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Orientation 

How to Use this Manual 
Throughout this manual, advice and instructions are offered regarding the installation and use of 
HealtheVet Web Services Client (HWSC) and the functionality it provides for Veterans Information 
Systems and Technology Architecture (VistA). 

The developer instructions for HWSC are organized and described in this guide as follows: 

1. Introduction 

2. Sample SOAP and REST Client Applications 

3. VistA M-Side Development Guide 

4. Java-Side Considerations 

5. VistA M-Side API Reference 

Intended Audience 
The intended audience of this manual is the following stakeholders: 

• Enterprise Program Management Office (EPMO)—VistA legacy development teams. 

• System Administrators—System administrators at Department of Veterans Affairs (VA) sites 
who are responsible for computer management and system security on the VistA M Servers. 

• Information Security Officers (ISOs)—Personnel at VA sites responsible for system security. 

• Product Support (PS)—Personnel who support Kernel-related products. 

Disclaimers 
Software Disclaimer 
 This software was developed at the Department of Veterans Affairs (VA) by employees of the Federal 
Government in the course of their official duties. Pursuant to title 17 Section 105 of the United States 
Code this software is not subject to copyright protection and is in the public domain. VA assumes no 
responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, 
about its quality, reliability, or any other characteristic. We would appreciate acknowledgement if the 
software is used. This software can be redistributed freely provided that any derivative works bear some 
notice that they are derived from it. 

 CAUTION: Kernel routines should never be modified at the site. If there is an immediate 
national requirement, the changes should be made by emergency Kernel patch. Kernel 
software is subject to FDA regulations requiring Blood Bank Review, among other 
limitations. Line 3 of all Kernel routines states:  
 
Per VHA Directive 2004-038, this routine should not be modified 

 CAUTION: To protect the security of VistA systems, distribution of this software for use 
on any other computer system by VistA sites is prohibited. All requests for copies of 
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Kernel for non-VistA use should be referred to the VistA site’s local Office of Information 
Field Office (OIFO). 

Documentation Disclaimer 
This manual provides an overall explanation of using Kernel; however, no attempt is made to explain how 
the overall VistA programming system is integrated and maintained. Such methods and procedures are 
documented elsewhere. We suggest you look at the various VA Internet and Intranet SharePoint sites and 
websites for a general orientation to VistA. For example, visit the Office of Information and Technology 
(OI&T) Enterprise Program Management Office (EPMO) Intranet Website. 

 DISCLAIMER: The appearance of any external hyperlink references in this manual does 
not constitute endorsement by the Department of Veterans Affairs (VA) of this Website 
or the information, products, or services contained therein. The VA does not exercise 
any editorial control over the information you find at these locations. Such links are 
provided and are consistent with the stated purpose of this VA Intranet Service. 

Documentation Conventions 
This manual uses several methods to highlight different aspects of the material: 

• Various symbols are used throughout the documentation to alert the reader to special information. 
Table 1 gives a description of each of these symbols: 

Table 1: Documentation Symbol Descriptions 

Symbol Description 

 
NOTE / REF: Used to inform the reader of general information including 
references to additional reading material. 

 

CAUTION / RECOMMENDATION / DISCLAIMER: Used to caution the reader 
to take special notice of critical information. 

 

• Descriptive text is presented in a proportional font (as represented by this font). 

• “Snapshots” of computer commands and online displays (i.e., screen captures/dialogues) and 
computer source code, if any, are shown in a non-proportional font and may be enclosed within a 
box. 

o User’s responses to online prompts are boldface and (optionally) highlighted in yellow 
(e.g., <Enter>). 

o Emphasis within a dialogue box is boldface and (optionally) highlighted in blue 
(e.g., STANDARD LISTENER: RUNNING). 

o Some software code reserved/key words are boldface with alternate color font. 

o References to “<Enter>” within these snapshots indicate that the user should press the Enter 
key on the keyboard. Other special keys are represented within < > angle brackets. For 
example, pressing the PF1 key can be represented as pressing <PF1>. 
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o Author’s comments are displayed in italics or as “callout” boxes. 

 NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box, 
which point to specific areas of a displayed image. 

• This manual refers to the M programming language. Under the 1995 American National 
Standards Institute (ANSI) standard, M is the primary name of the MUMPS programming 
language, and MUMPS is considered an alternate name. This manual uses the name M. 

• Descriptions of direct mode utilities are prefaced with the standard M “>” prompt to emphasize 
that the call is to be used only in direct mode. They also include the M command used to invoke 
the utility. The following is an example: 

>D ^XUP 

• All uppercase is reserved for the representation of M code, variable names, or the formal name of 
options, field/file names, and security keys (e.g., the XUPROGMODE security key). 

 NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and file/folder 
names can be written in lower or mixed case (i.e., CamelCase). 

How to Obtain Technical Information Online 
Exported VistA M Server-based software file, routine, and global documentation can be generated 
through the use of Kernel, MailMan, and VA FileMan utilities. 

 NOTE: Methods of obtaining specific technical information online are indicated where 
applicable under the appropriate section. 

Help at Prompts 
VistA M Server-based software provides online help and commonly used system default prompts. Users 
are encouraged to enter question marks at any response prompt. At the end of the help display, you are 
immediately returned to the point from which you started. This is an easy way to learn about any aspect of 
VistA M Server-based software. 

Obtaining Data Dictionary Listings 
Technical information about VistA M Server-based files and the fields in files is stored in data 
dictionaries (DD). You can use the List File Attributes option [DILIST] on the Data Dictionary Utilities 
menu [DI DDU] in VA FileMan to print formatted data dictionaries. 

 REF: For details about obtaining data dictionaries and about the formats available, see the “List 
File Attributes” chapter in the “File Management” section in the VA FileMan Advanced User 
Manual. 
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Assumptions 
This manual is written with the assumption that the reader is familiar with the following: 

• VistA computing environment: 

o Kernel 8.0—VistA M Server software 

o Remote Procedure Call (RPC) Broker 1.1—VistA M Server software 

o VA FileMan 22.0 data structures and terminology—VistA M Server software 

o VistALink 1.6—VistA M Server and Application Server software 

• Linux or Microsoft® Windows environment 

• Java Programming language: 

o Java Integrated Development Environment (IDE) 

o J2SETM Development Kit (JDK) 

o Java Authentication and Authorization Services (JAAS) programming 

• M programming language 

• WebLogic 9.2 or 10.x Application Server 

Reference Materials 
Readers who wish to learn more about HWSC should consult the following: 

• HWSC 1.0 Installation Guide 

• HWSC 1.0 Systems Management Guide 

• HWSC 1.0 Developer’s Guide (this manual) 

• HWSC 1.0 Patch XOBW*1.0*4 Release Notes 

• HWSC 1.0 Patch XOBW*1.0*4 Installation, Back-Out, and Rollback Guide 

• HWSC 1.0 Patch XOBW*1.0*4 Security Configuration Guide 

VistA documentation is made available online in Microsoft® Word format and in Adobe® Acrobat 
Portable Document Format (PDF). The PDF documents must be read using the Adobe® Acrobat Reader, 
which is freely distributed by Adobe® Systems Incorporated at: http://www.adobe.com/ 

VistA documentation can be downloaded from the VA Software Document Library (VDL): 
http://www.va.gov/vdl/ 

 REF: HWSC manuals are located on the VDL at: 
http://www.va.gov/vdl/application.asp?appid=180  

VistA documentation and software can also be downloaded from the Product Support (PS) Anonymous 
Directories. 

 

http://www.adobe.com/
http://www.va.gov/vdl/
http://www.va.gov/vdl/application.asp?appid=180
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1 Introduction 
1.1 Document Overview 
This document provides information for M application developers writing code to call Web services in 
HealtheVet applications. It presents information on the following topics: 

• HWSC architecture. 

• Implementing Caché code with HWSC to consume to external Service Oriented Architecture 
Protocol (SOAP)-based and Representational State Transfer (REST)-based Web services. 

• HWSC Application Program Interface (API) reference. 

This document assumes the reader is familiar with the following areas: 

• M development 

• HyperText Transport Protocol (HTTP) 

• eXtensible Markup Language (XML) 

• REST (for REST-style Web service consumption) 

• SOAP (for SOAP-style Web service consumption) 

• Caché Objects 

Additional development resources include: 

• Caché documentation 

• SOAP: http://en.wikipedia.org/wiki/SOAP 

• REST: http://en.wikipedia.org/wiki/Representational_State_Transfer 

1.2 Using SOAP and REST to Access HealtheVet from VistA 
M 

Veterans Health Information Systems and Technology Architecture (VistA) M-based applications have a 
need to synchronously access VistA application services and data (e.g., in-process during an end-user’s 
session). HWSC uses Caché’s Web Services Client to invoke Web service methods on external servers 
and retrieve results. It provides helper methods and classes to improve the use of Caché’s Web service 
client in a VistA environment. 

HWSC supports two modes of synchronous Web service access: 

• SOAP (Service Oriented Architecture Protocol)—Formal XML-based protocol for accessing 
services. 

• REST (REpresentational State Transfer)—Architectural style of accessing services via 
programmatic access to Web resources. 

The SOAP and Rest approaches to calling VistA services are shown in Figure 1 and Figure 2. 

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Representational_State_Transfer
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Figure 1: HWSC Logical View (SOAP-style) 
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To illustrate Web service access using a SOAP example: imagine that a VistA M-based application needs 
drug interaction information formerly available in VistA but now maintained in the J2EE-based Pharmacy 
Re-Engineering (PRE) application. To retrieve the data from the HealtheVet side, the following steps 
would be required: 

1. The VistA M application makes a request to the PRE business delegate to obtain the information. 

2. The PRE business delegate uses its compiled Web service client proxy class to make the drug 
interaction request to the PRE Web service. 

3. PRE’s Web service processes the request and returns a response. 

4. The PRE business delegate receives the response, decomposes the needed data elements from the 
return value, and returns the requested drug interaction data to the calling VistA application. 

Figure 2: HWSC Logical View (REST-style) 
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1.3 Caché’s Web Services Client Features 
The InterSystems Caché product provides a number of features (leveraged by the HWSC project) to 
enable consumption of external Web services: 

• SOAP: Caché provides APIs to compile proxy objects (in the form of Caché Objects) 
corresponding to external Web services, from the Web Services Description Language (WSDL) 
document describing the SOAP Web services, and invoke calls to the SOAP Web service 
methods. Input and return values for the Web service are mapped to Caché object types, which 
are used when invoking the service. 

• REST: Caché provides APIs allowing invocation of an external URL via http and retrieval of the 
response, supporting both POST and GET methods. This supports access to REST-style Web 
services. 

• XML Parsing: Caché provides an API to invoke a high-performance XML parser (useful for 
processing very large XML results). Alternatively, Kernel’s XML parser can be used. 

 NOTE: In order to use these features, use of non-standard M syntax (i.e., Caché Objects) is 
required, and a waiver has been granted (see the “HPMO Waiver for Use of Caché-Specific 
Features” section). 

1.4 Role of HWSC 
HWSC acts as an adjunct to the Web services client functionality provided in Caché, by: 

• Leveraging Caché’s platform-provided Web services client capabilities. 

• Adding a file and user interface (UI) to manage the set of external Web server endpoints (IP, port, 
etc.). 

• Adding a file and UI to register and manage the set of external Web services. 

• Providing runtime API to invoke a specific Web service on a specific Web server. 

• Providing a runtime API to facilitate error processing in a VistA environment. 

• Providing a deployment API to install/register a Web service proxy from a WSDL file. 

• Providing a management UI including the ability to “ping” (test) a given Web service/server 
combination from VistA M. 

• Supporting both SOAP- and REST-style Web services. 

• Fostering consistent implementation of VistA M Web service consumers. 

 NOTE: HWSC does not act as an all-inclusive wrapper shielding Web service consumers from 
Caché Objects syntax. Rather, the recommended approach is for the application providing the 
Web service, to also provide a Web service delegate for the VistA M systems consuming the Web 
service. The Web service delegate should use Caché Objects syntax as needed to consume the 
Web service, but should not expose non-standard M syntax to users of the business delegate. 
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1.5 HPMO Waiver for Use of Caché-Specific Features 
In December 2006, the HPMO Change Control Board voted to move forward with the HWSC project, 
and grant a waiver allowing the use Caché-specific features during the consumption of Web services. At 
the time of writing, this decision is reproduced below (Figure 3): 

Figure 3: Technical Decisions Repository Record 

 
 

The waiver granted in the technical decision above is not intended to be carte blanche to bypass 
adherence to 1995 M standard. Rather, it permits the use of non-standard M syntax insofar as to allow use 
of the underlying features of the Caché 5.0 platform to consume external Web services. 

To better understand the context of the waiver, it is also useful to examine the listed supporting 
documentation for the technical decision (see Figure 4 and Figure 5). 
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Figure 4: Supporting Documentation: VWSC Architecture 

 
 

In Figure 4, HWSC (the HWSC run-time API) is positioned as an adjunct to the use of Caché’s Web 
services client functionality, but is not positioned as a wrapper around that functionality. The M-side 
business (service) delegate interacts directly with the Web service proxy. 

Figure 5: Supporting Documentation: VWSC Proposed View 

 
 

Similarly in the example shown in Figure 5: 

• The external (J2EE) application providing the Web services is RSA. 

• The Web service provider (RSA) also provides an (optional) M-side Web service delegate. The 
delegate directly invokes the compiled Caché Object Web service proxy (which extends 
%SOAP.WebClient). 

• The actual application interested in the Web service (in this example Pharmacy) interacts with the 
RSA-provided business delegate to access the RSA Web service. 
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As such, Figure 5 captures the recommended model for HealtheVet Web service providers: that is, to 
provide an M-side business delegate: 

• The M-side business delegate has permission via the waiver discussed above to use non-standard 
M syntax (specifically, Caché Objects and Caché’s Web services client functionality) in its 
consumption of the Web service. 

• The Web service delegate should process the input values and return values, including a variety 
of errors, as required using Caché Objects syntax. Some of these values can also be very large 
(and therefore accessed via Caché stream-type interfaces). 

• While the delegate needs to interact directly with Caché Objects to process the variety of input 
and return values, users of the business delegate should be shielded by the delegate from the non-
standard M syntax. 

1.6 Securing HWSC Applications Using SSL/TLS (HTTPS) 
As of Patch XOBW*1.0*4, HWSC enabled the use of Secure Socket Layer/Transport Layer Security 
(SSL/TLS) encryption. This allows VistA applications to make Hypertext Transfer Protocol (Secure) 
HTTP(S) connections from VistA on all supported operating system (OS) platforms to remote HTTP(S) 
servers. HWSC uses a Caché library that makes HTTP or HTTPS requests. A secondary benefit of using 
SSL/TLS security is the use of Certificate-Based Authentication. 

 REF: For more information and configuration setup instructions, see the HWSC 1.0 Patch 
XOBW*1.0*4 Security Configuration Guide. 

1.6.1 Support for Encryption and Certificate-Based Authentication 
With the use of SSL/TLS to encrypt communication, VistA applications can make use of SSL/TLS 
Certificate Authentication. 

 REF: For instructions on setting up an HWSC application to use Certificate Based 
Authentication, see the “Client Certificate Authentication Configuration” section in the HWSC 
1.0 Patch XOBW*1.0*4 Security Configuration Guide. 

1.6.2 Support for Encryption and HTTP Basic Authentication 
Support for HTTP Basic Authentication existed with the initial release of HWSC; however, username and 
password credentials were transported in clear text. With the use of SSL/TLS to encrypt the transmission 
of credentials, VistA applications also have a secured alternative to using Certificate-Based 
Authentication. 

 REF: For instructions on setting up an HWSC application to use Encryption and HTTP Basic 
Authentication, see the “Encryption-Only Setup” and “HTTP Basic Authentication 
Configuration” sections in the HWSC 1.0 Patch XOBW*1.0*4 Security Configuration Guide. 
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2 Sample SOAP and REST Client Applications 
HealtheVet Web Services Client (HWSC) provides a sample application that demonstrates how to 
consume both Service Oriented Architecture Protocol (SOAP)- and Representational State Transfer 
(REST)-style Web services. 

The HWSC sample application code functions as example/sample code, and demonstrates many aspects 
of calling external Web services, including: 

• Parameter passing 

• Return value processing 

• Return values based on custom object types (SOAP) 

• XML response parsing (REST) 

• Timeout processing 

• Error handling 

 NOTE: Sample code is provided as an educational tool, and is not intended to be a template for 
production code. 

2.1 Installing the J2EE Sample Web Services EAR 
Corresponding sample J2EE-based SOAP and REST Web services are provided in an Enterprise ARchive 
file (EAR) in the HWSC distribution. They provide services for the Caché-based sample client 
applications to access and retrieve results from. 

The HWSC sample application’s SOAP Web services employ the XFire Web service framework; the 
REST Web services are servlet-based. 

The Web Services Description Language (WSDL) for the sample SOAP application is imported as part of 
the M-side XOBT installation process for the sample Caché-based client application, and is used as the 
basis to generate Caché proxy objects for the J2EE SOAP-based Web service sample. 

 REF: For installation instructions, see the appendices in the HWSC 1.0 Installation Guide. 

 REF: For more information on how to obtain the XOBT_1_0_Txx.zip distribution file, contact 
the OIT PD VistA Maintenance HWSC Developers (Outlook Mail Group: 
OITPDVistAMaintenanceHWSCDevelopers@va.gov). 

 

2.2 Using the XOBT M Client Application 
The Caché-based SOAP-style Web services client application is in the following namespaces: 

• XOBTWSA*: Sample client application/business delegate caller. 

• XOBTWSB*: Sample “business delegates” for each SOAP Web service call. 

mailto:OITPDVistAMaintenanceHWSCDevelopers@va.gov
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HWSC also provides a sample Caché-based REST-style Web services client application, in the following 
namespaces: 

• XOBTWRA*: Sample client application/business delegate caller. 

• XOBTWRB*: Sample “business delegates” for each REST-style Web service call. 

All non-M-standard Caché Object code in the application samples has been isolated into the sample 
business delegate routines. The sample “client application” routines (that call the business delegates) 
employ standard M syntax. 

2.2.1 XOBT M-Side Installation 
For installation instructions, see the appendices in the HWSC 1.0 Installation Guide. 

2.2.2 Create Web Server Entry 
In order to access the sample application’s J2EE Web services, create an entry in the WEB SERVER file 
(#18.12) for the Web server on which they are installed, using the XOBW WEB SERVER MANAGER 
option and the “Add Server” action. The entry should correspond to the server on which you have 
installed hwscSampleWs-1.0.0.xxx.ear. 

Use the XOBW WEB SERVER MANAGER option and the “Add Server” action in the option to enter a 
new entry in this file for the WebLogic server on which the sample Web service is installed. 

Fields / Values 

• NAME: Any value to name the target WebLogic server 

• SERVER: Enter the domain name or IP address of WebLogic server 

• PORT: Enter the WebLogic listener port 

• STATUS: ENABLED 

Security Credentials 
• LOGIN REQUIRED: YES// 

• USERNAME: Enter WebLogic username that is a member of WebLogic server’s 
XOBW_Server_Proxies group 

• Want to edit PASSWORD (Y/N): Y 

• PASSWORD: Enter password associated with the WebLogic user 

Authorize Web Services 

• Select WEB SERVICE: (enter/authorize the following two Web services) 

• WEB SERVICE: XOBT TESTER WEB SERVICE 

• STATUS: ENABLED 

• Select WEB SERVICE:  

• WEB SERVICE: XOBT TESTER REST SERVICE 

• STATUS: ENABLED 
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2.2.3 Sample Application User Interface 
A subset of the sample entry points can be executed from the XOBW WEB SERVER MANAGER 
option’s user interface: 

• PT Ping Test (PING^XOBTWSA) 

• AT Array Test (GA^XOBTWSA) 

• ET Echo Test (ECHO^XOBTWSA) 

• SP Retrieve System Properties (SP^XOBTWSA) 

A description of all actions available in the sample application user interface is provided in Table 2. 
Table 2: Sample Application UI Actions 

Action Description 

PT (Ping Test)  Ping the selected Web server. 

AT (Array Test) Return an array of text from the selected Web server. 

ET (Echo Test) Type in a phrase to echo back from the selected Web server. 

SP (Retrieve System 
Properties) 

Retrieve the set of java system properties from the selected Web 
server. 

DE (Show Demographics) Display information about the selected Web server (name, address, 
port and status) 

 

To access the “samples” user interface: 

1. Select option: XOBW WEB SERVER MANAGER. 

2. Select Action: Test Server. 

3. Select your server entry. 

4. Select any of the options to run. 
Figure 6: Sample Application Screen and Options 

Web Server Tester           Jun 07, 2007@16:04:56          Page:    1 of    1  
                             WEB SERVER: VHAISFZZZC 
                                  Demographics 
                                                                                 
                NAME: VHAISFZZZC                                                 
              SERVER: vhaisfzzzc                                                 
                PORT: 7111                                                       
              STATUS: ENABLED                                                    
 
          Select Action/Test to Perform on Server                                
PT  Ping Test                           SP  Retrieve System Properties 
AT  Array Test                          DE  Show Demographics 
ET  Echo Test 
Select Item(s): Quit// 
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2.2.4 Ping the SOAP Tester Web Service from Caché 
Perform the following steps to ping the remote “test” Web server: 

1. Select option: XOBW WEB SERVER MANAGER. 

2. Select action: Test Server. 

3. Select your server entry. 

4. Select sub-action: Ping Test. 

5. Successful result: “Response: Ping Successful!” 

2.2.5 Demonstrating Server Lookup Keys: XOBT SAMPLE SERVER 
Lookup Key 

The server lookup XOBT SAMPLE SERVER security key is installed by the XOBT KIDS build, but is 
not associated with a particular Web server by default. 

To determine the Web server against which to access the sample Web services, the XOBT sample 
applications first see if a Web server has been associated with the XOBT SAMPLE SERVER lookup 
security key. The XOBT sample applications only prompt the end-user to specify a Web server if the 
lookup key-server association is not defined. Similarly, applications using HWSC can define their own 
server lookup keys, and avoid hard-coding a particular Web server file entry name. 

To associate a server with the XOBT SAMPLE SERVER security key, use HWSC’s Lookup Key 
Manager, accessed through the Web Server Manager: 

1. Use the XOBW WEB SERVER MANAGER option to call up the HWSC Web Server 
Manager. 

2. Select the LK action to access the Lookup Key Manager. 

3. Select the EK (Edit Key) action to edit the XOBT SAMPLE SERVER security key. 

4. Associate it with the server on which you have installed the sample Web service. 

5. Run the XOBT sample applications again. Web service calls are automatically made against the 
associated server. 

2.3 Sample Client Application Entry Points 
The tags in the XOBTWSA*/XOBTWRA* routines invoke a single, corresponding Web service 
operation in the J2EE-based tester Web service and display the results. Each call takes a one parameter, 
which can be either empty (“”) or the name of a server in the WEB SERVER file (#18.12). If empty, you 
are prompted to select a Web server against which to run the option. 

You can test connectivity by executing any of the following tag^routines and invoking SOAP-style calls 
(^XOBTWSA): 

• PING 

• ECHO 

• ARRIN 

• GA 

• SP 

• EI 
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• EIVO 

• ECHOEIVO 

• EILIST 

• SENDXML 

Additional SOAP-style calls (^XOBTWSA1): 

• DOI 

• BOOLEAN 

• FLOAT 

• DOUBLE 

• INT 

• SHORT 

• LONG 

• DATE 

• CAL 

• TIMEOUT 

• RETRY 

REST-style calls (^XOBTWRA): 

• PING 

• SAMPLE 

• GA 

• EI 

• EILIST 

Additional REST-style calls (^XOBTWRA1): 

• DICTGET 

• DICTPOST 

• DICTLST 

To invoke ALL SOAP-style calls: ALL^XOBTWSA1 

To invoke ALL REST-style calls (except DICTPOST): ALL^XOBTWRA 
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2.4 Rebuilding the J2EE Sample Web Service Project 
The distribution zip file’s “sample-prj” folder contains an ANT-buildable version of the sample Tester 
Web service. You can optionally modify and rebuild the service as follows: 

1. Check that ANT is set up on your system. 

2. Ensure your JAVA_HOME environment variable is set to a JDK 1.4 location. 

3. In the unzipped “sample-prj” folder, copy or rename  
“uncommon-build.properties.template” to “uncommon-build.properties”. 

4. Edit the two file location properties to point to “scratch” locations on your system for the files 
generated by the build. 

5. Update the WEBLOGIC.DIRPATH property to point to a WebLogic home on your system. 

6. In the unzipped “sample-prj” folder, from the command line, run ANT (no arguments 
necessary). 

7. If the build is successful, the files are built in the location you specified in the 
HWSC.DIST.PATH property. 
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3 VistA M-Side Development Guide 
3.1 Platform Considerations 
3.1.1 Caché-Specific Considerations 
You should be aware of the following limitations in Caché, which you may encounter working with Web 
services: 

• Caché Object Property Length—Any one Caché Object property is restricted to a length of 
32K (e.g., Service Oriented Architecture Protocol [SOAP] client input parameter and response 
classes). This is important if you want to return a long string as the return value of a SOAP call 
(e.g., an XML document), or pass a long (>32K) string as an input parameter. However, a 
workaround to overcome this limitation is discussed in “Manually Modify SOAP Client Proxies 
to Overcome Length Limits.” 

• Length of REST-Style Returned Data—Because HealtheVet Web Services Client (HWSC) 
returns the response to a Representational State Transfer (REST)-style Web service in a Caché 
stream, there is no immediate limit on the length of the data that can be returned by a single call. 
Of course, the larger the data that is returned, the longer it takes to process the return value. 

• System Memory Maximum—The sum of the memory used by all objects and partition variables 
cannot exceed the system maximum. The maximum varies from system to system, but is 
currently set to 2 megabytes at most VA production sites. This is mostly an issue for SOAP calls, 
since results are automatically returned as a Caché object in memory. (For REST calls, the results 
are returned in an instance of the %Net.HttpResponse class, but large input values could also 
cause a problem.) The workaround discussed in “Manually Modify SOAP Client Proxies to 
Overcome Memory Limitations” can also help avoid exceeding memory partition size in some 
cases. 

• Package Name Length—Package names for Caché classes (including the generated Port classes 
and SAX parser handlers) are limited to 31 characters in length. 

• Unique Class Names—Within a Caché package, each class name must be unique within its first 
25 characters 

• No Punctuation in Caché Identifiers—Punctuation characters, including underscores and 
hyphens, are not allowed in Caché identifiers, like class names. This becomes an issue when 
proxy classes are generated based on Java class names: classes are still generated, but punctuation 
is stripped. This can cause interoperability issues when interacting with the classes on the Java 
side that still have punctuation in their names. We recommend using UpperCamelCase for Web 
service names. 

• Lack of Full HTTP 1.1 Support—Caché fully supports HTTP 1.0, but does not fully support 
HTTP 1.1. This should be adequate for almost all Web services interactions. However, a few 
small issues can crop up (e.g., the HTTP “Host” header is not required to contain the port number 
in HTTP 1.0). 

3.1.2 WebLogic 8.1-Specific Considerations 
You should be aware of that when returning very large result sets (e.g., 10 megabytes or more) with Web 
services, the J2EE server may drop the http connection. This happens when the client (Caché) cannot read 
in the data stream fast enough to complete the transmission within WebLogic 8.1’s http “Duration” value. 
This value has a maximum of 120 seconds, and can be set in the WebLogic console under: 
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server | Protocols | http | Duration 

WebLogic interprets the lack of completion as an inactive http connection, and drops the connection at 
the specified duration limit. 

3.2 How to Consume a SOAP-Style Web Service 
3.2.1 Compile WSDL into Caché Proxy Classes (SOAP) 
To build a Web service client to access a Web service other than the HWSC sample, in your development 
account, call GENPORT^XOBWLIB to: 

• Import your Web service’s Web Services Description Language (WSDL) by running the Caché 
SOAP client wizard. This creates proxy classes for communicating with your Web service. 

• Create an entry for your Web service in the WEB SERVICE file (#18.02). 

When running GENPORT^XOBWLIB, you need to supply the following as input parameters: 

• Name for the WEB SERVICE file entry to be created. 

• File system location of your WSDL file (accessible from the Caché install account). 

• Caché package name to use for the compiled proxy classes. 

• Resource to HWSC to use for availability checks on the Web service (optional). 

Once completed successfully, you can write M code that calls HWSC APIs to access your Web service. 

 REF: For more details on the GENPORT^XOBWLIB API, see the 
“$$GENPORT^XOBWLIB(): Import/Register Web Service from WSDL” section. 

Mainline (SOAP) 
Once the WSDL is imported/client proxy classes created, your code needs to perform the following main 
steps to invoke and consume a Web service: 

1. Get the name of the Web server entry in the WEB SERVER file (#18.12) on which to call the 
Web service. For simplicity’s sake, in the example in Figure 7 the Web server name 
(“VHASERVER1”) is hard-coded; for production code, you can instead use the 
$$SNAME4KY^XOBWLIB(): Retrieve Server Name Associated with a Server Lookup Key API 
and have your install sites associate a “server lookup key” with a specific Web server entry at 
install-time. 

2. Set an error trap. 

3. Get Web service proxy object for a specific Web server and Web service. 

4. Invoke Web service proxy methods on Web service proxy object to invoke methods on the 
remote Web service. 
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For example, the code in Figure 7 invokes a doPing method on the MYAPP WEB SVC Web service, and 
writes out the result: 

Figure 7: Code to invoke a doping method 

NEW MYPROXY,$ETRAP 
; -- set error trap 
SET $ETRAP=“DO ERROR^MYRTN” ; to catch/process errors 
; -- obtain client proxy object (replace hard-coded server name ref  
;    w/ dynamic retrieval, or site param, or etc.) 
SET MYPROXY=$$GETPROXY^XOBWLIB(“MYAPP WEB SVC”,“VHASERVER1”) 
; -- call web method 
WRITE !,“Ping result: ”,MYPROXY.doPing() 

 

 REF: For complete details of the $$GETPROXY^XOBWLIB API, see the “VistA M-Side API 
Reference” section. 

3.2.2 Passing Input Parameters to Web Services (SOAP) 
The HWSC sample applications demonstrate the use of a variety of “IN”-type input parameter types, 
including: 

• Standard Web service data types (string, short, int, float, double, boolean, dateTime, etc.). 

• Arrays of standard data types (using Caché’s %ListOfDataTypes object). 

• Service-defined complex types compiled as classes from WSDL. 

3.2.3 Processing Web Service Return Types (SOAP) 
Web service methods return a single object as the method return value. The HWSC sample applications 
demonstrate retrieving and processing a variety of return types, including: 

• Standard Web service return types (string, short, int, float, double, boolean, dateTime, etc.). 

• Collections of standard return types. 

• Service-defined complex types compiled as classes from WSDL. 

• Collections of complex types compiled as classes from WSDL. 

3.2.4 Large Result Sets (SOAP) 
The role in the enterprise architecture currently envisioned for Web services, particularly for M/VistA 
systems accessing HealtheVet systems, is to handle requests in “end-user-is-waiting-for-a-response” 
scenarios. Web service invocations are typically made in real time, synchronously. To match the end-
user-is-waiting scenario, their results sets should be of a size that can be assembled and returned in a 
reasonable amount of time. 

For all other VistA-to-J2EE calls (e.g., bulk transfers of data, asynchronous messaging, guaranteed 
delivery), the responsibility for handling requests falls instead to the messaging infrastructure and use of 
the interface engine. 

There are gray areas (e.g., when a large result set is created on the J2EE server), but the end-user is only 
expected to look at small portion of the query results before making a decision and moving on. In this 
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case, a J2EE pattern called Value List Handler can be used with Web services1 and HWSC. Optimizing 
the implementation of a Value List Handler is query-specific. Essentially the implementer of the pattern 
Caché’s the query results on the server and chunks the return value of any single call into a subset of the 
query results. 

In any case, with Caché and SOAP, there are unavoidable consequences to creating large requests and 
returning huge query result sets, without chunking the requests or results into smaller sets first before 
sending/returning them. Large requests and responses can cause timeouts and impact server resources on 
both the sender and receivers sides, and impact overall reliability because: 

• The size of data send or returned may exceed the memory size of the Cache partition (client) or 
the Java virtual machine (JVM) (server). For Caché, at most VA production sites at the time of 
writing, two megabytes of RAM is dedicated to each M process partition. 

• While receiving a large request, the J2EE server may drop the http connection if the duration of 
the request, or request size exceeds configurable limits. 

• While returning a large result set, the J2EE server may drop the http connection if the client 
(Caché) cannot read in the data stream fast enough. 

3.2.5 Timeouts (SOAP) 
The client timeout is the amount of time the Caché Web services client waits for a Web service invocation 
to return over http before aborting. By default, the client timeout is set to 30 seconds in the current Caché 
implementation used by the HWSC development team (although M administrators can also set a different, 
per-web-server default timeout). 

To explicitly set the client timeout (overriding the system and per-server default settings), use the 
Timeout property on the Caché Web service proxy object in one of the following ways: 

• SET XOBPROXY.Timeout=60 

• SET XOBPROXY.Timeout=XOBPROXY.Timeout*2 
 

(The second technique is probably the preferred one, because the site may have already adjusted the 
default timeout to factor in any local environment situations.) 

If a timeout occurs, an error is returned to the calling code. With the current Caché implementation used 
by the HWSC development team, a Caché object error is returned with its error code set to code #5922 
(“Timed out waiting for response”). 

You can use the TIMEOUT^XOBTWSA sample application call to experiment with timeout behavior. 

                                                      
1 Lechiki, Alois and Kruse, Thomas, Handling Large Database Result Sets, WebLogic Journal, volume 3 issue 6, http://wldj.sys-
con.com/read/45563.htm. 
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3.2.6 How to Export an M Business Delegate (SOAP) 
Assuming that your application is planning to export an M business delegate, it should export the 
following items: 

• WSDL file for the Web service (separate from the KIDS transport file) 

• M business delegate routines to consume the Web service (in the KIDS transport file) 

• Post-init routine (in the KIDS transport file) that calls $$GENPORT^XOBWLIB to: 

o Import the WSDL file. 

o Create an entry in the WEB SERVICE file (#18.02). 

o Create the Web service proxy class. 

You can examine HWSC’s KIDS post-init routines – XOBTPST and XOBWPST (and the “Install 
Questions” section of the XOBT and XOBW KIDS build definitions) to see how they handle prompting 
and reading files from the host file system. 

3.2.7 Manually Modify SOAP Client Proxies to Overcome Memory 
Limitations 

The InterSystems Web service development team has noted that to overcome the 32K length limitation of 
String result values in its SOAP clients (and to avoid overflowing partition memory), generated proxy 
classes can be manually modified to use Cache streams for %String data types. 

The Caché WSDL compiler automatically compiles all WSDL string return values in the proxy classes 
as %Library.String, even though they could also be compiled as Caché stream types. Therefore, all string 
return type objects are subject to the current 32K-length restriction. But a string return type (on the Web 
service side) is exactly what many Web services would use to return an XML document result (that can 
exceed 32K, or in some cases even exceed the memory partition size). 

The developer can modify the return type in the generated proxy class for a given Web service method 
to %GlobalCharacterStream in place of %Library.String: 

1. Change the method return type from %Library.String to %GlobalCharacterStream in the 
generated port proxy class. 

2. Recompile the port proxy class; this causes other generated proxy classes to be re-compiled. 

3. Modify the business delegate code to read the result off of a Caché stream. 

The modified class should work correctly, but the (string) return value is placed by Caché into a stream, 
overcoming normal memory limits. 

This same approach can also work for %String input parameter types, which can help if large input 
parameter strings are expected (e.g., a large XML document as an input parameter). 

 NOTE: An alternative workaround in HWSC for long XML documents is to make a REST call 
rather than a SOAP call. 
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3.2.7.1 Disadvantages of Manual Modification 
Possible disadvantages, or issues to consider, with manually editing the generated classes, include:  

• During the development cycle, whenever the WSDL changes and classes are generated, 
developers need to remember to manually restore the modifications to the generated classes. 

• The application needs to export the generated Caché Object proxy classes as a package 
component (as opposed to something generated upon install). Export would be in a separate XML 
file. 

• WEB SERVICE file (#18.02) entry needs to be created or installed on target systems separately 
from WSDL import, since WSDL is only imported at development time. The 
REGSOAP^XOBWLIB API can be used to do this. 

 NOTE: For normal situations, HWSC recommends that applications exporting a Web service 
client, do so by exporting their WSDL and using the $$GENPORT^XOBWLIB call to generate 
client classes on the target install systems (as opposed to exporting the compiled proxy delegate 
classes themselves). 

3.3 How to Consume a REST-Style Web Service 
3.3.1 Mainline (REST) 
To invoke and consume a REST-style Web service, an application needs to perform the following main 
steps: 

1. Get the name of the Web server entry in the WEB SERVER file (#18.12) on which to call the 
Web service. For simplicity’s sake, in the example below the Web server name (“MY SERVER”) 
is hard-coded; for production code, you can instead use the $$SNAME4KY API and have your 
install sites associate a “server lookup key” with a specific Web server entry at install-time. 

2. Set an error trap. 

3. Get a REST proxy object for a specific REST-style Web server and Web service. 

4. Invoke either the Get or Post proxy method(s) on Web service proxy object to invoke methods on 
the remote Web service. 

5. Process the result (e.g., parse the result if it an XML document). 
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For example, the following M function accesses a Ping resource on the MYAPP REST SVC REST-style 
service, using an HTTP GET, and writes out the result: 

Figure 8: Sample M function that accesses a Ping resource 
PING ; -- access a Ping response using REST-style Ping service 
; resource: <http://server/context>/Ping 
 NEW MYREST,PINGRES,MYERR,$ETRAP,X,XOBSTAT,XOBREADR,XOBREAK 
 ; -- set error trap  
 SET $ETRAP=“DO PINGEH^MYRTN” 
 ; -- get client REST request object 
 SET MYREST=$$GETREST^XOBWLIB(“MY REST SERVICE”,“MY SERVER”) 
 ; -- retrieve the resource; execute HTTP GET method 
 IF $$GET^XOBWLIB(MYREST, “/Ping”,.MYERR) DO 
 . ;invoke Cache parser 
 . SET XOBSTAT = ##class(%XML.TextReader).ParseStream(MYREST.HttpRespons 
e.Data,.XOBREADR) 
 . IF ($$STATCHK^XOBWLIB(XOBSTAT,.MYERR)) DO 
 . . SET XOBREAK=0 FOR QUIT:XOBREAK!XOBREADR.EOF!’XOBREADR.Read() DO 
 . . . IF (XOBREADR.NodeType = “element”),(XOBREADR.LocalName = “PingRes 
ponse”) DO 
 . . . . IF XOBREADR.MoveToContent() DO 
 . . . . . SET PINGRES=XOBREADR.Value 
 . . . . . SET XOBREAK=1 
 . WRITE !!, “Ping Result: ”,PINGRES 
 QUIT 
PINGEH ; -- error trap handler for PING 
 ; … display error, unwind error trap, set $ECODE=“”, etc. 
 QUIT 

 

There are some alternate paths that could be taken. For example, the Get method could be called on the 
REST HTTP request object (%NET.HttpRequest) directly, rather than by using the 
$$GETREST^XOBWLIB wrapper. The main advantage to using the $$GETREST^XOBWLIB wrapper 
is being able to take advantage of built-in error detection and error trap triggering. 

In addition, the above code serves as a mixture of both “business delegate” and “business delegate 
consumer” code, in that it both kinds invoke the Web service and display the results to the end-user. The 
HWSC sample application’s business delegate and business delegate consumer code, on the other hand, 
are cleanly separated. 

 REF: For complete details of each XOBWLIB API, see the “VistA M-Side API Reference” 
section. 

3.3.2 Parsing XML Responses (REST) 
Suppose the XML response for the example in Figure 8 looks like: 

Figure 9: Sample XML response 
<?xml version=“1.0” encoding=“UTF-8” ?>  
<PingResponse>Ping Successful!</PingResponse> 
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There are several ways to parse documents, including: 

• Use Caché’s SAX parser: 

o Call %XML.TextReader methods (parsing is accomplished by traversing a Document Object 
Model (DOM)-like but mostly forward-only representation of the document – InterSystems’ 
recommended approach. 

o Extend %XML.SAX.ContentHandler (parsing is done via a SAX interface). 

o Call %XML.Reader (parsing is accomplished via a mapped correlation between the XML 
document and a Caché Object). 

• Use the Kernel MXML parser (parsing is done via a SAX interface). 

For parsing implementation examples, see the business delegate (XOBTWRB*) code used for the REST-
style Web service clients in the HWSC sample application. 

3.3.3 Timeouts (REST) 
To set the client timeout, set the Timeout property on the request object returned by the 
$$GETREST^XOBWLIB() call. 

3.3.4 How to Export an M Business Delegate (REST) 
Assuming that your application is planning to export an M business delegate to access a REST Web 
service, it should export the following items via KIDS: 

• M business delegate routines to consume the REST Web service. 

• A KIDS post-init M routine that: 

o Calls the REGREST^XOBWLIB(): Register a REST Service Definition API to create an 
entry in the WEB SERVICE file (#18.02). 

o (Optionally) calls the $$SKEYADD^XOBWLIB(): Add a Server Lookup Key API to add a 
server lookup key. 

3.4 How to Handle Errors (SOAP and REST) 
Handling errors is an intrinsic part of working with a distributed communication mechanism such as Web 
services. With Caché Objects and Web service calls, there are additional error processing duties beyond 
simply checking $ZERROR and $ECODE. Some errors can happen at the Caché Objects level, others can 
be returned as SOAP faults or HTTP errors. Still others occur at the standard M level. Because of this, 
HWSC is providing a set of utilities to encapsulate and organize the following types of errors: 

• Standard M error 

• Caché Objects error 

• SOAP fault (SOAP) 

• HTTP error (REST) 

• HWSC “fault”/Dialog entry 

Handling errors in Web service calls involves setting an error trap, writing the error handler code, and 
determining in that code whether to continue or quit. The specifics of the error handling code can depend 
in part on whether you are coding an application calling a Web service directly, a business delegate, or an 
application calling a business delegate. 
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3.4.1 Business Delegate Level 
A business delegate may want to do some processing on the error, but still preserve it so it can also be 
handled by the actual caller. If so, the business delegate should set up an error handler as follows: 

1.  “New” $ETRAP (but not $ESTACK). 

2. Set $ETRAP=error handler routine for the business delegate context. 

The business delegate’s error handler routine, provided as a pair with business delegate, should: 

1. Take corrective action if desired: 

• Process the error condition in the partition and create the HWSC error object: 

o For SOAP calls, call $$EOFAC^XOBWLIB to create the HWSC error object. 

o For REST calls, if the call is made via $$GET^XOBWLIB and $$POST^XOBWLIB, 
check first to see if the HWSC error object has already been created, in the error variable 
specified in the call to $$GET or $$POST. Check. If not, call $$EOFAC create it. 

• Examine the error object directly (using Caché Object syntax) and decide how to handle and 
perform any other action appropriate for the error handler. 

• Optionally, call ZTER^XOBWLIB to record the error in Kernel error trap. 

2. Return control to the caller: 

Call UNWIND^%ZTER to quit back to the caller of the business delegate. 

3.4.2 Application (Caller to Business Delegate) Level 
The application calling a Web service business delegate may want to handle the error itself without 
necessarily aborting program execution and returning control to Kernel. If so, the calling application 
should set up an error handler as follows: 

1. “New” $ETRAP. 

2. “New” $ESTACK to establish a new error context before invoking the Web service or business 
delegate. 

3. Set $ETRAP to an error handler routine for the current error context – that of your application. 

The caller’s error handler routine, provided by the caller, should: 

1. Take corrective action, if desired: 

• Call ERRDISP^XOBWLIB to display the HWSC error object values (if preserved/returned 
by business delegate) to the end-user (if in roll & scroll mode). 

• Call ERR2ARR^XOBWLIB to decompose the HWSC error object (if preserved/returned by 
business delegate) into an array, examine it without using Caché Object syntax, and decide 
how to handle it. 

2. Resume processing and/or return control to the caller: 

• Clear the error stack by setting $ECODE=“” and continue processing in the error handler 
(and eventually QUIT back to Kernel). 

• Call UNWIND^%ZTER to immediately quit back to Kernel. 
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3.4.3 REST Error Handling Options 
Depending on how you invoke your GET and POST calls, you can increase the convenience of error 
trapping. In particular: 

• If your code calls the GET^XOBWLIB or POST^XOBWLIB wrapper methods for your gets and 
posts, error processing for all error types is built-in automatically, by default. If an error is 
encountered, it is processed into a xobw.error object, and an error trap is forced. 

• If instead your code calls the Get or Post methods directly on the xobw.RestRequest object, you 
are responsible for capturing the %Library.Status return value and the HTTP status code, and for 
processing them to see if an error occurred during the call. 

3.4.4 Automatic Retries 
A sample call is provided to demonstrate the use of error trapping to automatically retry a SOAP call a 
specific number of times. This can be useful if you are expecting to encounter service failures of a short-
lived, transient nature. See RETRY^XOBTWSB1 (business delegate) and RETRY^XOBTWSA1 (caller 
application) for sample code that retries a SOAP call based on trapping a specific type of error. Similar 
code can be used to retry REST calls as well. 

Factors to consider when deciding whether to wrap Web service method invocations in retry code 
include: 

• Is the Web method idempotent? Can it be retried safely without worry of causing duplicate 
transactions? 

• Is the type of failure likely to be resolved on a retry (e.g., connectivity problem), or does it require 
client attention/intervention (e.g., application-level error such as “Employee with this ID already 
exists”)? 

3.5 Troubleshooting 
• To display the most recent error information: 

 
DO $System.OBJ.DisplayError(%objlasterror) 

 

• To see set of Caché objects instantiated in the partition: 
 

DO $SYSTEM.OBJ.ShowObjects(“d”) 

 

• To view the contents of Web service messages being sent to and from your service, use a packet-
level TCP-IP trace/viewer tool. The tool should allow you to see the actual message requests and 
responses in their entirety as Cache sends and receives them over TCP. 
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4 Java-Side Considerations 
4.1 SOAP vs. REST Usage Scenarios 
When building Web services to be consumed by Caché applications, you can choose to build either a 
Service Oriented Architecture Protocol (SOAP)- or Representational State Transfer (REST)-style Web 
service. In some cases, one type of call (SOAP or REST) can be more advantageous when accessed via a 
Caché -based client. 

• Automatic Parsing of Responses—Caché’s SOAP client automatically parses an XML SOAP 
response and returns the results as a Caché object. No XML parsing is necessary by the 
consuming application. 

• Sending Long Responses (e.g., a long XML document)—Caché client object properties 
(generated by its Web Services Description Language [WSDL] compiler) are currently limited to 
32K. So the return of an XML document in a String property, for example, cannot exceed 32K. 
REST-style calls, on the other hand, use a stream on the Caché side, so there is no theoretical 
limit to the length of the response. 

• Parsing Responses Manually—A REST-style service allows a Caché client to manually parse 
the response as an XML document. With SOAP-style services, on the other hand, Caché 
automatically parses the response, which it returns to the client as an object. 

• Standards—SOAP is a formal (and complex) standard. REST is more of an architectural style 
(although at the http level it is based on the http standard). 

• Self-Documenting—SOAP services are self-documenting via their WSDL. REST-style services 
are not currently self-documenting. 

4.2 Supporting HWSC Availability Checking 
HealtheVet Web Services Client (HWSC) provides an M-based console for M system managers to check 
if a particular Web service is available through HWSC. It does this by making a HTTP GET call on some 
resource hosted by the Web service. It deems the service available if it gets a HTTP 200 status code in 
return. 

When registering a Web service, you can pass in a parameter that tells HWSC what resource to make the 
availability check on. 

4.2.1 SOAP Web Service 
For a SOAP Web service, you might configure the resource to be something the Web service makes 
available via HTTP GET (e.g., “?wsdl”). This depends in part on your Web service framework. 

4.2.2 REST Web Service 
For a REST Web service, you might configure the resource to be something that is always available if 
your service is up, but that does not cause any significant processing. You can also add an explicit 
resource to your Web service for availability checking. (The XOBT sample does this for example, adding 
“/available” as an explicit availability checking resource.) 
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5 VistA M-Side API Reference 
5.1 HWSC Caché Classes 

Table 3: HWSC Caché “Public Use” Classes 

Class Brief Description 

xobw.RestRequest decorates %Net.HttpRequest w/ VistA-specific functionality 

xobw.RestRequestFactory factory to create xobw.RestRequest objects 

xobw.WebServiceProxyFactory factory to create Web service proxies 

xobw.error.AbstractError base class for other error classes 

xobw.error.BasicError Object used for basic/standard M error conditions 

xobw.error.DialogError Object used for errors derived from DIALOG file (#.84) 

xobw.error.HttpError Object used for errors derived from HTTP status codes  

xobw.error.ObjectError Object used for errors derived from Caché Object errors 

xobw.error.SoapError Object used for errors derived from SOAP faults 
 

 REF: See Caché’s online “Documatic” documentation to access class-specific documentation for 
the above “public use” classes, post-HWSC installation. 

5.1.1 Accessing Caché “Documatic” for HWSC Caché Classes 
For more information on each HealtheVet Web Services Client (HWSC) error class, see the online 
“Documatic” documentation to access the class-specific documentation. To do this, either: 

1. Right-click on the class in Caché Studio and select “Show Class Documentation.” 
 
Or:  
 
Right-click on the Caché cube in the system tray. 

2. Choose “Documentation” on a local or remote Caché instance where HWSC is installed. 

3. Choose “Class Reference Information” from the Caché “Documentation Home Page” list of 
documentation. 

4. At the top of the left navigation pane in the “Caché Documatic” documentation, select the 
appropriate “Classes in” namespace that contains the HWSC classes. 

5. In the left navigation pane, navigate the package structure to the “xobw.error” node. 
Documentation for each of the five error classes is provided there. 
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5.2 HWSC APIs Overview 
All the HWSC APIs listed in the Table 4 are tags in the XOBWLIB routine. 

Table 4: HWSC APIs 

Category M API Brief Description 

Service Oriented 
Architecture 
Protocol (SOAP) 

$$GETPROXY Return Web Service Proxy. 

 $$GENPORT Import/Register Web Service from Web Services Description 
Language (WSDL). 

 REGSOAP Register Web Service without WSDL. 

 $$GETFAC Return Web Service Proxy Factory. 

 ATTACHDR Add VistaInfoHeader to a Web Service Proxy. 

 UNREG Un-Register/Delete a Web Service. 

Representational 
State Transfer 
(REST) 

$$GETREST Return REST Service Request Object. 

 REGREST Register a REST Service Definition. 

 $$GET Make HTTP GET Call and Force Error if Problem Encountered. 

 $$POST Make HTTP POST Call and Force Error if Problem 
Encountered. 

 $$HTTPCHK Check HTTP Status; if Not OK Create HttpError Object. 

 $$HTTPOK Is Current HTTP Response Status “OK”? 

 $$GETRESTF Return REST Service Request Factory. 

 UNREG Un-Register/Delete a Web Service. 

Error Handling $$EOFAC Error Object Factory: Builds error object based on different 
error conditions present in partition. 

 $$EOSTAT Create ObjectError from Caché Status Object. 

 $$EOHTTP Create HttpError Object from %Net.Response Object. 

 ERRDISP Simple Display of Error to Screen. 

 ERR2ARR Decompose Error Object into M Array. 

 $$STATCHK Check Caché %Library.Status Object: if not OK create 
ObjectError 

 ZTER Decompose Error Object into M Array and Call Kernel Error 
Trap to Record Error. 

Server Lookup $$SKEYADD Add a Server Lookup Key. 

 $$SNAME4KY Retrieve Server Name Associated with a Server Lookup Key. 
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Category M API Brief Description 

Dev Testing 
Only 

DISPSRVS Display Server List to Screen. 

 GETSRV Prompt User to Select Server from List. 

 SELSRV Display Server List to Screen/Prompt for Selection. 
 

5.3 SOAP-Related APIs 
This section describes the HWSC SOAP-related APIs. 

5.3.1 $$GETPROXY^XOBWLIB(): Return Web Service Proxy 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function returns a Caché Web service client proxy object for the 
specified Web service; ready to invoke Web service methods on the specified 
Web server. Use this method to obtain a Web service proxy if you are going to 
invoke Web service methods on a single server only. 

Format: $$GETPROXY^XOBWLIB(web_service_name,web_server_name) 

Input Parameters: web_service_name: (required) Name of entry in the WEB SERVICE file 
(#18.02). 

 web_server_name: (required) Name of entry in the WEB SERVER file 
(#18.12). 

Output: returns: Web service client proxy object ready to invoke Web 
service methods on the specified Web server. 

 

5.3.2 $$GENPORT^XOBWLIB(): Import/Register Web Service from 
WSDL 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function imports a Web Services Description Language (WSDL) 
file and runs the Caché WSDL import wizard. It does the following: 

• Runs the Caché SOAP client wizard to create proxy classes for 
communicating with an external Web service, using the Web service’s 
WSDL file. 

• Creates entry for Web service in the WEB SERVICE file (#18.02). 

Use this call in installation post-init routines. 

Format: $$GENPORT^XOBWLIB(.infoarray) 
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Input Parameters: .infoarray: (required) Passed by reference. Set up array as follows: 

• infoarray(“WSDL FILE”)—WSDL file location 
on host operating system. 

• infoarray(“CACHE PACKAGE NAME”)—
Package name in which to place generated Caché 
classes. 

• infoarray(“WEB SERVICE NAME”)—Name to 
store Web service information in the WEB 
SERVICE file (#18.02). It’s used for lookups and 
should be namespaced for your application. 

• infoarray(“AVAILABILITY RESOURCE”)—
(optional) Resource for HWSC to access via an 
HTTP GET when checking if the Web service is 
available. HWSC appends the resource to the IP 
address and context root of the Web service. 

Output: returns: Returns: 

• Success: Positive value 

• Failure: 0^failure description 
 

5.3.2.1 Example 
The following example shows a successful creation of an entry for the WEB SERVICE file (#18.02): 

SET MYARR(“WSDL FILE”)=“c:\temp\mywsdl.wsdl” 
SET MYARR(“CACHE PACKAGE NAME”)=“mypackage” 
SET MYARR(“WEB SERVICE NAME”)=“ZZMY WEB SERVICE NAME” 
SET MYARR(“AVAILABILITY RESOURCE”)=“?wsdl” 
SET XOBSTAT=$$GENPORT^XOBWLIB(.MYARR) 

 

5.3.3 REGSOAP^XOBWLIB(): Register Web Service without WSDL 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This API registers a Web service by creating an entry in the WEB SERVICE file 
(#18.02) without calling the Caché WSDL compiler. Typical use cases would be: 

• Compiled classes are exported for install on the target system rather than 
just a WSDL, because classes were manually modified by development 
team after initial import. 

• A site calls the WSDL import wizard itself to create a client to a Web 
service, and needs to create a Web Service entry to associate with the 
imported classes. 

Use this call in installation post-init routines. 

Format: REGSOAP^XOBWLIB(wsname,wsroot,class[,path][,resource]) 
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Input Parameters: wsname: (required) Web Service Name. 

 wsroot: (required) Web Service context root (without trailing “/”). 

 class: (required) Caché package + class name of the main class 
created for the Web service client proxy, as created by the 
Caché WSDL compiler. 

 NOTE: The WSDL compiler uses the value of the 
name attribute (of the port element, within the 
service element, in the WSDL file) as the name for 
the main class it creates. 

 NOTE: The element names above can be prefaced 
by a namespace abbreviation (e.g., “wsdl:port”, 
“wsdl:service”) depending on the WSDL file. 

 path: (optional) The WSDL file location on the host operating 
system. The WSDL file is copied into the Web Service file 
entry. 

 resource: (optional) Resource for HWSC to access via an HTTP 
GET when checking if the Web service is available. 
HWSC appends the resource to the IP address and context 
root of the Web service. 

Output: none. 

 

5.3.3.1 Example 
DO REGSOAP^XOBWLIB(“ZZMY WEB SERVICE NAME”,  
  “myContextRoot”,”myPackage.myServiceProxyClassName”) 

 

5.3.4 UNREG^XOBWLIB(): Un-Register/Delete a Web Service 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This API un-registers/deletes a Web service entry in the WEB SERVICE file 
(#18.02). It can be either a SOAP or REST Web service. Also, it removes the 
service from any Web servers to which it is authorized. 

Use this call in installation post-init routines. 

Format: UNREG^XOBWLIB(service_name) 

Input Parameters: service_name: (required) SOAP or REST Web service name in the WEB 
SERVICE file (#18.02). 

Output: none. 
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5.3.5 $$GETFAC^XOBWLIB(): Return Web Service Proxy Factory 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function returns a xobw.WebServiceProxyFactory object for the 
specified Web service. This factory object is useful if you plan to invoke the 
same Web service on multiple Web servers. In this case, you can then use the 
factory object’s getProxy() method to obtain multiple Web service proxies; one 
for each individual server. 

Format: $$GETFAC^XOBWLIB(web_service_name) 

Input Parameters: web_service_name: (required) Name of entry in the WEB SERVICE file 
(#18.02). 

Output: returns: Returns the Web service request factory object 
(xobw.WebServiceProxyFactory). 

 

5.3.6 ATTACHDR^XOBWLIB(): Add VistaInfoHeader to a Web 
Service Proxy 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This API attaches a “VistaInfoHeader” header block to outgoing Web service 
request. This header block contains partition and Kernel environment variables as 
follows: 

• duz: User’s DUZ value. 

• mio: Partition’s $IO value. 

• mjob: Partition’s $JOB value. 

• production: 

o “1”—If the calling VistA system is a Production system 

o “0”—If the calling VistA system is a Test system. 

• station: station # (currently the Kernel site parameter default institution 
value). 

• vpid: the user’s VPID. 

It can be processed by the receiving Web service as a SOAP header by using a 
handler, but that processing is currently intended for HWSC-provided handlers 
only. The sample Web service contains one such handler for XFire, 
gov.va.med.webservice.samples.VistaInfoHandler. 

Format: ATTACHDR^XOBWLIB(client_proxy_object) 

Input Parameters: client_proxy_object: Web service client proxy object. 
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Output: none. 

 

5.4 REST-Related APIs 
This section describes the HWSC REST-related APIs. 

5.4.1 $$GETREST^XOBWLIB(): Return REST Service Request Object 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function returns the REST service request object. Use is to make 
GET, POST, and PUT calls to the specified service and server. 

Format: $$GETREST^XOBWLIB(service_name,server_name) 

Input Parameters: service_name: (required) REST Web service name in WEB SERVICE 
file (#18.02). 

 server_name: (required) Web server name in the WEB SERVER file 
(#18.12). 

Output: returns: Returns the REST service request object 
(xobw.RestRequest). 

 

5.4.2 REGREST^XOBWLIB(): Register a REST Service Definition 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This API registers a REST service by creating an entry in the WEB SERVICE 
file (#18.02). 

Use this call in installation post-init routines. 

Format: REGREST^XOBWLIB(service_name,context_root[,resource]) 

Input Parameters: service_name: (required) REST Web service name in the WEB 
SERVICE file (#18.02). 

 context_root: (required) Context Root for the REST service (without 
leading or trailing “/” characters). 

 resource: (optional) resource for HWSC to access via an HTTP GET 
when checking if the Web service is available. HWSC 
appends the resource to the IP address and context root of 
the Web service. 

Output: none. 
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5.4.3 $$GET^XOBWLIB(): Make HTTP GET Call and Force Error if 
Problem Encountered 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function makes a HTTP GET call and (by default) forces an error 
trap if a problem is encountered. 

Format: $$GET^XOBWLIB(restrequest,resource[,.error][,forceerror]) 

Input Parameters: restrequest: (required) The xobw.RestRequest object. 

 resource: (required) Resource string to use with GET method. 

 .error: (optional) Where to store any error encountered (pass by 
reference); errors returned as a xobw.error object. 

 forceerror: (optional) Force error trap (1) or not (0). Defaults to 1. 

Output: returns: Returns: 

• True—If succeeded. 

• False—If an error occurred. 

 NOTE: If forceerror is set to 1, a $ECODE is thrown and the return value QUIT is never reached. 

 

5.4.4 $$POST^XOBWLIB(): Make HTTP POST Call and Force Error if 
Problem Encountered 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function makes a HTTP POST call and (by default) force an error 
trap if problem encountered. 

Format: $$POST^XOBWLIB(restrequest,resource[,.error][,forceerror]) 

Input Parameters: restrequest: (required) The xobw.RestRequest object. 

 resource: (required) Resource string to use with POST method. 

 .error (optional) Passed by reference. This is where to store any 
error encountered. Errors are returned as a xobw.error 
object. 

 forceerror: (optional) Force error trap (1) or not (0). Defaults to 1. 

Output: returns: Returns: 

• True—If succeeded. 

• False—If an error occurred. 
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 NOTE: If forceerror is set to 1, a $ECODE is thrown and the return value QUIT is never reached. 

 

5.4.5 $$HTTPCHK^XOBWLIB(): Check HTTP Status; if Not OK Create 
HttpError Object 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function checks the HTTP status after a GET, POST, or PUT 
operation has completed; if HTTP status code indicated condition other than 
success, create an HttpError object and return false. 

Format: $$HTTPCHK^XOBWLIB(restrequest[,.error][,forceerror]) 

Input Parameters: restrequest: (required) The xobw.RestRequest object. 

 .error: (optional) Passed by reference. This is where to store any 
error encountered. Errors are returned as a xobw.error 
object. 

 forceerror: (optional) Force error trap (1) or not (0). Defaults to 1. 

Output: returns: Returns: 

• True—If HTTP status is judged OK. 

• False—If a condition other than success occurred. 
 

 NOTE: If forceerror is set to 1, a $ECODE is thrown and the return value QUIT is never reached. 

 

5.4.6 $$HTTPOK^XOBWLIB(): Is Current HTTP Response Status 
“OK”? 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function checks the HTTP status after a GET, POST, or PUT 
operation has completed; if HTTP status code indicated condition other than 
success, return false. 

Format: $$HTTPOK^XOBWLIB(http_status_code) 

Input Parameters: http_status_code: (required) String containing HTTP status code (e.g., from 
xobw.RestRequest.HttpResponse.StatusCode). 

Output: returns: Returns: 

• True—If HTTP status is judged OK. 

• False—If a condition other than success occurred. 



 

HealtheVet Web Services Client (HWSC) 1.0 
Developer’s Guide 33 October 2016 

 

5.4.7 $$GETRESTF^XOBWLIB(): Return REST Service Request 
Factory 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function returns the REST service request factory (use to create 
one or more REST service request objects for a particular Web service). 

Format: $$GETRESTF^XOBWLIB(service_name) 

Input Parameters: service_name: (required) REST Web Service Name in the WEB 
SERVICE file (#18.02). 

Output: returns: Returns the REST service request factory 
(xobw.RestRequestFactory) object. 

 

5.5 Error Handling APIs 
This section describes the HWSC error handling APIs. 

5.5.1 $$EOFAC^XOBWLIB(): Error Object Factory 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function is for use in error trap handlers during SOAP and REST 
Web services calls, to make it easy to process error conditions. It creates an error 
object based on the error condition in the partition, representing a SOAP, Caché 
Object, HWSC dialog, or basic M error. It includes special parsing for <ZSOAP> 
Web service errors. 

It is intended for use in an error trap handler (i.e., a known error condition is 
already present in the partition). 

Format: $$EOFAC^XOBWLIB([soap_proxy_object]) 

Input Parameters: soap_proxy_object (optional) SOAP proxy object (if making a SOAP call). 
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Output: returns: Error Object: Caché Object representing the trapped and 
parsed error (assumes EOFAC^XOBWLIB is being called 
in an error trap handler) is an instance of one of the classes 
in the “xobw.error” package listed in Table 5. 

 
Table 5: Classes in the “xobw.error” package 

Class Error Type 

BasicError Basic M/ Caché error. 

DialogError HWSC fault with corresponding DIALOG file (#.84) entry. 

ObjectError Caché Object-level error. 

SoapError SOAP fault returned from Web service invocation. 

AbstractError Base class for all error types. 
 

The type of error returned can be determined by the %IsA method, which is available in all of the error 
classes in Table 5. 

 NOTE: HWSC’s HttpError objects are not returned by the $$EOFAC call. HTTP errors are 
returned by HWSC as follows: 

• SOAP: Caché returns HTTP errors encountered during SOAP calls in an object error; 
$$EOFAC returns such errors in ObjectError objects. 

• REST: The $$GET and $$POST calls return errors, including an HttpError object if an 
HTTP error is encountered, directly without the need to call $$EOFAC. Alternatively, if 
using %Net.Request directly (rather than through the $$GET/$$POST wrappers), code 
can call $$HTTPCHK to check for HTTP errors and create an HttpError object if an error 
is found. 

 

5.5.2 $$EOSTAT^XOBWLIB(): Create ObjectError from Caché Status 
Object 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function creates the ObjectError from Caché status 
(%Library.Status) object. 

Format: $$EOSTAT^XOBWLIB(status_object) 

Input Parameters: status_object: (required) Caché %Library.Status object. 

Output: returns: Returns the xobw.error.ObjectError object. 
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5.5.3 $$EOHTTP^XOBWLIB(): Create HttpError Object 
from %Net.Response Object 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function creates the HttpError object from the 
Caché %Net.Response object. 

Format: $$EOHTTP^XOBWLIB(response_object) 

Input Parameters: response_object: (required) The %Net.HttpResponse object (e.g., from 
xobw.RestRequest.HttpResponse). 

Output: returns: Returns the xobw.error.HttpError object. 

 

5.5.4 ERRDISP^XOBWLIB(): Simple Display of Error to Screen 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This API does a simple display of an error’s information to the screen. “Error 
Object” should be of the type xobw.error.AbstractError or one of its descendants. 

Format: ERRDISP^XOBWLIB(error_object) 

Input Parameters: error_object: (required) Any HWSC error object in the xobw.error 
package. 

Output: none. 

 

5.5.5 ERR2ARR^XOBWLIB(): Decompose Error Object into M Array 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This API decomposes an error object into an M array carrying the various 
components of the error object. “Error Object” should be of the type 
xobw.error.AbstractError or one of its descendants. 

Format: ERR2ARR^XOBWLIB(error_object,.return_array) 

Input Parameters: error_object: (required) Any HWSC error object in the xobw.error 
package. 

 .return_array: (required) Passed by reference. This is the array in which 
to return the decomposed components of the error object. 
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Output Parameters: .return_array: See the online “Documatic” documentation for xobw.error 
to see what array nodes are populated for each xobw.error 
class type. 

 

5.5.6 $$STATCHK^XOBWLIB(): Check Caché %Library.Status Object 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function checks the Caché %Library.Status status object (returned 
by many Caché Object calls); if not OK create ObjectError object and return 
false. 

Format: $$STATCHK^XOBWLIB(status_object[,.error][,forceerror]) 

Input Parameters: status_object: (required) Caché %Library.Status object. 

 .error: (optional) This is where to store any error encountered 
(pass by ref) – errors returned as a xobw.error object. 

 forceerror: (optional) Force error trap (1) or not (0). Defaults to 1. 

Output: returns: Returns: 

• True—If succeeded. 

• False—If an error occurred. 
 

 NOTE: If forceerror is set to 1, a $ECODE is thrown and the return value QUIT is never reached. 

 

5.5.7 ZTER^XOBWLIB(): Decompose Error Object and Call Error 
Trap 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This API performs two functions: 

• Decomposes error object into an XOB-namespaced M array carrying the 
various components of the error object. 

• Calls Kernel error trap to record error. 

It is useful to decompose the error into an M array before calling the Kernel error 
trap, because otherwise the Caché Object error information is not captured in the 
error trap. 

Format: ZTER^XOBWLIB(error_object) 
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Input Parameters: error_object: (required) Any HWSC error object in the xobw.error 
package (should be of the type xobw.error.AbstractError 
or one of its descendants). 

Output Parameters: error_object: See the online “Documatic” documentation for xobw.error 
to see what array nodes are populated into the XOB-
namespaced array for each xobw.error class type. 

 

5.5.8 Example 
SET MYERROBJ=$$EOFAC^XOBWLIB() 
DO ZTER^XOBWLIB(MYERROBJ) 

 

5.6 Server Lookup APIs 
This section describes the HWSC server lookup APIs. 

5.6.1 $$SKEYADD^XOBWLIB(): Add a Server Lookup Key 
Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function adds a new server lookup key, or edits an existing one. 

Format: $$SKEYADD^XOBWLIB(key_name[,description][,.error]) 

Input Parameters: key_name: (required) Name of server lookup key. 

 description: (optional) Brief description of lookup key. 

 .error: (optional) Passed by reference. This is the location to 
return error description; returned as array nodes starting at 
error(1). 

Output Parameters: .error: Error description nodes are returned in this (optional) error 
parameter. 

Output: returns: Returns: 

• Success: IEN of new or existing entry  
(always > 0). 

• Failure: 0. 
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5.6.2 $$SNAME4KY^XOBWLIB(): Retrieve Server Name Associated 
with a Server Lookup Key 

Reference Type: Supported 

Category: HWSC 

IA #: 5421 

Description: This extrinsic function retrieves the server name associated with a server lookup 
key. 

Format: $$SNAME4KY^XOBWLIB(key_name,.retvalue[,.error]) 

Input Parameters: key_name: (required) Name of server lookup key. 

 .retvalue: (required) Passed by reference. This is the storage location 
to return server name if successful. 

 .error: (optional) Passed by reference. This is the location to 
return error information in if failure. 

Output Parameters: .retvalue: The matching server name is returned in this parameter. 

 .error: An error is returned in the (optional) error parameter: 

[error format]: error code^error text. 

Possible errors: 

• 186008^description—Invalid Server Lookup Key 

• 186009^description—Server Lookup Key Missing 
Association 

 REF: For a list of HWSC error codes, see Table 6. 

Output: returns: Returns: 

• Success: IEN of new or existing entry  
(always > 0). 

• Failure: 0. 
 

5.6.2.1 Example 
SET SUCCESS=$$SNAME4KY^XOBWLIB(“PSO LOCAL SERVER”,.PSOSRVR,.PSOERR) 
I SUCCESS W !, “Using Server: ”,PSOBSRV 
ELSE  W !, “could not retrieve server: ”_$P(PSOERR,U,2) 
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5.7 APIs for Developer Test Account Use Only! 
This section describes the HWSC APIs for developer Test account use only. 

5.7.1 $$DISPSRVS^XOBWLIB: Display Server List to Screen 
Reference Type: Developer Test Account Use Only! 

Category: HWSC 

IA #: N/A 

Description: This extrinsic function displays, on the current device, a list of all entries defined 
in the WEB SERVER file (#18.12). 

The primary purpose of this helper procedure is to help developers create testing 
code and diagnose issues. 

Format: $$DISPSRVS^XOBWLIB 

Input Parameters: none. 

Output: none. However, the procedure displays the following fields for 
each application server entry: 

Web server name, IP Address:Port 
 

5.7.2 $$GETSRV^XOBWLIB: Prompt User to Select Server from List 
Reference Type: Developer Test Account Use Only! 

Category: HWSC 

IA #: N/A 

Description: This extrinsic function is interactive and allows the end-user to select an entry in 
the WEB SERVER file (#18.12). 

The method returns the site name (.01 field) of the entry selected. The primary 
purpose of this helper method is to help developers create testing code. 

Format: $$GETSRV^XOBWLIB 

Input Parameters: none. 

Output: returns: Returns: 

• Name from the entry selected in the WEB 
SERVER file (#18.12). 

• Empty string, if no entry was selected. 
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5.7.3 $$SELSRV^XOBWLIB: Display Server List to Screen/Prompt 
for Selection 

Reference Type: Developer Test Account Use Only! 

Category: HWSC 

IA #: N/A 

Description: This extrinsic function provides an interactive display of the WEB SERVER, 
returning user-selected Web server (combination of $$DISPSRVS^XOBWLIB: 
Display Server List to Screen and $$GETSRV^XOBWLIB: Prompt User to 
Select Server from List APIs). 

Format: $$SELSRV^XOBWLIB 

Input Parameters: none. 

Output: returns: Returns: 

• Name from the entry selected in the WEB 
SERVER file (#18.12). 

• Empty string, if no entry was selected. 
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6 Appendix A—HWSC Error Codes 
Error code entries are contained in the DIALOG file (#.84). Table 6 lists the entries used in HealtheVet 
Web Services Client (HWSC): 

Table 6: HWSC APIs Error Codes 

Dialog Number / Error Code Short Description 

186001 (reserved for future use) 

186002 Web Server Disabled 

186003 Web Service not registered to server 

186004 Web Service disabled for Web server 

186005 Web Server not defined 

186006 Web Service not defined 

186007 Web Service is wrong type. 

186008 Invalid Server Lookup Key 

186009 Server Lookup Key Missing Association 
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Glossary 

Table 7: Glossary 

Term Description 

AA Authentication and Authorization. 

Business Delegate A business delegate acts as a representative of the client components and 
is responsible for hiding the underlying implementation details of the 
business service. It knows how to look up and access the business 
services. 

Certificate Authority (CA) “A certificate authority (CA) is an entity that creates and then “signs” a 
document or file containing the name of a user and the user’s public key. 
Anyone can verify that the file was signed by no one other than the CA by 
using the public key of the CA. By trusting the CA, one can develop trust in 
a user’s public key. 
The trust in the certification authority’s public key can be obtained 
recursively. One can have a certificate containing the certification 
authority’s public key signed by a superior certification authority (Root CA) 
that he already trusts. Ultimately, one need only trust the public keys of a 
small number of top-level certification authorities. Through a chain of 
certificates (Sub CAs), trust in a large number of users’ signatures can be 
established. 
A broader application of digital certification includes not only name and 
public key but also other information. Such a combination, together with a 
signature, forms an extended certificate. The other information may 
include, for example, electronic-mail address, authorization to sign 
documents of a given value, or authorization to sign other certificates.”2 
Currently, the Department of Veterans Affairs (VA) uses VeriSign, Inc. as 
the Certificate Authority (CA). 

Cryptography The system or method used to write or decipher messages in code (see 
“Encryption” and “Decryption”). 

CSR Certificate Signing Request. 

Decryption Using a secret key to unscramble data or messages previously encrypted 
with a cipher or code so that they are readable. In some cases, encryption 
algorithms are one directional (i.e., they only encode and the resulting data 
cannot be unscrambled). 

Encryption Scrambling data or messages with a cipher or code so that they are 
unreadable without a secret key. In some cases, encryption algorithms are 
one directional (i.e., they only encode and the resulting data cannot be 
unscrambled). 

HTTP Protocol Hyper Text Transfer Protocol is the underlying protocol used by the World 
Wide Web. HTTP defines how messages are formatted and transmitted, 
and what actions Web servers and browsers should take in response to 
various commands. 

HWSC HealtheVet Web Services Client is a support framework that offers VistA M 
applications real-time, synchronous client access to n-tier (J2EE) Web 

                                                      
2 DEA Web site (http://www.deadiversion.usdoj.gov/ecomm/csos/archive/conops.pdf): “Public Key Infrastructure 
Analysis Concept of Operations,” Section 3.4.3 “Public Key - The I in PKI.” 

http://www.deadiversion.usdoj.gov/ecomm/csos/archive/conops.pdf
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Term Description 
services through the supplied M-based and Caché APIs. 

Intermediate CA Intermediate Certificate Authority. Currently, the Department of Veterans 
Affairs (VA) uses VeriSign, Inc. as the Certificate Authority (CA). VeriSign 
requires the use of a CA Intermediate Certificate. The CA Intermediate 
Certificate is used to sign the peer’s (server) certificate. This provides 
another level of validation-managed Public Key Interface (PKI) for Secure 
Socket Layer (SSL). 

J2EE The Java 2 Platform, Enterprise Edition (J2EE) defines the standard for 
developing multi-tier enterprise applications. J2EE defines components 
that function independently, that can be deployed on servers, and that can 
be invoked by remote clients. The J2EE platform is a set of standard 
technologies and is not itself a language. The current J2EE platform is 
version 1.4. 

PKI “Public Key Infrastructure technology adds the following security services 
to an electronic ordering system: 

• Confidentiality—Only authorized persons have access to data. 

• Authentication—Establishes who is sending/receiving data. 

• Integrity—Data has not been altered in transmission. 

• Non-repudiation—Parties to a transaction cannot convincingly 
deny having participated in the transaction.”3 

Private Certificate This is the certificate that contains both the user’s public and private keys. 
This certificate resides on a smart card. 

Public Certificate This is the certificate that contains the user’s public key. This certificate 
resides in a file or database. 

REST Representational State Transfer (REST) is an architectural style for 
simplified Web services, based on accessing resources via HTTP. 

Root CA Root Certificate Authority. In cryptography and computer security, a root 
certificate is an unsigned public key certificate, or a self-signed certificate, 
and is part of a public key infrastructure scheme. The most common 
commercial variety is based on the ITU-T X.509 standard. Normally an 
X.509 certificate includes a digital signature from a Certificate Authority 
(CA), which vouches for correctness of the data contained in a certificate. 
Root certificates are implicitly trusted. 
Currently, the Department of Veterans Affairs (VA) uses VeriSign, Inc. as 
the Certificate Authority (CA). 

Service Facade The Service Façade acts as the server-side bridge between the Business 
Delegate and the capability. The Service Façade is responsible for taking 
a request from the delegate and doing any translation necessary to invoke 
the capability and provide the response to the delegate. 

Servlet Container A servlet is managed by a servlet container (formerly referred to as servlet 
engine.) The servlet container is responsible for loading and instantiating 
the servlets and then calling init(). When a request is received by the 

                                                      
3 DEA website (http://www.deadiversion.usdoj.gov/ecomm/csos/archive/conops.pdf): “Public Key Infrastructure 
Analysis Concept of Operations,” Section 3.3 “Security.” 
 

http://www.adp-gmbh.ch/java/servlets/interface.html#init
http://www.deadiversion.usdoj.gov/ecomm/csos/archive/conops.pdf
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Term Description 
servlet container, it decides what servlet to call in accordance with a 
configuration file. A famous example of a servlet container is Tomcat. 
The servlet Container calls the servlet’s service() method and passes an 
instance of ServletRequest and ServletResponse. Depending on the 
request’s method (mostly GET and POST), service calls doGet() or 
doPost(). These passed instances can be used by the servlet to find out 
who the remote user is, if and what HTTP POST parameters have been 
set and other characteristics. 
Together with the Web server (or application server) the servlet container 
provides the HTTP interface to the world. 
It is also possible for a servlet container to run standalone (without Web 
server), or to even run on a host other than the Web server. 4 

Signed Certificate The Signed Certificate (a.k.a. self-signed certificate) is the peer’s (server) 
digital certificate. Currently, the Department of Veterans Affairs (VA) uses 
VeriSign, Inc. as the Certificate Authority (CA) to sign (validate) digital 
certificates. VeriSign, Inc. requires the use of CA Root and Intermediate 
Certificates. The Subject and Issuer have the same content when signed 
by VeriSign; the issuer has VeriSign’s content. 

SOAP Simple Object Access Protocol (SOAP) is a protocol for exchanging 
structured information over a network, often via HTTP. 

SSL Secure Socket Layer. A low-level protocol that enables secure 
communications between a server and a browser. It provides 
communication privacy. 

TLS Transport Layer Security. Transport Layer Security (TLS) and its 
predecessor, Secure Socket Layer (SSL), are cryptographic protocols 
which provide secure communications on the Internet for such things as 
Web browsing, e-mail, Internet faxing, instant messaging and other data 
transfers. There are slight differences between SSL 3.0 and TLS 1.0, but 
the protocol remains substantially the same. 

Web Service A Web resource meant to be consumed over a network via HTTP, by an 
autonomous program. 

WebLogic An Oracle® product; WebLogic Server 8.1, 9.2, and 10.x is a J2EE- v1.3-
certified application server for developing and deploying J2EE enterprise 
applications. 

WSDL Web Services Definition Language. “WSDL is an XML-based service 
description on how to communicate using Web services. The WSDL 
defines services as collections of network endpoints, or ports. WSDL 
specification provides an XML format for documents for this purpose. 
The abstract definition of ports and messages is separated from their 
concrete use or instance, allowing the reuse of these definitions. A port is 
defined by associating a network address with a reusable binding, and a 
collection of ports define a service. Messages are abstract descriptions of 
the data being exchanged, and port types are abstract collections of 
supported operations. The concrete protocol and data format 
specifications for a particular port type constitutes a reusable binding, 

                                                      
4 From the ADP –Analyse, Design & Programing GmbH website: 
http://www.adp-gmbh.ch/java/servlets/container.html 
 

http://jakarta.apache.org/tomcat/
http://www.adp-gmbh.ch/web/http/methods.html#post
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Format
http://www.adp-gmbh.ch/java/servlets/container.html
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Term Description 
where the messages and operations are then bound to a concrete network 
protocol and message format. In this way, WSDL describes the public 
interface to the Web service. 
WSDL is often used in combination with SOAP and XML Schema to 
provide Web services over the Internet. A client program connecting to a 
Web service can read the WSDL to determine what functions are available 
on the server. Any special datatypes used are embedded in the WSDL file 
in the form of XML Schema. The client can then use SOAP to actually call 
one of the functions listed in the WSDL.”5 

 

 REF: For a list of commonly used terms and definitions, see the OI&T Master Glossary VA 
Intranet Website. 
 
For a list of commonly used acronyms, see the VA Acronym Lookup Intranet Website. 

 

                                                      
5 http://en.wikipedia.org/wiki/Web_Services_Description_Language 
 

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datatypes
http://en.wikipedia.org/wiki/Web_Services_Description_Language
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