWSC. It does this by making a HTTP GET call on some
resource hosted by the Web service. It deems the service available if it gets a HTTP 200 status code in
return.

When registering a Web service, you can pass in a parameter that tells HWSC what resource to make the
availability check on.

4.2.1 SOAP Web Service
For a SOAP Web service, you might configure the resource to be something the Web service makes
available via HTTP GET (e.g., “?wsdl”). This depends in part on your Web service framework.

4.2.2 REST Web Service
For a REST Web service, you might configure the resource to be something that is always available if
your service is up, but that does not cause any significant processing. You can also add an explicit
resource to your Web service for availability checking. (The XOBT sample does this for example, adding
“/available” as an explicit availability checking resource.)

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 24 October 2016

5 VistA M-Side API Reference
5.1 HWSC Caché Classes

Table 3: HWSC Caché “Public Use” Classes

Class Brief Description

xobw.RestRequest decorates %Net.HttpRequest w/ VistA-specific functionality

xobw.RestRequestFactory factory to create xobw.RestRequest objects

xobw.WebServiceProxyFactory factory to create Web service proxies

xobw.error.AbstractError base class for other error classes

xobw.error.BasicError Object used for basic/standard M error conditions

xobw.error.DialogError Object used for errors derived from DIALOG file (#.84)

xobw.error.HttpError Object used for errors derived from HTTP status codes

xobw.error.ObjectError Object used for errors derived from Caché Object errors

xobw.error.SoapError Object used for errors derived from SOAP faults

 REF: See Caché’s online “Documatic” documentation to access class-specific documentation for
the above “public use” classes, post-HWSC installation.

5.1.1 Accessing Caché “Documatic” for HWSC Caché Classes
For more information on each HealtheVet Web Services Client (HWSC) error class, see the online
“Documatic” documentation to access the class-specific documentation. To do this, either:

1. Right-click on the class in Caché Studio and select “Show Class Documentation.”

Or:

Right-click on the Caché cube in the system tray.

2. Choose “Documentation” on a local or remote Caché instance where HWSC is installed.

3. Choose “Class Reference Information” from the Caché “Documentation Home Page” list of
documentation.

4. At the top of the left navigation pane in the “Caché Documatic” documentation, select the
appropriate “Classes in” namespace that contains the HWSC classes.

5. In the left navigation pane, navigate the package structure to the “xobw.error” node.
Documentation for each of the five error classes is provided there.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 25 October 2016

5.2 HWSC APIs Overview
All the HWSC APIs listed in the Table 4 are tags in the XOBWLIB routine.

Table 4: HWSC APIs

Category M API Brief Description

Service Oriented
Architecture
Protocol (SOAP)

$$GETPROXY Return Web Service Proxy.

 $$GENPORT Import/Register Web Service from Web Services Description
Language (WSDL).

 REGSOAP Register Web Service without WSDL.

 $$GETFAC Return Web Service Proxy Factory.

 ATTACHDR Add VistaInfoHeader to a Web Service Proxy.

 UNREG Un-Register/Delete a Web Service.

Representational
State Transfer
(REST)

$$GETREST Return REST Service Request Object.

 REGREST Register a REST Service Definition.

 $$GET Make HTTP GET Call and Force Error if Problem Encountered.

 $$POST Make HTTP POST Call and Force Error if Problem
Encountered.

 $$HTTPCHK Check HTTP Status; if Not OK Create HttpError Object.

 $$HTTPOK Is Current HTTP Response Status “OK”?

 $$GETRESTF Return REST Service Request Factory.

 UNREG Un-Register/Delete a Web Service.

Error Handling $$EOFAC Error Object Factory: Builds error object based on different
error conditions present in partition.

 $$EOSTAT Create ObjectError from Caché Status Object.

 $$EOHTTP Create HttpError Object from %Net.Response Object.

 ERRDISP Simple Display of Error to Screen.

 ERR2ARR Decompose Error Object into M Array.

 $$STATCHK Check Caché %Library.Status Object: if not OK create
ObjectError

 ZTER Decompose Error Object into M Array and Call Kernel Error
Trap to Record Error.

Server Lookup $$SKEYADD Add a Server Lookup Key.

 $$SNAME4KY Retrieve Server Name Associated with a Server Lookup Key.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 26 October 2016

Category M API Brief Description

Dev Testing
Only

DISPSRVS Display Server List to Screen.

 GETSRV Prompt User to Select Server from List.

 SELSRV Display Server List to Screen/Prompt for Selection.

5.3 SOAP-Related APIs
This section describes the HWSC SOAP-related APIs.

5.3.1 $$GETPROXY^XOBWLIB(): Return Web Service Proxy
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function returns a Caché Web service client proxy object for the
specified Web service; ready to invoke Web service methods on the specified
Web server. Use this method to obtain a Web service proxy if you are going to
invoke Web service methods on a single server only.

Format: $$GETPROXY^XOBWLIB(web_service_name,web_server_name)

Input Parameters: web_service_name: (required) Name of entry in the WEB SERVICE file
(#18.02).

 web_server_name: (required) Name of entry in the WEB SERVER file
(#18.12).

Output: returns: Web service client proxy object ready to invoke Web
service methods on the specified Web server.

5.3.2 $$GENPORT^XOBWLIB(): Import/Register Web Service from
WSDL

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function imports a Web Services Description Language (WSDL)
file and runs the Caché WSDL import wizard. It does the following:

• Runs the Caché SOAP client wizard to create proxy classes for
communicating with an external Web service, using the Web service’s
WSDL file.

• Creates entry for Web service in the WEB SERVICE file (#18.02).

Use this call in installation post-init routines.

Format: $$GENPORT^XOBWLIB(.infoarray)

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 27 October 2016

Input Parameters: .infoarray: (required) Passed by reference. Set up array as follows:

• infoarray(“WSDL FILE”)—WSDL file location
on host operating system.

• infoarray(“CACHE PACKAGE NAME”)—
Package name in which to place generated Caché
classes.

• infoarray(“WEB SERVICE NAME”)—Name to
store Web service information in the WEB
SERVICE file (#18.02). It’s used for lookups and
should be namespaced for your application.

• infoarray(“AVAILABILITY RESOURCE”)—
(optional) Resource for HWSC to access via an
HTTP GET when checking if the Web service is
available. HWSC appends the resource to the IP
address and context root of the Web service.

Output: returns: Returns:

• Success: Positive value

• Failure: 0^failure description

5.3.2.1 Example
The following example shows a successful creation of an entry for the WEB SERVICE file (#18.02):

SET MYARR(“WSDL FILE”)=“c:\temp\mywsdl.wsdl”
SET MYARR(“CACHE PACKAGE NAME”)=“mypackage”
SET MYARR(“WEB SERVICE NAME”)=“ZZMY WEB SERVICE NAME”
SET MYARR(“AVAILABILITY RESOURCE”)=“?wsdl”
SET XOBSTAT=$$GENPORT^XOBWLIB(.MYARR)

5.3.3 REGSOAP^XOBWLIB(): Register Web Service without WSDL
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This API registers a Web service by creating an entry in the WEB SERVICE file
(#18.02) without calling the Caché WSDL compiler. Typical use cases would be:

• Compiled classes are exported for install on the target system rather than
just a WSDL, because classes were manually modified by development
team after initial import.

• A site calls the WSDL import wizard itself to create a client to a Web
service, and needs to create a Web Service entry to associate with the
imported classes.

Use this call in installation post-init routines.

Format: REGSOAP^XOBWLIB(wsname,wsroot,class[,path][,resource])

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 28 October 2016

Input Parameters: wsname: (required) Web Service Name.

 wsroot: (required) Web Service context root (without trailing “/”).

 class: (required) Caché package + class name of the main class
created for the Web service client proxy, as created by the
Caché WSDL compiler.

 NOTE: The WSDL compiler uses the value of the
name attribute (of the port element, within the
service element, in the WSDL file) as the name for
the main class it creates.

 NOTE: The element names above can be prefaced
by a namespace abbreviation (e.g., “wsdl:port”,
“wsdl:service”) depending on the WSDL file.

 path: (optional) The WSDL file location on the host operating
system. The WSDL file is copied into the Web Service file
entry.

 resource: (optional) Resource for HWSC to access via an HTTP
GET when checking if the Web service is available.
HWSC appends the resource to the IP address and context
root of the Web service.

Output: none.

5.3.3.1 Example
DO REGSOAP^XOBWLIB(“ZZMY WEB SERVICE NAME”,
 “myContextRoot”,”myPackage.myServiceProxyClassName”)

5.3.4 UNREG^XOBWLIB(): Un-Register/Delete a Web Service
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This API un-registers/deletes a Web service entry in the WEB SERVICE file
(#18.02). It can be either a SOAP or REST Web service. Also, it removes the
service from any Web servers to which it is authorized.

Use this call in installation post-init routines.

Format: UNREG^XOBWLIB(service_name)

Input Parameters: service_name: (required) SOAP or REST Web service name in the WEB
SERVICE file (#18.02).

Output: none.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 29 October 2016

5.3.5 $$GETFAC^XOBWLIB(): Return Web Service Proxy Factory
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function returns a xobw.WebServiceProxyFactory object for the
specified Web service. This factory object is useful if you plan to invoke the
same Web service on multiple Web servers. In this case, you can then use the
factory object’s getProxy() method to obtain multiple Web service proxies; one
for each individual server.

Format: $$GETFAC^XOBWLIB(web_service_name)

Input Parameters: web_service_name: (required) Name of entry in the WEB SERVICE file
(#18.02).

Output: returns: Returns the Web service request factory object
(xobw.WebServiceProxyFactory).

5.3.6 ATTACHDR^XOBWLIB(): Add VistaInfoHeader to a Web
Service Proxy

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This API attaches a “VistaInfoHeader” header block to outgoing Web service
request. This header block contains partition and Kernel environment variables as
follows:

• duz: User’s DUZ value.

• mio: Partition’s $IO value.

• mjob: Partition’s $JOB value.

• production:

o “1”—If the calling VistA system is a Production system

o “0”—If the calling VistA system is a Test system.

• station: station # (currently the Kernel site parameter default institution
value).

• vpid: the user’s VPID.

It can be processed by the receiving Web service as a SOAP header by using a
handler, but that processing is currently intended for HWSC-provided handlers
only. The sample Web service contains one such handler for XFire,
gov.va.med.webservice.samples.VistaInfoHandler.

Format: ATTACHDR^XOBWLIB(client_proxy_object)

Input Parameters: client_proxy_object: Web service client proxy object.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 30 October 2016

Output: none.

5.4 REST-Related APIs
This section describes the HWSC REST-related APIs.

5.4.1 $$GETREST^XOBWLIB(): Return REST Service Request Object
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function returns the REST service request object. Use is to make
GET, POST, and PUT calls to the specified service and server.

Format: $$GETREST^XOBWLIB(service_name,server_name)

Input Parameters: service_name: (required) REST Web service name in WEB SERVICE
file (#18.02).

 server_name: (required) Web server name in the WEB SERVER file
(#18.12).

Output: returns: Returns the REST service request object
(xobw.RestRequest).

5.4.2 REGREST^XOBWLIB(): Register a REST Service Definition
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This API registers a REST service by creating an entry in the WEB SERVICE
file (#18.02).

Use this call in installation post-init routines.

Format: REGREST^XOBWLIB(service_name,context_root[,resource])

Input Parameters: service_name: (required) REST Web service name in the WEB
SERVICE file (#18.02).

 context_root: (required) Context Root for the REST service (without
leading or trailing “/” characters).

 resource: (optional) resource for HWSC to access via an HTTP GET
when checking if the Web service is available. HWSC
appends the resource to the IP address and context root of
the Web service.

Output: none.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 31 October 2016

5.4.3 $$GET^XOBWLIB(): Make HTTP GET Call and Force Error if
Problem Encountered

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function makes a HTTP GET call and (by default) forces an error
trap if a problem is encountered.

Format: $$GET^XOBWLIB(restrequest,resource[,.error][,forceerror])

Input Parameters: restrequest: (required) The xobw.RestRequest object.

 resource: (required) Resource string to use with GET method.

 .error: (optional) Where to store any error encountered (pass by
reference); errors returned as a xobw.error object.

 forceerror: (optional) Force error trap (1) or not (0). Defaults to 1.

Output: returns: Returns:

• True—If succeeded.

• False—If an error occurred.

 NOTE: If forceerror is set to 1, a $ECODE is thrown and the return value QUIT is never reached.

5.4.4 $$POST^XOBWLIB(): Make HTTP POST Call and Force Error if
Problem Encountered

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function makes a HTTP POST call and (by default) force an error
trap if problem encountered.

Format: $$POST^XOBWLIB(restrequest,resource[,.error][,forceerror])

Input Parameters: restrequest: (required) The xobw.RestRequest object.

 resource: (required) Resource string to use with POST method.

 .error (optional) Passed by reference. This is where to store any
error encountered. Errors are returned as a xobw.error
object.

 forceerror: (optional) Force error trap (1) or not (0). Defaults to 1.

Output: returns: Returns:

• True—If succeeded.

• False—If an error occurred.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 32 October 2016

 NOTE: If forceerror is set to 1, a $ECODE is thrown and the return value QUIT is never reached.

5.4.5 $$HTTPCHK^XOBWLIB(): Check HTTP Status; if Not OK Create
HttpError Object

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function checks the HTTP status after a GET, POST, or PUT
operation has completed; if HTTP status code indicated condition other than
success, create an HttpError object and return false.

Format: $$HTTPCHK^XOBWLIB(restrequest[,.error][,forceerror])

Input Parameters: restrequest: (required) The xobw.RestRequest object.

 .error: (optional) Passed by reference. This is where to store any
error encountered. Errors are returned as a xobw.error
object.

 forceerror: (optional) Force error trap (1) or not (0). Defaults to 1.

Output: returns: Returns:

• True—If HTTP status is judged OK.

• False—If a condition other than success occurred.

 NOTE: If forceerror is set to 1, a $ECODE is thrown and the return value QUIT is never reached.

5.4.6 $$HTTPOK^XOBWLIB(): Is Current HTTP Response Status
“OK”?

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function checks the HTTP status after a GET, POST, or PUT
operation has completed; if HTTP status code indicated condition other than
success, return false.

Format: $$HTTPOK^XOBWLIB(http_status_code)

Input Parameters: http_status_code: (required) String containing HTTP status code (e.g., from
xobw.RestRequest.HttpResponse.StatusCode).

Output: returns: Returns:

• True—If HTTP status is judged OK.

• False—If a condition other than success occurred.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 33 October 2016

5.4.7 $$GETRESTF^XOBWLIB(): Return REST Service Request
Factory

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function returns the REST service request factory (use to create
one or more REST service request objects for a particular Web service).

Format: $$GETRESTF^XOBWLIB(service_name)

Input Parameters: service_name: (required) REST Web Service Name in the WEB
SERVICE file (#18.02).

Output: returns: Returns the REST service request factory
(xobw.RestRequestFactory) object.

5.5 Error Handling APIs
This section describes the HWSC error handling APIs.

5.5.1 $$EOFAC^XOBWLIB(): Error Object Factory
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function is for use in error trap handlers during SOAP and REST
Web services calls, to make it easy to process error conditions. It creates an error
object based on the error condition in the partition, representing a SOAP, Caché
Object, HWSC dialog, or basic M error. It includes special parsing for <ZSOAP>
Web service errors.

It is intended for use in an error trap handler (i.e., a known error condition is
already present in the partition).

Format: $$EOFAC^XOBWLIB([soap_proxy_object])

Input Parameters: soap_proxy_object (optional) SOAP proxy object (if making a SOAP call).

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 34 October 2016

Output: returns: Error Object: Caché Object representing the trapped and
parsed error (assumes EOFAC^XOBWLIB is being called
in an error trap handler) is an instance of one of the classes
in the “xobw.error” package listed in Table 5.

Table 5: Classes in the “xobw.error” package

Class Error Type

BasicError Basic M/ Caché error.

DialogError HWSC fault with corresponding DIALOG file (#.84) entry.

ObjectError Caché Object-level error.

SoapError SOAP fault returned from Web service invocation.

AbstractError Base class for all error types.

The type of error returned can be determined by the %IsA method, which is available in all of the error
classes in Table 5.

 NOTE: HWSC’s HttpError objects are not returned by the $$EOFAC call. HTTP errors are
returned by HWSC as follows:

• SOAP: Caché returns HTTP errors encountered during SOAP calls in an object error;
$$EOFAC returns such errors in ObjectError objects.

• REST: The $$GET and $$POST calls return errors, including an HttpError object if an
HTTP error is encountered, directly without the need to call $$EOFAC. Alternatively, if
using %Net.Request directly (rather than through the $$GET/$$POST wrappers), code
can call $$HTTPCHK to check for HTTP errors and create an HttpError object if an error
is found.

5.5.2 $$EOSTAT^XOBWLIB(): Create ObjectError from Caché Status
Object

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function creates the ObjectError from Caché status
(%Library.Status) object.

Format: $$EOSTAT^XOBWLIB(status_object)

Input Parameters: status_object: (required) Caché %Library.Status object.

Output: returns: Returns the xobw.error.ObjectError object.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 35 October 2016

5.5.3 $$EOHTTP^XOBWLIB(): Create HttpError Object
from %Net.Response Object

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function creates the HttpError object from the
Caché %Net.Response object.

Format: $$EOHTTP^XOBWLIB(response_object)

Input Parameters: response_object: (required) The %Net.HttpResponse object (e.g., from
xobw.RestRequest.HttpResponse).

Output: returns: Returns the xobw.error.HttpError object.

5.5.4 ERRDISP^XOBWLIB(): Simple Display of Error to Screen
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This API does a simple display of an error’s information to the screen. “Error
Object” should be of the type xobw.error.AbstractError or one of its descendants.

Format: ERRDISP^XOBWLIB(error_object)

Input Parameters: error_object: (required) Any HWSC error object in the xobw.error
package.

Output: none.

5.5.5 ERR2ARR^XOBWLIB(): Decompose Error Object into M Array
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This API decomposes an error object into an M array carrying the various
components of the error object. “Error Object” should be of the type
xobw.error.AbstractError or one of its descendants.

Format: ERR2ARR^XOBWLIB(error_object,.return_array)

Input Parameters: error_object: (required) Any HWSC error object in the xobw.error
package.

 .return_array: (required) Passed by reference. This is the array in which
to return the decomposed components of the error object.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 36 October 2016

Output Parameters: .return_array: See the online “Documatic” documentation for xobw.error
to see what array nodes are populated for each xobw.error
class type.

5.5.6 $$STATCHK^XOBWLIB(): Check Caché %Library.Status Object
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function checks the Caché %Library.Status status object (returned
by many Caché Object calls); if not OK create ObjectError object and return
false.

Format: $$STATCHK^XOBWLIB(status_object[,.error][,forceerror])

Input Parameters: status_object: (required) Caché %Library.Status object.

 .error: (optional) This is where to store any error encountered
(pass by ref) – errors returned as a xobw.error object.

 forceerror: (optional) Force error trap (1) or not (0). Defaults to 1.

Output: returns: Returns:

• True—If succeeded.

• False—If an error occurred.

 NOTE: If forceerror is set to 1, a $ECODE is thrown and the return value QUIT is never reached.

5.5.7 ZTER^XOBWLIB(): Decompose Error Object and Call Error
Trap

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This API performs two functions:

• Decomposes error object into an XOB-namespaced M array carrying the
various components of the error object.

• Calls Kernel error trap to record error.

It is useful to decompose the error into an M array before calling the Kernel error
trap, because otherwise the Caché Object error information is not captured in the
error trap.

Format: ZTER^XOBWLIB(error_object)

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 37 October 2016

Input Parameters: error_object: (required) Any HWSC error object in the xobw.error
package (should be of the type xobw.error.AbstractError
or one of its descendants).

Output Parameters: error_object: See the online “Documatic” documentation for xobw.error
to see what array nodes are populated into the XOB-
namespaced array for each xobw.error class type.

5.5.8 Example
SET MYERROBJ=$$EOFAC^XOBWLIB()
DO ZTER^XOBWLIB(MYERROBJ)

5.6 Server Lookup APIs
This section describes the HWSC server lookup APIs.

5.6.1 $$SKEYADD^XOBWLIB(): Add a Server Lookup Key
Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function adds a new server lookup key, or edits an existing one.

Format: $$SKEYADD^XOBWLIB(key_name[,description][,.error])

Input Parameters: key_name: (required) Name of server lookup key.

 description: (optional) Brief description of lookup key.

 .error: (optional) Passed by reference. This is the location to
return error description; returned as array nodes starting at
error(1).

Output Parameters: .error: Error description nodes are returned in this (optional) error
parameter.

Output: returns: Returns:

• Success: IEN of new or existing entry
(always > 0).

• Failure: 0.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 38 October 2016

5.6.2 $$SNAME4KY^XOBWLIB(): Retrieve Server Name Associated
with a Server Lookup Key

Reference Type: Supported

Category: HWSC

IA #: 5421

Description: This extrinsic function retrieves the server name associated with a server lookup
key.

Format: $$SNAME4KY^XOBWLIB(key_name,.retvalue[,.error])

Input Parameters: key_name: (required) Name of server lookup key.

 .retvalue: (required) Passed by reference. This is the storage location
to return server name if successful.

 .error: (optional) Passed by reference. This is the location to
return error information in if failure.

Output Parameters: .retvalue: The matching server name is returned in this parameter.

 .error: An error is returned in the (optional) error parameter:

[error format]: error code^error text.

Possible errors:

• 186008^description—Invalid Server Lookup Key

• 186009^description—Server Lookup Key Missing
Association

 REF: For a list of HWSC error codes, see Table 6.

Output: returns: Returns:

• Success: IEN of new or existing entry
(always > 0).

• Failure: 0.

5.6.2.1 Example
SET SUCCESS=$$SNAME4KY^XOBWLIB(“PSO LOCAL SERVER”,.PSOSRVR,.PSOERR)
I SUCCESS W !, “Using Server: ”,PSOBSRV
ELSE W !, “could not retrieve server: ”_$P(PSOERR,U,2)

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 39 October 2016

5.7 APIs for Developer Test Account Use Only!
This section describes the HWSC APIs for developer Test account use only.

5.7.1 $$DISPSRVS^XOBWLIB: Display Server List to Screen
Reference Type: Developer Test Account Use Only!

Category: HWSC

IA #: N/A

Description: This extrinsic function displays, on the current device, a list of all entries defined
in the WEB SERVER file (#18.12).

The primary purpose of this helper procedure is to help developers create testing
code and diagnose issues.

Format: $$DISPSRVS^XOBWLIB

Input Parameters: none.

Output: none. However, the procedure displays the following fields for
each application server entry:

Web server name, IP Address:Port

5.7.2 $$GETSRV^XOBWLIB: Prompt User to Select Server from List
Reference Type: Developer Test Account Use Only!

Category: HWSC

IA #: N/A

Description: This extrinsic function is interactive and allows the end-user to select an entry in
the WEB SERVER file (#18.12).

The method returns the site name (.01 field) of the entry selected. The primary
purpose of this helper method is to help developers create testing code.

Format: $$GETSRV^XOBWLIB

Input Parameters: none.

Output: returns: Returns:

• Name from the entry selected in the WEB
SERVER file (#18.12).

• Empty string, if no entry was selected.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 40 October 2016

5.7.3 $$SELSRV^XOBWLIB: Display Server List to Screen/Prompt
for Selection

Reference Type: Developer Test Account Use Only!

Category: HWSC

IA #: N/A

Description: This extrinsic function provides an interactive display of the WEB SERVER,
returning user-selected Web server (combination of $$DISPSRVS^XOBWLIB:
Display Server List to Screen and $$GETSRV^XOBWLIB: Prompt User to
Select Server from List APIs).

Format: $$SELSRV^XOBWLIB

Input Parameters: none.

Output: returns: Returns:

• Name from the entry selected in the WEB
SERVER file (#18.12).

• Empty string, if no entry was selected.

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 41 October 2016

6 Appendix A—HWSC Error Codes
Error code entries are contained in the DIALOG file (#.84). Table 6 lists the entries used in HealtheVet
Web Services Client (HWSC):

Table 6: HWSC APIs Error Codes

Dialog Number / Error Code Short Description

186001 (reserved for future use)

186002 Web Server Disabled

186003 Web Service not registered to server

186004 Web Service disabled for Web server

186005 Web Server not defined

186006 Web Service not defined

186007 Web Service is wrong type.

186008 Invalid Server Lookup Key

186009 Server Lookup Key Missing Association

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 42 October 2016

Glossary

Table 7: Glossary

Term Description

AA Authentication and Authorization.

Business Delegate A business delegate acts as a representative of the client components and
is responsible for hiding the underlying implementation details of the
business service. It knows how to look up and access the business
services.

Certificate Authority (CA) “A certificate authority (CA) is an entity that creates and then “signs” a
document or file containing the name of a user and the user’s public key.
Anyone can verify that the file was signed by no one other than the CA by
using the public key of the CA. By trusting the CA, one can develop trust in
a user’s public key.
The trust in the certification authority’s public key can be obtained
recursively. One can have a certificate containing the certification
authority’s public key signed by a superior certification authority (Root CA)
that he already trusts. Ultimately, one need only trust the public keys of a
small number of top-level certification authorities. Through a chain of
certificates (Sub CAs), trust in a large number of users’ signatures can be
established.
A broader application of digital certification includes not only name and
public key but also other information. Such a combination, together with a
signature, forms an extended certificate. The other information may
include, for example, electronic-mail address, authorization to sign
documents of a given value, or authorization to sign other certificates.”2
Currently, the Department of Veterans Affairs (VA) uses VeriSign, Inc. as
the Certificate Authority (CA).

Cryptography The system or method used to write or decipher messages in code (see
“Encryption” and “Decryption”).

CSR Certificate Signing Request.

Decryption Using a secret key to unscramble data or messages previously encrypted
with a cipher or code so that they are readable. In some cases, encryption
algorithms are one directional (i.e., they only encode and the resulting data
cannot be unscrambled).

Encryption Scrambling data or messages with a cipher or code so that they are
unreadable without a secret key. In some cases, encryption algorithms are
one directional (i.e., they only encode and the resulting data cannot be
unscrambled).

HTTP Protocol Hyper Text Transfer Protocol is the underlying protocol used by the World
Wide Web. HTTP defines how messages are formatted and transmitted,
and what actions Web servers and browsers should take in response to
various commands.

HWSC HealtheVet Web Services Client is a support framework that offers VistA M
applications real-time, synchronous client access to n-tier (J2EE) Web

2 DEA Web site (http://www.deadiversion.usdoj.gov/ecomm/csos/archive/conops.pdf): “Public Key Infrastructure
Analysis Concept of Operations,” Section 3.4.3 “Public Key - The I in PKI.”

http://www.deadiversion.usdoj.gov/ecomm/csos/archive/conops.pdf

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 43 October 2016

Term Description
services through the supplied M-based and Caché APIs.

Intermediate CA Intermediate Certificate Authority. Currently, the Department of Veterans
Affairs (VA) uses VeriSign, Inc. as the Certificate Authority (CA). VeriSign
requires the use of a CA Intermediate Certificate. The CA Intermediate
Certificate is used to sign the peer’s (server) certificate. This provides
another level of validation-managed Public Key Interface (PKI) for Secure
Socket Layer (SSL).

J2EE The Java 2 Platform, Enterprise Edition (J2EE) defines the standard for
developing multi-tier enterprise applications. J2EE defines components
that function independently, that can be deployed on servers, and that can
be invoked by remote clients. The J2EE platform is a set of standard
technologies and is not itself a language. The current J2EE platform is
version 1.4.

PKI “Public Key Infrastructure technology adds the following security services
to an electronic ordering system:

• Confidentiality—Only authorized persons have access to data.

• Authentication—Establishes who is sending/receiving data.

• Integrity—Data has not been altered in transmission.

• Non-repudiation—Parties to a transaction cannot convincingly
deny having participated in the transaction.”3

Private Certificate This is the certificate that contains both the user’s public and private keys.
This certificate resides on a smart card.

Public Certificate This is the certificate that contains the user’s public key. This certificate
resides in a file or database.

REST Representational State Transfer (REST) is an architectural style for
simplified Web services, based on accessing resources via HTTP.

Root CA Root Certificate Authority. In cryptography and computer security, a root
certificate is an unsigned public key certificate, or a self-signed certificate,
and is part of a public key infrastructure scheme. The most common
commercial variety is based on the ITU-T X.509 standard. Normally an
X.509 certificate includes a digital signature from a Certificate Authority
(CA), which vouches for correctness of the data contained in a certificate.
Root certificates are implicitly trusted.
Currently, the Department of Veterans Affairs (VA) uses VeriSign, Inc. as
the Certificate Authority (CA).

Service Facade The Service Façade acts as the server-side bridge between the Business
Delegate and the capability. The Service Façade is responsible for taking
a request from the delegate and doing any translation necessary to invoke
the capability and provide the response to the delegate.

Servlet Container A servlet is managed by a servlet container (formerly referred to as servlet
engine.) The servlet container is responsible for loading and instantiating
the servlets and then calling init(). When a request is received by the

3 DEA website (http://www.deadiversion.usdoj.gov/ecomm/csos/archive/conops.pdf): “Public Key Infrastructure
Analysis Concept of Operations,” Section 3.3 “Security.”

http://www.adp-gmbh.ch/java/servlets/interface.html#init
http://www.deadiversion.usdoj.gov/ecomm/csos/archive/conops.pdf

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 44 October 2016

Term Description
servlet container, it decides what servlet to call in accordance with a
configuration file. A famous example of a servlet container is Tomcat.
The servlet Container calls the servlet’s service() method and passes an
instance of ServletRequest and ServletResponse. Depending on the
request’s method (mostly GET and POST), service calls doGet() or
doPost(). These passed instances can be used by the servlet to find out
who the remote user is, if and what HTTP POST parameters have been
set and other characteristics.
Together with the Web server (or application server) the servlet container
provides the HTTP interface to the world.
It is also possible for a servlet container to run standalone (without Web
server), or to even run on a host other than the Web server. 4

Signed Certificate The Signed Certificate (a.k.a. self-signed certificate) is the peer’s (server)
digital certificate. Currently, the Department of Veterans Affairs (VA) uses
VeriSign, Inc. as the Certificate Authority (CA) to sign (validate) digital
certificates. VeriSign, Inc. requires the use of CA Root and Intermediate
Certificates. The Subject and Issuer have the same content when signed
by VeriSign; the issuer has VeriSign’s content.

SOAP Simple Object Access Protocol (SOAP) is a protocol for exchanging
structured information over a network, often via HTTP.

SSL Secure Socket Layer. A low-level protocol that enables secure
communications between a server and a browser. It provides
communication privacy.

TLS Transport Layer Security. Transport Layer Security (TLS) and its
predecessor, Secure Socket Layer (SSL), are cryptographic protocols
which provide secure communications on the Internet for such things as
Web browsing, e-mail, Internet faxing, instant messaging and other data
transfers. There are slight differences between SSL 3.0 and TLS 1.0, but
the protocol remains substantially the same.

Web Service A Web resource meant to be consumed over a network via HTTP, by an
autonomous program.

WebLogic An Oracle® product; WebLogic Server 8.1, 9.2, and 10.x is a J2EE- v1.3-
certified application server for developing and deploying J2EE enterprise
applications.

WSDL Web Services Definition Language. “WSDL is an XML-based service
description on how to communicate using Web services. The WSDL
defines services as collections of network endpoints, or ports. WSDL
specification provides an XML format for documents for this purpose.
The abstract definition of ports and messages is separated from their
concrete use or instance, allowing the reuse of these definitions. A port is
defined by associating a network address with a reusable binding, and a
collection of ports define a service. Messages are abstract descriptions of
the data being exchanged, and port types are abstract collections of
supported operations. The concrete protocol and data format
specifications for a particular port type constitutes a reusable binding,

4 From the ADP –Analyse, Design & Programing GmbH website:
http://www.adp-gmbh.ch/java/servlets/container.html

http://jakarta.apache.org/tomcat/
http://www.adp-gmbh.ch/web/http/methods.html#post
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Format
http://www.adp-gmbh.ch/java/servlets/container.html

HealtheVet Web Services Client (HWSC) 1.0
Developer’s Guide 45 October 2016

Term Description
where the messages and operations are then bound to a concrete network
protocol and message format. In this way, WSDL describes the public
interface to the Web service.
WSDL is often used in combination with SOAP and XML Schema to
provide Web services over the Internet. A client program connecting to a
Web service can read the WSDL to determine what functions are available
on the server. Any special datatypes used are embedded in the WSDL file
in the form of XML Schema. The client can then use SOAP to actually call
one of the functions listed in the WSDL.”5

 REF: For a list of commonly used terms and definitions, see the OI&T Master Glossary VA
Intranet Website.

For a list of commonly used acronyms, see the VA Acronym Lookup Intranet Website.

5 http://en.wikipedia.org/wiki/Web_Services_Description_Language

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datatypes
http://en.wikipedia.org/wiki/Web_Services_Description_Language

	Title Page
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Orientation
	1 Introduction
	1.1 Document Overview
	1.2 Using SOAP and REST to Access HealtheVet from VistA M
	1.3 Caché’s Web Services Client Features
	1.4 Role of HWSC
	1.5 HPMO Waiver for Use of Caché-Specific Features
	1.6 Securing HWSC Applications Using SSL/TLS (HTTPS)
	1.6.1 Support for Encryption and Certificate-Based Authentication
	1.6.2 Support for Encryption and HTTP Basic Authentication

	2 Sample SOAP and REST Client Applications
	2.1 Installing the J2EE Sample Web Services EAR
	2.2 Using the XOBT M Client Application
	2.2.1 XOBT M-Side Installation
	2.2.2 Create Web Server Entry
	2.2.3 Sample Application User Interface
	2.2.4 Ping the SOAP Tester Web Service from Caché
	2.2.5 Demonstrating Server Lookup Keys: XOBT SAMPLE SERVER Lookup Key

	2.3 Sample Client Application Entry Points
	2.4 Rebuilding the J2EE Sample Web Service Project

	3 VistA M-Side Development Guide
	3.1 Platform Considerations
	3.1.1 Caché-Specific Considerations
	3.1.2 WebLogic 8.1-Specific Considerations

	3.2 How to Consume a SOAP-Style Web Service
	3.2.1 Compile WSDL into Caché Proxy Classes (SOAP)
	3.2.2 Passing Input Parameters to Web Services (SOAP)
	3.2.3 Processing Web Service Return Types (SOAP)
	3.2.4 Large Result Sets (SOAP)
	3.2.5 Timeouts (SOAP)
	3.2.6 How to Export an M Business Delegate (SOAP)
	3.2.7 Manually Modify SOAP Client Proxies to Overcome Memory Limitations
	3.2.7.1 Disadvantages of Manual Modification

	3.3 How to Consume a REST-Style Web Service
	3.3.1 Mainline (REST)
	3.3.2 Parsing XML Responses (REST)
	3.3.3 Timeouts (REST)
	3.3.4 How to Export an M Business Delegate (REST)

	3.4 How to Handle Errors (SOAP and REST)
	3.4.1 Business Delegate Level
	3.4.2 Application (Caller to Business Delegate) Level
	3.4.3 REST Error Handling Options
	3.4.4 Automatic Retries

	3.5 Troubleshooting

	4 Java-Side Considerations
	4.1 SOAP vs. REST Usage Scenarios
	4.2 Supporting HWSC Availability Checking
	4.2.1 SOAP Web Service
	4.2.2 REST Web Service

	5 VistA M-Side API Reference
	5.1 HWSC Caché Classes
	5.1.1 Accessing Caché “Documatic” for HWSC Caché Classes

	5.2 HWSC APIs Overview
	5.3 SOAP-Related APIs
	5.3.1 $$GETPROXY^XOBWLIB(): Return Web Service Proxy
	5.3.2 $$GENPORT^XOBWLIB(): Import/Register Web Service from WSDL
	5.3.2.1 Example

	5.3.3 REGSOAP^XOBWLIB(): Register Web Service without WSDL
	5.3.3.1 Example

	5.3.4 UNREG^XOBWLIB(): Un-Register/Delete a Web Service
	5.3.5 $$GETFAC^XOBWLIB(): Return Web Service Proxy Factory
	5.3.6 ATTACHDR^XOBWLIB(): Add VistaInfoHeader to a Web Service Proxy

	5.4 REST-Related APIs
	5.4.1 $$GETREST^XOBWLIB(): Return REST Service Request Object
	5.4.2 REGREST^XOBWLIB(): Register a REST Service Definition
	5.4.3 $$GET^XOBWLIB(): Make HTTP GET Call and Force Error if Problem Encountered
	5.4.4 $$POST^XOBWLIB(): Make HTTP POST Call and Force Error if Problem Encountered
	5.4.5 $$HTTPCHK^XOBWLIB(): Check HTTP Status; if Not OK Create HttpError Object
	5.4.6 $$HTTPOK^XOBWLIB(): Is Current HTTP Response Status “OK”?
	5.4.7 $$GETRESTF^XOBWLIB(): Return REST Service Request Factory

	5.5 Error Handling APIs
	5.5.1 $$EOFAC^XOBWLIB(): Error Object Factory
	5.5.2 $$EOSTAT^XOBWLIB(): Create ObjectError from Caché Status Object
	5.5.3 $$EOHTTP^XOBWLIB(): Create HttpError Object from %Net.Response Object
	5.5.4 ERRDISP^XOBWLIB(): Simple Display of Error to Screen
	5.5.5 ERR2ARR^XOBWLIB(): Decompose Error Object into M Array
	5.5.6 $$STATCHK^XOBWLIB(): Check Caché %Library.Status Object
	5.5.7 ZTER^XOBWLIB(): Decompose Error Object and Call Error Trap
	5.5.8 Example

	5.6 Server Lookup APIs
	5.6.1 $$SKEYADD^XOBWLIB(): Add a Server Lookup Key
	5.6.2 $$SNAME4KY^XOBWLIB(): Retrieve Server Name Associated with a Server Lookup Key
	5.6.2.1 Example

	5.7 APIs for Developer Test Account Use Only!
	5.7.1 $$DISPSRVS^XOBWLIB: Display Server List to Screen
	5.7.2 $$GETSRV^XOBWLIB: Prompt User to Select Server from List
	5.7.3 $$SELSRV^XOBWLIB: Display Server List to Screen/Prompt for Selection

	6 Appendix A—HWSC Error Codes
	Glossary

