
VA FileMan 22.2

Developer’s Guide

January 2017

Department of Veterans Affairs (VA)

Office of Information and Technology (OI&T)

Enterprise Program Management Office (EPMO)

VA FileMan 22.2

Developer’s Guide ii January 2017

Revision History

Date Revision Description Author

11/29/2016 1.2 Updates for patch DI*22.2*4:

 Added NOTE in Section 3.5.8
(FIND^DIC(): Finder) for the output of
COMPUTED date fields.

 Added NOTE to Section 2.3.47 to clarify
syntax checking in ^DIR.

 Added NOTE to Section 2.3.47 to
document new functionality in ^DIR to exit
after 50 failed reads.

 Updated Section 2.3.47.1 to document
the use of DIR(“A”,#), DIR(“L”,#) and
DIR(“?”,#) variables.

VA FileMan 23 Development
Team

Technical Writer: T. K.

08/05/2016 1.1 Tech Edits:

 Updated the “Assigning a Location for
Fields Stored within a Global” section to
expand capacity limit of global data
storage capacity to 4094 characters.

 Removed all tables used for formatting
(not data tables) for Section 508
conformance.

 Updated the “LANG^DIALOGZ: File
Modification for Multiple Languages”
section and Figure 311, Figure 312, and
Figure 313.

Developer: R. D.

Technical Writer: T. B.

08/03/2016 1.0 Initial release of VA FileMan 22.2 Developer’s
Guide.

VA FileMan 22.2
Development Team

 REF: For the current patch history related to this software, see the Patch Module (i.e., Patch User

Menu [A1AE USER]) on FORUM.

VA FileMan 22.2

Developer’s Guide iii January 2017

Table of Contents

Revision History ... ii

List of Figures .. xi

List of Tables ... xxi

Orientation .. xxv

1 Introduction ... 1

1.1 What is VA FileMan? ... 1

1.2 Functional Description ... 1

1.3 Standalone VA FileMan ... 2

I. Major APIs .. 3

2 Classic VA FileMan API .. 3

2.1 Introduction .. 3

2.2 Classic Calls Cross-referenced by Category .. 4

2.3 Classic Calls Presented in Alphabetical Order ... 7

2.3.1 Introduction to Date/Time Formats: %DT ... 7

2.3.2 X ^DD(“DD”): Converts Internal to External Date Format 7

2.3.3 EN^DDIOL: Message Loader... 8

2.3.4 ^DIAC: File Access Determination ..12

2.3.5 EN^DIB: User Controlled Editing ..13

2.3.6 ^DIC: Lookup/Add ...13

2.3.7 ^DIC and ^DIE Examples ...24

2.3.8 IX^DIC: Lookup/Add ...27

2.3.9 DO^DIC1: File Information Setup ..30

2.3.10 MIX^DIC1: Lookup/Add ..31

2.3.11 WAIT^DICD: Wait Messages ..33

2.3.12 FILE^DICN: Add ...33

2.3.13 YN^DICN: Yes/No ..35

2.3.14 DQ^DICQ: Entry Display for Lookups ...36

2.3.15 DT^DICRW: FM Variable Setup ..37

2.3.16 EN^DID: Data Dictionary Listing ...37

2.3.17 ^DIE: Edit Data ...38

2.3.18 ^DIEZ: INPUT Template Compilation ..47

2.3.19 EN^DIEZ: Input Template Compilation ...48

2.3.20 ^DIK: Delete Entries ...48

2.3.21 EN^DIK: Reindex ..50

2.3.22 EN1^DIK: Reindex ..52

2.3.23 EN2^DIK: Reindex ..53

2.3.24 ENALL^DIK: Reindex ...54

2.3.25 ENALL2^DIK: Reindex ...55

2.3.26 IX^DIK: Reindex ...57

2.3.27 IX1^DIK: Reindex ...58

VA FileMan 22.2

Developer’s Guide iv January 2017

2.3.28 IX2^DIK: Reindex ...59

2.3.29 IXALL^DIK: Reindex ...60

2.3.30 IXALL2^DIK: Reindex ...61

2.3.31 ^DIKZ: Cross-reference Compilation ...62

2.3.32 EN^DIKZ: Compile ..62

2.3.33 $$ROUSIZE^DILF: Routine Size ..63

2.3.34 ^DIM: M Code Validation ..63

2.3.35 DT^DIO2: Writes External Date from Internal63

2.3.36 ^DIOZ: SORT Template Compilation ..64

2.3.37 EN1^DIP: Print Data ...64

2.3.38 ^DIPT: Print Template Display ..78

2.3.39 DIBT^DIPT: SORT Template Display ...79

2.3.40 ^DIPZ: PRINT Template Compilation ..79

2.3.41 EN^DIPZ: Print Template Compilation ..80

2.3.42 D^DIQ: Display ...80

2.3.43 DT^DIQ: Display ...80

2.3.44 EN^DIQ: Display ...81

2.3.45 Y^DIQ: Display ...82

2.3.46 EN^DIQ1: Data Retrieval ..82

2.3.47 ^DIR: Reader ..85

2.3.48 EN^DIS: Search File Entries ...99

2.3.49 EN^DIU2: Data Dictionary Deletion .. 100

2.3.50 EN^DIWE: Text Editing ... 101

2.3.51 ^DIWF: Form Document Print ... 103

2.3.52 EN1^DIWF: Form Document Print .. 104

2.3.53 EN2^DIWF: Form Document Print .. 105

2.3.54 ^DIWP: Formatter/Word-processing Print 105

2.3.55 ^DIWW: WP Print ... 107

2.3.56 ^%DT: Validates Date/Time Input and Converts to Internal Format 107

2.3.57 DD^%DT: Converts Internal to External Date Format 111

2.3.58 ^%DTC: Returns Number of Days between Two Dates 112

2.3.59 C^%DTC: Adds/Subtracts Number of Days and Return VA FileMan
and $H Formats .. 112

2.3.60 COMMA^%DTC: Formats Number to String with Commas 113

2.3.61 DW^%DTC: Converts VA FileMan Date to $H Format and Outputs
Name of the Day .. 114

2.3.62 H^%DTC: Converts VA FileMan Date to $H Format 114

2.3.63 HELP^%DTC: Display Help Prompt Based on %DT and %DT(0) ... 115

2.3.64 NOW^%DTC: Returns Current Date/Time in VA FileMan and $H
Formats .. 115

2.3.65 S^%DTC: Converts Seconds to Hours, Minutes, and Seconds into
Decimal Part of VA FileMan Date ... 115

2.3.66 YMD^%DTC: Converts $H to VA FileMan Format 116

2.3.67 YX^%DTC: Returns Printable and VA FileMan Formats from $H 116

VA FileMan 22.2

Developer’s Guide v January 2017

2.3.68 %XY^%RCR: Array Moving .. 116

3 Database Server (DBS) API .. 118

3.1 Introduction .. 118

3.2 How to Use DBS Calls ... 118

3.2.1 Format and Conventions of the Calls .. 118

3.2.2 IENS: Identify Entries and Subentries ... 119

3.2.3 FDA: Format of Data Passed to and from VA FileMan 120

3.2.4 Documentation Conventions ... 121

3.3 How the Database Server (DBS) Communicates ... 121

3.3.1 Overview .. 121

3.3.2 How Information Is Returned .. 121

3.3.3 Contents of Arrays .. 122

3.3.4 Obtaining Formatted Text from the Arrays 125

3.3.5 Cleaning Up the Output Arrays ... 125

3.3.6 Example of Call to VA FileMan DBS ... 126

3.4 Database Server Calls Cross-referenced by Category 127

3.5 Database Server (DBS) Calls Presented in Alphabetical Order) 129

3.5.1 CREIXN^DDMOD: New-Style Cross-Reference Creator 129

3.5.2 DELIX^DDMOD: Traditional Cross-reference Delete 140

3.5.3 DELIXN^DDMOD: New-Style Index Delete 143

3.5.4 FILESEC^DDMOD: Set File Protection Security Codes 145

3.5.5 BLD^DIALOG(): DIALOG Extractor .. 147

3.5.6 $$EZBLD^DIALOG(): DIALOG Extractor (Single Line) 153

3.5.7 MSG^DIALOG(): Output Generator .. 154

3.5.8 FIND^DIC(): Finder ... 157

3.5.9 $$FIND1^DIC(): Finder (Single Record) ... 178

3.5.10 LIST^DIC(): Lister ... 190

3.5.11 FIELD^DID(): DD Field Retriever .. 209

3.5.12 FIELDLST^DID(): DD Field List Retriever 211

3.5.13 FILE^DID(): DD File Retriever... 212

3.5.14 FILELST^DID(): DD File List Retriever .. 214

3.5.15 $$GET1^DID(): Attribute Retriever ... 215

3.5.16 CHK^DIE(): Data Checker .. 217

3.5.17 FILE^DIE(): Filer ... 218

3.5.18 HELP^DIE(): Helper .. 222

3.5.19 $$KEYVAL^DIE(): Key Validator ... 224

3.5.20 UPDATE^DIE(): Updater .. 226

3.5.21 VAL^DIE(): Validator ... 234

3.5.22 VALS^DIE(): Fields Validator .. 237

3.5.23 WP^DIE(): Word-processing Filer ... 241

3.5.24 CLEAN^DILF: Array and Variable Clean-up 242

3.5.25 $$CREF^DILF(): Root Converter (Open to Closed Format) 243

3.5.26 DA^DILF(): DA() Creator ... 244

3.5.27 DT^DILF(): Date Converter ... 245

VA FileMan 22.2

Developer’s Guide vi January 2017

3.5.28 FDA^DILF(): FDA Loader ... 247

3.5.29 $$HTML^DILF(): HTML Encoder/Decoder 248

3.5.30 $$IENS^DILF(): IENS Creator .. 249

3.5.31 LOCK^DILF(): Lock Global Reference .. 249

3.5.32 $$OREF^DILF(): Root Converter (Closed to Open Format) 250

3.5.33 $$VALUE1^DILF(): FDA Value Retriever (Single) 250

3.5.34 VALUES^DILF(): FDA Values Retriever ... 251

3.5.35 $$EXTERNAL^DILFD(): Converter to External 252

3.5.36 $$FLDNUM^DILFD(): Field Number Retriever 257

3.5.37 PRD^DILFD(): Package Revision Data Initializer 258

3.5.38 RECALL^DILFD(): Recall Record Number...................................... 258

3.5.39 $$ROOT^DILFD(): File Root Resolver .. 259

3.5.40 $$VFIELD^DILFD(): Field Verifier ... 261

3.5.41 $$VFILE^DILFD(): File Verifier ... 261

3.5.42 $$GET1^DIQ(): Single Data Retriever .. 262

3.5.43 GETS^DIQ(): Data Retriever... 265

II. ScreenMan .. 270

4 ScreenMan Forms ... 270

4.1 Introduction .. 270

4.2 Form Layout: Forms and Pages ... 270

4.2.1 Form Structure .. 270

4.2.2 Linking Pages of a Form ... 271

4.3 Features .. 272

4.3.1 Displaying Multiples in Repeating Blocks .. 272

4.3.2 Form-Only Fields .. 274

4.3.3 Relational Navigation: Forward Pointers ... 276

4.3.4 Relational Navigation: Backward Pointers 279

4.3.5 Computed Fields .. 279

4.3.6 The DDSBR Variable .. 281

4.3.7 DDSSTACK Variable .. 282

4.3.8 Data Filing (When Is It Performed?) .. 283

4.3.9 Word Processing Field Data Indication ... 283

4.4 Form Property Reference ... 283

4.4.1 Form Properties .. 283

4.4.2 Page Properties .. 284

4.4.3 Block Properties ... 286

4.4.4 Field Properties .. 288

4.5 ScreenMan Menu Options ... 293

4.5.1 Edit/Create a Form ... 293

4.5.2 Run a Form .. 293

4.5.3 Delete a Form ... 294

4.5.4 Purge Unused Blocks ... 295

4.6 Callable Routines ... 296

VA FileMan 22.2

Developer’s Guide vii January 2017

4.7 Programmer Mode Utilities ... 296

4.7.1 ^DDGF ... 296

4.7.2 CLONE^DDS .. 297

4.7.3 PRINT^DDS ... 299

4.7.4 RESET^DDS .. 300

5 ScreenMan Form Editor ... 301

5.1 Introduction .. 301

5.2 Invoking the Form Editor .. 301

5.3 Command Summary .. 302

5.3.1 Navigating on the Main Screen and Block Viewer Screen 302

5.3.2 Quick Page Navigation ... 302

5.3.3 Moving Screen Elements .. 303

5.3.4 Adding, Selecting, and Editing .. 303

5.4 The Main Screen.. 304

5.4.1 Exiting, Quitting, Saving, and Obtaining Help 304

5.5 Block Viewer Screen .. 305

5.6 Navigating on the Form Editor Screens .. 306

5.7 Going to Another Page .. 306

5.8 Adding Pages, Blocks, and Fields .. 307

5.8.1 Adding Pages ... 307

5.8.2 Adding Blocks ... 308

5.8.3 Adding Fields .. 308

5.9 Selecting and Moving Screen Elements ... 309

5.9.1 Selecting Screen Elements ... 309

5.9.2 Moving Screen Elements .. 309

5.10 Editing Properties... 310

5.10.1 Editing Field Properties ... 310

5.10.2 Editing Block Properties .. 312

5.10.3 Editing Page Properties .. 313

5.10.4 Editing Form Properties .. 315

5.11 Choosing another Form ... 315

5.12 Deleting Screen Elements (Fields, Blocks, Pages, and Forms) 316

5.12.1 Deleting Fields .. 316

5.12.2 Deleting Blocks ... 316

5.12.3 Deleting Pages ... 316

5.12.4 Deleting Forms ... 316

6 ScreenMan API ... 317

6.1 Introduction .. 317

6.2 Invoke ScreenMan ... 317

6.2.1 ^DDS .. 317

6.3 Retrieve/Stuff Fields ... 320

6.3.1 $$GET^DDSVAL() .. 320

6.3.2 PUT^DDSVAL() .. 321

6.3.3 $$GET^DDSVALF() .. 323

VA FileMan 22.2

Developer’s Guide viii January 2017

6.3.4 PUT^DDSVALF() .. 324

6.4 Help Messages .. 325

6.4.1 HLP^DDSUTL() .. 325

6.4.2 MSG^DDSUTL() ... 326

6.5 Refresh Screen .. 326

6.5.1 REFRESH^DDSUTL() .. 326

6.6 Run-Time Field Status ... 326

6.6.1 REQ^DDSUTL() ... 326

6.6.2 UNED^DDSUTL() ... 327

III. Other APIs .. 328

7 Auditing API .. 328

7.1 Introduction .. 328

7.1.1 TURNON^DIAUTL(): Utility to Enable/Disable Auditing................... 328

7.1.2 LAST^DIAUT): Who Last Changed Data .. 329

7.1.3 CHANGED^DIAUTL(): Historical Data Retriever 330

8 Browser API .. 332

8.1 Browser (DDBR) .. 332

8.1.1 EN^DDBR... 332

8.1.2 BROWSE^DDBR () .. 333

8.1.3 WP^DDBR () .. 336

8.1.4 DOCLIST^DDBR () ... 338

8.1.5 $$TEST^DDBRT .. 340

8.1.6 CLOSE^DDBRZIS .. 341

8.1.7 OPEN^DDBRZIS .. 341

8.1.8 POST^DDBRZIS .. 342

9 Import and Export Tools .. 343

9.1 Introduction .. 343

9.1.1 FILE^DDMP: Data Import ... 343

9.1.2 EXPORT^DDXP (): Data Export ... 349

10 Extract Tool ... 355

10.1 Introduction .. 355

10.1.1 EN^DIAXU: Extract Data .. 355

10.1.2 EXTRACT^DIAXU (): Extract Data ... 357

11 Filegrams API .. 363

11.1 Introduction .. 363

11.1.1 ^DIFG: Installer ... 363

11.1.2 EN^DIFGG: Generator.. 365

12 Create Sort Templates Silently API ... 367

12.1 BUILDNEW^DIBTED(): Sort Template Builder ... 367

IV. Developer Tools ... 369

13 ^DI: Programmer Access ... 369

14 ^DIKCBLD: Build an M Routine that Makes a Call to CREIXN^DDMOD.......... 370

14.1 Details .. 370

VA FileMan 22.2

Developer’s Guide ix January 2017

15 LANG^DIALOGZ: File Modification for Multiple Languages 372

16 Global File Structure .. 377

16.1 Introduction .. 377

16.2 Data Storage Conventions ... 377

16.3 File’s Entry in the Dictionary of Files .. 378

16.4 File Header .. 378

16.5 File Entries (Data Storage) ... 379

16.6 Cross-References .. 380

16.7 INDEX File ... 381

16.8 KEY File ... 381

16.9 Attribute Dictionary: ^DD(Filenumber ... 382

16.9.1 File Characteristics Nodes .. 382

16.9.2 Field Definition 0-Node ... 386

16.9.3 Other Field Definition Nodes ... 389

16.9.4 Reading the Attribute Dictionary—An Example 391

17 Advanced File Definition .. 393

17.1 Introduction .. 393

17.2 File Global Storage .. 393

17.2.1 Storing Data in a Global other than ^DIZ .. 393

17.3 Field Global Storage .. 394

17.3.1 Assigning a Location for Fields Stored within a Global 394

17.3.2 Storing Data by Position within a Node ... 395

17.4 Assigning Sub-Dictionary Numbers .. 395

17.5 Computed Expressions .. 396

17.5.1 Computed Dates ... 396

17.5.2 Computed Pointers ... 396

17.5.3 Computed Multiples .. 397

17.6 MUMPS Data Type .. 398

17.7 Screened Pointers and Set of Codes ... 398

17.8 INPUT Transform ... 399

17.8.1 INPUT Transforms and the Verify Fields Option 402

17.9 OUTPUT Transform ... 402

17.10 Special Lookup Programs .. 403

17.11 Post-Selection Action ... 403

17.12 Audit Condition .. 404

17.13 Editing a Cross-Reference ... 404

17.14 Executable Help ... 405

18 Trigger Cross-References .. 407

18.1 Introduction .. 407

18.2 Trigger on the Same File .. 408

18.3 Triggers for Different Files .. 410

19 DIALOG File .. 412

19.1 DIALOG File: User Messages .. 412

19.1.1 Introduction ... 412

VA FileMan 22.2

Developer’s Guide x January 2017

19.1.2 Use of the DIALOG File .. 412

19.1.3 Creating DIALOG File Entries ... 413

19.2 Internationalization and the DIALOG File ... 414

19.2.1 Role of the VA FileMan DIALOG File in Internationalization 414

19.2.2 Use of the DIALOG File in Internationalization 414

19.2.3 Creating Non-English Text in the DIALOG File 415

19.3 VA FileMan LANGUAGE File ... 416

19.3.1 Introduction ... 416

19.3.2 Use of the LANGUAGE File .. 416

19.3.3 Creating LANGUAGE File Entries... 417

20 VA FileMan Functions (Creating) ... 419

20.1 Introduction .. 419

20.2 Function File Entries .. 419

21 DIFROM ... 421

21.1 Introduction .. 421

21.2 Exporting Data ... 421

21.2.1 Preparing To Run DIFROM .. 421

21.2.2 PACKAGE File and DIFROM .. 422

21.3 Order Entry and DIFROM .. 427

21.4 Running DIFROM (Steps 1-17) .. 428

21.4.1 Starting DIFROM .. 428

21.4.2 Preliminary Validations ... 428

21.4.3 Package Identification ... 429

21.4.4 Identifying the Init Routines... 429

21.4.5 Specifications for Exported Files ... 429

21.4.6 Entering Current Version Information .. 430

21.4.7 Including Templates (No Package File Entry) 430

21.4.8 Including Other Package Components ... 430

21.4.9 Exporting File Security .. 430

21.4.10 Specifying Routine Size .. 430

21.4.11 DIFROM Gathers Miscellaneous Package Components 431

21.4.12 DIFROM Builds Routines Containing Data Dictionaries 431

21.4.13 DIFROM Builds Routines Containing Data Values 432

21.4.14 DIFROM Builds Routines Containing Security Access Codes 432

21.4.15 DIFROM Gathers Templates and Forms .. 433

21.4.16 DIFROM Completes Building Routines of Package Components ... 433

21.4.17 DIFROM Completes the Code that Runs the Init 433

21.5 Importing Data ... 433

21.6 DIFROM: Running an INIT (Steps 1-16) .. 433

21.6.1 Preliminary Steps ... 434

21.6.2 Check of Version Number ... 434

21.6.3 Running Environment Check Routine (DIFROM and DIFQ Variables)
 ... 435

21.6.4 Determining Install Status of DDs and Data 435

VA FileMan 22.2

Developer’s Guide xi January 2017

21.6.5 Determining Install Status of Security Codes 436

21.6.6 Determining Install Status of other Package Components 437

21.6.7 Starting the Update ... 437

21.6.8 Running the Pre-init after User Commit Routine 437

21.6.9 Installing Data Dictionaries ... 437

21.6.10 Installing Data ... 438

21.6.11 Reindexing the Files ... 440

21.6.12 Installing Other Package Components .. 440

21.6.13 General Processing .. 441

21.6.14 Special Processing ... 442

21.6.15 Running the Post-Initialization Routine ... 443

21.6.16 Recording the Install on the Target System 443

22 Appendix A—VA FileMan Error Codes .. 444

22.1 Introduction .. 444

22.2 Error Codes ... 444

Glossary .. 471

Index ... 476

List of Figures

Figure 1: Type of M System Prompt ..xxix

Figure 2: X ^DD(“DD”) API—Example ... 8

Figure 3: EN^DDIOL API—Sample .ARRAY Input Parameter Array Name 9

Figure 4: EN^DDIOL API—Sample GLOBAL_ROOOT Input Parameter (1 of 2) 9

Figure 5: EN^DDIOL API—Sample GLOBAL_ROOOT Input Parameter (2 of 2) 9

Figure 6: EN^DDIOL—Example: Write Identifier Node .. 10

Figure 7: EN^DDIOL—Example: Write Identifier Node Converted ... 10

Figure 8: EN^DDIOL—Example: Input .. 10

Figure 9: EN^DDIOL—Example: Output in Scroll Mode .. 10

Figure 10: EN^DDIOL—Example: Output in DBS Mode .. 11

Figure 11: EN^DDIOL—Example: Input Passing a Text Array... 11

Figure 12: EN^DDIOL—Example: Input Passing a Global Containing Text 11

Figure 13: EN^DDIOL—Sample Formatting for Arrays .. 12

Figure 14: ^DIC—Sample Code to: Use ^DIC to Interactively Select a Top-level Record, Create
a Subentry; and Use ^DIE to Edit Fields in the Subentry .. 25

Figure 15: ^DIC—Sample Code to Display a List of Entries from two Different Files Starting with
Different Letters (1 of 2) ... 25

Figure 16: ^DIC—Sample Code to Display a List of Entries from two Different Files Starting with
Different Letters (2 of 2) ... 26

Figure 17: ^DIC—Example: Input to Display Entries from the Pointing File Using the “AC”
Index .. 26

Figure 18: ^DIC—Example: Output Prompts ... 27

VA FileMan 22.2

Developer’s Guide xii January 2017

Figure 19: WAIT^DICD API—Sample VA FileMan Informational Messages: “Wait” Type
Messages ... 33

Figure 20: ^DIE API—Sample Code Using Incremental Locks .. 42

Figure 21: ^DIE API—Sample Code to Calculate Y Based on X ... 43

Figure 22: ^DIE API—Prompting User for Specific Fields in Multiples 44

Figure 23: ^DIE API—Editing a Subfile Directly ... 44

Figure 24: ^DIE API—Sample INPUT Template .. 45

Figure 25: ^DIE API—Sample Array when DIEFIRE Contains an L and a Key is Invalid 46

Figure 26: ^DIE API—Sample Code Setting the Variable X to the String “BADKEY”, if Any of the
Keys is Invalid .. 47

Figure 27: ^DIK API—Sample Code Looping to Delete Several Entries 49

Figure 28: ^DIK API—Sample Code Deleting Single-valued Fields from a File 50

Figure 29: ^DIK API—Sample Code Deleting a Multiple Sub-field from a File 50

Figure 30: IXALL^DIK API—Example 1: Input ... 61

Figure 31: IXALL^DIK API—Example 2: Input ... 61

Figure 32: $$ROUSIZE^DILF API—Example: Input and Output.. 63

Figure 33: DT^DIO2 API—Example: Input and Output .. 63

Figure 34: EN1^DIP API—Example 1: Cross-reference .. 74

Figure 35: EN1^DIP API—Example 1: Setting Up Variables ... 75

Figure 36: EN1^DIP API—Example 2: Sample Record Numbers .. 75

Figure 37: EN1^DIP API—Example 2: Input to Sort and Print Records 75

Figure 38: EN1^DIP API—Example 3: Cross-reference .. 75

Figure 39: EN1^DIP API—Example 3: Input Setting Variables to Sort and Print 75

Figure 40: EN1^DIP API—Sort BY(0) Example ... 77

Figure 41: EN^DIQ1 API—Data Retrieval: DIQ and DIQ(0) Undefined 84

Figure 42: EN^DIQ1 API—Data Retrieval: DIQ(0) Defined, DIQ Undefined 84

Figure 43: EN^DIQ1 API—Data Retrieval: DIQ Defined .. 84

Figure 44: EN^DIQ1 API—Data Retrieval: DIQ Defined: Output ... 84

Figure 45: EN^DIQ1 API—Data Retrieval: Word-processing Field .. 85

Figure 46: EN^DIQ1 API—Data Retrieval: Word-processing Field: DIQ is Defined 85

Figure 47: ^DIR API—Date Example... 94

Figure 48: ^DIR API—End-of-Page Example: Input .. 94

Figure 49: ^DIR API—End-of-Page Example: Prompt Displayed .. 94

Figure 50: ^DIR API—Free-Text Example: Input ... 95

Figure 51: ^DIR API—With DIR(0) containing U Example: Input ... 95

Figure 52: ^DIR API—With DIR(0) containing A Example: Input ... 95

Figure 53: ^DIR API—With DIR(0) containing A Example: Prompt Displayed 95

Figure 54: ^DIR API—List or Range Example: Input ... 95

Figure 55: ^DIR API—List or Range Example: Acceptable Responses 95

Figure 56: ^DIR API—With DIR(0) containing C Example: Input and Output 96

Figure 57: ^DIR API—Numeric Example: Input ... 96

Figure 58: ^DIR API—With DIR(0) containing O Example: Input ... 96

Figure 59: ^DIR: Reader—With DIR(0) containing O Example: Prompt Displayed 96

Figure 60: ^DIR API—Pointer Example: Input ... 96

VA FileMan 22.2

Developer’s Guide xiii January 2017

Figure 61: ^DIR API—Pointer Example: Subfile Lookup.. 97

Figure 62: ^DIR API—Set Example: Input ... 97

Figure 63: ^DIR API—Set Example: Input and Prompt Displayed ... 97

Figure 64: ^DIR API—With DIR(0) containing A Example: Input ... 97

Figure 65: ^DIR API—With DIR(0) containing A Example: Prompt Displayed 97

Figure 66: ^DIR API—With DIR(0) containing B Example: Input ... 98

Figure 67: ^DIR API—With DIR(0) containing B Example: Prompt displayed 98

Figure 68: ^DIR API—With DIR(0) containing X Example: Input ... 98

Figure 69: ^DIR API—With DIR(0) containing X Example: Prompt Displayed 98

Figure 70: ^DIR API—Yes/No Example: Input ... 98

Figure 71: ^DIR API—DD Example: Input Format 1 .. 98

Figure 72: ^DIR API—DD Example: Input Format 2 .. 99

Figure 73: EN^DIS API—Sort Template .. 99

Figure 74: EN^DIU2 API—Example: Input .. 100

Figure 75: EN^DIU2 API—Example: Input for Subfile Deletion.. 101

Figure 76: ^DIWF API—Example: Word-processing type field .. 104

Figure 77: EN1^DIWF API—Example: Input ... 104

Figure 78: DD^%DT API—Example: Input and Output .. 111

Figure 79: COMMA^%DTC API—Example 1: Input .. 113

Figure 80: COMMA^%DTC API—Example 1: Output .. 113

Figure 81: COMMA^%DTC API—Example 2: Input .. 113

Figure 82: COMMA^%DTC API—Example 2: Output .. 113

Figure 83: COMMA^%DTC API—Example 3: Input .. 114

Figure 84: COMMA^%DTC API—Example 3: Output .. 114

Figure 85: COMMA^%DTC API—Example 4: Input .. 114

Figure 86: COMMA^%DTC API—Example 4: Output .. 114

Figure 87: S^%DTC API—Example: Input and Output .. 115

Figure 88: %XY^%RCR API—Example: Input ... 117

Figure 89: Database Server (DBS) API—Format and Conventions of the Calls: Order of the
Parameters in the Argument List .. 118

Figure 90: Database Server (DBS) API—Documentation Conventions: Passing by Reference
Only ... 121

Figure 91: Database Server (DBS) API—Documentation Conventions: Passing by Reference or
by Value ... 121

Figure 92: Database Server (DBS) API—How Information Is Returned: Arrays 121

Figure 93: Database Server (DBS) API—How Information Is Returned: Passing Parameters:
Input ... 122

Figure 94: Database Server (DBS) API—How Information Is Returned: Passing Parameters:
Output .. 122

Figure 95: Database Server (DBS) API—DIHELP Array: Input to Return Help for a Particular
Field ... 122

Figure 96: Database Server (DBS) API—DIMSG Array: Sample Input Transform 123

Figure 97: Database Server (DBS) API—DIMSG Array: Changing Input Transform: Executed in
Scrolling Mode ... 123

VA FileMan 22.2

Developer’s Guide xiv January 2017

Figure 98: Database Server (DBS) API—DIMSG Array: Changing Input Transform: Executed
from a Silent Call .. 123

Figure 99: Database Server (DBS) API—DIERR Array: Sample Input and Output 124

Figure 100: Database Server (DBS) API—Obtaining Formatted Text from the Arrays: Input ... 125

Figure 101: Database Server (DBS) API—Cleaning Up the Output Arrays: Input 125

Figure 102: Database Server (DBS) API—Example of Call to VA FileMan DBS: Input 126

Figure 103: Database Server (DBS) API—Example of Call to VA FileMan DBS: Sample Array
Output .. 126

Figure 104: CREIXN^DDMOD API—Example 1: Test Routine.. 134

Figure 105: CREIXN^DDMOD API—Example 1: Input and Output ... 135

Figure 106: CREIXN^DDMOD API—Example 1: Sample Data Dictionary Listing of the Created
Index .. 135

Figure 107: CREIXN^DDMOD API—Example 2: Test Routine.. 136

Figure 108: CREIXN^DDMOD API—Example 2: Input and Output ... 136

Figure 109: CREIXN^DDMOD API—Example 2: Sample Data Dictionary Listing of the Created
Index .. 137

Figure 110: CREIXN^DDMOD API—Example 3: Test Routine.. 138

Figure 111: CREIXN^DDMOD API—Example 3: Input and Output ... 138

Figure 112: CREIXN^DDMOD API—Example 3: Sample Data Dictionary Listing of the Created
Index .. 139

Figure 113: DELIX^DDMOD API—Example 1: Input and Output .. 141

Figure 114: DELIX^DDMOD API—Example 2: Input and Output .. 142

Figure 115: DELIXN^DDMOD API—Example 1: Input and Output .. 144

Figure 116: DELIXN^DDMOD API—Example 2: Input and Output .. 144

Figure 117: FILESEC^DDMOD API—Example 1: Input and Output .. 146

Figure 118: FILESEC^DDMOD API—Example 2: Input and Output .. 146

Figure 119: BLD^DIALOG() API—Example 1: Input .. 149

Figure 120: BLD^DIALOG() API—Example 1: Output ... 149

Figure 121: BLD^DIALOG() API—Example 2: Input .. 150

Figure 122: BLD^DIALOG() API—Example 2: Output ... 150

Figure 123: BLD^DIALOG() API—Example 3: Input .. 150

Figure 124: BLD^DIALOG() API—Example 3: Output ... 150

Figure 125; BLD^DIALOG() API—Example 4: Input .. 151

Figure 126: BLD^DIALOG() API—Example 4: Output ... 151

Figure 127: BLD^DIALOG() API—Example 5: Input .. 151

Figure 128: BLD^DIALOG() API—Example 5: Output ... 151

Figure 129: BLD^DIALOG() API—Example 6: Input .. 152

Figure 130: BLD^DIALOG() API—Example 6: Output ... 152

Figure 131: BLD^DIALOG() API—Example 7: Input .. 152

Figure 132: BLD^DIALOG() API—Example 7: Output ... 152

Figure 133: $$EZBLD^DIALOG() API—Example 1: Input and Output 153

Figure 134: $$EZBLD^DIALOG() API—Example 2: Input and Output 153

Figure 135: $$EZBLD^DIALOG() API—Example 3: Input and Output 154

Figure 136: MSG^DIALOG() API—Example 1: “DIERR” Portion of the ^TMP Global 156

Figure 137: MSG^DIALOG() API—Example 1: Input and Output .. 156

VA FileMan 22.2

Developer’s Guide xv January 2017

Figure 138: MSG^DIALOG() API—Example 2: Input ... 156

Figure 139: MSG^DIALOG() API—Example 2: Output .. 156

Figure 140: MSG^DIALOG() API—Example 3: Sample Local Array with Help Text Returned . 157

Figure 141: MSG^DIALOG() API—Example 3: Input ... 157

Figure 142: FIND^DIC() API—Example 1: Input and Output ... 171

Figure 143: FIND^DIC() API—Example 2: Input and Output ... 171

Figure 144: FIND^DIC() API—Example 3: Input and Output ... 172

Figure 145: FIND^DIC() API—Example 4: Input and Output ... 172

Figure 146: FIND^DIC() API—Example 5: Input and Output ... 173

Figure 147: FIND^DIC() API—Example 5: Input with “B” Flag and Output 173

Figure 148: FIND^DIC() API—Example 6: Input with “T” Lookup Value and Output 174

Figure 149: FIND^DIC() API—Example 6: Input with “B” and “BS5” Lookup Values and
Output .. 174

Figure 150: $$FIND1^DIC() API—Example 1: Input and Output ... 185

Figure 151: $$FIND1^DIC() API—Example 2: Input and Output ... 185

Figure 152: $$FIND1^DIC() API—Example 3: Input and Output ... 186

Figure 153: $$FIND1^DIC() API—Example 4: Input and Output: Failure 186

Figure 154: $$FIND1^DIC() API—Example 1: Input and Output: Success 186

Figure 155: LIST^DIC() API—Example 1: Input and Output .. 204

Figure 156: LIST^DIC() API—Example 2: Input and Output .. 204

Figure 157: LIST^DIC() API—Example 3: Input and Output .. 205

Figure 158: LIST^DIC() API—Example 4: Input and Output .. 206

Figure 159: LIST^DIC() API—Example 5: Input and Output .. 207

Figure 160: FIELD^DID() API—Example: Input and Output .. 210

Figure 161: FIELDLST^DID() API—Example: Input and Output .. 211

Figure 162: FILE^DID() API—Example: Input and Output ... 213

Figure 163: FILELST^DID() API—Example: Input and Output .. 214

Figure 164: $$GET1^DID() API—Example 1: Input and Output .. 215

Figure 165: $$GET1^DID() API—Example 2: Input and Output .. 215

Figure 166: $$GET1^DID() API—Example 3: Input and Output .. 216

Figure 167: $$GET1^DID() API—Example 4: Input and Output .. 216

Figure 168: CHK^DIE() API—Example: Input and Output ... 218

Figure 169: HELP^DIE() API—Example: Input and Output ... 223

Figure 170: $$KEYVAL^DIE() API—Example: Input and Output ... 225

Figure 171: UPDATE^DIE() API—Example 1: Input and Output ... 229

Figure 172: UPDATE^DIE() API—Example 2: Input and Output ... 229

Figure 173: UPDATE^DIE() API—Example 3: Input and Output ... 230

Figure 174: VAL^DIE() API—Example: Input and Output .. 235

Figure 175: VALS^DIE() API—Example 1: Input and Output ... 238

Figure 176: VALS^DIE() API—Example 2: Input and Output ... 239

Figure 177: VALS^DIE() API—Example 3: Input and Output ... 240

Figure 178: WP^DIE() API—Example: Input ... 242

Figure 179: WP^DIE() API—Example: Word-processing Text Location 1 242

Figure 180: WP^DIE() API—Example: Word-processing Text Location 2 242

VA FileMan 22.2

Developer’s Guide xvi January 2017

Figure 181: CLEAN^DILF API—Array KILLed ... 243

Figure 182: CLEAN^DILF API—Variables KILLed... 243

Figure 183: $$CREF^DILF() API—Example: Input and Output ... 243

Figure 184: DA^DILF() API—Example: Input and Output .. 244

Figure 185: DT^DILF() API—Example 1: Input and Output ... 246

Figure 186: DT^DILF() API—Example 2: Input and Output ... 246

Figure 187: FDA^DILF() API—Node Format ... 247

Figure 188: FDA^DILF() API—Example: Input and Output .. 248

Figure 189: $$IENS^DILF() API—Example: Input and Output ... 249

Figure 190: LOCK^DILF() API—Example: Input and Output ... 250

Figure 191: $$OREF^DILF() API—Example: Input and Output ... 250

Figure 192: $$VALUE1^DILF() API—Example: Input and Output ... 251

Figure 193: VALUES^DILF() API—Example: Input and Output ... 252

Figure 194: $$EXTERNAL^DILFD() API—Example 1: Input and Output 254

Figure 195: $$EXTERNAL^DILFD() API—Example 2: Input and Output 254

Figure 196: $$EXTERNAL^DILFD() API—Example 3: Input and Output 254

Figure 197: $$EXTERNAL^DILFD() API—Example 4: Input and Output 254

Figure 198: $$EXTERNAL^DILFD() API—Example 5: Input and Output 254

Figure 199: $$EXTERNAL^DILFD() API—Example 6: Input and Output 254

Figure 200: $$EXTERNAL^DILFD() API—Example 7: Input and Output 254

Figure 201: $$EXTERNAL^DILFD() API—Example 8: Input and Output 255

Figure 202: $$FLDNUM^DILFD() API—Example: Input and Output .. 257

Figure 203: PRD^DILFD() API—Example: Input and Output ... 258

Figure 204: RECALL^DILFD() API—Example: Input and Output ... 259

Figure 205: $$ROOT^DILFD() API—Example 1: Input and Output ... 260

Figure 206: $$ROOT^DILFD() API—Example 2: Input and Output ... 260

Figure 207; $$ROOT^DILFD() API—Example 3: Input and Output ... 260

Figure 208: $$VFIELD^DILFD() API—Example: Input and Output .. 261

Figure 209: $$VFILE^DILFD() API—Example: Input and Output ... 261

Figure 210: $$GET1^DIQ() API—Example 1: Input and Output .. 262

Figure 211: $$GET1^DIQ() API—Example 2: Input and Output .. 263

Figure 212: $$GET1^DIQ() API—Example 3: Input and Output .. 263

Figure 213: $$GET1^DIQ() API—Example 4: Input and Output .. 263

Figure 214: $$GET1^DIQ() API—Example 5: Input and Output .. 263

Figure 215: $$GET1^DIQ() API—Example 6: Input and Output .. 264

Figure 216: $$GET1^DIQ() API—Example 7: Input and Output .. 264

Figure 217: GETS^DIQ() API—Example 1: Input and Output .. 266

Figure 218: GETS^DIQ() API—Example 2: Input and Output .. 267

Figure 219: GETS^DIQ() API—Example 3: Input and Output .. 267

Figure 220: GETS^DIQ() API—Example 4: Input and Output .. 268

Figure 221: GETS^DIQ() API—Example 5: Input and Output .. 268

Figure 222: ScreenMan Forms—DDSSTACK Variable: Sample Page Links 272

Figure 223: ScreenMan Forms—Sample of Two Subfields of a Multiple Displayed in a
Repeating Block ... 273

VA FileMan 22.2

Developer’s Guide xvii January 2017

Figure 224: ScreenMan Forms—Relational Navigation: Forward Pointers 276

Figure 225: ScreenMan Forms—Computed Fields: Example of Format 279

Figure 226: ScreenMan Forms—Referencing Form-Only and Computed Fields: Example 281

Figure 227: ScreenMan Forms—DDSBR Variable: Example .. 281

Figure 228: ScreenMan Forms—DDSBR Variable: Example of Format to Branch the User to the
Command Line ... 282

Figure 229: ScreenMan Forms—DDSSTACK Variable: Example of Setting Variable to a Page
Number .. 282

Figure 230: ScreenMan Forms—ScreenMan Menu Options ... 293

Figure 231: ScreenMan Forms—Run a Form Option .. 293

Figure 232: ScreenMan Forms—Delete a Form Option .. 294

Figure 233: ScreenMan Forms—Delete a Form Option: Report of All Blocks Used on the
Form .. 294

Figure 234: ScreenMan Forms—Delete a Form Option: Delete Blocks 294

Figure 235: ScreenMan Forms—Delete a Form Option: Delete Blocks with or without
Confirmation ... 295

Figure 236: ScreenMan Forms—Delete a Form Option: Deleting Blocks without
Confirmation ... 295

Figure 237: ScreenMan Forms—Purge Unused Blocks Option ... 295

Figure 238: ScreenMan Forms—Purge Unused Blocks Option: Report of Unused Blocks on any
Forms ... 295

Figure 239: ScreenMan Forms—Purge Unused Blocks Option: Delete Blocks with or without
Confirmation ... 296

Figure 240: ScreenMan Forms—Purge Unused Blocks Option: Delete Blocks without
Confirmation ... 296

Figure 241: ScreenMan Forms—CLONE^DDS: Sample Dialogue to Copy a Form 297

Figure 242: ScreenMan Forms—CLONE^DDS: Report Showing Blocks Used on a Form 297

Figure 243: ScreenMan Forms—CLONE^DD: Assigning New Form and Block Names 298

Figure 244: ScreenMan Forms—CLONE^DDS: Cloning a Form ... 298

Figure 245: ScreenMan Forms—PRINT^DDS: Printing a Form .. 299

Figure 246: ScreenMan Form Editor—EDIT/CREATE A FORM Option: Invoking the Form
Editor ... 301

Figure 247: ScreenMan Form Editor—EDIT/CREATE A FORM Option: Selecting a File 301

Figure 248: ScreenMan Form Editor—EDIT/CREATE A FORM Option: Selecting a Form 301

Figure 249: ScreenMan Form Editor—Main Screen .. 304

Figure 250: ScreenMan Form Editor—Block Viewer Screen ... 305

Figure 251: ScreenMan Form Editor—Going to Another Page .. 306

Figure 252: ScreenMan Form Editor—Adding a Page ... 307

Figure 253: ScreenMan Form Editor—Adding a Page Confirmation .. 307

Figure 254: ScreenMan Form Editor—Adding a Block .. 308

Figure 255: ScreenMan Form Editor—Adding a Block Confirmation 308

Figure 256: ScreenMan Form Editor—Adding a Block to a Page .. 308

Figure 257: ScreenMan Form Editor—Adding Fields .. 308

Figure 258: ScreenMan Form Editor—Editing Field Properties ... 310

Figure 259: ScreenMan Form Editor—Other Parameters .. 311

VA FileMan 22.2

Developer’s Guide xviii January 2017

Figure 260: ScreenMan Form Editor—Editing Block Properties .. 312

Figure 261: ScreenMan Form Editor—Editing Page Properties ... 313

Figure 262: ScreenMan Form Editor—Editing “Popup” Page Coordinates 314

Figure 263: ScreenMan Form Editor—Editing form Properties .. 315

Figure 264: ScreenMan Form Editor—Choosing Another Form .. 315

Figure 265: ScreenMan Form Editor—Select Form ... 315

Figure 266: ScreenMan Form Editor—Save Changes ... 315

Figure 267: ScreenMan Form Editor—Choosing Another Form .. 316

Figure 268: ^DDS API—Example 1: Input ... 318

Figure 269: ^DDS API—Example 2: Input ... 319

Figure 270: $$GET^DDSVAL() API—Example 1: Input ... 320

Figure 271: $$GET^DDSVAL() API—Example 2: Input ... 321

Figure 272: $$GET^DDSVAL() API—Example 3: Input ... 321

Figure 273: $$GET^DDSVAL() API—Example 3: Output Array ... 321

Figure 274: PUT^DDSVAL() API—Example 1: Input ... 322

Figure 275: PUT^DDSVAL() API—Example 2: Input ... 323

Figure 276: PUT^DDSVAL() API—Example 2: Output Array (1 of 2) 323

Figure 277: PUT^DDSVAL() API—Example 2: Output Array (2 of 2) 323

Figure 278: $$GET^DDSVALF() API—Example 1: Input ... 324

Figure 279: $$GET^DDSVALF() API—Example 2: Input ... 324

Figure 280: PUT^DDSVALF() API—Example: Input .. 325

Figure 281: TURNON^DIAUTL() API—Example: Input to Turn On Auditing for a Field in a File (1
of 2) .. 329

Figure 282: TURNON^DIAUTL() API—Example: Input to Turn On Auditing for a Field in a File (2
of 2) .. 329

Figure 283: TURNON^DIAUTL() API—Example: Input to Turn Off Auditing for a Field in a
File ... 329

Figure 284: LAST^DIAUTL() API—Example: Input and Output ... 330

Figure 285: CHANGED^DIAUTL() API—Example 1: Input and Output 331

Figure 286: CHANGED^DIAUTL() API—Example 2: Input and Output 331

Figure 287: BROWSE^DDBR () API—Example: Input .. 334

Figure 288: BROWSE^DDBR () API—Example: Output.. 334

Figure 289: WP^DDBR () API—Example: Input .. 337

Figure 290: DOCLIST^DDBR () API—Example: Sample document in ^TMP 339

Figure 291: DOCLIST^DDBR () API—Example: Input to Build the Document List Array 339

Figure 292: DOCLIST^DDBR () API—Example: Input Making a Procedure Call with Switching
Restricted to Only this List .. 339

Figure 293: $$TEST^DDBRT API—Example: Input and Output .. 340

Figure 294: FILE^DDMP () API—Example: Input code to Import Data 346

Figure 295: FILE^DDMP () API—Example: Input Code to Set the Array 346

Figure 296: Sample Listing of an Import File ... 348

Figure 297: EXPORT^DDXP () API—Example 1: Input and Output .. 351

Figure 298: EXPORT^DDXP () API—Example 2: Input and Output .. 351

Figure 299: EXPORT^DDXP () API—Example 3: Input and Output .. 351

VA FileMan 22.2

Developer’s Guide xix January 2017

Figure 300: EXPORT^DDXP () API—Example 4: Input for Special Case with the AUDIT File
(#1.1) ... 351

Figure 301: EXPORT^DDXP () API—Example 1: Input and Output .. 351

Figure 302: EXPORT^DDXP () API—Example 5: Sample Sort Template Used 352

Figure 303: EXPORT^DDXP () API—Example 5: Export Template Used 353

Figure 304: EXPORT^DDXP () API—Example 5: Routine and Output 354

Figure 305: EXTRACT^DIAXU () API—Example 1: Input .. 360

Figure 306: EXTRACT^DIAXU () API—Example 1: Output Results Messages 360

Figure 307: EXTRACT^DIAXU () API—Example 1: Output Error Messages 361

Figure 308: EXTRACT^DIAXU () API—Example 2: Output Results and Error Messages 361

Figure 309: BUILDNEW^DIBTED()—Example .. 368

Figure 310: ^DIKCBLD API—Sample User Dialogue .. 371

Figure 311: LANG^DIALOGZ API—Sample User Dialogue .. 373

Figure 312: LANG^DIALOGZ API—Sample Translated Editing Dialogue 374

Figure 313: LANG^DIALOGZ API—Sample translated Print File Entries dialogue 376

Figure 314: LANG^DIALOGZ API—Translations .. 376

Figure 315: ^DIC Global—Sample File Entry in the Dictionary of Files 378

Figure 316: ^DIC Global—Sample File Security Protection Codes .. 378

Figure 317: ^DIC Global—Sample File Descriptors ... 378

Figure 318: File Entries (Data Storage)—Sample File Entry.. 379

Figure 319: File Entries (Data Storage)—Sample File Entry with Additional Data Fields 379

Figure 320: File Entries (Data Storage)—Sample File Entry with Multiple Data Fields 380

Figure 321: Cross-References—Sample File Entry with Multiple Records 380

Figure 322: Cross-References—Sample Entry with Additional Data Fields 381

Figure 323: Attribute Dictionary—File Characteristics Nodes: Post-Action 382

Figure 324: Attribute Dictionary—File Characteristics Nodes: Data Dictionary Audit 383

Figure 325: Attribute Dictionary—File Characteristics Nodes: Special Lookup 383

Figure 326: Attribute Dictionary—File Characteristics Nodes: Field Identifiers 383

Figure 327: Attribute Dictionary—File Characteristics Nodes: Write Identifiers 384

Figure 328: Attribute Dictionary—File Characteristics Nodes: Cross-references 384

Figure 329: Attribute Dictionary—File Characteristics Nodes: Screens 384

Figure 330: Attribute Dictionary—File Characteristics Nodes: Version Number 385

Figure 331: Attribute Dictionary—File Characteristics Nodes: Distribution Package 385

Figure 332: Attribute Dictionary—File Characteristics Nodes: Package Revision Data 385

Figure 333: Attribute Dictionary—Field Definition 0-Node: ^DD(filenumber,fieldnumber Node 386

Figure 334: Attribute Dictionary—Field Definition 0-Node: Sample Attribute Dictionary File
Storage .. 386

Figure 335: Attribute Dictionary—Field Definition 0-Node: Piece 1 Sample Labels 386

Figure 336: Attribute Dictionary—Reading the Attribute Dictionary: Sample ^DD Nodes 391

Figure 337: Attribute Dictionary—Reading the Attribute Dictionary: Sample Translated
Meaning ... 391

Figure 338: Attribute Dictionary—Reading the Attribute Dictionary: Sample DD Descendent
Cross-references .. 391

Figure 339: Attribute Dictionary—Reading the Attribute Dictionary: Sample Subsidiary Data
Dictionary ... 392

VA FileMan 22.2

Developer’s Guide xx January 2017

Figure 340: Attribute Dictionary—Reading the Attribute Dictionary: Sample Auxiliary User
Prompts .. 392

Figure 341: Attribute Dictionary—Reading the Attribute Dictionary: Updated Data Dictionary for
New Data ... 392

Figure 342: Attribute Dictionary—Reading the Attribute Dictionary: Sample User Prompt
Confirming Data Entry .. 392

Figure 343: File Global Storage—Storing Data in a Global other than ^DIZ—Sample User
Prompts .. 393

Figure 344: File Global Storage—Storing Data in a Global other than ^DIZ—Global Reference
Format.. 393

Figure 345: File Global Storage—Storing Data in a Global other than ^DIZ: Sample Global
Storage Location of a Subscripted Descendent Global ... 394

Figure 346: File Global Storage—Storing Data in a Global other than ^DIZ: Incorrect Global
Storage Location of a Subscripted Descendent Global ... 394

Figure 347: Field Global Storage—Assigning a Location for Fields Stored within a Global 394

Figure 348: Field Global Storage—Storing Data by Position within a Node 395

Figure 349: Assigning Sub-Dictionary Numbers—Sample Dialogue Assigning Sub-dictionary
Numbers .. 396

Figure 350: Computed Expressions—Computed Multiples: Sample Dialogue Creating a
Computed Pointer from File #2 to File #200; Pointing at Last User Who Edited Patient . 397

Figure 351: Computed Expressions—Computed Multiples: Sample Dialogue Creating a
Computed Date that gives the Patient’s Next Birthday ... 398

Figure 352: Screened Pointers and Set of Codes—Sample User Prompt 398

Figure 353: Screened Pointers and Set of Codes—Sample Screening Code 398

Figure 354: Screened Pointers and Set of Codes—Sample User Prompt on Screened Data .. 399

Figure 355: INPUT Transform—Sample Code .. 399

Figure 356: INPUT Transform—Maximum (Output) Length... 401

Figure 357: INPUT Transform—Checking for Variables .. 402

Figure 358: OUTPUT Transform—Sample Code .. 402

Figure 359: OUTPUT Transform—Sample Code with Computed Expression 402

Figure 360: Trigger Cross-references—Creating Trigger .. 408

Figure 361: Trigger Cross-references—SET Logic .. 408

Figure 362: Trigger Cross-references—KILL Logic ... 408

Figure 363: Trigger Cross-references—Conditions ... 409

Figure 364: Trigger Cross-references—Deletion Restrictions .. 409

Figure 365: Trigger Cross-references—Description .. 409

Figure 366: Trigger Cross-references—Confirmation .. 409

Figure 367: Trigger Cross-references—Sample Dialogue to Create a Trigger Cross-reference
on a Field ... 410

Figure 368: DIALOG File—Sample Dialogue Creating a New Entry in the DIALOG File
(#.84) ... 414

Figure 369: DIALOG File—Sample Dialogue to Create Non-English Text in the DIALOG File
(#.84) ... 415

Figure 370: VA FileMan Functions—Sample Code that Takes an Internally Stored Format in a
Variable and Transforms It ... 419

VA FileMan 22.2

Developer’s Guide xxi January 2017

Figure 371: VA FileMan Functions—Sample Displaying Date-valued Fields and Expressions in
the DAY-MONTH-YEAR Format... 419

Figure 372: VA FileMan Functions—Sample Function without Arguments 420

Figure 373: DIFROM—Entering Current Version Information: Sample Code 430

Figure 374: DIFROM—Using Indirection to Reference DDs Put into Place during the Init
Process: Sample Code ... 431

Figure 375: DIFROM—Routines Data Transport Structure: Sample Code 432

Figure 376: DIFROM—Nodes Containing Security Information in the DD Structures—Sample
Code .. 432

Figure 377: DIFROM—Running an Init: Sample Code .. 434

Figure 378: DIFROM—Sample HELP FRAME File (#9.2) Cross-reference 441

List of Tables

Table 1: Documentation Symbol Descriptions .. xxvii

Table 2: VA FileMan Routine Variables and Default Values .. xxx

Table 3: VA FileMan Routine Global References ..xxxi

Table 4: Classic Calls—Category: Lookup/Adding Entries .. 4

Table 5: Classic Calls—Category: Entry Editing .. 4

Table 6: Classic Calls—Category: Prompting/Messages ... 4

Table 7: Classic Calls—Category: Printing .. 4

Table 8: Classic Calls—Category: Templates ... 5

Table 9: Classic Calls—Category: Cross-references ... 5

Table 10: Classic Calls—Category: Date/Time Utilities ... 6

Table 11: Classic Calls—Category: Utilities .. 6

Table 12: Loader—Processing Text Based on Mode .. 8

Table 13: EN^DIB: User Controlled Editing API .. 13

Table 14: IX^DIC—Entry Points Lookups .. 27

Table 15: DIC and DIC1 Entry Point Comparison .. 31

Table 16: ^DIE API—Edit qualifiers: Interactive Syntax ... 43

Table 17: ^DIE API—Y(0) in the Code Set into the DIC(“V”) Variable .. 45

Table 18: ^DIE API—DIEFIRE Variable Settings... 46

Table 19: ^DIK—Reindexing Quick Reference .. 48

Table 20: EN^DIK API—Reindexing Quick Reference .. 50

Table 21: EN1^DIK API—Reindexing Quick Reference .. 52

Table 22: EN2^DIK API—Reindexing Quick Reference .. 53

Table 23: ENALL^DIK API—Reindexing Quick Reference .. 54

Table 24: ENALL2^DIK API—Reindexing Quick Reference .. 55

Table 25: IX^DIK API—Reindexing Quick Reference .. 57

Table 26: IX1^DIK API—Reindexing Quick Reference .. 58

Table 27: IX2^DIK API—Reindexing Quick Reference .. 59

Table 28: IXALL^DIK API—Reindexing Quick Reference .. 60

Table 29: IXALL2^DIK API—Reindexing Quick Reference .. 61

VA FileMan 22.2

Developer’s Guide xxii January 2017

Table 30: DIR(0)—Summary ... 87

Table 31: ^DIR: Reader Output Variables (Full Listing)—Y Processed Output 92

Table 32: ^DIR: Reader Output Variables (Full Listing)—Y Values upon Timeout 93

Table 33: ^%DT: Internal to External Date—Y2K Changes ... 111

Table 34: Database Server (DBS) API—Format and Conventions of the Calls—Acceptable vs.
Unacceptable Roots ... 119

Table 35: IENS: Identify Entries and Subentries—Placeholder Codes 119

Table 36: Database Server (DBS) API—Database Server (DNS) Calls Cross-referenced by
Category .. 127

Table 37: CREIXN^DDMOD API—Error Codes Returned ... 139

Table 38: DELIX^DDMOD API—Error Codes Returned .. 142

Table 39: DELIXN^DDMOD API—Error Codes Returned ... 145

Table 40: FILESEC^DDMOD API—Error Codes Returned ... 147

Table 41: BLD^DIALOG API—Output variables returned .. 148

Table 42: FIND^DIC() API—Variable Pointer Screen: Y(0) ... 166

Table 43: FIND^DIC() API—Error Codes Returned ... 175

Table 44: $$FIND1^DIC() API—Variable Pointer Screen: Y(0).. 184

Table 45: $$FIND1^DIC() API—Error Codes Returned ... 187

Table 46: $$FIND1^DIC() API—Screens Applied .. 188

Table 47: LIST^DIC() API—Variable Pointer screen—Y(0) ... 198

Table 48: LIST^DIC() API—Error Codes Returned .. 207

Table 49: FIELD^DID() API—Error Codes Returned ... 210

Table 50: FILE^DID() API—Error Codes Returned .. 213

Table 51: $$GET1^DID() API—Error Codes Returned .. 216

Table 52: CHK^DIE() API—Error Codes Returned .. 218

Table 53: FILE^DIE(): Filer—Error Codes Returned .. 220

Table 54: HELP^DIE() API—Error Codes Returned .. 224

Table 55: $$KEYVAL^DIE() API—Error Codes Returned .. 225

Table 56: UPDATE^DIE() API—Error Codes Returned ... 230

Table 57: VAL^DIE() API—Error Codes Returned ... 235

Table 58: VALS^DIE() API—Error Codes Returned .. 240

Table 59: WP^DIE() API—Error Codes Returned .. 242

Table 60: DT^DILF() API—Error Codes Returned ... 246

Table 61: FDA^DILF() API—Error Codes Returned .. 248

Table 62: $$HTML^DILF()—Error Codes Returned ... 249

Table 63: $$EXTERNAL^DILFD() API—Error Codes Returned .. 255

Table 64: $$EXTERNAL^DILFD() API—VA FileMan Data Types .. 256

Table 65: $$FLDNUM^DILFD() API—Error Codes Returned .. 257

Table 66: RECALL^DILFD() API—Error Codes Returned ... 259

Table 67: $$ROOT^DILFD() API—Error Codes Returned ... 260

Table 68: $$GET1^DIQ() API—Error Codes Returned .. 264

Table 69: GETS^DIQ() API—Error Codes Returned ... 269

Table 70: ScreenMan Forms—Variables Available in Repeating Blocks 273

Table 71: ScreenMan Forms—Block Properties that Apply only to Repeating Blocks 274

VA FileMan 22.2

Developer’s Guide xxiii January 2017

Table 72: ScreenMan Forms—Properties of Form-Only Fields ... 275

Table 73: ScreenMan Forms—Valid Formats for DD Fields .. 277

Table 74: ScreenMan Forms—Valid Formats for Form Only Fields ... 278

Table 75: ScreenMan Forms—Syntax for Computed Expression Atom that References a DD
Field ... 279

Table 76: ScreenMan Forms—Syntax for Computed Expression Atom that References a Form
Only Field ... 280

Table 77: ScreenMan Forms—Assumptions when Pieces of DDSBR are Null 282

Table 78: ScreenMan Forms—Form Properties .. 283

Table 79: ScreenMan Forms—Page Properties .. 284

Table 80: ScreenMan Forms—Block Properties: FORM File ... 286

Table 81: ScreenMan Forms—Block Properties: BLOCK File ... 287

Table 82: ScreenMan Forms—Field Properties ... 288

Table 83: ScreenMan Forms—Valid Default Values for Multiple Fields 289

Table 84: ScreenMan Forms—Descriptions of Field-level Pre and Post Actions 292

Table 85: ScreenMan Forms—Variables Available in Field-level Pre and Post Actions 292

Table 86: ScreenMan Form Editor—Navigating: Cursor Navigation to the Main Screen and the
Block Viewer Screen .. 302

Table 87: ScreenMan Form Editor—Navigating: Key Sequences for Quick Page Navigation.. 302

Table 88: ScreenMan Form Editor—Key Sequences to Move Screen Elements 303

Table 89: ScreenMan Form Editor—Key Sequences to Add, Select, and Edit 303

Table 90: ScreenMan Form Editor—General Key Sequences to: Exit, Quit, Save, and Obtain
Help ... 305

Table 91: ScreenMan Form Editor—Navigating: Cursor Movement and Keyboard
Combination ... 306

Table 92: ScreenMan Form Editor—Changing Current Page: Shortcut Keys 307

Table 93: ScreenMan Form Editor—General Key Sequences to: Move Screen Elements 309

Table 94: ScreenMan Form Editor—Shortcuts at the CAPTION Prompt 311

Table 95: ^DDS API—Error Codes Returned .. 319

Table 96: BROWSE^DDBR () API—Error Codes Returned .. 335

Table 97: WP^DDBR () API—Error Codes Returned .. 337

Table 98: DOCLIST^DDBR () API—Error Codes Returned ... 339

Table 99: FILE^DDMP () API—Error Codes Returned .. 346

Table 100: EN^DIAXU—Error Codes Returned .. 356

Table 101: EXTRACT^DIAXU () API—Error Codes Returned ... 362

Table 102: ^DIFG: Installer—Error Codes Returned ... 364

Table 103: ^DI API—Entry Points ... 369

Table 104: File Header—Descriptor string .. 378

Table 105: File Header—Descriptor string: second ^-piece ... 379

Table 106: Attribute Dictionary—Characteristics, Subscripted Location, and Brief
Explanation .. 382

Table 107: Attribute Dictionary—Write Identifier Nodes: M code to Produce Desired Output .. 384

Table 108: Attribute Dictionary—Field Definition 0-Node: Piece 2 Sample Strings 387

Table 109: Attribute Dictionary—Field Definition 0-Node: Piece 3 Data Types 388

Table 110: Attribute Dictionary—Other Field Definition Nodes .. 389

VA FileMan 22.2

Developer’s Guide xxiv January 2017

Table 111: Audit Condition—Variables .. 404

Table 112: LANGUAGE file (#.85)—Language Entries ... 416

Table 113: LANGUAGE file (#.85)—Other Fields .. 417

Table 114: LANGUAGE file (#.85)—Date/Time Flags ... 417

Table 115: DIFROM—Fields Used during the Package Export Process.................................. 422

Table 116: DIFROM—Special Processing .. 442

VA FileMan 22.2

Developer’s Guide xxv January 2017

Orientation

How to Use this Manual

 The VA FileMan Developer’s Guide provides advice and instruction about the VA FileMan database

management system, Application Program Interfaces (APIs), Direct Mode Utilities, and other developer-

related information that VA FileMan 22.0 provides for overall Veterans Health Information Systems and

Technology Architecture (VistA) application developers.

This manual is a full reference for all entry points in VA FileMan and shows how to use features of VA

FileMan that are likely to be used by developers and IRM staff. In most cases you must have programmer

access (DUZ(0)=“@”) to use these features:

 Classic VA FileMan API.

 Database Server (DBS) API.

 ScreenMan Forms.

 ScreenMan Form Editor.

 ScreenMan API.

 Auditing API.

 Browser API.

 Import and Export Tools.

 Extract Tool.

 Filegrams API.

 ^DI: Programmer Access.

 ^DIKCBLD: Build an M Routine that Makes a Call to CREIXN^DDMOD.

 Advanced File Definition.

 Trigger Cross-References.

 DIALOG File.

 VA FileMan Functions (Creating).

 DIFROM.

 Appendix A—VA FileMan Error Codes.

 NOTE: This document is available in Microsoft Word (.docx), Adobe Acrobat Portable

Document Format (PDF), and Hypertext Markup Language (HTML) format (see the “HTML

Manuals” section).

 REF: For VA FileMan installation instructions in the VistA environment see the VA FileMan

Installation Guide and any national patch description of the patch being released.

VA FileMan 22.2

Developer’s Guide xxvi January 2017

HTML Manuals

Why produce an HTML (Hypertext Markup Language) edition of the VA FileMan User Manual?

 The HTML versions of the VA FileMan manuals are useful as online documentation support as

you use VA FileMan. HTML manuals allow you to instantly jump (link) to specific topics or

references online.

 The VA FileMan HTML manuals are “living” documents that are continuously updated with the

most current VA FileMan information (unlike paper or printed documentation). They are updated

based on new versions, patches, or enhancements to VA FileMan.

 Presenting manuals in an HTML format on a Web server also gives new opportunities, such as

accessing embedded multimedia training material (e.g., movies) directly in the manuals

themselves.

 Manuals are accessible over the VA Intranet network.

Intended Audience

The intended audience of this manual is all key stakeholders. The stakeholders include the following:

 Enterprise Program Management Office (EPMO)—VistA legacy development teams.

 Information Resource Management (IRM)—System administrators at Department of Veterans

Affairs (VA) sites who are responsible for computer management and system security on the

VistA M Servers.

 Information Security Officers (ISOs)—Personnel at VA sites responsible for system security.

 Product Support (PS).

Disclaimers

Software Disclaimer

 This software was developed at the Department of Veterans Affairs (VA) by employees of the Federal

Government in the course of their official duties. Pursuant to title 17 Section 105 of the United States

Code this software is not subject to copyright protection and is in the public domain. VA assumes no

responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied,

about its quality, reliability, or any other characteristic. We would appreciate acknowledgement if the

software is used. This software can be redistributed and/or modified freely provided that any derivative

works bear some notice that they are derived from it, and any modified versions bear some notice that

they have been modified.

 CAUTION: To protect the security of VistA systems, distribution of this software for use
on any other computer system by VistA sites is prohibited. All requests for copies of
Kernel for non-VistA use should be referred to the VistA site’s local Office of Information
Field Office (OIFO).

VA FileMan 22.2

Developer’s Guide xxvii January 2017

Documentation Disclaimer

This manual provides an overall explanation of VA FileMan and the functionality contained in VA

FileMan 22.0; however, no attempt is made to explain how the overall VistA programming system is

integrated and maintained. Such methods and procedures are documented elsewhere. We suggest you

look at the various VA Internet and Intranet Websites for a general orientation to VistA. For example,

visit the Office of Information and Technology (OI&T) VistA Development Intranet website.

 DISCLAIMER: The appearance of any external hyperlink references in this manual does
not constitute endorsement by the Department of Veterans Affairs (VA) of this Website
or the information, products, or services contained therein. The VA does not exercise
any editorial control over the information you find at these locations. Such links are
provided and are consistent with the stated purpose of this VA Intranet Service.

Documentation Conventions

This manual uses several methods to highlight different aspects of the material:

 Various symbols are used throughout the documentation to alert the reader to special information.

Table 1 gives a description of each of these symbols:

Table 1: Documentation Symbol Descriptions

Symbol Description

NOTE / REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION / RECOMMENDATION / DISCLAIMER: Used to caution the reader to
take special notice of critical information.

 Descriptive text is presented in a proportional font (as represented by this font).

 Conventions for displaying TEST data in this document are as follows:

o The first three digits (prefix) of any Social Security Numbers (SSN) begin with either “000”

or “666”.

o Patient and user names are formatted as follows: <Application

Name/Abbreviation/Namespace>PATIENT,[N] and <Application

Name/Abbreviation/Namespace>USER,[N] respectively, where “<Application

Name/Abbreviation/Namespace>” is defined in the Approved Application Abbreviations

document and “N” represents the first name as a number spelled out and incremented with

each new entry. For example, in VA FileMan (FM) test patient and user names would be

documented as follows: FMPATIENT,ONE; FMPATIENT,TWO; FMPATIENT,THREE;

etc.

VA FileMan 22.2

Developer’s Guide xxviii January 2017

 “Snapshots” of computer online displays (i.e., screen captures/dialogues) and computer source

code, if any, are shown in a non-proportional font and enclosed within a box.

o User’s responses to online prompts are bold typeface and highlighted in yellow

(e.g., <Enter>).

o Emphasis within a dialogue box is bold typeface and highlighted in blue (e.g., STANDARD

LISTENER: RUNNING).

o Some software code reserved/key words are bold typeface with alternate color font.

o References to “<Enter>“ within these snapshots indicate that the user should press the Enter

key on the keyboard. Other special keys are sometimes represented within < > angle brackets.

For example, pressing the PF1 key can be represented as pressing <PF1>.

o Author’s comments are displayed in italics or as “callout” boxes.

 NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box,

which point to specific areas of a displayed image.

 This manual refers in many places to the MUMPS (M) programming language. Under the 1995

American National Standards Institute (ANSI) standard, M is the primary name of the MUMPS

programming language, and MUMPS is considered an alternate name. This manual uses the name

M.

 Descriptions of direct mode utilities are prefaced with the standard M “>“ prompt to emphasize

that the call is to be used only in direct mode. They also include the M command used to invoke

the utility. The following is an example:

>D P^DI

 The following conventions are used with regards to APIs:

o Headings for developer API descriptions (e.g., supported for use in applications and on the

Database Integration Committee [DBIC] list) include the routine tag (if any), the caret (“^”)

used when calling the routine, and the routine name. The following is an example:

EN^DIB

o For APIs that take input parameter, the input parameter is labeled “required” when it is a

required input parameter and labeled “optional” when it is an optional input parameter.

o For APIs that take parameters, parameters are shown in lowercase and variables are shown in

uppercase. This is to convey that the parameter name is merely a placeholder; M allows you

to pass a variable of any name as the parameter or even a string literal (if the parameter is not

being passed by reference). The following is an example of the formatting for input

parameters:

HELP^DIE(file,iens,field,flags,msg_root)

o Rectangular brackets [] around a parameter are used to indicate that passing the parameter is

optional. Rectangular brackets around a leading period [.] in front of a parameter indicate that

you can optionally pass that parameter by reference.

o All APIs are categorized by function. This categorization is subjective and subject to change

based on feedback from the development community. Also, some APIs could fall under

multiple categories; however, they are only listed once under a chosen category.

VA FileMan 22.2

Developer’s Guide xxix January 2017

APIs within a category are first sorted alphabetically by Routine name and then within

routine name are sorted alphabetically by Tag reference. The “$$”, “^”, or “^%” prefixes on

APIs is ignored when alphabetizing.

 All uppercase is reserved for the representation of M code, variable names, or the formal name of

options, field/file names, and security keys (e.g., DIEXTRACT).

 NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and file/folder

names can be written in lower or mixed case.

Documentation Navigation

This document uses Microsoft® Word’s built-in navigation for internal hyperlinks. To add Back and

Forward navigation buttons to your toolbar, do the following:

1. Right-click anywhere on the customizable Toolbar in Word (not the Ribbon section).

2. Select Customize Quick Access Toolbar from the secondary menu.

3. Select the drop-down arrow in the “Choose commands from:” box.

4. Select All Commands from the displayed list.

5. Scroll through the command list in the left column until you see the Back command (green circle

with arrow pointing left).

6. Select/Highlight the Back command and select Add to add it to your customized toolbar.

7. Scroll through the command list in the left column until you see the Forward command (green

circle with arrow pointing right).

8. Select/Highlight the Forward command and select Add to add it to your customized toolbar.

9. Select OK.

You can now use these Back and Forward command buttons in your Toolbar to navigate back and forth

in your Word document when clicking on hyperlinks within the document.

 NOTE: This is a one-time setup and is automatically available in any other Word document once

you install it on the Toolbar.

Non-Standard M Features

Z-commands and Z-functions are avoided throughout VA FileMan routines. For certain purposes, such as

allowing terminal breaking and spooling to a Standard Disk Processor (SDP) disk device, VA FileMan

executes lines of non-standard M code out of the MUMPS OPERATING SYSTEM file (#.7). The non-

standard code used (if any) depends on the answer to the prompt:

Figure 1: Type of M System Prompt

 TYPE OF MUMPS SYSTEM YOU ARE USING:

This prompt appears during the DINIT initialization routine. Answering OTHER to this question ensures

that VA FileMan uses only standard M code.

VA FileMan also makes use of non-standard M code that is stored in the %ZOSF global. If VA FileMan

is installed on a system that contains Kernel, it uses the %ZOSF global created by Kernel. If it is being

VA FileMan 22.2

Developer’s Guide xxx January 2017

used without Kernel (i.e., standalone), the necessary %ZOSF nodes are set for many operating systems by

running DINZMGR in the manager account.

 REF: For details, see the “System Management” section in the VA FileMan Advanced User

Manual.

String-valued subscripts (up to 30 characters long) are used extensively but only in the $ORDER collating

sequence approved by the MUMPS Development Committee (MDC). Non-negative integer and fractional

canonic numbers collate ahead of all other strings.

The $ORDER function is used at several points in VA FileMan’s code. VA FileMan routines assume that

reference to an undefined global subscript level sets the naked indicator to that level, rather than leaving it

undefined. In all other respects, the VA FileMan code conforms to the 1995 ANSI Standard for the M

language with Type A extensions.

Routine, Variable, and Global Names

In keeping with the convention that all programs that are a part of the same application or utility package

should be namespaced, all VA FileMan routine names begin with DI or DD.

 REF: The “Device Handling for Standalone VA FileMan” section in the VA FileMan Advanced

User Manual explains that some DI* routines are renamed in the management account.

The DINIT routine initializes VA FileMan. The DI routine itself is the main option reader.

 REF: For more information on the DI routine, see the “^DI: Programmer Access” section.

Except in DI, the routines do not contain unargumented or exclusive KILL commands. All multi-

character local variable names created by VA FileMan routines begin with % or the letter D, or consist of

one uppercase letter followed by one numeral [except that IO(0), by convention, contains the $I value of

the signon device]. Since VA FileMan uses single character variable names extensively, do not use them

in code that is executed from within VA FileMan programming hooks, unless their use is documented in

the hook’s description or you NEW them. Also, do not expect single character variables to return

unchanged after calling a VA FileMan entry point.

Table 2 lists local variables of special importance in the VA FileMan routines:

Table 2: VA FileMan Routine Variables and Default Values

Variable Description Default Value

DT If defined, it is assumed to be the current date. For
example:

June 1, 1987 is DT=2870601.

Today’s date; derived from
$H

DTIME If defined, it is the integer value of the number of seconds
the user has to respond to a timed read.

300

DUZ If defined, it is assumed to be the User Number; a
positive number uniquely identifying the current user.

0

DUZ(0) If defined, it is assumed to be the FileMan Access code,
which is a character string describing the user’s security
clearance with regard to files, templates, and data fields
within a file.

““

VA FileMan 22.2

Developer’s Guide xxxi January 2017

Variable Description Default Value

 REF: See the “Data Security” section in the VA
FileMan Advanced User Manual.

Setting DUZ(0) equal to the at-sign (“@”) overrides all
security checks and allows special developer features,
which are described later. If the user’s M implementation
supports terminal break, a developer is allowed to break
execution at any point, whereas a user who does not
have programmer access can only break during output
routines.

U If defined, it is equal to a single caret (“^”) character. “^”

Table 3 lists the globals to which the VA FileMan routines explicitly refer:

Table 3: VA FileMan Routine Global References

Global Description

^DD All attribute dictionaries.

^DDA Data dictionary audit trail.

^DI Data types.

^DIA Data audit trail.

^DIAR Archival activity and Filegrams.

^DIBT Sort templates and the results of file searches.

^DIC Dictionary of files.

^DIE Input templates.

^DIPT Print templates and Filegram templates.

^DIST ScreenMan forms and blocks and Alternate Editors.

^DISV Most recent lookup value in any file or subfile (by DUZ).

^DIZ Default location for new data files as they are created.

^DOPT Option lists.

^DOSV Statistical results.

^%ZOSF M vendor-specific executable code.

The routines use the ^UTILITY and ^TMP globals for temporary scratch space. The ^XUTL global is

also used if you are running some M implementations.

VA FileMan 22.2

Developer’s Guide xxxii January 2017

Delimiters within Strings

The caret (“^”) character is conventionally used to delimit data elements that are strung together to be

stored in a single global node. A corollary of this rule is that the routines almost never allow input data to

contain carets; the user types a caret (“^”) to change or terminate the sequence of questions being asked.

Within ^-pieces, semicolons (“;”) are usually used as secondary delimiters, and colons (“:”) as tertiary

delimiters.

VA FileMan routines use the local variable U as equal to the single caret (“^”) character.

Canonic Numbers

VA FileMan recognizes only canonic numbers. A canonic number is a number that does not begin or end

with meaningless zeroes. For example, 7 is a canonic number, whereas 007 and 7.0 are not.

How to Obtain Technical Information Online

Exported VistA M Server-based software file, routine, and global documentation can be generated

through the use of Kernel, MailMan, and VA FileMan utilities.

 NOTE: Methods of obtaining specific technical information online is indicated where applicable

under the appropriate topic.

REF: For further information, see the VA FileMan Technical Manual.

Help at Prompts

VistA M Server-based software provides online help and commonly used system default prompts. Users

are encouraged to enter question marks at any response prompt. At the end of the help display, you are

immediately returned to the point from which you started. This is an easy way to learn about any aspect of

the software.

Obtaining Data Dictionary Listings

Technical information about VistA M Server-based files and the fields in files is stored in data

dictionaries (DD). You can use the List File Attributes option [DILIST] on the Data Dictionary Utilities

menu [DI DDU] in VA FileMan to print formatted data dictionaries.

 REF: For details about obtaining data dictionaries and about the formats available, see the “List

File Attributes” section in the “File Management” section in the VA FileMan Advanced User

Manual.

Assumptions

This manual is written with the assumption that the reader is familiar with the following:

 VistA computing environment:

o Kernel—VistA M Server software

o VA FileMan data structures and terminology—VistA M Server software

 Microsoft Windows environment

 M programming language

VA FileMan 22.2

Developer’s Guide xxxiii January 2017

Reference Materials

 Readers who wish to learn more about VA FileMan should consult the following:

 VA FileMan Release Notes

 VA FileMan Installation Guide

 VA FileMan Technical Manual

 VA FileMan User Manual (PDF and HTML format)

 VA FileMan Advanced User Manual (PDF and HTML format)

 VA FileMan Developer’s Guide (this manual; PDF and HTML format)

 REF: Zip files of the VA FileMan documentation in HTML format are located on the VA

FileMan Intranet Product website and VDL at: http://www.va.gov/vdl/application.asp?appid=5.

Using a Web browser, open the HTML documents “table of contents” page (i.e., index.shtml).

The VA FileMan User Manual, VA FileMan Advanced User Manual, and VA FileMan

Developer’s Guide are all linked together.

VistA documentation is made available online in Microsoft Word format and in Adobe Acrobat Portable

Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader, which is

freely distributed by Adobe® Systems Incorporated at: http://www.adobe.com/

VistA software documentation can be downloaded from the VA Software Document Library (VDL) at:

http://www.va.gov/vdl/

 REF: VA FileMan manuals are located on the VDL at:

http://www.va.gov/vdl/application.asp?appid=5

VistA documentation and software can also be downloaded from the Product Support (PS) Anonymous

Directories.

http://www.va.gov/vdl/application.asp?appid=5
http://www.adobe.com/
http://www.va.gov/vdl/
http://www.va.gov/vdl/application.asp?appid=5

VA FileMan 22.2

Developer’s Guide 1 January 2017

1 Introduction

1.1 What is VA FileMan?

VA FileMan creates and maintains a database management system that includes features such as:

 A report writer

 A data dictionary manager

 Scrolling and screen-oriented data entry

 Text editors

 Programming utilities

 Tools for sending data to other systems

 File archiving

VA FileMan can be used as a standalone database, as a set of interactive or “silent” routines, or as a set of

application utilities; in all modes, it is used to define, enter, and retrieve information from a set of

computer-stored files, each of which is described by a data dictionary.

VA FileMan is a public domain software package that is developed and maintained by the Department of

Veterans Affairs. It is widely used by VA medical centers and in clinical, administrative, and business

settings in this country and abroad.

1.2 Functional Description

VA FileMan functions as a Database Management System (DBS) with powerful Application Program

Interfaces (APIs) and provides useful utilities for application developers. VA FileMan can be used as a

database management system for data entry and output and its DBS calls are used in application packages

with tools like Filegrams, auditing, archiving, and statistics.

 Database Management System (DBS)—As a database management system (DBS), VA

FileMan supports the entering, editing, printing, searching, inquiring, transferring, cross-

referencing, triggering, and verifying of information. It includes special functions to create new

files, modify an existing file, delete entire files, reindex files, and create or edit templates.

 Application Program Interfaces (APIs)—As an application program interface (API), the

Database Server routines manage interactions between the application software and the database

management system “silently” (i.e., without writing to the current device). Package developers

use DBS calls to update the database in a non-interactive mode. Information needed by the VA

FileMan routines is passed through parameters rather than through interactive dialogue with the

user. Information to be displayed to the user is passed by VA FileMan back to the calling routine

in arrays. This separation of data access from user interaction makes possible the construction of

alternative front-ends to the VA FileMan database (e.g., a windowed Graphical User Interface

[GUI]).

 Utilities—As a set of utilities, VA FileMan provides tools like the Filegram, which is a tool that

moves file records from one computer to another; archiving, which is a tool that stores data onto

an offline storage medium; auditing, which is a tool that tracks changes to data in a field or to the

file’s structure (the data dictionary); and statistics, which is a tool that accumulates totals and

subtotals of individual fields.

VA FileMan 22.2

Developer’s Guide 2 January 2017

VA FileMan has several levels of users, ranging from a data entry person who enters, edits, inquires, or

prints information, to a software application developer or Information Resource Management (IRM) staff

member who uses all of its database management system features and utilities.

Developers should consider this manual the list of VA FileMan-supported (“documented”) routines and

Application Program Interface (API) calls eligible for developer use. These routines and APIs provide the

following (to list a few):

 File lookup and reindexing

 Data edit, print, display, and retrieval

 Filegrams

 File entry deletion

 A reader program

 Data dictionary deletion

 Word-processing

 Conversion of date and time values

 Software package export

 Linked option processing

1.3 Standalone VA FileMan

VA FileMan is designed to be used either with Kernel or as a standalone application running under a

variety of implementations of ANSI standard M. If VA FileMan is used without Kernel, the basic DBMS

features of VA FileMan all work as described in the manuals. However, there are some features

(e.g., bulletin-type cross references, print queuing, and Filegrams) that do not work without portions of

Kernel. Whenever Kernel is needed to support a particular VA FileMan feature, that fact is mentioned in

the manuals.

The installation of VA FileMan 22.0 is not integrated with the installation of Kernel. The VA FileMan

Installation Guide contains instructions on how to install VA FileMan, both for standalone sites and for

sites running Kernel.

 REF: For specific information regarding standalone VA FileMan (i.e., device handling, setting

IO variables, manually setting ^%ZOSF nodes, and setting up a minimal NEW PERSON file

[#200]), see the “FileMan System Management” topic in the VA FileMan Advanced User

Manual.

VA FileMan 22.2

Developer’s Guide 3 January 2017

I. Major APIs

2 Classic VA FileMan API

2.1 Introduction

Certain modules within VA FileMan are callable by other M routines. This is true of these Classic VA

FileMan routines, which are referred to as “Callable Routines” and are described in this section.

Database Server (DBS) calls are also callable by other M routines. However, these “silent” calls differ

from the Classic VA FileMan routines in that they separate interaction with the database from interaction

with the end-user. In Classic VA FileMan’s roll and scroll mode, interaction with the end-user was

closely tied to the code that actually changed the database, but with VA FileMan’s DBS calls no WRITEs

to the current device are done. Interaction with the user is managed by package developers from within

their own code, calling VA FileMan whenever interaction with the database is needed.

 REF: These DBS calls are described in the “Database Server (DBS) API” section.

When using both the Classic VA FileMan callable routines and the DBS calls, you must keep in mind the

variable-naming conventions listed below. If you have local variables that you wish to preserve by a call

to any of the routines described here, you should be sure to give them multi-character names beginning

with letters other than D.

It is the developer’s responsibility to clean up (KILL) documented input and output variables used in a

VA FileMan call when the call is finished. The few situations in which your input variables are KILLed

during the VA FileMan call are mentioned in the following sections. Developers also need to be alert to

the fact that Classic VA FileMan APIs are not recursive. A classic example is situation where your

routine is being called from a cross-reference, the client, and you want to alter the contents of other fields

either within the parent file or fields outside the parent file, in which case the developer would use the

proper Database Server (DBS) call.

After making an API call, always check for failed calls. For example, when using ^DIC for lookups,

always check for the error condition Y=-1 before doing anything else; when using the reader, always

check DUOUT, DIRUT, and DTOUT before doing anything else. When a call provides a way to check

for error conditions, it means that there are some circumstances where the call does not succeed!

Checking for errors after such a call allows you to handle the errors gracefully.

 CAUTION: Programmer access in VistA is defined as DUZ(0)=“@”. It grants the privilege
to become a developer in VistA. Programmer access allows you to work outside many of
the security controls enforced by VA FileMan, enables access to all VA FileMan files,
access to modify data dictionaries, etc. It is important to proceed with caution when
having access to the system in this way.

VA FileMan 22.2

Developer’s Guide 4 January 2017

2.2 Classic Calls Cross-referenced by Category

Table 4: Classic Calls—Category: Lookup/Adding Entries

Entry Point Description

^DIAC File Access Determination.

^DIC Starts w/or uses only B cross-references.

IX^DIC Starts w/or uses user-specified cross-references.

MIX^DIC1 Uses user-specified cross-references.

FILE^DICN Adds new entry to file.

DQ^DICQ Entry Display for Lookups.

Table 5: Classic Calls—Category: Entry Editing

Entry Point Description

^DIE Data input for a file.

EN^DIB User Controlled Editing.

^DIK Delete Entries.

EN^DIQ1 Data Retrieval.

EN^DIWE Text Editing.

Table 6: Classic Calls—Category: Prompting/Messages

Entry Point Description

^DIR Response Reader.

EN^DDIOL Message Loader.

WAIT^DICD Wait Messages.

YN^DICN Reader for a YES/NO response.

HELP^%DTC Displays help prompt based on date.

Table 7: Classic Calls—Category: Printing

Entry Point Description

EN1^DIP Prints Data.

D^DIQ Converts internal date to external.

DT^DIQ Like D^DIQ. Then writes converted date.

EN^DIQ Displays captioned range of data.

Y^DIQ Converts internal data to external.

VA FileMan 22.2

Developer’s Guide 5 January 2017

Entry Point Description

EN^DIS Searches File Entries.

^DIWF Form Document (Doc).

EN1^DIWF Form Doc-Calling app knows doc file.

EN2^DIWF Form Doc-Calling app knows entry in doc file.

DIWP Formats and outputs text lines.

DIWW Outputs text left in ^UTILITY($J,”W”) by ^DIWP

Table 8: Classic Calls—Category: Templates

Entry Point Description

^DIEZ INPUT template compile—User interactive.

EN^DIEZ INPUT template compile—No user interaction.

^DIOZ SORT template compile.

^DIPT PRINT template display.

DIBT^DIPT SORT template display.

^DIPZ PRINT template compile—User interactive.

EN^DIPZ PRINT template compile—No user interaction.

Table 9: Classic Calls—Category: Cross-references

Entry Point Description

EN^DIK Reindexes cross-references of a field for one file entry. KILL and
SET logic.

EN1^DIK Reindexes cross-references of a field for one file entry. SET logic,
only.

EN2^DIK Executes KILL logic for one or more cross-references on a field for
one file entry.

ENALL^DIK Reindexes all file entries for cross-references on a specific field.
SET logic, only.

ENALL2^DIK Executes KILL logic for one or more cross-references on a field for
all file entries.

IX^DIK Reindexes all cross-references of the file for only one file entry.
KILL and SET logic.

IX1^DIK Reindexes all cross-references of the file for only one file entry.
SET logic, only.

IX2^DIK Executes KILL logic of all cross-references for one entry at all file
levels at and below the one specified in DIK.

IXALL^DIK Reindexes all cross-references for all file entries. SET logic, only.

IXALL2^DIK Executes KILL logic for all file entries.

VA FileMan 22.2

Developer’s Guide 6 January 2017

Entry Point Description

^DIKZ Compiles cross-references into M routines.

EN^DIKZ Recompiles a files cross-references-No user intervention.

Table 10: Classic Calls—Category: Date/Time Utilities

Entry Point Description

X ^DD(“DD”) Converts external to internal.

DT^DIO2 Writes external from internal.

^%DT Validates date/time input. Convert to internal.

DD^%DT Converts internal to external.

^%DTC Returns # days between two dates.

C^%DTC Adds/subtracts # days from date. Return VA FileMan and $H
formats.

DW^%DTC Similar to H^%DTC. Except outputs name of the day.

H^%DTC Converts VA FileMan to $H format.

NOW^%DTC Returns current date/time in VA FileMan and $H formats.

S^%DTC Computes seconds after midnight into decimal part of VA FileMan
date.

YMD^%DTC Converts $H to VA FileMan format.

YX^%DTC Passes back printable and VA FileMan formats from $H.

Table 11: Classic Calls—Category: Utilities

Entry Point Description

DO^DIC1 Sets up VA FileMan file information.

DT^DICRW Sets up VA FileMan required variables.

EN^DID Prints/displays DD listing.

$$ROUSIZE^DILF Returns maximum routine size.

^DIM Validates M code.

COMMA^%DTC Formats number to string w/commas.

EN^DIU2 Deletes a file’s DD.

%XY^%RCR Moves arrays between locations.

VA FileMan 22.2

Developer’s Guide 7 January 2017

2.3 Classic Calls Presented in Alphabetical Order

This section lists and describes the VA FileMan Classic Calls in alphabetical order. The table previous to

this page cross-references the Classic Calls by category.

2.3.1 Introduction to Date/Time Formats: %DT

 NOTE: This introduction pertains to all %DT calls.

%DT is used to validate date/time input and convert it to VA FileMan’s conventional internal format:

“YYYMMDD.HHMMSS”, where:

 YYY—Number of years since 1700 (hence always 3 digits)

 MM—Month number (00-12)

 DD—Day number (00-31)

 HH—Hour number (00-23)

 MM—Minute number (01-59)

 SS —Seconds number (01-59)

This format allows for representation of imprecise dates, such as JULY ‘78 or 1978, which would be

equivalent to 2780700 and 2780000, respectively. Dates are always returned as a canonic number (i.e., no

trailing zeroes after the decimal).

The following are the date/time-related APIs:

 X ^DD(“DD”): Converts Internal to External Date Format

 DT^DIO2: Writes External Date

 ^%DT: Validates Date/Time Input and Converts to Internal Format

 DD^%DT: Converts Internal to External Date Format

 ^%DTC: Returns Number of Days between Two Dates

 C^%DTC: Adds/Subtracts Number of Days and Return VA FileMan and $H Formats

 DW^%DTC: Converts VA FileMan Date to $H Format and Outputs Name of the Day

 H^%DTC: Converts VA FileMan Date to $H Format

 NOW^%DTC: Returns Current Date/Time in VA FileMan and $H Formats

 S^%DTC: Converts Seconds to Hours, Minutes, and Seconds into Decimal Part of VA FileMan

Date

 YMD^%DTC: Converts $H to VA FileMan Format

 YX^%DTC: Returns Printable and VA FileMan Formats from $H

 DT^DILF(): Date Converter

2.3.2 X ^DD(“DD”): Converts Internal to External Date Format

There are two ways to convert a date from internal YYYMMDD format to external format:

 X ^DD(“DD”) (this call)

VA FileMan 22.2

Developer’s Guide 8 January 2017

 DD^%DT

This is the reverse of what %DT does. Simply set the variable Y equal to the internal date and execute

^DD(“DD”).

2.3.2.1 Example

Figure 2: X ^DD(“DD”) API—Example

>S Y=2690720.163 X ^DD(“DD”) W Y

JUL 20,1969@1630

This results in Y being equal to JUL 20,1969@16:30. (No space before the 4-digit year.)

Input Variable

Y: (Required) This contains the internal date to be converted. If this has five or six

decimal places, seconds are automatically returned.

Output Variable

Y: Y is returned as the external form of the date.

 REF: See also the DT^DIO2: API, which takes an internal date in the variable Y and writes out

its external form.

2.3.3 EN^DDIOL: Message Loader

EN^DDIOL is designed as a replacement for simple WRITE statements in any part of the data dictionary

that has a programming “hook” (e.g., executable help).

As alternate user interfaces are developed for accessing VA FileMan databases, developers are faced with

the issue of removing embedded WRITE statements from their data dictionaries. Direct WRITEs should

be removed, since they might cause the text to display improperly in the new interface. This separation of

the user interface from the database definition helps you to prepare your databases for access by any new

interface, such as a Graphical User Interface (GUI).

The environment in which the Loader is called determines how it processes the text it is passed.

Table 12: Loader—Processing Text Based on Mode

Mode How the Text Is Processed

Scrolling Text is written to the screen.

ScreenMan Text is written in ScreenMan’s Command Area.

DBS Text is loaded into an array.

In DBS mode, the specific array where the text is placed depends on which DBS call is made and whether

an output array was specified in the DBS call.

For example, if a call is made to the Validator (VAL^DIE), and the INPUT transform of the field makes a

call to the Loader, the text is placed into ^TMP(“DIMSG”,$J). If a call is made to the Helper

(HELP^DIE), and the executable help of the field makes a call to the Loader, the text is placed into

VA FileMan 22.2

Developer’s Guide 9 January 2017

^TMP(“DIHELP”,$J). If the call to Validator or the Helper uses the MSG_ROOT parameter, the text is

placed in the array specified by MSG_ROOT.

 RECOMMENDATION: No line of text passed to the Loader should exceed 70 characters
in length.

Formats

1. EN^DDIOL(value,”“,format)

2. EN^DDIOL(.array)

3. EN^DDIOL(““,global_root)

Input Parameters

value: (Optional) If there is just one line of text to output, it can be passed in the first

parameter.

.array: (Optional) If there is more than one line of text to output, stored in a local array,

then the first parameter of the call is the name of the local array passed by

reference and that contains string or numeric literals, where:

Figure 3: EN^DDIOL API—Sample .ARRAY Input Parameter Array Name

ARRAY(1) = string 1

ARRAY(2) = string 2 ...

ARRAY(n) = string n

Formatting instructions can also be included in this array.

 REF: See “Formatting for Arrays” in the “Details and Features” section.

global_ root: (Optional) An alternate way to pass the text to the call is in a global root. In that

case, the first parameter is null, and the second parameter contains the name of

the global root that contains string or numeric literals, where:

Figure 4: EN^DDIOL API—Sample GLOBAL_ROOOT Input Parameter (1 of
2)

@GLOBAL_ROOT@(1,0) = string 1

@GLOBAL_ROOT@(2,0) = string 2 ...

@GLOBAL_ROOT@(n,0) = string n

Or:

Figure 5: EN^DDIOL API—Sample GLOBAL_ROOOT Input Parameter (2 of
2)

@GLOBAL_ROOT@(1) = string 1

@GLOBAL_ROOT@(2) = string 2 ...

@GLOBAL_ROOT@(n) = string n

Formatting instructions can also be included in this global array.

VA FileMan 22.2

Developer’s Guide 10 January 2017

 REF: See “Formatting for Arrays” section.

format: (Optional) Formatting instructions controlling how the string is written or placed

in the array. You can specify:

 One or more new lines before the string (!, !!, !!!, etc.)

 Horizontal position of string (?n)

 FORMAT can be any number of “!” characters optionally followed by

“?n”, where n is an integer expression. The default FORMAT is “!”.

This parameter can only be used when call format is used to pass a single string

or numeric literal to EN^DDIOL. To pass formatting instructions when text is

passed as an array or global o EN^DDIOL.

 REF: See “Formatting for Arrays” section.

2.3.3.1 Examples

2.3.3.1.1 Example 1

Suppose a Write Identifier node contains the following WRITE statement:

Figure 6: EN^DDIOL—Example: Write Identifier Node

^DD(filenumber,0,”ID”,”W1”)=W “ “,$P(^(0),U,2)

An equivalent statement converted to use EN^DDIOL is:

Figure 7: EN^DDIOL—Example: Write Identifier Node Converted

^DD(filenumber,0,”ID”,”W1”)=D EN^DDIOL(“ “_$P(^(0),U,2),”“,”?0”)

2.3.3.1.2 Example 2

The executable help of a field passes one line of text by value to the Loader as illustrated below:

Figure 8: EN^DDIOL—Example: Input

>D EN^DDIOL(“This is one line of text.”,”“,”!!?12”)

If the call is made in scroll mode (e.g., ^DIE executes the executable help), below is an example of what

the Loader writes to the screen:

Figure 9: EN^DDIOL—Example: Output in Scroll Mode

This is one line of text.

If the call is made in DBS mode, the Helper (HELP^DIE) executes the executable help. The text is placed

into the ^TMP global as shown below:

VA FileMan 22.2

Developer’s Guide 11 January 2017

Figure 10: EN^DDIOL—Example: Output in DBS Mode

^TMP(“DIHELP”,$J,1)=““

^TMP(“DIHELP”,$J,2)=“ This is one line of text.”

2.3.3.1.3 Example 3

Figure 11 is an example of passing an array of text to the Loader:

Figure 11: EN^DDIOL—Example: Input Passing a Text Array

>S A(1)=“First line.”

>S A(2)=“Second line, preceded by one blank line or node.”

>S A(2,”F”)=“!!”

>S A(3)=“More text on second line.”

>S A(3,”F”)=“?55”

>D EN^DDIOL(.A)

2.3.3.1.4 Example 4

Below is an example of passing a global that contains text to the Loader:

Figure 12: EN^DDIOL—Example: Input Passing a Global Containing Text

S ^GLB(1)=“First line.”

S ^GLB(2)=“Second line, preceded by one blank line or node.”

S ^GLB(2,”F”)=“!!”

S ^GLB(3)=“More text on second line.”

S ^GLB(3,”F”)=“?55”

D EN^DDIOL(““,”^GLB”)

2.3.3.2 Details and Features

2.3.3.2.1 Formatting for Arrays

When you pass an array or a global to EN^DDIOL, you can also pass formatting instructions for each line

of text in your array or global. These instructions control how the string is written or placed in the output

array. You can specify:

 One or more new lines before the string (!, !!, !!!, etc.)

 Horizontal position of string (?n)

Place the formatting instructions for a line of text in an “F” node descendent from the node containing the

text. The value of each “F” node can be any number of “!” characters optionally followed by “?n”, where

n is an integer expression. The default FORMAT is “!”.

VA FileMan 22.2

Developer’s Guide 12 January 2017

For example:

Figure 13: EN^DDIOL—Sample Formatting for Arrays

A(1) = string 1

A(1,”F”) = format (e.g., “!?35”, “?10”, etc.)

^G(1,0) = string 1

^G(1,”F”) = format

^G(1) = string 1

^G(1,”F”) = format

 NOTE: If you use format (1) to pass a single string of text to EN^DDIOL, you can pass the

formatting instructions in the third parameter FORMAT.

2.3.4 ^DIAC: File Access Determination

This entry point determines if a user has access to a file.

Input Variables

DIFILE: (Required) The file number of the file on which you want to verify file access.

DIAC: (Required) Use one of the values listed below to verify the specified type of file

access:

 “RD”—Verify READ access to a specific file.

 “WR”—Verify WRITE access to a specific file.

 “AUDIT”—Verify AUDIT access to a specific file.

 “DD”—Verify DD access to a specific file.

 “DEL”—Verify DELETE access to a specific file.

 “LAYGO”—Verify LAYGO access to a specific file.

Output Variables

DIAC: DIAC returns either a 0 or a 1:

 1—Indicates that the user has that type of access to the file.

 NOTE: If the user’s DUZ(0)=“@”, the value 1 is always

returned.

 0—Indicates that the user does not have access of that type to the file.

%: The % variable returns exactly the same values as DIAC.

VA FileMan 22.2

Developer’s Guide 13 January 2017

2.3.5 EN^DIB: User Controlled Editing

Invokes the Enter or Edit File Entries option [DIEDIT] of VA FileMan to edit records in a given file,

allowing the user to select the fields to edit.

Input Variables

DIE: (Required) The global root of the file in the form ^GLOBAL(or ^GLOBAL(# or

the number of the file.

DIE(“NO^”): (Optional) Allows the developer control of the use of the caret (“^”) in an edit

session. If this variable does not exist, unrestricted use of the caret for jumping

and exiting is allowed.

The variable can be set to one of the following:

Table 13: EN^DIB: User Controlled Editing API

Set To Description

“OUTOK” Allows exiting and prevents all jumping.

“BACK” Allows jumping back to a previously edited field and does

not allow exiting.

“BACKOUTOK” Allows jumping back to a previously edited field and

allows exiting.

“Other value” Prevents all jumping and does not allow exiting.

DIDEL: (Optional) Allows you to override the Delete Access on a file or subfile. Setting

DIDEL equal to the number of the file before calling DIE allows the user to

delete an entire entry from that file even if the user does not normally have the

ability to delete. This variable does not override the DEL-nodes described in the

“Global File Structure” section.

2.3.6 ^DIC: Lookup/Add

Given a lookup value, this entry point searches a file and either finds a matching entry, adds an entry, or

returns a condition indicating that the lookup was unsuccessful.

 REF: For a comparison of how they each perform lookups, see the IX^DIC: Lookup/Add and

MIX^DIC1: Lookup/Add APIs.

Except for the DIC(“W”) variable, which is KILLed, the DIC input array is left unchanged by ^DIC.

Input Variables

DIC: (Required) The file number or an explicit global root in the form ^GLOBAL(or

^GLOBAL(X,Y,.

DIC(0): (Optional) A string of alphabetic characters that alter how DIC responds. At a

minimum this string must be set to null. A detailed description of these characters

can be found later in this section, under DIC(0) Input Variables in Detail.

VA FileMan 22.2

Developer’s Guide 14 January 2017

 NOTE: If DIC(0) is null or undefined, no terminal output is generated

by the DIC routine.

The acceptable characters are:

 A—Ask the entry; if erroneous, ask again.

 B—Only the “B” index is used when doing lookup to files pointed-to by

starting file.

 C—Cross-reference suppression is turned off.

 E—Echo information.

 F—Forget the lookup value.

 I—Ignore the special lookup program.

 K—Primary Key is used as starting index for the lookup.

 L—Learning a new entry is allowed.

 M—Multiple-index lookup allowed.

 N—Internal Number lookup allowed (but not forced).

 O—Only find one entry if it matches exactly.

 Q—Question erroneous input (with two ??).

 S—Suppresses display of .01 (except “B” cross-reference match) and of

any Primary Key fields.

 T—ConTinue searching all indexes until user selects an entry or enters

two carets (“^^”) to get out.

 U—Untransformed lookup.

 V—Verify that looked-up entry is OK.

 X—EXact match required.

 Z—Zero node returned in Y(0) and external form in Y(0,0).

X: If DIC(0) does not contain an A, then the variable X must be defined equal to the

value you want to find in the requested indexes. If a lookup index is on a pointer

or variable pointer field, VA FileMan searches the “B” index on the pointed-to

file for a match to the lookup value X (unless the developer uses the

DIC(“PTRIX”) array to direct the search to a different index on the pointed-to

file).

If the lookup index is compound (i.e., has more than one data subscript), then X

can be an array X(n) where “n” represents the position in the subscript. For

example, if X(2) is defined, it is used as the lookup value to match to the entries

in the second subscript of the index. If only the lookup value X is passed, it is

assumed to be the lookup value for the first subscript in the index, X(1).

DIC(“A”): (Optional) A prompt that is displayed prior to the reading of the X input. If

DIC(“A”) is not defined, the word Select, the name of the file,

[i.e., $P(^GLOBAL(0),”^”,1)], a space, the LABEL of the .01 field, and a colon

VA FileMan 22.2

Developer’s Guide 15 January 2017

is displayed. If the file name is the same as the LABEL of the .01 field, then only

the file name is displayed. DIC(0) must contain an A for this prompt to be issued.

For example, if the (fictitious) EMPLOYEE file had a .01 field with the LABEL

of NAME, VA FileMan would issue the following prompt:

Select EMPLOYEE NAME:

By setting DIC(“A”)=“Enter Employee to edit: “, the prompt would be:

Enter Employee to edit:

Notice that it is necessary for the prompt in DIC(“A”) to include the colon and

space at the end of the prompt if you want those to be displayed.

If the lookup index is compound (i.e., has more than one data subscript), then

DIC(“A”) can be an array DIC(“A”,n) where “n” represents the position in the

subscript. For example, DIC(“A”,2) is used as the prompt for the second

subscript in the index. If only the single prompt DIC(“A”) is passed, it is

assumed to be the prompt for the first subscript in the index DIC(“A”,1).

If DIC(“A”,n) is undefined for the “nth” subscript, then the “Lookup Prompt”

field for that subscript from the INDEX file (#.11) is used as the prompt, or if it

is null, the LABEL of the field from the data dictionary.

DIC(“B”): (Optional) The default answer that is presented to the user when the lookup

prompt is issued. If a terminal user simply presses the Enter key, the DIC(“B”)

default value is used, and returned in X. DIC(“B”) is only used if it is non-null.

If the lookup index is compound (i.e., has more than one data subscript), then

DIC(“B”) can be an array DIC(“B”,n) where “n” represents the position in the

subscript. For example, DIC(“B”,2) is used as the default answer for the prompt

for the second subscript in the index. If only the single default answer DIC(“B”)

is passed, it is assumed to be the default answer for the prompt for the first

subscript in the index DIC(“B”,1).

DIC(“DR”): When calling DIC with LAYGO allowed, you can specify that a certain set of

fields is asked for in the case where the user enters a new entry. This list is

specified by setting the variable DIC(“DR”) equal to a string that looks exactly

like the DR string of fields that is specified when calling ^DIE. Such a list of

what VA FileMan calls forced identifiers overrides any identifiers that would

normally be requested for new entries in this file.

DIC(“P”) As of VA FileMan 22.0, the developer is no longer required to set DIC(“P”). The

only exception to this is for a few files that are not structured like a normal VA

FileMan file, where the first subscript of the data is variable in order to allow

several different “globals” to use the same DD. An example of this is the VA

FileMan Audit files where the first subscript is the file number of the file being

audited.

This variable is needed to successfully add the FIRST subentry to a multiple

when the descriptor (or header) node of the multiple does not exist. In that

situation, DIC(“P”) should be set equal to the subfile number and subfile

specifier codes for the multiple.

 REF: See the “File Header” section.

VA FileMan 22.2

Developer’s Guide 16 January 2017

If the descriptor node for the multiple already exists, DIC(“P”) has no effect.

In order to automatically include any changes in the field’s definition in

DIC(“P”), it is best to set this variable to the second ^-piece of the 0-node of the

multiple field’s definition in the DD.

 REF: See the “Field Definition 0-Node” section.

Thus, for example, if File #16150 had a Multiple Field #9, set DIC(“P”) like this:

>S DIC(“P”)=$P(^DD(16150,9,0),”^”,2)

 REF: For more information, see the “Adding New Subentries to a

Multiple” section.

DIC(“PTRIX”,f,p,t)=d: Where:

 f—from (pointing) file number.

 p—pointer field number.

 t—pointed-to file number.

 d—caret (“^”)-delimited list of index names.

When doing a lookup using an index for a pointer or variable pointer field, this

new array allows the user to pass a list of indexes that is used when searching the

pointed-to file for matches to the lookup value.

For example, if your File #662001 has a pointer Field #5 to File #200 (NEW

PERSON), and you wanted the lookup on File #200 to be either by name (“B”

index), or by the first letter of the last name concatenated with the last 4 digits of

the social security number (“BS5” index):

 DIC(“PTRIX”,662001,5,200)=“B^BS5”

If the call allows records to be added to a pointed-to file, then the list in the

“PTRIX” entry should contain the “B” index. However, the “B” index would not

need to be included in the list if the first index in the “PTRIX” array entry is a

compound index whose first subscript is the .01 field.

DIC(“S”): (Optional) DIC(“S”) is a string of M code that DIC executes to screen an entry

from selection. DIC(“S”) must contain an IF statement to set the value of $T.

Those entries that the IF sets as $T=0 are not displayed or selectable. When the

DIC(“S”) code is executed, the local variable Y is the internal number of the

entry being screened and the M naked indicator is at the global level

@(DIC_”Y,0)”). Therefore, to use the previous example again, if you wanted to

find a male employee whose name begins with FMEMPLOYEE, you would:

S DIC=“^EMP(“,DIC(0)=“QEZ”,X=“FMEMPLOYEE”

S DIC(“S”)=“I $P(^(0),U,2)=““M”““

D ^DIC

DIC(“T”): (Optional) Present every match to the lookup value, quitting only when user

either selects one of the presented entries, enters two carets (“^^”) to quit, or

there are no more matching entries found.

VA FileMan 22.2

Developer’s Guide 17 January 2017

Currently, if one or more matches are found in the first pass through the indexes,

then VA FileMan quits the search, whether or not one of the entries is selected.

Only if no matches are found in the first pass does VA FileMan continue on to

try transforms to the lookup value. This includes transforms to find internal

values of pointers, variable pointers, dates or sets.

Another feature of the “T” flag is that indexes are truly searched in the order

requested. If, for example, an index on a pointer field comes before an index on a

free-text field, matches from the pointer field are presented to the user before

matches to the free-text field.

When used in combination with the “O” flag, all indexes are searched for an

exact match. Then, only if none are found, does VA FileMan make a second pass

through the indexes looking for partial matches.

DIC(“V”): If the .01 field is a variable pointer, it can point to entries in more than one file.

You can restrict the user’s ability to input entries from certain files by using the

DIC(“V”) variable. It is used to screen files from the user. Set the DIC(“V”)

variable to a line of M code that returns a truth value when executed. The code is

executed after someone enters data into a variable pointer field. If the code tests

false, the user’s input is rejected; VA FileMan responds with ?? and an audible

sound (“beep”).

All of this information was defined when that file was entered as one of the

possibilities for the variable pointer field.

For example, suppose your .01 field is a variable pointer pointing to files 1000,

2000, and 3000. If you only want the user to be able to enter values from files

1000 or 3000, you could set up DIC(“V”) like this:

S DIC(“V”)=“I +Y(0)=1000!(+Y(0)=3000)”

DIC(“W”): (Optional) An M command string that is executed when DIC displays each of the

entries that match the user’s input. The condition of the variable Y and of the

naked indicator is the same as for DIC(“S”). If DIC(“W”) is defined, it overrides

the display of any identifiers of the file. Thus, if DIC(“W”)=““, the display of

identifiers are suppressed.

 NOTE: DIC(“W”) is KILLed by ^DIC calls.

DIC(“?N”,file#)=n: The number “n” should be an integer set to the number of entries to be displayed

on the screen at one time when using “?” help in a lookup. Usually, file# is the

number of the file on which you are doing the lookup. However, if doing a

lookup using an index on a pointer field, and if DIC(0) contains “L”, then the

user also is allowed to see a list of entries from the pointed-to file, so in that case

file# could be the number of that pointed-to file. For example, when doing a

lookup in test File #662001, if the developer wants only five entries at a time to

be displayed in question-mark help, set DIC(“?N”,662001)=5.

DIC(“?PARAM”, file#,”INDEX”)=Index name:

(Optional) Used to control entries displayed during online “?” help only. If

provided, this index is used to display the entries from the file specified by file#.

Otherwise, VA FileMan uses the first lookup index specified for the ^DIC call.

VA FileMan 22.2

Developer’s Guide 18 January 2017

This value is used as the INDEX parameter to the Lister call to display the

entries.

 REF: For detailed information, see the LIST^DIC(): Lister API.

DIC(“?PARAM”, file#,”FROM”,n)=value:

(Optional) Used to control entries displayed during online “?” help only. This

array can be set to define a starting value for an entry in the lookup index used to

list entries from the file. Integer value “n” is associated with the “nth” data value

subscript in the index (e.g., regular old-style indexes always have just one

indexed data value so “n” would be 1). If a starting value is defined for subscript

“n,” then starting values must also be defined for all of the subscripts preceding

“n.”

This information is used to set the FROM parameter for a call to LIST^DIC in

order to display the entries in the file specified by file#. Therefore, the entries

must meet the same rules as the FROM parameter described in that call.

 REF: For detailed information, see the LIST^DIC(): Lister API.

If DIC(0) contains an “L” and the first indexed field is a pointer, then after

displaying the current entries on the file, VA FileMan allows the user to see

entries on the pointed-to file. In that case, the developer can request starting

values for any pointed-to file in the pointer chain. If the user enters “^value”

when asked whether they wish to see the entries in the file, the value entered by

the user overrides the starting list value passed by the developer in this array.

DIC(“?PARAM”, file#,”PART”,n)=value:

(Optional) Used to control entries displayed during online “?” help only. This

array can be set to define partial match values for each of the “n” subscripts on

the lookup index used during online help. The information is used to set the

PART parameter for a Lister call to display the entries.

 REF: For detailed information, see the LIST^DIC(): Lister API.

As with DIC(“?PARAM”,file#,”FROM”,n), if DIC(0) contains “L”, the

developer can define partial match values for any pointed-to file in the pointer

chain.

DLAYGO: (Optional) If this variable is set equal to the file number, then the user is able to

add a new entry to the file whether or not they have LAYGO access to the file.

This variable, however, does not override any LAYGO node that may exist on

the .01 field [i.e., ^DD(file#,.01,”LAYGO”,#,0)]. M code in the LAYGO node is

still executed, and must set the truth value to TRUE for an entry to be added.

 NOTE: In addition, DIC(0) must contain “L” to allow addition of entries

to the file.

http://vhaispwww5/fileman/docs/pm/gfs_3c.shtml#laygo
http://vhaispwww5/fileman/docs/pm/gfs_3c.shtml#laygo

VA FileMan 22.2

Developer’s Guide 19 January 2017

Output Variables

Y: DIC always returns the variable Y. The variable Y is returned with one of these

three formats:

 Y=-1—The lookup was unsuccessful.

 Y=N^S—N is the internal number of the entry in the file and S is the

value of the .01 field for that entry.

 Y=N^S^1—N and S are defined as above and the 1 indicates that this

entry has just been added to the file.

Y(0): This variable is only set if DIC(0) contains a Z. When the variable is set, it is

equal to the entire zero node of the entry that was selected.

Y(0,0): This variable also is only set if DIC(0) contains a Z. When the variable is set, it is

equal to the external form of the .01 field of the entry.

The following are examples of returned Y variables based on a call to the

(fictitious) EMPLOYEE file stored in the (fictitious) ^EMP(global:

>S DIC=“^EMP(“,DIC(0)=“QEZ”,X=“FMEMPLOYEE”

>D ^DIC

Returned are:

Y = “7^FMEMPLOYEE,ONE”

Y(0) = “FMEMPLOYEE,ONE^M^2231109^2

Y(0,0) = “FMEMPLOYEE,ONE”

If the lookup had been done on a file whose .01 field points to the (fictitious)

EMPLOYEE file, the returned variables might look like this:

Y = “32^7” [Entry #32 in this file and #7

 in EMPLOYEE file.]

Y(0) = “7^RX 2354^ON HOLD”

Y(0,0) = “FMEMPLOYEE,ONE” [.01 field of entry 7

 in EMPLOYEE file]

X Contains the value of the field where the match occurred.

If the lookup index is compound (i.e., has more than one data subscript), and if

DIC(0) contains “A” so that the user is prompted for lookup values, then X is

output as an array X(n) where “n” represents the position in the subscript and

contains the values from the index on which the entry was found. Thus, X(2)

would contain the value of the second subscript in the index. If possible, the

entries are output in their external format (i.e., if the subscript is not computed

and does not have a transform). If the entry is not found on an index (e.g., when

lookup is done with X=“ “ [the <spacebar><Enter> feature]), then X and X(1)

contain the user input, but the rest of the X array is undefined.

DTOUT: This is only defined if DIC has timed-out waiting for input from the user.

DUOUT: This is only defined if the user entered a caret (“^”).

VA FileMan 22.2

Developer’s Guide 20 January 2017

2.3.6.1 DIC(0) Input Variables in Detail

The effects of the various characters that can be contained in DIC(0) are described below:

A DIC asks for input from the terminal and asks again if the input is erroneous. A

response of null or a string containing a caret (“^”) is accepted. Input is returned

in X when DIC quits. If DIC(0) does not contain the character A, the input to

DIC is assumed to be in the local variable X.

B Without the B flag, if there are cross-referenced pointer or variable pointer fields

in the list of indexes to use for lookup and if DIC(0) contains “M” and there is no

screening logic on the pointer that controls the lookup on the pointed-to file,

then:

1. For each cross-referenced pointer field, VA FileMan checks all lookup

indexes in each pointed-to file for a match to X (time-consuming).

2. If X matches any value in any lookup index (not just the “B” index) on

the pointed-to file and the IEN of the matched entry is in the home file’s

pointer field cross-reference, VA FileMan considers this a match. This

perhaps may not be the lookup behavior you wanted (see “Examples”).

The B flag prevents this behavior by looking for a match to X only in the “B”

index (.01 field) of files pointed to by cross-referenced pointer or variable pointer

fields. This makes lookups quicker and avoids the risk of VA FileMan matching

an entry in the pointed-to file based on some unexpected indexed field in that

file.

C Normally, when DIC does a lookup and finds an entry that matches the input,

that entry is presented to the user only once even if the entry appears in more

than one cross-reference. This is called cross-reference suppression and can be

overridden by including a C in DIC(0). If, for example, a person with the name

FMPATIENT,20 is an entry in a file, then his name appears in the “B” cross-

reference of the file. If he has a nickname of TWENTY, which is in the “C”

cross-reference of the file, then when a user enters TWENTY as a lookup value,

the name, FMPATIENT,20, appears only once in the choices. But if there is a

“C” in DIC(0), then FMPATIENT,20 appears twice in the choices; once as a hit

in the “B” cross-reference and again as a hit in the “C” cross-reference.

E The file entry names that match the inputs are echoed back to the terminal screen;

and if there is more than one such name, the user is asked to choose which entry

is wanted. E is important, because it is the way to tell DIC that you are in an

interactive mode and are expecting to be able to receive input from the user.

F Prevents saving the entry number of the matched entry in the ^DISV global.

Ordinarily, the entry number is saved at ^DISV(DUZ,DIC). This allows the user

to do a subsequent lookup of the same entry simply by pressing the Spacebar

and Enter keys (<Spacebar><Enter>). To avoid the time cost of setting this

global, include an F in DIC(0).

I If DIC(0) contains I, any special user-written lookup program for a file is ignored

and DIC proceeds with its normal lookup process.

You can write a special lookup program to be used to find entries in a particular

file. This special program can be defined by using the Edit File option

[DIEDFILE] of the Utility Functions menu [DIUTILITY].

VA FileMan 22.2

Developer’s Guide 21 January 2017

 REF: For more information, see the “Special Lookup Programs” section in

“Advanced File Definition” section.

When a lookup program is defined, VA FileMan bypasses the normal lookup

process of DIC and branch to the user written program. This user-written lookup

program must respond to the variables documented in this section and provide the

functionality of DIC as they pertain to the file.

K The K flag causes ^DIC to use the Uniqueness index for the Primary Key as the

starting index for the lookup, rather than starting with the “B” index. (If

developers want to specify some other index as the starting index, then they can

specify the index by using the D input variable, and either the IX^DIC:

Lookup/Add or

MIX^DIC1: Lookup/Add APIs instead of ^DIC.)

L If DIC(0) contains L and the user’s input is in valid format for the file’s .01 field,

then DIC allows the user to add a new entry to the file at this point (LAYGO:

Learn-As-You-GO), as long as at least one of these four security-check

conditions is true:

 The local variable DUZ(0) is equal to the at-sign (“@”).

 If Kernel’s File Access Security System (formerly known as Kernel Part

3) is being used for security, the file is listed in the user’s record of

accessible files with LAYGO access allowed.

 If file access management is not being used, a character in DUZ(0)

matches a character in the file’s LAYGO access code or the file has no

LAYGO access code.

 The variable DLAYGO is defined equal to the file number.

 NOTE: Even if DIC(0) contains L and one of these security checks is

passed, LAYGO is not allowed if a test in the data dictionary’s LAYGO

node fails.

M If DIC(0) contains M, DIC does a multiple lookup on all of the file’s cross-

references from “B” on to the end of the alphabet. For example, if a given file is

cross-referenced both by Name and by Social Security Number, and the user

inputs 000-45-6789, DIC, failing to find this input as a Name, automatically goes

on to look it up as a Social Security Number.

 REF: For finer control in specifying the indexes used for lookup, see the

alternate lookup entry points IX^DIC: Lookup/Add and

MIX^DIC1: Lookup/Add APIs.

N If DIC(0) contains N, the input is allowed to be checked as an internal entry

number even if the file in question is not normally referenced by number.

However, input is only checked as an IEN if no other matches are found during

regular lookup.

VA FileMan 22.2

Developer’s Guide 22 January 2017

If DIC(0) does not contain an N, the user is still allowed to select by entry

number by preceding the number with the accent grave character (`). When a `

is used, the lookup is limited to internal entry numbers only.

Placing N in DIC(0) does not force IEN interpretation; it only permits it. In order

to force IEN interpretation, you must use the accent grave (`) character.

 NOTE: With this flag, when DIC(0) contains an L, users may be

allowed to force the internal entry number when adding new entries to

the file. If the user enters a number N that is not found on any of the

cross-references, and if the .01 field is not numeric and the file is not

DINUMed, and if VA FileMan can talk to the users (DIC(0)[“E”), then

the user is asked whether they want to add the new entry, and are

prompted for the value of the .01 field. The entry is added at the record

number N that was originally entered by the user. Note that if there is a

.001 field on the file, the number N must also pass the INPUT transform

for the .001 field.

n If the lowercase “n” flag is put into DIC(0), then if the lookup value is numeric

and if a lookup is done on a free text or set of codes field, partial matches on pure

numerics are found. Suppose a free text field has records with the values 2, 223,

and 22A, and the lookup value is 2. Without the flag, only the records with the

values 2 and 22A are found. With the flag, all three are found.

O If DIC(0) contains the letter O, then for each index searched, VA FileMan looks

first for exact matches to the lookup value before looking for partial matches. If

an exact match is found, then VA FileMan returns only that match and none of

the partial matches on the index. Thus if an index contained the entries

“FMEMPLOYEE,ONE” and “FMEMPLOYEE,TWO” and if the user typed a

lookup value of “FMEMPLOYEE,ONE,” then only the “FMEMPLOYEE,ONE”

entry would be selected, and the user would never see the entry

“FMEMPLOYEE,TWO.”

 NOTE: If partial matches but no exact matches are found in the first

indexes searched, but if exact matches are found in an index searched

later, then the partial matches from the first indexes are returned along

with the exact match from the later indexes.

Q If DIC(0) contains Q and erroneous input is entered, two question marks (??) are

displayed and the user hears an audible sound (“beep”).

S If DIC(0) does not contain S, the value of the .01 field and Primary Key fields (if

the file has a Primary Key) is displayed for all matches found in any cross-

reference. If DIC(0) does contain S, the .01 field and Primary Key fields are not

displayed unless they are one of the indexed fields on which the match was

made.

T “T” flag in DIC(0). Present every match to the lookup value, quitting only when

user either selects one of the presented entries, enters two carets (“^^”) to quit, or

there are no more matching entries found.

Currently, if one or more matches are found in the first pass through the indexes,

then VA FileMan quits the search, whether or not one of the entries is selected.

VA FileMan 22.2

Developer’s Guide 23 January 2017

Only if no matches are found in the first pass does VA FileMan continue on to

try transforms to the lookup value. This includes transforms to find internal

values of pointers, variable pointers, dates or sets.

Another feature of the “T” flag is that indexes are truly searched in the order

requested. If, for example, an index on a pointer field comes before an index on a

free-text field, matches from the pointer field is presented to the user before

matches to the free-text field. When used in combination with the “O” flag, all

indexes are searched for an exact match. Then, only if no matches are found,

does VA FileMan make a second pass through the indexes looking for partial

matches.

U Normally, the lookup value is expected to be in external format (for dates,

pointers and such). VA FileMan first searches the requested index for a match to

the user input as it was typed in. Then, if no match is found, VA FileMan

automatically tries certain transforms on the lookup value.

For instance, if one of the lookup indexes is on a date field, VA FileMan tries to

transform the lookup value to an internal date, and then checks the index again.

The U flag causes VA FileMan to look for an exact match on the index and to

skip any transforms. Thus, the lookup value must be in VA FileMan internal

format. This is especially useful for lookups on indexed pointer fields, where the

internal entry number (i.e., internal pointer value) from the pointed-to file is

already known.

Ordinarily, this flag would not be used along with the “A”, “B”, “M”, “N” or “T”

flags. In many cases it makes sense to combine this with the “X” flag.

V If DIC(0) contains V and only one match is made to the user’s lookup value, then

they are asked “OK?” and they have to verify that the looked-up entry is the one

they wanted. This is an on-the-fly way of getting behavior similar to the

permanent flag that can be set on a file by answering “YES” to the question

“ASK ‘OK’ WHEN LOOKING UP AN ENTRY?”.

 REF: For more information, see the Edit File option [DIEDFILE]

described in the VA FileMan UTILITY option in the VA FileMan

Advanced User Manual.

X If DIC(0) contains X, for an exact match, the input value must be found exactly

as it was entered. Otherwise, the routine looks for any entries that begin with the

input X. Unless “X-act match” is specified, lowercase input that fails in the

lookup is automatically converted to uppercase, for a second lookup attempt. The

difference between X and O (described above) is that X requires an exact match.

If there is not one, either DIC exits or tries to add a new entry. With O, if there is

not an exact match, DIC looks for a partial match beginning with the input.

Z If DIC(0) contains Z and if the lookup is successful, then the variable Y(0) is also

returned. It is set equal to the entire zero node of the entry that has been found.

Another array element, Y(0,0), is also returned and is set equal to the printable

expression of the .01 field of the entry selected. This has no use for DATA Type

fields with values of FREE TEXT and NUMERIC unless there is an OUTPUT

transform. However, for DATE/TIME, SET OF CODES, and POINTER field

types, Y(0,0) contains the external format.

VA FileMan 22.2

Developer’s Guide 24 January 2017

2.3.6.1.1 Adding New Subentries to a Multiple

You can use ^DIC or FILE^DICN to add new subentries to a multiple. In order to add a subentry, the

following variables need to be defined:

DIC: Set to the full global root of the subentry. For example, if the multiple is one

level below the top file level: file’s_root,entry#,multiple_field’s_node.

DIC(0): Must contain “L” to allow LAYGO.

DIC(“P”): Set to the 2nd piece of 0-node of the multiple field’s DD entry.

 NOTE: As of VA FileMan 22.0, the developer is no longer required to

set DIC(“P”). The only exception to this is for a few files that are not

structured like a normal VA FileMan file, where the first subscript of the

data is variable in order to allow several different “globals” to use the

same DD. An example of this is the VA FileMan Audit files where the

first subscript is the file number of the file being audited.

DA(1)... DA(n): Set up this array such that DA(1) is the IEN at the next higher file level above the

multiple that the lookup is being performed in, DA(2) is the IEN at the next

higher file level (if any), ... DA(n) is the IEN at the file’s top-level.

 RECOMMENDATION: The value of the unsubscripted DA node
should not be defined when doing lookups in a subfile (i.e., the
value you are trying to obtain)!

2.3.7 ^DIC and ^DIE Examples

2.3.7.1 Example 1

Figure 14 is an example of code that:

 Uses ^DIC to interactively select a top-level record.

 Uses ^DIC to select or create a subentry in a Multiple in that record.

 Uses ^DIE to edit fields in the selected or created subentry.

VA FileMan 22.2

Developer’s Guide 25 January 2017

The file’s root in this example is “^DIZ(16150,”, the multiple’s field number is 9, and the multiple is

found on node 4. The code for this example follows:

Figure 14: ^DIC—Sample Code to: Use ^DIC to Interactively Select a Top-level Record, Create a
Subentry; and Use ^DIE to Edit Fields in the Subentry

; a call is made to DIC so the user can select an entry in the file

;

S DIC=“^DIZ(16150,”,DIC(0)=“QEAL” D ^DIC

I Y=-1 K DIC Q ;quit if look-up fails

;

; a second DIC call is set up to select the subentry

;

S DA(1)=+Y ;+Y contains the internal entry number of entry chosen

S DIC=DIC_DA(1)_”,4,” ;the root of the subfile for that entry

S DIC(0)=“QEAL” ;LAYGO to the subfile is allowed

S DIC(“P”)=$P(^DD(16150,9,0),”^”,2) ;returns the subfile# and specifiers

D ^DIC I Y=-1 K DIC,DA Q ;user selects or adds subentry

;

; a DIE call is made to edit fields in subfile

;

S DIE=DIC K DIC ;DIE now holds the subfile’s root

S DA=+Y ;+Y contains the internal entry number of subentry chosen

S DR=“1;2” D ^DIE ;edit fields number 1 and 2

K DIE,DR,DA,Y Q

2.3.7.2 Example 2

File #662002 has a .01 field that points to the NEW PERSON file (#200). In this example, you will use

input arrays in DIC(“?PARAM”,662002,”FROM”,1) to start the list of entries in the “B” index of File

#662002 with the letter “M”. Since DIC(0) contains “L” (user can add entries to the pointed-to File #200),

VA FileMan also displays entries from the NEW PERSON file (#200), so you use

DIC(“?PARAM”,200,”PART”,1) to display only entries that start with the letter “S”.

Figure 15: ^DIC—Sample Code to Display a List of Entries from two Different Files Starting with
Different Letters (1 of 2)

S DIC=^DIZ(662002,DIC(0)=“AEQZL”

S DIC(“?PARAM”,200,”PART”,1)=“S”

S DIC(“?PARAM”,662002,”FROM”,1)=“M”

>D ^DIC

VA FileMan 22.2

Developer’s Guide 26 January 2017

Figure 16: ^DIC—Sample Code to Display a List of Entries from two Different Files Starting with
Different Letters (2 of 2)

Select FMEMOPLOYEE,NINETY POINT TO NEW PERSON PERSON NAME: ??

 Choose from:

 FMEMPLOYEE,NINE MAR 02, 1948 DEVELOPER NF OIFO DEVELOPER

 FMEMPLOYEE,FIVE APR 03, 1948 TEAM LEAD FF DEVELOPER

 FMEMPLOYEE,EIGHT AUG 28, 1948 PROJECT MANAGER EF DEVELOPER

 FMEMPLOYEE,SEVEN AUG 28, 1949 COMPUTER SPECIALIST SF DEVELOPER

 FMEMPLOYEE,SIX JUN 12, 1955 COMPUTER SPECIALIST SF DEVELOPER

 FMEMPLOYEE,ONE NOV 11, 1961 SYSTEMS ANALYST OF DEVELOPER

 FMEMPLOYEE,THREE MAY 05, 1965 TEAM LEAD SF DEVELOPER

 FMEMPLOYEE,FOUR JAN 01, 1969 COMPUTER SPECIALIST FF

 FMEMPLOYEE,TWO JUL 07, 1977 COMPUTER SPECIALIST SF DEVELOPER

 You may enter a new FMEMOPLOYEE,NINETY POINT TO NEW PERSON, if you wish

 Choose from:

 SHARED,MAIL

 FMEMPLOYEE,FOURTY

 FMEMPLOYEE,TEN

 FMEMPLOYEE,THIRTY

 NOTE: Data names have been “scrubbed” for privacy.

2.3.7.3 Example 3

In this example, you are using the same files as in “Example B”; you are displaying entries from the

pointing File #662002, using the “AC” index, which sorts the entries by TITLE, then by NAME. In this

case, you limit the number of entries displayed at one time from both File #662002 and File #200 to 5.

Figure 17: ^DIC—Example: Input to Display Entries from the Pointing File Using the “AC” Index

S DIC=“^DIZ(662002,”,DIC(0)=“AEQZL”

S DIC(“?PARAM”,662002,”INDEX”)=“AC”

S DIC(“?N”,662002)=5

S DIC(“?N”,200)=5

>D ^DIC

VA FileMan 22.2

Developer’s Guide 27 January 2017

Figure 18: ^DIC—Example: Output Prompts

Select FMEMOPLOYEE,NINETY POINT TO NEW PERSON PERSON NAME: ??

 Choose from:

 TEAM LEAD FMEMPLOYEE,SIXTY MAR 01, 1875 TEAM LEAD SF DEVELOPER

 SYSTEMS ANALYST FMEMPLOYEE,ONE NOV 11, 1961 SYSTEMS ANALYST OF DEVELOPER

 TEAM LEAD FMEMPLOYEE,SEVENTY FEB 05, 1950 TEAM LEAD SF

 COMPUTER SPECIALIST FMEMPLOYEE,SEVEN AUG 28, 1949 COMPUTER SPECIALIST SF

 COMPUTER SPECIALIST FMEMPLOYEE,FOUR JAN 01, 1969 COMPUTER SPECIALIST FF

 You may enter a new FMEMOPLOYEE,NINETY POINT TO NEW PERSON, if you wish

 Answer with NEW PERSON NAME

 Do you want the entire NEW PERSON List? Y <Enter> (Yes)

Choose from:

 FMEMPLOYEE,EIGHTY EF DEVELOPER

 FMEMPLOYEE,SIXTY SF DEVELOPER

 FMEMPLOYEE,FORTY FF DEVELOPER

 FMEMPLOYEE,SEVENTY SF DEVELOPER

 FMEMPLOYEE,FIFTY FF DEVELOPER

 NOTE: Data names have been “scrubbed” for privacy.

2.3.8 IX^DIC: Lookup/Add

This entry point is similar to ^DIC and MIX^DIC1, except for the way it uses cross-references to perform

lookup. The three entry points perform lookups as follows:

Table 14: IX^DIC—Entry Points Lookups

API Entry Point Description

^DIC Starts with the B cross-reference, or uses only the B cross-reference [unless K is
passed in DIC(0)].

IX^DIC Starts with the cross-reference you specify or uses only the cross-reference you
specify.

MIX^DIC1 Uses the set of cross-references you specify.

Input Variables (Required)

 NOTE: All of the input variables described in ^DIC can be used in the IX^DIC: Lookup/Add

API. The following variables are required.

DIC: The global root of the file (e.g., ^DIZ(16000.1,).

DIC(0): The lookup parameters as previously described for ^DIC.

D: The cross-reference in which to start looking. If DIC(0) contains M, then DIC

continues the search on all other lookup cross-references, in alphabetical order. If

it does not, then the lookup is only on the single cross-reference. This variable is

KILLed by VA FileMan; it is undefined when the IX^DIC call is complete.

VA FileMan 22.2

Developer’s Guide 28 January 2017

If DIC(0) contains “L”, (i.e., user is allowed to add a new entry to the file), then:

 D should be set to “B”.

Or:

 D should be set to an index that alphabetically comes before “B” and

DIC(0) should contain “M”.

Or:

 D should contain the name of a compound index.

X: If DIC(0) does not contain an A, then the variable X must be defined equal to the

value you want to look up.

If the lookup index is compound (i.e., has more than one data subscript), then X

can be an array X(n) where “n” represents the position in the subscript. For

example, if X(2) is passed in, it is used as the lookup value to match to the entries

in the second subscript of the index. If only the lookup value X is passed, it is

assumed to be the lookup value for the first subscript in the index, X(1).

Input Variables (Optional)

All of the ^DIC input variables can be used in the IX^DIC call. These variables below are optional.

DIC(“A”) This set of input variables affects the behavior of lookup as described for ^DIC.

DIC(“B”)

DIC(“DR”)

DIC(“P”)

DIC(“PTRIX”,f,p,t)=d DIC(“S”)

DIC(“V”)

DIC(“W”)

DIC(“?N”,file#)=n

Output Variables

Y: DIC always returns the variable Y. The variable Y is returned in one of these

three formats:

 Y=-1—The lookup was unsuccessful.

 Y=N^S—N is the Internal Entry Number of the entry in the file and S is

the value of the .01 field for that entry.

 Y=N^S^1—N and S are defined as above and the 1 indicates that this

entry has just been added to the file.

Y(0): This variable is only set if DIC(0) contains a Z. When the variable is set, it is

equal to the entire zero node of the entry that was selected.

VA FileMan 22.2

Developer’s Guide 29 January 2017

Y(0,0): This variable also is only set if DIC(0) contains a Z. When the variable is set, it is

equal to the external form of the .01 field of the entry.

The following are examples of returned Y variables based on a call to the

(fictitious) EMPLOYEE file stored in the (fictitious) ^EMP(global:

>S DIC=“^EMP(“,DIC(0)=“QEZ”,X=“FMEMPLOYEE”

>D ^DIC

Returned is:

Y = “7^FMEMPLOYEE,ONE”

Y(0) = “FMEMPLOYEE,ONE^M^2231109^2

Y(0,0) = “FMEMPLOYEE,ONE”

If the lookup had been done on a file whose .01 field points to the (fictitious)

EMPLOYEE file, the returned variables might look like this:

Y = “32^7” [Entry #32 in this file and #7 in

 EMPLOYEE file.]

Y(0) = “7^RX 2354^ON HOLD”

Y(0,0) = “FMEMPLOYEE,ONE” [.01 field of entry 7 in

 EMPLOYEE file]

X: Contains the value of the field where the match occurred.

If the lookup index is compound (i.e., has more than one data subscript), and if

DIC(0) contains an A so that the user is prompted for lookup values, then X is

output as an array X(n), where “n” represents the position in the subscript and

contains the values from the index on which the entry was found. Thus, X(2)

would contain the value of the second subscript in the index. If possible, the

entries are output in their external format (i.e., if the subscript is not computed

and does not have a transform). If the entry is not found on an index (e.g., when

lookup is done with X=“ “ [the “Spacebar Enter” feature]), then X and X(1)

contain the user input, but the rest of the X array is undefined.

DTOUT: This is only defined if DIC has timed-out waiting for input from the user.

DUOUT: This is only defined if the user entered a caret (“^”).

VA FileMan 22.2

Developer’s Guide 30 January 2017

2.3.9 DO^DIC1: File Information Setup

This entry point retrieves a file’s file header node, code to execute its identifiers and its screen (if any),

and puts them into local variables for use during lookup into a file.

If $D(DO) is greater than zero, DO^DIC1 quits immediately. If DIC(“W”) is defined before calling

DO^DIC1, it is not changed.

Input Variables

DIC: The global root of the file (e.g., ^DIZ(16000.1,).

DIC(0): The lookup parameters as previously described for ^DIC.

Output Variables

DO: File name^file number and specifiers. This is the file header node.

 NOTE: Use the letter O, not the number zero, in this variable name.

DO(2): File number and specifiers. This is the second ^piece of DO. +DO(2) always

equals the file number.

DIC(“W”): This is an executable variable that contains the write logic for identifiers. When

an entry is displayed, the execution of this variable shows other information to

help identify the entry. This variable is created by $ORDERing through the data

dictionary ID level, for example:

^DD(+DO(2),0,”ID”,value)

 NOTE: The specifier, I, must be in DO(2) for VA FileMan to even look

at the ID-nodes.

DO(“SCR”): An executable variable that contains a file’s screen (if any). The screen is an IF

statement that can screen out certain entries in the file. This differs from

DIC(“S”) in that it is used on every lookup regardless of input or output (i.e., the

screen is applied to inquiries and printouts as well as to lookups). The value for

this variable comes from ^DD(+DO(2),0,”SCR”) and the specifier “s” must be in

DO(2).

VA FileMan 22.2

Developer’s Guide 31 January 2017

2.3.10 MIX^DIC1: Lookup/Add

This entry point is similar to ^DIC and IX^DIC, except for the way it uses cross-references to do lookup.

The three entry points perform lookups as follows:

Table 15: DIC and DIC1 Entry Point Comparison

API Entry Point Description

^DIC Starts with the B cross-reference or uses only the B cross-reference [unless K is

passed in DIC(0)].

IX^DIC Starts with the cross-reference you specify or uses only the cross-reference you

specify.

MIX^DIC1 Uses the set of cross-references you specify.

Input Variables (Required)

 NOTE: All of the input variables described in ^DIC can be used in the MIX^DIC1 call. The

following variables are required.

DIC: The global root of the file (e.g., ^DIZ(16000.1,).

DIC(0): The lookup parameters as previously described for ^DIC.

D: The list of cross-references, separated by carets (“^”), to be searched

(e.g., D=“SSN^WARD^B”). If DIC(0) contains “L”, meaning that the user can

add a new entry to the file, then either:

 The “B” index should be included in the list contained in D.

Or:

 D should be set to the name of a compound index.

Make sure DIC(0) contains M; otherwise, only the first cross-reference in D is

used for the lookup.

X: If DIC(0) does not contain an A, then the variable X must be defined equal to the

value you want to look up.

If the lookup index is compound (i.e., has more than one data subscript), then X

can be an array X(n), where “n” represents the position in the subscript. For

example, if X(2) is passed in, it is used as the lookup value to match to the entries

in the second subscript of the index. If only the lookup value X is passed, it is

assumed to be the lookup value for the first subscript in the index, X(1).

VA FileMan 22.2

Developer’s Guide 32 January 2017

Input Variables (Optional)

All of the ^DIC input variables can be used in the MIX^DIC1 call. The variables below are optional.

DIC(“A”) This set of input variables affects the behavior of lookup as described for ^DIC.

DIC(“B”)

DIC(“DR”)

DIC(“P”)

DIC(“PTRIX”,f,p,t)=d

DIC(“S”)

DIC(“V”)

DIC(“W”)

DIC(“?N”,file#)=n

Output Variables

Y: DIC always returns the variable Y. The variable Y is returned in one of the three

following formats:

 Y=-1—The lookup was unsuccessful.

 Y=N^S—N is the Internal Entry Number of the entry in the file and S is

the value of the .01 field for that entry.

 Y=N^S^1—N and S are defined as above and the 1 indicates that this

entry has just been added to the file.

Y(0): This variable is only set if DIC(0) contains a Z. When the variable is set, it is

equal to the entire zero node of the entry that was selected.

Y(0,0): This variable also is only set if DIC(0) contains a Z. When the variable is set, it is

equal to the external form of the .01 field of the entry.

The following are examples of returned Y variables based on a call to the

(fictitious) EMPLOYEE file stored in the (fictitious) ^EMP(global:

>S DIC=“^EMP(“,DIC(0)=“QEZ”,X=“FMEMPLOYEE”

>D ^DIC

Returned are:

Y = “7^FMEMPLOYEE,ONE”

Y(0) = “FMEMPLOYEE,ONE^M^2231109^2

Y(0,0) = “FMEMPLOYEE,ONE”

If the lookup had been done on a file whose .01 field points to the (fictitious)

EMPLOYEE file, the returned variables might look like this:

Y = “32^7” [Entry #32 in this file and #7 in

 EMPLOYEE file.]

Y(0) = “7^RX 2354^ON HOLD”

Y(0,0) = “FMEMPLOYEE,ONE” [.01 field of entry 7 in

 EMPLOYEE file]

VA FileMan 22.2

Developer’s Guide 33 January 2017

X: Contains the value of the field where the match occurred.

If the lookup index is compound (i.e., has more than one data subscript), and if

DIC(0) contains an A so that the user is prompted for lookup values, then X is

output as an array X(n), where “n” represents the position in the subscript and

contains the values from the index on which the entry was found. Thus, X(2)

would contain the value of the second subscript in the index. If possible, the

entries are output in their external format (i.e., if the subscript is not computed

and does not have a transform). If the entry is not found on an index (e.g., when

lookup is done with X=“ “ [the “Spacebar Enter” feature]), then X and X(1)

contain the user input, but the rest of the X array is undefined.

DTOUT: This is only defined if DIC has timed-out waiting for input from the user.

DUOUT: This is only defined if the user entered a caret (“^”).

2.3.11 WAIT^DICD: Wait Messages

Use this entry point to display VA FileMan’s informational messages telling users that the program is

working and they must wait a while. The selection of the phrase is random. There are no input or output

variables.

Some sample messages are:

Figure 19: WAIT^DICD API—Sample VA FileMan Informational Messages: “Wait” Type Messages

...EXCUSE ME, I’M WORKING AS FAST AS I CAN...

...SORRY, LET ME THINK ABOUT THAT A MOMENT...

2.3.12 FILE^DICN: Add

This entry point adds a new entry to a file. The INPUT transform is not used to validate the value being

added as the .01 field of the new entry. This call does not override the checks in the LAYGO nodes of the

data dictionary; they must still prove true for an entry to be added.

FILE^DICN can also be used to add subentries in multiples.

 REF: See the “Adding New Subentries to a Multiple” section in the description of ^DIC.

Variables to Kill

DO: If DO is set, then VA FileMan assumes that all of the variables described as

output in the call to DO^DIC1 have been set as well, and that they describe the

file to which you wish to add a new record. If you are not sure, then DO should

be KILLed and the call sets it up for you based on the global root in DIC.

 NOTE: This variable is D with the letter O, not zero.

VA FileMan 22.2

Developer’s Guide 34 January 2017

Input Variables

DIC: The global root of the file.

DIC(0): (Required) A string of alphabetic characters that alter how DIC responds. At a

minimum, this string must be set to null. The characters you can include are:

 E—Echo back information. This tells DIC that you are in an interactive

mode and are expecting to be able to receive input from the user. If there

are identifiers when adding a new entry, for example, the user can edit

them as the entry is added if the E flag is used.

 F—Prevents saving the entry number of the matched entry in the ^DISV

global. Ordinarily, the entry number is saved at ^DISV(DUZ,DIC). This

allows the user to do a subsequent lookup of the same entry simply by

pressing the Spacebar and Enter keys (<Spacebar><Enter>). To avoid

the time cost of setting this global, include an F in DIC(0).

 Z—Zero node returned in Y(0) and external form in Y(0,0).

DIC(“P”): As of VA FileMan 22.0, the developer is no longer required to set DIC(“P”).

The only exception to this is for a few files that are not structured like a normal

VA FileMan file, where the first subscript of the data is variable in order to allow

several different “globals” to use the same DD. An example of this is the VA

FileMan Audit files, where the first subscript is the file number of the file being

audited.

Used when adding subentries in Multiples.

 REF: See the description in the “^DIC: Lookup/Add” section.

DA: Array of entry numbers.

 REF: See the “Adding New Subentries to a Multiple” section in the

description of ^DIC.

X: The internal value of the .01 field, as it is to be added to the file. The developer is

responsible for ensuring that all criteria described in the INPUT transform have

been met. That means that the value X must be in VA FileMan internal format as

it would be after executing the input transform. For example, a date must be in

VA FileMan internal format “2690302”, not “March 02, 1969”. Also local

variables set by the input transform code must be set. For example, if the input

transform sets DINUM, then DINUM must be set to the record number at which

the entry must be added.

DINUM: (Optional) Identifies the subscript at which the data is to be stored (i.e., the

internal entry number of the new record, shown as follows). This means that

DINUM must be a canonic number and that no data exists in the global at that

subscript location.

$D(@(DIC_DINUM_”)”))=0

If a record already exists at the DINUM internal entry number, no new entry is

made. The variable Y is returned equal -1.

VA FileMan 22.2

Developer’s Guide 35 January 2017

DIC(“DR”): (Optional) Used to input other data elements at the time of adding the entry. If

the user does not enter these elements, the entry is not added. The format of

DIC(“DR”) is the same as the variable DR described under the discussion of

^DIE.

If there are any required Identifiers for the file or if there are security keys

defined for the file (in the KEY file [#.31]), and if DIC(0) does not contain an E,

then the identifier and key fields must be present in DIC(“DR”) in order for the

record to be added. If DIC(0) contains E, the user is prompted to enter the

identifier and key fields whether or not they are in DIC(“DR”).

Output Variables

Y: DIC always returns the variable Y, which can be in one of the two following

values:

 Y=-1—Indicates the lookup was unsuccessful; no new entry was added.

 Y=N^S^1—N is the internal number of the entry in the file, S is the

value of the .01 field for that entry, and the 1 indicates that this entry has

just been added to the file.

Y(0): This variable is only set if DIC(0) contains a Z. When it is set, it is equal to the

entire zero node of the entry that was selected.

Y(0,0): This variable is also only set if DIC(0) contains a Z. When it is set, it is equal to

the external form of the .01 field of the entry.

DTOUT: This is only defined if DIC has timed-out waiting for input from the user.

DUOUT: This is only defined if the user entered a caret (“^”).

X: The variable X is returned unchanged from the input value.

2.3.13 YN^DICN: Yes/No

This entry point is a reader for a YES/NO response. You must display the prompt yourself before calling

YN^DICN. YN^DICN displays the question mark and the default response, reads and processes the

response, and returns %.

 RECOMMENDATION: Instead of using this entry point, it is suggested that you use the
generalized reader ^DIR. ^DIR gives you greater flexibility in displaying prompts and
help messages and also presents more information about the user’s response.

Input Variables

%: Determines the default response as follows:

 % = 0 (zero)—No default

 % = 1—YES

 % = 2—NO

VA FileMan 22.2

Developer’s Guide 36 January 2017

Output Variables

%: The processed user’s response. It can be one of the following:

 % = -1—The user entered a caret (“^”).

 % = 0 (zero)—The user pressed the Enter key when no default was

presented or the user entered a ? (question mark).

 % = 1—The user entered a YES response.

 % = 2—The user entered a NO response.

%Y: The actual text that the user entered.

2.3.14 DQ^DICQ: Entry Display for Lookups

This entry point displays the list of entries in a file a user can see. It can be used to process question mark

responses directly. If DO is not defined, the first thing that DQ^DICQ does is call DO^DIC1 to get the

characteristics of the selected file.

Input Variables

DIC: (Required) The global root of the file.

DIC(0): (Required) The lookup input parameter string as described for ^DIC.

DIC(“S”): (Optional) Use this variable in the same way as it is described as an input

variable for ^DIC.

DIC(“?N”,file#)=n: (Optional) Use this variable in the same way it is described as input to ^DIC.

DIC(“?PARAM”, file#,”INDEX”)=index name:

(Optional) Use this input array in the same way it is described as input to ^DIC.

DIC(“?PARAM”, file#,”FROM”,n)=value:

(Optional) Use this input array in the same way it is described as input to ^DIC.

DIC(“?PARAM”, file#,”PART”,n)=value:

(Optional) Use this input array in the same way it is described as input to ^DIC.

D: (Required) Set to “B”.

DZ: (Required) Set to “??”. This is set in order to prevent VA FileMan from issuing

the “DO YOU WANT TO SEE ALL nn ENTRIES?” prompt.

VA FileMan 22.2

Developer’s Guide 37 January 2017

2.3.15 DT^DICRW: FM Variable Setup

Sets up the required VA FileMan variables. There are no input variables; simply call the routine at this

entry point.

 NOTE: This entry point KILLs the variables DIC and DIK.

Output Variables

DUZ: Set to zero if it is not already defined.

DUZ(0): Set to null if not already defined. If DUZ(0)=“@”, this subroutine enables

terminal break if the operating system supports such functionality.

IO(0): Set to $I if IO(0) is not defined. Therefore, this program should not be called if

the user is on a device different from the home terminal and IO(0) is undefined.

DT: Set to the current date, in VA FileMan format.

U: Set to the caret (“^”).

2.3.16 EN^DID: Data Dictionary Listing

This entry point prints and/or displays a file’s data dictionary listing by setting the input variables (the

same as the output from the List File Attributes option [DILIST] described in the VA FileMan Advanced

User Manual).

Input Variables

DIC: Set to the data dictionary number of the file to list.

DIFORMAT: Set to the desired data dictionary listing format. It must be one of the following

strings:

 STANDARD

 BRIEF

 MODIFIED STANDARD

 TEMPLATES ONLY

 GLOBAL MAP

 CONDENSED

 INDEXES AND CROSS-REFERENCES ONLY

 KEYS ONLY

VA FileMan 22.2

Developer’s Guide 38 January 2017

2.3.17 ^DIE: Edit Data

This routine handles input of selected data elements for a given file entry. You should use ^DIE only to

edit existing records.

 NOTE: When you call the DIE routine, it does not lock the record; you must do that yourself.

 REF: See the “Locking” section.

To allow the user to interactively choose the fields to edit, use the EN^DIB entry point instead.

Input Variables

DIE: (Required) The global root of the file in the form ^GLOBAL(or ^GLOBAL(#, or

the number of the file.

If you are editing a subfile, set DIE to the full global root leading to the subfile

entry, including all intervening subscripts and the terminating comma, up to but

not including the IEN of the subfile entry to edit.

DA: (Required) If you are editing an entry at the top-level of a file, set DA to the

internal entry number of the file entry to be edited.

If you are editing an entry in a subfile, set up DA as an array, where DA=entry

number in the subfile to edit, DA(1) is the entry number at the next higher file

level,...DA(n) is the entry number at the file’s top-level.

 REF: For more information, see the “Editing a Subfile Directly” section.

 NOTE: The variable DA is KILLed if an entry is deleted within DIE.

This can happen if the user answers with the at–sign (“@”) when editing

the entry’s .01 field.

DR: (Required) A string specifying which data fields are asked for the given entry.

The fields specified by DR are asked whether or not VA FileMan WRITE access

security protection has been assigned to the fields.

You can include the following in the DR-string:

 Field number: The internal number of a field in a file.

 Field with Default Value: A field number followed by // (two slashes),

followed by a default value. You can make a field with no current data

value default to a particular data value you specify. For example, if there

is a file entry stored descendent from ^FILE(777), and Field #27 for this

file is DATE OF ADMISSION, and you want the user to see:

DATE OF ADMISSION: TODAY//

Then, the calling program should be:

VA FileMan 22.2

Developer’s Guide 39 January 2017

S DR=“27//TODAY”,DIE=“^FILE(“,DA=777

D ^DIE

If the user just presses the Enter key when seeing the prompt, DIE acts

as though the user typed in the word TODAY.

 Stuff a Field Value (Validated): A field number followed by /// (three

slashes), followed by a value. The value should be the external form of

the field’s value (i.e., the format that would be acceptable as a user’s

response). The value is automatically inserted into the database after

passing through the INPUT transform. For example:

S DR=“27///TODAY”,DIE=“^FILE(“,DA=777

D ^DIE

The user sees no prompts, and the current date is automatically stuffed

into Field #27 of entry #777, even if other data previously existed there.

In the course of writing a routine, you can pass the value contained in a

variable to DIE and automatically insert the value into a field. In that

case, you would write:

S DR=“27///^S X=VAR”

You can also use the three-slash stuff to automatically add or select an

entry in a multiple. For example, if Field #60 is a Multiple field, and you

write:

S DR=“60///TODAY”

The entry in the subfile corresponding to TODAY would be selected, or

added if it did not already exist.

 NOTE: If TODAY did not already exist in the file, but could not

be added (because LAYGO was not allowed, for example), or if

more than one TODAY entry already existed in the file (i.e., the

lookup value was ambiguous), ^DIE prompts the user to select

an entry in the subfile. To add entries or edit existing entries

non-interactively, consider using UPDATE^DIE and FILE^DIE

instead.

 Stuff a Field Value (Unvalidated): A field number followed by ////

(four slashes), followed by a value. The value is automatically inserted

without validation into the database. For example:

S DR=“27////2570120”,DIE=“^FILE(“,DA=777

D ^DIE

The user sees no prompts, and the value 2570120 is put into Field #27

VA FileMan 22.2

Developer’s Guide 40 January 2017

without going through the INPUT transform. When using this form, the

data after the four slashes must already be in its internally stored form.

This cannot be used for .01 fields due to the differences between DIE and

DIC.

 NOTE: Key uniqueness is not enforced when a 4-slash stuff is

used.

 Field Value Deletion: A field number followed by three or four slashes

(/// or ////) and an at-sign (“@”). This automatically deletes the field

value. For example:

S DR=“27///@”

The user does not see any prompts, and the value for Field #27 is deleted.

 NOTE: You cannot use this method to delete the value of a

required field, an uneditable field, a key field, or a field to which

the user does not have Delete access.

 Field Number Range: A range of field numbers, in the form M:N,

where M is the first and N the last number of the inclusive range. All

fields whose numbers lie within this range are asked.

 Placeholder for Branching: A placeholder like @1.

 REF: See the “Branching” section.

 M Code: A line of M code.

 Combination: A sequence of any of the above types, separated by

semicolons. If field numbers .01, 1, 2, 4, 10, 11, 12, 13, 14, 15, and 101

exist for the file stored in ^FILE, and you want to have fields 4, .01, 10

through 15, and 101 asked in that order for entry number 777, you

simply write:

S DIE=“^FILE(“,DA=777,DR=“4;.01;10:15;101”

D ^DIE

 NOTE: The DR-string contains the semicolon delimiter to

specify field numbers and the colon to specify a range of fields.

This prevents these two characters from being used as defaults.

They can, however, be placed in a variable that is then used as

the default instead of a literal, for example:

S DR=“27///^S X=VAR”

VA FileMan 22.2

Developer’s Guide 41 January 2017

 INPUT template: An INPUT template name, preceded by an open

bracket ([) and followed by a closed bracket (]). All the fields in that

template are asked.

DIE(“NO^”): (Optional) Controls the use of the caret (“^”) in an edit session. If this variable

does not exist, unrestricted use of the caret for jumping and exiting is allowed.

The variable can be set to one of the following:

 “OUTOK”—Allows exiting and prevents all jumping.

 “BACK”—Allows jumping back to a previously edited field and does

not allow exiting.

 “BACKOUTOK”—Allows jumping back to a previously edited field

and allows exiting.

 “Other value”—Prevents all jumping and does not allow exiting.

DIE(“PTRIX”,f,p,t)=d: Where:

 f = From (pointing) file number.

 p = Pointer field number.

 t = Pointed-to file number.

 d = Caret (“^”)-delimited list of index names.

This optional input array allows you to control how lookups are done on both

multiple and non-multiple pointer and variable pointer fields. Each node in this

array is set to a list of index names, separated by carets (“^”). When the user

edits a pointer or variable pointer field, only those indexes in the list are used

when searching the pointed-to file for matches to the lookup value.

For example, if your input template contains a Field #5 on File #16100 that is a

pointer to the NEW PERSON file (#200), and you want the lookup on the NEW

PERSON file (#200) to be by name (“B” index), or by the first letter of the last

name concatenated with the last four digits of the social security number (“BS5”

index), you would set the following node before the ^DIE call:

DIE(“PTRIX”,16100,5,200)=“B^BS”

 NOTE: If you allow records to be added to the pointed-to file, you

should include a “B” in the list of indexes, since when ^DIE adds an

entry, it assumes the .01 field for the new entry is the lookup value.

However, the “B” index would not need to be included if the first index

in the “PTRIX” node is a compound index whose first subscript is the .01

field.

DIDEL: (Optional) Overrides the DELETE access on a file or subfile. Set DIDEL equal to

the number of the file before calling DIE to allow the user to delete an entire

entry from that file, even if the user does not normally have the ability to delete.

This variable does not override the “DEL”-nodes described in the “Other Field

Definition Nodes” in the “Global File Structure” section.

Output Variables

DTOUT: Is set when a time-out has occurred.

VA FileMan 22.2

Developer’s Guide 42 January 2017

 NOTE: DA, DIE, DR, DIE(“NO^”), and DIDEL are not KILLed by

DIE; however, the variable DA is KILLed if the entry is deleted within

DIE. This can happen if the user answers with an at-sign (“@”) when

editing the entry’s .01 field.

2.3.17.1 Details and Features of Data Editing

1. Locking

2. Edit Qualifiers

3. Branching

4. Specific Fields in Multiples

5. Continuation DR-Strings

6. Detecting Exits (by using the caret character; “^”)

7. Editing a Subfile Directly

8. Screening Variable Pointers

9. Filing

10. New-Style Compound Indexes and Keys

2.3.17.1.1 Locking

If you want to ensure that two users cannot edit an entry at the same time, lock the entry. It is

recommended that you use incremental locks.

Here is a simple example of using incremental locks to lock an entry before editing and to remove the

lock after:

Figure 20: ^DIE API—Sample Code Using Incremental Locks

S DIE=“^FILE(“,DA=777,DR=“[EDIT]”

L +^FILE(777):0 I $T D ^DIE L -^FILE(777) Q

W !?5,”Another user is editing this entry.” Q

 NOTE: The DIE call itself does NO locking.

2.3.17.1.2 Edit Qualifiers

In the DR string, you can use edit qualifiers (described in the VA FileMan Advanced User Manual) in

conjunction with the fields you specify. The possible qualifiers are:

 T

 DUP

 REQ

 Text literal strings in quotes

VA FileMan 22.2

Developer’s Guide 43 January 2017

In interactive mode, users can combine qualifiers with fields by using semicolon separators. But, in DR-

strings, semicolons are already used to delimit individual fields, so you must use a different syntax for

DR. Basically, leave out the semicolon and the unnecessary characters. Using Field #3 as an example, the

syntax for edit qualifiers in DR-strings is:

Table 16: ^DIE API—Edit qualifiers: Interactive Syntax

Interactive
Syntax

Syntax for DR-
string

Explanation

3;T 3T The T follows the field number immediately.

3;”xxx” 3xxx The quotes are removed from the literal and it follows the field
number immediately.

3;DUP 3d The D becomes lowercase and the UP is dropped.

3;REQ 3R The EQ is dropped and the uppercase R follows immediately.

You can combine specifiers as long as you separate them with tildes (~). For example, if you want to

require a response to Field #3, and issue the title rather than the prompt, put 3R~T in the DR-string.

2.3.17.1.3 Branching

You can include branching logic within DR. To do this, insert an executable M statement in one of the

semicolon-pieces of DR. The M code is executed when this piece of DR is encountered by the DIE

routine.

If the M code sets the variable Y, DIE jumps to the field whose number (or label) matches Y. (The field

must be specified elsewhere within the DR variable.) Y can look like a placeholder (e.g., @1). If Y is set

to zero or the null string, DIE exits if the editing is at the top-level; otherwise, it returns to the next higher

level. If Y is KILLed, or never set, no branching occurs.

The M code can calculate Y based on X, which equals the internal value of the field previously asked for

(as specified by the previous semicolon-piece of DR). Take the example below and suppose that you do

not want the user to be asked for Field #.01 if the answer to Field #4 was YES, you would write the

following:

Figure 21: ^DIE API—Sample Code to Calculate Y Based on X

S DIE=“^FILE(“,DA=777

S DR=“4;I X=““YES”“ S Y=10;.01;10:15;101”

D ^DIE

 NOTE: The ability to “jump” (by using the caret character; “^”) to specific fields does not take

into account previous branching logic. You must ensure that such movements are safe.

VA FileMan 22.2

Developer’s Guide 44 January 2017

2.3.17.1.4 Specific Fields in Multiples

When you include the field number of a Multiple in a DR-string, all the subfields of the Multiple are

asked. However, suppose you want to edit only selected subfields in the Multiple. To do this, set DR in

the usual manner and in addition set a subscripted value of DR equal to the subfields to edit. Subscript the

additional DR node by file level and then by the Multiple’s subfile number.

For example, if Field #15 is a Multiple and the subfile number for the Multiple is 16001.02 and you want

the user to be prompted only for subfields .01 and 7, do the following:

Figure 22: ^DIE API—Prompting User for Specific Fields in Multiples

S DR=“.01;15;6;8”

S DR(2,16001.02)=“.01;7”

Where the first subscript, 2, means the second level of the file and the second subscript is the subfile

number of the Multiple field (#15).

2.3.17.1.5 Continuation DR-Strings

If there are more than 245 characters in a DR-string, you can set continuation strings by defining the DR-

array at the third subscript level. These subscripts should be sequential integers starting at 1. For example,

the first continuation node of DR(2,16001.02) would be DR(2,16000.02,1); the second would be

DR(2,16001.02,2), and so on.

2.3.17.1.6 Detecting Exits

You can determine, upon return from DIE, whether the user exited the routine by typing a caret character

(“^”; sometimes referred to in VistA legacy documentation as the “up-arrow”). If the user did so, the

subscripted variable Y is defined; if all questions were asked and answered in normal sequence, $D(Y) is

zero.

2.3.17.1.7 Editing a Subfile Directly

You can call ^DIE to directly edit an entry in a subfile; you can descend into as many subfiles as you need

to. Set the DIE input variable to the full global root leading to the subfile entry, including all intervening

subscripts and the terminating comma up to, but not including, the IEN of the subfile entry to edit. Then

set an array element for each file and subfile level in the DA input variable, where DA=entry number in

the subfile to edit, DA(1) is the entry number at the next higher file level,...DA(n) is the entry number at

the file’s top-level.

For example, suppose that the data in subfile 16000.02 is stored descendent from subscript 20 and you are

going to edit entry number 777, subentry number 1; you would write the following:

Figure 23: ^DIE API—Editing a Subfile Directly

S DIE=“^FILE(777,20,” ; global root of subfile

S DA(1)=777 ; entry number in file

S DA=1 ; entry number in subfile

S DR=“3;7” ; fields in subfile to edit

D ^DIE

VA FileMan 22.2

Developer’s Guide 45 January 2017

 NOTE: The internal number of the entry into the file appears in the variable DIE and appears as

the value of DA(1). When doing this, it is necessary that the subfile descriptor node be defined. In

this example, it would be:

^FILE(777,20,0)=“^16000.02^last number entered^number of entries”

 REF: See also the discussion of “Adding New Subentries to a Multiple“ in the “^DIC:

Lookup/Add” section in the “Classic VA FileMan API” section.

2.3.17.1.8 Screening Variable Pointers

A variable pointer field can point to entries in more than one file. You can restrict the user’s ability to

input entries to certain files by setting the DIC(“V”) variable in a DR-string or in an INPUT template. It

screens files from the user. Set DIC(“V”) equal to a line of M code that returns a truth value when

executed. The code is executed after someone enters data into a variable pointer field. If the code tests

false, the user’s input is rejected; VA FileMan responds with ?? and an audible sound (“beep”).

The code setting the DIC(“V”) variable can be put into a DR-string or into an INPUT template. It is not a

separate input variable for ^DIE or ^DIC. It should be set immediately before the variable pointer field is

edited and it should be KILLed immediately after the field is edited.

When the user enters a value at a variable pointer field’s prompt, VA FileMan determines in which file

that entry is found. The variable Y(0) is set equal to information for that file from the data dictionary

definition of the variable pointer field. You can use Y(0) in the code set into the DIC(“V”) variable. Y(0)

contains the following:

Table 17: ^DIE API—Y(0) in the Code Set into the DIC(“V”) Variable

^-Piece Contents

Piece 1 File number of the pointed-to file.

Piece 2 Message defined for the pointed-to file.

Piece 3 Order defined for the pointed-to file.

Piece 4 Prefix defined for the pointed-to file.

Piece 5 y/n indicating if a screen is set up for the pointed-to file.

Piece 6 y/n indicating if the user can add new entries to the pointed to file.

All of this information was defined when that file was entered as one of the possibilities for the variable

pointer field.

For example, suppose Field #5 is a variable pointer pointing to Files #1000, #2000, and #3000. If you

only want the user to be able to enter values from Files #1000 or #3000, you could set up your INPUT

template like this:

Figure 24: ^DIE API—Sample INPUT Template

THEN EDIT FIELD: ^S DIC(“V”)=“I +Y(0)=1000!(+Y(0)=3000)”

THEN EDIT FIELD: 5

THEN EDIT FIELD: ^K DIC(“V”)

VA FileMan 22.2

Developer’s Guide 46 January 2017

2.3.17.1.9 Filing

DIE files data when any one of the following conditions is encountered:

 The field entered or edited is cross-referenced.

 A change of level occurs (i.e., either DIE must descend into a multiple or ascend to the level

above).

 Navigation to another file occurs.

 M code is encountered in one of the semicolon-pieces of the DR-string or in a template.

 $S becomes less than 2000.

 The user enters a caret (“^”) to a field.

 The end of the DR-string or INPUT template is reached.

 Templates are compiled and the execution is transferred from one routine to the next.

2.3.17.1.10 New-Style Compound Indexes and Keys

^DIE traditionally fires cross-references when the field on which the cross-reference is defined is edited.

New-Style cross-references that have an execution of “RECORD” (hereafter referred to as record-level

indexes) are fired once at the end of the ^DIE call, after all the semicolon pieces of the DR string have

been processed.

When record-level uniqueness indexes are fired, the corresponding keys (hereafter called record-level

keys) are checked to ensure that they are unique. If edits to a field in a key result in a duplicate key, then

changes to that field are backed out and an error message is presented to the user.

You can set the DIEFIRE variable in any of the semicolon-pieces of DR to instruct VA FileMan to fire

the record-level indexes at that point and validate the corresponding record-level keys. You can also

control what VA FileMan does if any of the record-level keys is invalid.

Table 18: ^DIE API—DIEFIRE Variable Settings

DIEFIRE Contains Action

M Print error message to user.

L Return the DIEBADK array (see Figure 25).

R Restore invalid key fields to their pre-edited values.

If DIEFIRE contains an L and a key is invalid, the DIEBADK array is set as follows:

Figure 25: ^DIE API—Sample Array when DIEFIRE Contains an L and a Key is Invalid

DIEBADK(rFile#,key#,file#,IENS,field#,”O”) = the original value of the field

DIEBADK(rFile#,key#,file#,IENS,field#,”N”) = the new (invalid) value of the field

VA FileMan 22.2

Developer’s Guide 47 January 2017

Where:

 rFile#—The root file of the uniqueness index of the key. This is the file or subfile number of the

fields that make up the key.

 key#—The internal entry number of the key in the KEY file (#.31).

 file#—The file of the uniqueness index of the key. This is the file or subfile where the uniqueness

index resides. For whole file indexes, this is a file or subfile at a higher level than root file.

 IENS—The IENS of the record that–with the edits–would have a non-unique key.

 field#—The field number of the field being edited.

If any of the Keys is invalid, VA FileMan sets the variable X to the string “BADKEY”, which can be

checked by M code in the subsequent semicolon-piece of the DR string. The variable X and the local

array DIEBADK are available for use only in the semicolon piece immediately following the piece where

the DIEFIRE was set.

For example:

Figure 26: ^DIE API—Sample Code Setting the Variable X to the String “BADKEY”, if Any of the
Keys is Invalid

S DIE=“^FILE(“,DA=777

S DR=“@1;.01;.02;S DIEFIRE=““R”“;I X=““BADKEY”“

S Y=““@1”“;1;2”

D ^DIE

Here, the .01 and .02 field makes up a key to the file. After prompting the user for the value of the .02,

DIEFIRE is set to force VA FileMan to fire the record-level indexes and validate the key. If the key turns

out to be invalid, VA FileMan sets X equal to “BADKEY” and, since DIEFIRE equals R, restores the

fields to their pre-edited values. In the next semicolon-piece, you check if X equals “BADKEY” and, if

so, branch the user back to the placeholder @1.

2.3.18 ^DIEZ: INPUT Template Compilation

Interactively compiles or recompiles an INPUT template.

Compiling an INPUT template means telling VA FileMan to write a hard-coded M routine that will do

just what a particular INPUT template tells the Enter or Edit File Entries option [DIEDIT] to do. This can

enhance system performance by reducing the amount of data dictionary lookup that accompanies VA

FileMan input. The routines created by DIEZ should run from 20% to 80% more efficiently than DIE

does for the same input.

Call ^DIEZ and specify the maximum number of characters you want in your routines, the name of the

INPUT template you are using, and the name of the M routine you want to create. If more code is

compiled than fits into a single routine, overflow code is incorporated in routines with the same name,

followed by 1, 2, etc. For example, routine DGT can call DGT1, DGT2, etc.

Once DIEZ has created a hard-coded routine for a particular INPUT template, VA FileMan automatically

uses that routine in the Enter or Edit File Entries option [DIEDIT], whenever that template is specified for

input. When definitions of fields used in the EDIT template are altered by the Modify File Attributes

[DIMODIFY] or Utility Functions [DIUTILITY] options, the hard-code routines are recompiled

immediately.

VA FileMan 22.2

Developer’s Guide 48 January 2017

2.3.19 EN^DIEZ: Input Template Compilation

This entry point compiles or recompiles an INPUT template, without user intervention.

 REF: For more information about compiled INPUT templates, see the ^DIEZ: INPUT Template

Compilation section.

Input Variables

X: The name of the routine for the compiled INPUT template.

Y: The inte rnal entry number of the INPUT template to be compiled.

DMAX: The maximum size the compiled routines should reach. Consider using the

$$ROUSIZE^DILF function to set this variable.

2.3.20 ^DIK: Delete Entries

Call DIK at ^DIK to delete an entry from a file.

 CAUTION: Use DIK to delete entries with extreme caution. It does not check Delete
access for the file or any defined “DEL” nodes. Also, it does not update any pointers to
the deleted entries. However, it does execute all cross-references and triggers.

Table 19: ^DIK—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

VA FileMan 22.2

Developer’s Guide 49 January 2017

Input Variables

DIK: The global root of the file from which you want to delete an entry.

If you are deleting a subentry, set DIK to the full global root leading to the

subentry, including all intervening subscripts and the terminating comma, up

to—but not including—the IEN of the subfile entry to delete.

DA If you are deleting an entry at the top-level of a file, set DA to the internal entry

number of the file entry to delete. For example, to delete ONE FMEMPLOYEE,

who is entry number 7, from the (fictitious) EMPLOYEE file, stored in the

(fictitious) global ^EMP, write the following:

S DIK=“^EMP(“,DA=7

>D ^DIK

If you are deleting an entry in a subfile, set up DA as an array, where DA=entry

number in the subfile to delete, DA(1) is the entry number at the next higher file

level,...DA(n) is the entry number at the file’s top-level. For example, suppose

employee THREE FMEMPLOYEE (record #1) has two skill entries (subrecords

#1 and #2) in a SKILL multiple. To delete the SKILL multiple’s subrecord #2

you would write:

S DA(1)=1,DA=2,DIK=“^EMP(“_DA(1)_”,”“SX”“,”

>D ^DIK

Where DA is the skill entry number in the subfile, DA(1) is the employee’s

internal entry number in the (fictitious) EMPLOYEE file, and “SX” is the node

under which the subfile is located.

2.3.20.1 Looping to Delete Several Entries

^DIK leaves the DA-array and DIK defined. So you can loop through a file to delete several entries:

Figure 27: ^DIK API—Sample Code Looping to Delete Several Entries

>S DIK=“^EMP(“ F DA=2,9,11 D ^DIK

This deletes entries 2, 9 and 11 from the (fictitious) EMPLOYEE file.

2.3.20.2 Deleting Fields from a File

As discussed in the “Reading the Attribute Dictionary—An Example” section, each attribute dictionary is

also in the form of a file. You can therefore use the routine DIK to delete a single-valued field (i.e., not a

Multiple) from a file.

To delete a single-valued field (i.e., not a Multiple) from a file, you would set the variables as follows:

 DIK—Set to the file’s data dictionary global node.

 DA—Set to the number of the field to be deleted.

 DA(1)—Set to the file number.

VA FileMan 22.2

Developer’s Guide 50 January 2017

For example, to delete the SEX field (#1) from the (fictitious) EMPLOYEE file (#3) example, simply

write:

Figure 28: ^DIK API—Sample Code Deleting Single-valued Fields from a File

>S DIK=“^DD(3,”,DA=1,DA(1)=3

>D ^DIK

To delete a sub-field from a Multiple from a file, you would set the variables as follows:

 DIK—Set to the sub-file’s data dictionary global node.

 DA—Set to the number of the field to be deleted.

 DA(1) —Set to the sub-file number.

For example, to delete the ZIP field (#4) of the ADDRESS Multiple field (#3.02) from the (fictitious)

EMPLOYEE file (#3) example, simply write:

Figure 29: ^DIK API—Sample Code Deleting a Multiple Sub-field from a File

>S DIK=“^DD(3.02,”,DA=4,DA(1)=3.02

>D ^DIK

When you use ^DIK to delete fields from a file, the data is not deleted.

 NOTE: To delete a multiple from a file, use the API EN^DIU2.

REF: For more information, see the “EN^DIU2: Data Dictionary Deletion” section in the

“Classic VA FileMan API” section.

2.3.21 EN^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API reindexes those cross-references marked with
“DO NOT RE-INDEX,” because it operates on a single record.

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 20: EN^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

VA FileMan 22.2

Developer’s Guide 51 January 2017

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

EN^DIK reindexes one or more cross-references of a field for one entry in a file. It executes the KILL

logic first and then executes the SET logic of the cross-reference.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be

fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK: If you are reindexing an entry at the top-level of a file, set DIK to the global root

of the file.

If you are reindexing a subentry, set DIK to the full global root leading to the

subentry, including all intervening subscripts and the terminating comma, up

to—but not including—the IEN of the subfile entry to reindex.

DA: If you are reindexing an entry at the top-level of a file, set DA to the internal

entry number of the file entry to reindex.

If you are reindexing an entry in a subfile, set up DA as an array, where

DA=entry number in the subfile to reindex, DA(1) is the entry number at the next

higher file level,...DA(n) is the entry number at the file’s top-level.

DIK(1): Use the field number (to get all indexes) or the field number and specific indexes

of the cross-reference.

 REF: For examples, see the ENALL^DIK: Reindex API description.

VA FileMan 22.2

Developer’s Guide 52 January 2017

2.3.22 EN1^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API reindexes those cross-references marked with
“DO NOT RE-INDEX,” because it operates on a single record.

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 21: EN1^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

EN1^DIK reindexes one or more cross-references of a field for one entry in a file. It only executes the

SET logic of the cross-reference.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be

fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK: If you are reindexing an entry at the top-level of a file, set DIK to the global root

of the file.

If you are reindexing a subentry, set DIK to the full global root leading to the

subentry, including all intervening subscripts and the terminating comma, up

to—but not including—the IEN of the subfile entry to reindex.

DA: If you are reindexing an entry at the top-level of a file, set DA to the internal

entry number of the file entry to reindex.

If you are reindexing an entry in a subfile, set up DA as an array, where

DA=entry number in the subfile to reindex, DA(1) is the entry number at the next

higher file level,...DA(n) is the entry number at the file’s top-level.

DIK(1): Use the field number (to get all cross-references) or the field number and specific

indexes of the cross-references you want.

VA FileMan 22.2

Developer’s Guide 53 January 2017

 REF: For examples, see the ENALL^DIK: Reindex API description.

2.3.23 EN2^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API reindexes those cross-references marked with
“DO NOT RE-INDEX,” because it operates on a single record.

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 22: EN2^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

EN2^DIK executes the KILL logic for one or more cross-references on a specific field for one entry in a

file.

Before calling this entry point, you should be familiar with the effects of executing the KILL logic for all

cross-references that could be fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK: If you are executing the KILL logic for an entry at the top-level of a file,

set DIK to the global root of the file.

If you are executing the KILL logic for a subentry, set DIK to the full

global root leading to the subentry, including all intervening subscripts

and the terminating comma, up to—but not including—the IEN of the

subfile entry.

DA: If you are executing the KILL logic for an entry at the top-level of a file, set DA

to the internal entry number of that file entry.

VA FileMan 22.2

Developer’s Guide 54 January 2017

If you are executing the KILL logic for an entry in a subfile, set up DA as an

array, where DA is entry number in the subfile, DA(1) is the entry number at the

next higher file level, etc. DA(n) is the entry number at the file’s top-level.

DIK(1): Use the field number (to get all cross-references) or the field number and specific

indexes of the cross-references you want.

 REF: For examples, see the ENALL^DIK: Reindex API description.

2.3.24 ENALL^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API honors (does not reindex) those cross-
references marked with “DO NOT RE-INDEX,” unless the cross-reference is specifically
named.

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 23: ENALL^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

ENALL^DIK reindexes all entries in a file for the cross-references on a specific field. It can also be used

to reindex all entries within a single subfile (i.e., a subfile corresponding to only one of the file’s entries).

ENALL^DIK only executes the SET logic.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be

fired (including bulletins, triggers, and MUMPS-type).

 NOTE: IXALL^DIK, IXALL2^DIK, ENALL^DIK, ENALL2^DIK, and the Re-Index File

option [DIRDEX] on the Utility Functions menu [DIUTILITY] set the 3rd piece of the 0 node of

the file’s global root (the file header) to the last internal entry number used in the file. They set

the 4th piece to the total number of entries in the file.

VA FileMan 22.2

Developer’s Guide 55 January 2017

Input Variables

DIK: If you are reindexing an entry at the top-level of a file, set DIK to the global root

of the file.

If you are reindexing subentries, set DIK to the full global root leading to the

subentry, including all intervening subscripts and the terminating comma, up

to—but not including—the IENs of the subfile entries to reindex.

DA(1..n): If you are reindexing entries in a subfile, set up DA as an array, where DA(1) is

the entry number at the next higher file level,...DA(n) is the entry number at the

file’s top-level. Since ENALL^DIK reindexes all entries at a given file level, do

not set the unsubscripted DA node.

DIK(1): Use the field number (to get all indexes) or the field number and specific cross-

references separated by carets (“^”) as shown below:

>S DIK(1)=“FLD#” ;Just the field number to get all indexes.

Or:

 ;Field number followed by cross-reference name or number.

 S DIK(1)=“FLD#^INDEX”

 ;See the examples below:

 S DIK(1)=“.01^B”

 S DIK(1)=“.01^B^C”

 S DIK(1)=“.01^1^2”

 D ENALL^DIK

2.3.25 ENALL2^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API honors (does not reindex) those cross-
references marked with “DO NOT RE-INDEX,” unless the cross-reference is specifically
named.

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 24: ENALL2^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

VA FileMan 22.2

Developer’s Guide 56 January 2017

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

ENALL2^DIK executes the KILL logic for one or more cross-references on a specific field for all entries

in a file.

Before calling this entry point, you should be familiar with the effects of executing the KILL logic for all

cross-references that could be fired (including bulletins, triggers, and MUMPS-type).

 NOTE: IXALL^DIK, IXALL2^DIK, ENALL^DIK, ENALL2^DIK, and the Re-Index File

option [DIRDEX] on the Utility Functions menu [DIUTILITY] set the 3rd piece of the 0 node of

the file’s global root (the file header) to the last internal entry number used in the file. They set

the 4th piece to the total number of entries in the file.

Input Variables

DIK: If you are executing the KILL logic for all entries at the top-level of a file, set

DIK to the global root of the file.

DA(1..n): If you are executing the KILL logic for all entries in a subfile only, set DIK to the

full global root of the subfile.

If you are executing the KILL logic for all entries at the top-level of a file, this

variable need not be set.

If you are executing the KILL logic for all entries in a subfile, set up DA as an

array, where DA(1) is the entry number at the next higher file level, DA(2) is the

entry number one level above that, etc. DA(n) is the entry number at the file’s

top-level. Since ENALL2^DIK executes the KILL logic for all entries at a given

file level, do not set the unsubscripted DA node.

DIK(1): Set DIK(1) to the field number (to get all cross-references defined on that field).

For example:

S DIK(1)=.01

Or, set DIK(1) to the field number and the names or numbers of specific cross-

references on that field, all separated by carets (“^”). For example:

S DIK(1)=“.01^B”

S DIK(1)=“.01^B^C”

S DIK(1)=“.01^1^2”

D ENALL2^DIK

VA FileMan 22.2

Developer’s Guide 57 January 2017

2.3.26 IX^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API reindexes those cross-references marked with
“DO NOT RE-INDEX,” because it operates on a single record.

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 25: IX^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

IX^DIK reindexes all cross-references of the file for only one entry in the file. It executes first the KILL

logic and then the SET logic. Reindexing occurs at all file levels at or below the one specified in DIK and

DA.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be

fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK: If you are reindexing an entry at the top-level of a file, set DIK to the global root

of the file.

If you are reindexing only a subentry, set DIK to the full global root leading to

the subentry, including all intervening subscripts and the terminating comma, up

to—but not including—the IEN of the subfile entry to reindex.

DA: If you are reindexing an entry at the top-level of a file, set DA to the internal

entry number of the file entry to reindex.

If you are reindexing an entry in a subfile, set up DA as an array, where

DA=entry number in the subfile to reindex, DA(1) is the entry number at the next

higher file level,...DA(n) is the entry number at the file’s top-level.

VA FileMan 22.2

Developer’s Guide 58 January 2017

2.3.27 IX1^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API reindexes those cross-references marked with
“DO NOT RE-INDEX,” because it operates on a single record.

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 26: IX1^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

IX1^DIK reindexes all cross-references of the file for only one entry in the file. It only executes the SET

logic of the cross-reference. Reindexing occurs at all file levels at or below the one specified in DIK and

DA.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be

fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK: If you are reindexing an entry at the top-level of a file, set DIK to the global root

of the file.

If you are reindexing a subentry, set DIK to the full global root leading to the

subentry, including all intervening subscripts and the terminating comma, up

to—but not including—the IEN of the subfile entry to reindex.

DA: If you are reindexing an entry at the top-level of a file, set DA to the internal

entry number of the file entry to reindex.

If you are reindexing an entry in a subfile, set up DA as an array, where

DA=entry number in the subfile to reindex, DA(1) is the entry number at the next

higher file level,...DA(n) is the entry number at the file’s top-level.

VA FileMan 22.2

Developer’s Guide 59 January 2017

2.3.28 IX2^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API reindexes those cross-references marked with
“DO NOT RE-INDEX,” because it operates on a single record.

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 27: IX2^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

IX2^DIK executes the KILL logic of all cross-references for only one entry at all file levels at and below

the one specified in DIK.

Before calling this entry point, you should be familiar with the effects of executing the KILL logic for all

cross-references that could be fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK: If you are executing the KILL logic for an entry at the top-level of a file, set DIK

to the global root of the file.

If you are executing the KILL logic for a subentry, set DIK to the full global root

leading to the subentry, including all intervening subscripts and the terminating

comma, up to—but not including—the IEN of the subfile entry.

DA: If you are executing the KILL logic for an entry at the top-level of a file, set DA

to the internal entry number of that file entry.

If you are executing the KILL logic for an entry in a subfile, set up DA as an

array, where DA is the entry number in the subfile, DA(1) is the entry number at

the next higher file level, etc. DA(n) is the entry number at the file’s top-level.

VA FileMan 22.2

Developer’s Guide 60 January 2017

2.3.29 IXALL^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API honor (does not reindex) those cross-
references marked with “DO NOT RE-INDEX.”

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 28: IXALL^DIK API—Reindexing Quick Reference

Entry Point Reindexes Entries Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

IXALL^DIK reindexes all cross-references for all entries in a file. It only executes the SET logic.

Before reindexing, you should be familiar with the effects of all relevant cross-references (including

bulletins, triggers, and MUMPS-type) that could be fired.

 NOTE: IXALL^DIK, IXALL2^DIK, ENALL^DIK, ENALL2^DIK, and the Re-Index File

option [DIRDEX] on the Utility Functions menu [DIUTILITY] set the 3rd piece of the 0 node of

the file’s global root (the file header) to the last internal entry number used in the file. They set

the 4th piece to the total number of entries in the file.

Input Variable

DIK: The global root of the file to be indexed.

VA FileMan 22.2

Developer’s Guide 61 January 2017

2.3.29.1 Examples

2.3.29.1.1 Example 1

A simple call to reindex the (fictitious) EMPLOYEE file would be:

Figure 30: IXALL^DIK API—Example 1: Input

>S DIK=“^EMP(“ D IXALL^DIK

2.3.29.1.2 Example 2

The reindexing of data dictionary #3 would be:

Figure 31: IXALL^DIK API—Example 2: Input

>S DA(1)=3,DIK=“^DD(3,” D IXALL^DIK

2.3.30 IXALL2^DIK: Reindex

 CAUTION: As of Patch DI*22*167, this API honors (does not reindex) those cross-
references marked with “DO NOT RE-INDEX.”

 REF: For more information about limiting reindexing of files, see the “Limits on Reindexing

Files” section in the VA FileMan Advanced User Manual.

Table 29: IXALL2^DIK API—Reindexing Quick Reference

Entry Point Reindexes
Entries

Reindexes Cross-references Executes Logic

^DIK All All KILL

EN^DIK 1 Some or all for 1 field KILL then SET

EN1^DIK 1 Some or all for 1 field SET

EN2^DIK 1 Some or all for 1 field KILL

ENALL^DIK All Some or all for 1 field SET

ENALL2^DIK All Some or all for 1 field KILL

IX^DIK 1 All KILL then SET

IX1^DIK 1 All SET

IX2^DIK 1 All KILL

IXALL^DIK All All SET

IXALL2^DIK All All KILL

IXALL2^DIK executes the KILL logic for all entries in a file.

Before calling this entry point, you should be familiar with the effects of executing the KILL logic for all

cross-references that could be fired (including bulletins, triggers, and MUMPS-type) that could be fired.

VA FileMan 22.2

Developer’s Guide 62 January 2017

 NOTE: IXALL^DIK, IXALL2^DIK, ENALL^DIK, ENALL2^DIK, and the Re-Index File

option [DIRDEX] on the Utility Functions menu [DIUTILITY] set the 3rd piece of the 0 node of

the file’s global root (the file header) to the last internal entry number used in the file. They set

the 4th piece to the total number of entries in the file.

Input Variable

DIK: If you are executing the KILL logic for all entries at the top-level of a file, set

DIK to the global root of the file.

If you are executing the KILL logic for all entries in a subfile, set DIK to the full

global root of the subfile.

DA: If you are executing the KILL logic for all entries at the top-level of a file, this

variable need not be set.

If you are executing the KILL logic for all entries in a subfile, set up DA as an

array, where DA(1) is the entry number of the next higher file level, DA(2) is the

entry number one level above that, etc. DA(n) is the entry number at the file’s

top-level. Since IXALL2^DIK executes the KILL logic for all entries at a given

file level, do not set the unsubscripted DA node.

2.3.31 ^DIKZ: Cross-reference Compilation

Cross-references can be compiled into M routines by calling ^DIKZ. You are prompted to specify the

maximum routine size and the name or number of the file. If you specify the routine name XXX and more

code is generated than can fit into that one routine, overflow routines (XXX1, XXX2, etc.) are created.

Routine XXX can call XXX1, XXX2, etc.

Once DIKZ has been used to create hard-coded cross-reference routines, those routines are used when

calls to any entry point in DIK are made. However, if you restrict the cross-references to be reindexed by

using the DIK(1) variable, the compiled routines are not used. As soon as data dictionary cross-references

are added or deleted, the routines are recompiled. The purpose of this DIKZ code generation is simply to

improve overall system throughput.

 REF: For instructions on permanently stopping the use of compiled cross-references,

uncompiling cross-references, see the “Edit File” section in the VA FileMan Advanced User

Manual.

2.3.32 EN^DIKZ: Compile

EN^DIKZ recompiles a file’s cross-references by setting the input variables without user intervention.

Input Variables

X: The routine name.

Y: The file number of the file for which you want the cross-references recompiled.

DMAX: The maximum size the compiled routines should reach. Consider using the

$$ROUSIZE^DILF function to set this variable.

VA FileMan 22.2

Developer’s Guide 63 January 2017

2.3.33 $$ROUSIZE^DILF: Routine Size

This argumentless function returns the maximum routine size that should be used when compiling cross-

references, print templates, or input templates.

Format

$$ROUSIZE^DILF

Input Parameters

None.

Output

This function returns the maximum routine size defined in the MUMPS OPERATING SYSTEM file

(#.7).

2.3.33.1 Example

Figure 32: $$ROUSIZE^DILF API—Example: Input and Output

>W $$ROUSIZE^DILF

4000

2.3.34 ^DIM: M Code Validation

Call ^DIM to validate any line of M code. ^DIM checks that code conforms to the 1995 ANSI Standard.

Code is also checked against aspects of VA’s Programming Standards and Conventions (SAC).

 NOTE: ^DIM does not allow KILLing an unsubscripted global.

Input Variable

X: Invoke ^DIM with the line to be validated in the local variable X.

Output Variable

X: ^DIM either KILLs X or leaves it unchanged. If $D(X) is zero on return from

^DIM, the line of code is invalid. However, the converse is not always true; in

other words, ^DIM is not as smart as a real M interpreter and sometimes

validates strings when it should not.

2.3.35 DT^DIO2: Writes External Date from Internal

This entry point takes an internal date in the variable Y and writes out its external form.

Example

Figure 33: DT^DIO2 API—Example: Input and Output

>S Y=2690720.163 D DT^DIO2

JUL 20,1969 1630

This results in Y being equal to JUL 20,1969 16:30. (No space before the 4-digit year; 2 spaces before

the hours [1630].)

VA FileMan 22.2

Developer’s Guide 64 January 2017

Input Variable

Y: (Required) This contains the internal date to be converted. Y is required and it is

not changed.

 REF: In addition, see the X ^DD(“DD”): Converts Internal to External Date and DD^%DT:

Converts Internal to External Date APIs, which also convert a date from internal YYYMMDD

format to external format.

2.3.36 ^DIOZ: SORT Template Compilation

This entry point marks a SORT template compiled or uncompiled. The ^DIOZ entry point asks for the

name of the SORT template to be used and whether the user wishes to do either of the following:

 Mark it compiled.

 Uncompile it if it is already marked compiled.

Actual compilation occurs at the time the template is used in the sort/print. There are no input or output

variables.

SORT templates can be compiled into M routines to increase efficiency of the sort and improve system

performance. Good candidates for compilation are sorts with many sort fields or those that sort on fields

reached with relational syntax.

The process of sort compilation is different from other VA FileMan compiling activities. SORT templates

can be “marked” for compilation, and then each time the SORT template is used in a VA FileMan

sort/print, a new compiled routine is created. When the print job finishes, the routine is deleted. The

routine is named DISZnnnn where “nnnn” is a four-digit number. The routine names are reused. Routine

numbers are taken from the COMPILED ROUTINE file (#.83; described in the section on the

ENRLS^DIOZ utility in the VA FileMan Advanced User Manual). Thus, a routine name is not tied to a

particular SORT template.

2.3.37 EN1^DIP: Print Data

Use EN1^DIP to print a range of entries, in columnar format.

2.3.37.1 Input Variables

L: (Required) String that evaluates to zero. A required variable that should be set to

zero or some string whose numeric evaluation is zero (e.g., ”LIST DRUGS”). If

set to a text string, the string is used to replace the word “SORT” in the “SORT

BY:” prompts, when VA FileMan asks the user for sort values:

LIST DRUGS BY: NAME//

DIC: (Required) The open global root of the file in the usual format

(e.g., ”^DIZ(16540,”) or the file number.

FLDS: (Optional) The various fields to be printed. If this parameter is not sent, the user

is prompted for fields to print. FLDS can contain the following:

 Numbers or names of the fields to be printed, separated by commas.

These fields are printed in the order that they are listed.

 Print qualifiers, which determine column width, caption contents, and

many other features of the output, can be included exactly as they are

when answering the “PRINT FIELD:” prompt.

VA FileMan 22.2

Developer’s Guide 65 January 2017

 REF: For details on print qualifiers, see the “Print” section in the VA

FileMan User Manual.

For example:

FLDS=“.01,.03,1;C20”

If there are more fields than can fit on one string, FLDS can be subscripted

(FLDS(1), FLDS(2), and so forth), but FLDS as a single-valued variable must

exist.

The name of a PRINT template preceded by an open bracket ([) and followed by

a close bracket (]). For example:

FLDS=“[DEMO]”

BY: (Optional) The fields by which the data is to be sorted. If BY is undefined, the

user is prompted for the sort conditions. You can sort by up to 7 fields (i.e., you

can have up to a 7-level sort).

You can set BY to:

 The numbers or names of the fields separated by commas. Sort

qualifiers, which determine aspects of the sort and of the printout, can be

included exactly as they are when answering the “SORT FIELD:”

prompt. For example:

BY=“.01;C1,1”

If one of the comma pieces of the BY variable is the at-sign character

(“@”), the user is asked for that SORT BY response. So, if you want to

sort by DIAGNOSIS but allow the user to order the sort within

DIAGNOSIS, set BY=“DIAGNOSIS,@”.

 The name of a SORT template preceded by an open bracket ([) and

followed by a close bracket (]). For example:

BY=“[DEMOSORT]”

 NOTE: You cannot use the name of a SORT template in the BY

variable if the BY(0) input variable has been set. If you want to

create such complex sorts, you can include the BY(0)

information within the SORT template.

 REF: For more information, see the “Storing BY(0)

Specifications in SORT Templates” section.

VA FileMan 22.2

Developer’s Guide 66 January 2017

 The name of a SEARCH template, preceded by an open bracket ([) and

followed by a close bracket (]). The SEARCH template must have results

stored in it. Only those records in the SEARCH template print, and they

print in IEN order. For example:

BY=“[DEMOSEARCH]”

 NOTE: If more than one field is included in the BY variable,

separate the fields with commas. The same comma-pieces

identify the field in the FR and TO variables. If, for example,

you wanted a sorted report of entries with DOBs in 1960 and

with ZIP CODEs in the 90000s, you could define the variables

by writing:

BY=“DOB,ZIP CODE”

FR=“01/01/60,90000”

TO=“12/31/60,99999”

Since the delimiter of BY is a comma, the value placed in the variable

should not contain a comma. Therefore, if your field name contains a

comma, use the field number in the BY variable instead of its name. For

the same reason, if sort from or to values contain commas, the alternate

FR(n) and TO(n) input arrays described below should be used instead of

the FR and TO input variables.

FR: (Optional) The START WITH: values of the SORT BY fields. If FR is

undefined, the user is asked the START WITH: question for each SORT BY

field. If FR is defined, it consists of one or more comma pieces, where the piece

position corresponds to the order of the sort field in the BY variable. Each

comma piece can be:

 Value from which the selection of entries begins.

 Null—If a comma piece of FR is null, then the sort starts from the very

beginning of the file for that field.

 ?—The question mark as one of the comma pieces causes the “START

WITH:” prompt to be presented to the user for the corresponding SORT

BY field.

 @—The at-sign (“@”) indicates that the sort should begin with null

values (i.e., with entries that have no data on file). If the corresponding

piece of the TO variable or array also is set to @, then only entries with

null values for this sort field are selected during the sort. If TO does not

contain @, then after the null values, the sort starts at the first non-null

value and goes to the value indicated by TO.

 NOTE: If BY contains the name of a SORT template and if the

developer answered NO to the question SHOULD TEMPLATE USER

BE ASKED ‘FROM’-’TO’ RANGE... for a field at the time the template

VA FileMan 22.2

Developer’s Guide 67 January 2017

was defined, then the information in the FR and TO variables is ignored

for that field. Instead, the from/to ranges stored in the sort template are

used.

If you customize sorts using BY(0), see special note on FR in that section

at the end of this call.

FR(n): (Optional) An alternate way to provide the START WITH: values of the SORT

BY fields. If FR is defined, it overrides this array. The subscript “n” corresponds

to the comma piece in the BY variable (i.e., the sort by field number). This

alternate way of inputting the from and to values allows the use of values

containing commas, such as PATIENT NAMEs. Each nth entry in the array

corresponds to, and can have the same value as, the nth comma piece in the FR

variable. The only difference is that any nth entry, FR(n), can be undefined,

causing the START WITH: question to be asked for the nth SORT FIELD.

For example, if you were using the unsubscripted TO and FR variables to do a

sort on two fields, you might do as follows:

S FR=“A,01/01/95”,TO=“Zz,01/31/95”

To set up the same sort using the subscripted forms of TO and FR, you would set

them up as follows:

S FR(1)=“A”,FR(2)=“01/01/95”

S TO(1)=“Zz”,TO(2)=“01/31/95”

 NOTE: If you customize sorts using BY(0), see special note on FR in

that section at the end of this call.

TO: (Optional) The GO TO: values of the SORT BY fields. Its characteristics

correspond to the FR variable. If undefined, the user is asked the GO TO:

questions for each SORT BY field. If TO is defined, it consists of one or more

comma pieces. Each comma piece can be:

 Value at which the selection of entries ends.

 Null—If TO is null, then the sort goes from FR to the end of the file.

 ?—The question mark as one of the comma pieces causes the “GO TO:”

prompt to be presented to the user for the corresponding SORT BY field.

 @—The at-sign (“@”) indicates that the sort should include null values

(i.e., entries that have no data on file). If the corresponding piece of the

FR variable or array also is set to @, then only entries with null values

for this sort field are selected during the sort. If FR does not contain @,

then after the null values, the sort starts at the FR value and includes all

other non-null values to the end of the file.

 NOTE: If BY contains the name of a SORT template and if the

developer answered NO to the question SHOULD TEMPLATE USER

BE ASKED ‘FROM’-’TO’ RANGE... for a field at the time the template

was defined, then the information in the FR and TO variables is ignored

VA FileMan 22.2

Developer’s Guide 68 January 2017

for that field. Instead, the from/to ranges stored in the SORT template are

used.

TO(n): (Optional) An alternate way to provide the GO TO: values of the SORT BY

fields. If TO is defined, it overrides this array. The subscript “n” corresponds to

the comma piece in the BY variable. This alternate way of inputting the from and

to values allows the use of values containing commas, such as PATIENT

NAMEs. Each nth entry in the array corresponds to, and can have the same value

as, the nth comma piece in the TO variable. The only difference is that any nth

entry, TO(n), can be undefined, causing the GO TO: question to be asked for the

nth SORT BY field.

If you customize sorts using BY(0), see special note on TO(n) in that section at

the end of this call.

DHD: (Optional) The header desired for the output. DHD can be one of the following:

 @—If header is not desired.

 @@—If header and form feed are not desired.

 A literal that is printed, as is, in the upper left hand corner of the printout.

The date, page and field headings are in their normal places.

 A line of M code that must begin with a write statement (e.g., DHD=“W

?0 D ^ZZHDR”).

 A PRINT template name preceded by an open bracket ([) and followed

by a close bracket (]). In this case, the template replaces all parts of the

header that VA FileMan normally generates.

 Two PRINT templates separated by a minus sign. The first is used as the

header and the second is used as the trailer. For example:

DHD=“[HEADER]-[TRAILER]”

DIASKHD: (Optional) If this variable is defined, the user is prompted to enter a header. Set it

equal to null (“”). If this variable is undefined, the user does not have the

opportunity to change the header on the print.

DIPCRIT: (Optional) If this variable is set to 1, the SORT criteria prints in the header of the

first page of the report.

PG: (Optional) Starting page number. If variable is undefined, page 1 is assumed.

DHIT: (Optional) A string of M code that is executed for every entry after all the fields

specified in FLDS have been printed.

DIOEND: (Optional) A string of M code that is executed after the printout has finished but

before returning to the calling program.

DIOBEG: (Optional) A string of M code that is executed before the printout starts.

DCOPIES: (Optional) If %ZIS chooses an SDP device and if multiple copies are desired,

you can call for them by setting DCOPIES equal to the number (greater than one)

of copies desired.

VA FileMan 22.2

Developer’s Guide 69 January 2017

 REF: For more information about SDP devices, see the Kernel Systems

Management Guide.

IOP: (Optional) EN1^DIP calls the ^%ZIS entry point to determine to which device

the output should go. This requires user interaction unless you pre-answer the

DEVICE prompt. You can do this by setting IOP equal to the name of the device

(as it is stored in the DEVICE file [#3.5]) to which the output should be directed.

You can also set IOP in any of the additional formats recognized by ^%ZIS to

specify the output device.

 REF: For more information on ^%ZIS and IOP, see the Kernel Systems

Management Guide.

If you need to call ^%ZIS beforehand to obtain the name of the device in

question from the user, call it with the %ZIS N flag set so that ^%ZIS does not

actually open the device. The name of the device is then returned in the ION

output variable. EN1^DIP opens and closes the device you specify in IOP on its

own; do not open it yourself beforehand.

In addition to setting IOP equal to a device for printing, you can use this variable

(in conjunction with the DQTIME variable described immediately below) to

queue the printing of a report. This functionality is only available if Kernel is

present. Also, you must set up all of the input variables for EN1^DIP so that the

user is not asked any questions. For example, the BY, FR, and TO variables must

be defined. To establish queuing, IOP should equal Q;output device. For

example:

>S IOP=“Q;MY PRINTER - NLQ”

DQTIME: (Optional) If output is queued, this variable contains the time for printing. You

can set it equal to any value that %DT recognizes. For example:

S DQTIME=“NOW”

Or:

S DQTIME=“T@11PM”

DIS(0): (Optional) You can screen out certain entries so that they do not appear on the

output by setting the optional array DIS. The first subscript in this array can be 0

(zero). This variable (as well as all the others) contains an executable line of M

code that includes an IF-statement. If the execution of the IF sets $T to 1, then

the entry prints. The internal number of the entry being processed is in D0.

DIS(n): (Optional) You can set other elements in the DIS array: DIS(1), DIS(2), DIS(3),

etc. The subscripts must be consecutive integers starting at 1. Again, they must

contain M code that sets $T. If many elements are defined, then DIS(0) (if it

exists) must be true and any one of the other elements in the array must be true

for the entry to print.

VA FileMan 22.2

Developer’s Guide 70 January 2017

DISUPNO: (Optional) If this variable is set to 1 and if no records are found within the sort

ranges specified for the print, the report header and the “No Records to Print”

message is not printed.

DISTOP: (Optional) If Kernel is present, by default, prints queued through the EN1^DIP

call can be stopped by the user with a TaskMan option. However, if this variable

i s set to 0, users are not able to stop their queued prints.

DISTOP can also be set equal to M code that is executed once near the start of a

queued print. If the code sets $T to true, the user is able to stop the job; if $T is

false, the user is not able to stop the job. For example:

S DISTOP=“I DUZ(0)= ”“@”“”

This would mean that only those with programmer access could stop the print.

DISTOP(“C”): (Optional) If the user stops a queued print job by using TaskMan’s option, code

in this optional variable is executed before the output device is closed. It might,

for example, do clean up necessary because the job did not run to completion.

2.3.37.1.1 Optional: Controlling Sorts with BY(0)

BY(0) For more information, see the “EN1^DIP: Controlling Sorts with BY(0) (In

Detail)” section.

L(0)

FR(0,n)

TO(0,n)

DISPAR(0,n)

DISPAR(0,n, “OUT”)

2.3.37.2 Output Variables

None.

 NOTE: Unlike most calls, EN1^DIP KILLs all the input variables before it quits. You do not

have to KILL them.

VA FileMan 22.2

Developer’s Guide 71 January 2017

2.3.37.3 Details and Features

2.3.37.3.1 Input Variables to Control Sorts

You can use a special set of input variables to:

Preselect a set of records for printing.

Preselect the order that these records should be printed in.

The set of variables for controlling sorts is:

 BY(0)

 L(0)

 FR(0,n)

 TO(0,n)

 DISPAR(0,n)

 DISPAR(0,n, “OUT”)

 REF: For more information, see the “EN1^DIP: Controlling Sorts with BY(0) (In Detail)”

section.

2.3.37.3.2 Setting up BY, FR, and TO Variables to Sort within a Multiple

If you have a file like:

 .01 PARENT NAME

 1 SPOUSE (mult.)

 .01 SPOUSE NAME

 1 SPOUSE DOB

 2 CHILDREN (mult.)

 .01 CHILDS NAME

 1 CHILDS DOB

 2 CHILDS SEX

 3 CHILDS NICKNAME

 2 PARENT NICKNAME

And you wish to sort on the NICKNAME field for CHILDREN, from “A” to “Z”, then by the PARENT

NICKNAME field from “B” to “E”. You set:

BY = “1,2,3,2

FR = “A,B”

TO = “Z,E”

You must put in all field numbers to get down to the Multiple in the BY (1,2,3), but then it pops you out

of the Multiple so that the following number “2” in the BY gets you field 2 at the top-level (PARENT

NICKNAME), rather than Field #2 within the lowest Multiple (SEX).

But note the FR and TO: here you just put the starting and ending values for the two fields on which you

wish to sort.

 NOTE: This same logic does not work on the FLDS Multiple. It is suggested that in order to

print fields within a Multiple, the print logic should be set up in a PRINT template.

VA FileMan 22.2

Developer’s Guide 72 January 2017

2.3.37.3.3 Using EN1^DIP to Print Audit Trails

The Audit files are structured differently than other VA FileMan files. To print audit trails for a file’s data

or Data Dictionary, the DIC variable must contain the global location of the requested audit file and the

file number of the file that was audited as the open root.

To print a data audit trail for File #662001, set DIC=“^DIA(662001,”. To print the DD audit trail, set

DIC=“^DDA(662001,”. The other input variables are set as for a normal print. Remember that the fields

being printed and sorted come from the audit files, not from the file for which the audit trail was recorded.

2.3.37.4 EN1^DIP: Controlling Sorts with BY(0) (In Detail)

Ordinarily, you control the way EN1^DIP sorts output using the BY, FR, and TO input variables. This

lets you sort based on field values, a previous sort stored in a SORT template, or on the records stored in a

SEARCH template.

The BY(0) feature allows you to control the sort. With BY(0), you can force VA FileMan to sort using an

existing compound index (i.e., one that indexes more than a single data field) for efficiency. Or, use of

BY(0) allows you to pre-sort a list of record numbers in a global and pass this pre-sorted list to EN1^DIP.

This lets you pre-sort reports in any way that you can use subscripts to sort a global. The only limitation is

that the total number of subscripts in the global that you sort by must be seven or less.

The two main ways in which the BY(0) feature should be used are as follows:

 Set BY(0) to the global location of an existing VA FileMan index. In particular, this lets you sort

based on a MUMPS cross-reference or a compound cross-reference defined on the INDEX file

(#.11; not possible otherwise). Since the sorting is already done in advance, any such prints are

very fast.

 Set BY(0) to the global location of a list of records you create “on-the-fly.” This lets you sort the

records in any order you want, and also lets you easily limit the number of records by pre-

selecting them.

2.3.37.5 Input Variables for Sorting with BY(0)

BY(0): (Optional; Required for BY(0) sorts) Set this variable to an open global root. The

open global root should be the static part of a global; a list of record numbers

must be stored at a descendent subscript level.

^DIZ(662001,”E”,”FM-ALBERT”,1009)

^DIZ(662001,”E”,”FM-ANDREA”,339)

^DIZ(662001,”E”,”FM-ANDREW”,552)

--------------- ----------------

<-static part-> <-dynamic part->

In this example, you would set BY(0) to ‘^DIZ(662001,”E”,’.

There can be intervening subscript levels between the static, fixed global root and

the subscript level where the list of records numbers is stored. Any intervening

subscript levels define a sort order. Use the L(0) input variable to tell VA

FileMan the number of dynamic subscript levels it needs to sort through (see

L(0) description below).

Alternatively, you can set BY(0) to the name of a SEARCH template, in

[brackets]. This tells VA FileMan to sort on the list of record numbers contained

in the corresponding SEARCH template entry in the ^DIBT global.

VA FileMan 22.2

Developer’s Guide 73 January 2017

BY(0) affects your sorts as follows:

 It restricts the possible records for printing to those in the specified list.

 When you set BY(0) to a static global reference, each intervening

subscript level (between the static part of the global reference and the

subscript level containing record numbers) defines a sort level, starting

from the highest intervening subscript level.

BY(0) for a VA FileMan Index

If you set BY(0) to sort based on an existing VA FileMan-maintained cross-

reference, make sure the subscript you set L(0) to point to is in fact the location

where VA FileMan stores its list of records (when sorting on a regular single-

field index, L(0) should be 2).

BY(0) for a List of Records “On-the-Fly”

If you build your own list of sorted records on-the-fly in a temporary global (as

opposed to setting BY(0) to a VA FileMan-maintained cross-reference), it is best

not to let the final subscript of your static global reference be “B”.

 REF: For more information, see the discussion in the “Details and

Features” section.

 NOTE: If you are using both the BY and BY(0) input variables, do not

set BY to the name of a template; an error message will print or hard

errors could result.

L(0): (Optional; Required if BY(0) is set to an open global root.)

Use L(0) to specify the number of dynamic subscript levels that exist beyond the

static global root, including the subscript level containing the list of record

numbers. The minimum value of L(0) is 1.

EN1^DIP lets you sort by up to 7 subscripts; therefore the maximum value of

L(0) is 8.

For example, if BY(0) refers to a regular “E” index on a file

[e.g., ’^DIZ(662001,”E”,’] you should set L(0)=2 [i.e., one for the subscript

containing the (dynamic) value of the field being cross-referenced, plus one for

the record number].

FR(0,n): (Optional) To select only a subset of records at a given subscript level “n”, you

can use FR(0,n) and/or TO(0,n). For “n” equal to any of the “n” dynamic sorting

subscript levels in the global specified by BY(0), you can set FR(0,n) to the sort-

from value for that subscript level.

This restricts the printed records to those whose subscript values at subscript

level n sort the same or greater than the value you set into FR(0,n). If FR(0,n) is

undefined for any subscript n, the sort on that subscript level begins with the first

value for that subscript.

 NOTE: These values must be in VA FileMan internal format, as they are

stored in the subscript of the index or global defined by BY(0).

VA FileMan 22.2

Developer’s Guide 74 January 2017

TO(0,n): (Optional) This variable contains the ending value (the sort-to value) for any of

the “n” dynamic sorting subscripts in the global specified by BY(0). If TO(0,n) is

undefined for any subscript “n”, the sort on that subscript level ends with the last

value for that subscript.

 NOTE: These values must be in VA FileMan internal format, as they are

stored in the subscript of the index or global defined by BY(0).

DISPAR(0,n) (Optional) Like the FR(0,n) and TO(0,n) variables, this variable array can be set

for any of the “n” dynamic sorting subscripts in the global specified by BY(0).

This array allows you to create subheaders for the sorting subscripts in the global.

In order to create a sub-header, you must define a title for the subscript, as VA

FileMan has no knowledge of the subscripts. Each entry in the array can have

information in two ^-pieces:

1. The first piece contains the sort qualifiers that are normally entered

interactively before a sort field.

 REF: For more information, see the VA FileMan User Manual.

Two of the sort qualifiers can be used here: “!” to number the entries by

sort value and “#” to page break when the sort values changes.

2. The second piece contains the sort qualifiers that are normally entered

interactively after the sort field. In order to print a subheader, you must

enter literal subheader “caption” (e.g., “Station/PO Number: ”). To have

no subheader text other than the subheader value, use a null caption

(e.g., “”). You can also use the sort qualifiers ;Cn ;Ln or ;Sn.

 REF: For more information, see the VA FileMan User Manual.

The subheaders defined in DISPAR(0,n) cannot be suppressed.

DISPAR(0,n,”OUT”): (Optional) If a literal title is input to DISPAR(0,n) above, then you can also enter

M code to transform the value of the subscript from the global before it is printed

as a subheader. It acts like an OUTPUT transform. At the time of execution, the

untransformed value is in Y. The code should put the transformed value back into

Y. Any other variables used in the code should be NEWed.

2.3.37.6 Examples

2.3.37.6.1 Example 1

Suppose you have a simple MUMPS cross-reference that inverts dates so that the values in the cross-

reference are 99999999-date. The cross-reference might look something like:

Figure 34: EN1^DIP API—Example 1: Cross-reference

^DIZ(662001,”AC”,97069889,2)=““

^DIZ(662001,”AC”,97969898,3)=““

^DIZ(662001,”AC”,97969798,1)=““

 ...etc.

VA FileMan 22.2

Developer’s Guide 75 January 2017

If you wanted to sort all entries by this inverse date and to convert the date values into a readable format

for the subheader, you would set up the variables for the EN^DIP call like this:

Figure 35: EN1^DIP API—Example 1: Setting Up Variables

S DIC=“^DIZ(662001,”,L=0,FLDS=“your field list”

S BY(0)=“^DIZ(662001,”“AC”“,”

S L(0)=2

S DISPAR(0,1)=“^;”“DATE”““

S DISPAR(0,1,”OUT”)=“S:Y Y=99999999-Y S Y=$$FMTE^XLFDT(Y)”

2.3.37.6.2 Example 2

Suppose you have a list of record numbers in a global that looked like this:

Figure 36: EN1^DIP API—Example 2: Sample Record Numbers

^TMP($J,1)=““

^TMP($J,3)=““

^TMP($J,35)=““

^TMP($J,39)=““

 ...etc.

If you wanted to print those records sorted by the .01 field of the file, you would:

Figure 37: EN1^DIP API—Example 2: Input to Sort and Print Records

S DIC=“^DIZ(662001,”,L=0,BY=.01,(FR,TO)=““,FLDS=“your field list”

S BY(0)=“^TMP($J,”

S L(0)=1

2.3.37.6.3 Example 3

Suppose you have a MUMPS multi-field-style cross-reference, with subscripts based on the values of two

fields. The first field in the subscript is free-text, and the second is a number. The cross-reference might

look like:

Figure 38: EN1^DIP API—Example 3: Cross-reference

^DIZ(662001,”AD”,”ANY”,4.99,5)=““

^DIZ(662001,”AD”,”ANYTHING”,1.3,2)=““

^DIZ(662001,”AD”,”ANYTHING”,1.45,1)=““

^DIZ(662001,”AD”,”SOMETHING”,.4,10)=““

 ...etc.

You want to sort from value “A” to “AZ” on the free-text field and from 1 to 2 on the numeric field. Also,

you want to print a subheader for the numeric field. You could set your variables like this:

Figure 39: EN1^DIP API—Example 3: Input Setting Variables to Sort and Print

S DIC=“^DIZ(662001,”,L=0,FLDS=“your field list”

S BY(0)=“^DIZ(662001,”“AD”“,”

S L(0)=3

S FR(0,1)=“A”,TO(0,1)=“AZ”

S FR(0,2)=1,TO(0,2)=2

S DISPAR(0,2)=“^;”“NUMBER”““

S DISPAR(0,2,”OUT”)=“S Y=$J(Y,2)”

VA FileMan 22.2

Developer’s Guide 76 January 2017

2.3.37.7 Details and Features

2.3.37.7.1 Sorting on MUMPS Cross-References

The BY(0) feature is designed to let you pre-sort your VA FileMan reports using MUMPS cross-

references. As long as the MUMPS cross-reference has 0 to 7 dynamic (sorting) subscripts, followed by

the record numbers stored in a final subscript level, you can order your reports based on that cross-

reference using BY(0).

While you can have used MUMPS cross-references in the past only for sorting hard-coded reports, you

can consider using them with VA FileMan-based reports as well.

2.3.37.7.2 Sorting a Compound Cross-reference Defined in the INDEX file (#.11)

The BY(0) feature allows you to sort using a compound cross-reference on the INDEX file (#.11; a

compound cross-reference is one that indexes more than one data field). This feature lets you use any

index that has no more than 7 data valued subscripts.

2.3.37.7.3 Sorting Using One or More Subscript Levels

Each intervening subscript level between the static part of the open global root in BY(0) and the record

number subscript level serves as one sort level, starting with the highest subscript level.

In Example 3, the records would sort by the value of the free-text field stored in the first dynamic

subscript, and within that by the value of the numeric field stored in the second dynamic subscript.

2.3.37.7.4 Additional Sorting with BY, FR, and TO

When using BY(0), you can still sort in the usual way (setting BY, FR, and TO) to further sort and limit

the range within the list provided by BY(0). Note that if you set BY(0), BY cannot contain the name of a

SORT template. If your sort is complicated, see the “Storing BY(0) specifications in SORT Templates”

section.

VA FileMan selects only the list of records specified by BY(0) and its associated variables. VA FileMan

accepts as-is the sort sequence created by any dynamic subscripts in the global specified in BY(0). Then

within that sort sequence, it further sorts the records by the information provided in the BY, FR, and TO

variables.

You can only sort by up to 7 sort levels in EN1^DIP, so the number of subscripts you sort by using BY(0)

combined with the number of fields you sort by using BY must not total more than 7.

If BY(0) has been defined without BY, FR, and TO, the user is not prompted for the SORT BY or

FROM/TO ranges.

2.3.37.7.5 Storing BY(0) Specifications in SORT Templates

You can store the BY(0) information in a SORT template, in order to design more complicated sorts. This

allows you to sort using the global described in the BY(0) variable, and within those subscripts, to sort by

additional fields and to save the entire sort description into a template. You need programmer access to do

this.

In VA FileMan’s sort dialogue (with programmer access), at the SORT BY: prompt, you can enter the

characters BY(0) as shown in the example immediately below. When you enter BY(0), you are then

prompted for the BY(0), L(0) and all related values, exactly the same as if they were entered as input

variables to the EN1^DIP call.

VA FileMan 22.2

Developer’s Guide 77 January 2017

Figure 40: EN1^DIP API—Sort BY(0) Example

Select OPTION: 2 <Enter> PRINT FILE ENTRIES

OUTPUT FROM WHAT FILE: ZZTAMI TEST// <Enter>

SORT BY: NAME// BY(0)

BY(0): // ^DIZ(662001,”H”,

L(0): // 2

Edit ranges or subheaders? NO// YES

SUBSCRIPT LEVEL: 1// 1

FR(0,n): // 2690101

TO(0,n): // 2701231

DISPAR(0,n) PIECE ONE: // <Enter>

DISPAR(0,n) PIECE TWO: // ;”Date of Birth: “

DISPAR(0,n,OUT): // S Y=$$FMTE^XLFDT(Y,1)

Edit ranges or subheaders? NO// <Enter>

BY(0)=^DIZ(662001,”H”, L(0)=2

SUB: 1 FR(0,1): 2690101

 TO(0,1): 2701231

 DISPAR(0,1) PIECE ONE:

 DISPAR(0,1) PIECE TWO: ;”Date of Birth: “

 DISPAR(0,1,OUT): S Y=$$FMTE^XLFDT(Y,1)

OK? YES// <Enter>

Enter additional sort fields? NO// YES

WITHIN BY(0), SORT BY: NAME

START WITH NAME: FIRST// <Enter>

 WITHIN NAME, SORT BY: <Enter>

STORE IN ‘SORT’ TEMPLATE: ZZTAMIBY0

When you enter BY(0), you are prompted for BY(0) and L(0). In addition, you are asked if you want to

edit ranges or subheaders. This lets you enter the FR(0,n), TO(0,n), DISPAR(0,n) and

DISPAR(0,n,”OUT”) values for various subscript levels. This lets you specify all the aspects of sorting

using BY(0). You can store these criteria in a SORT template. If you answer YES to “Enter additional

sort fields?”, you are allowed to enter additional sort fields, exactly the same as you would when creating

a SORT template without the BY(0) features.

The functionality of BY(0) interactively or in a SORT template is identical to its functionality in the

EN1^DIP API.

An error results if, in a call to EN1^DIP, you sort by a SORT template that contains BY(0) sort criteria,

and also use BY(0) as an input variable.

 NOTE: The sort ranges associated with subscripts in the BY(0) global or index can be set

dynamically by setting the FR(0,n) and TO(0,n) input variables. These input variables override

any sort ranges set in the template.

The “SUBSCRIPT LEVEL” prompt refers to the position of the data value in the global or index. Thus,

entering a value for FR(0,n) when the SUBSCRIPT LEVEL is 1, sets the “from” value for the first data

valued subscript.

VA FileMan 22.2

Developer’s Guide 78 January 2017

Use the documentation for the BY(0) and related input variables for additional help. Also be sure to use

online ? and ?? help.

The following is an example of how to call EN1^DIP when the BY(0) information is contained in a

template:

S DIC=“^DIZ(16600,”,L=0,BY=“[ZZTEST]”,FR(0,1)=70001,FLDS=.01

D EN1^DIP

2.3.37.7.6 BY(0) “Don’ts”

You should not use BY(0) if you are merely setting it to the global location of an existing regular cross-

reference. You do not gain any speed, because VA FileMan’s built-in sort optimizer already knows to sort

on regular cross-references.

Also, do not specify a field’s regular cross-reference as the global reference in BY(0) to sort on, and then

sort on the same field using BY, FR, and TO. This actually increases the amount of work VA FileMan

needs to do!

2.3.37.7.7 “On-the-Fly” Globals Whose Static Global Reference Ends with “B”

If you build your own list of sorted records on-the-fly in a temporary global (as opposed to setting BY(0)

to a VA FileMan-maintained cross-reference), it is best not to let the final subscript of your static global

reference be “B”.

This avoids problems that might be caused by VA FileMan’s special handling of the “B” index for

mnemonic cross-references.

2.3.38 ^DIPT: Print Template Display

The PRINT TEMPLATE file (#.4) contains a computed field labeled PRINT FIELDS that displays a

PRINT template exactly as it was entered. Use this entry point to make this display immediately available

to a user.

Input Variable

D0: (Required) Set D0 equal to the internal number of the template in the PRINT

TEMPLATE file (#.4). For example, to display the PRINT template whose

record number is 70:

S D0=70 D ^DIPT

 NOTE: Use the number 0 (zero) not the letter O in this variable name.

VA FileMan 22.2

Developer’s Guide 79 January 2017

2.3.39 DIBT^DIPT: SORT Template Display

The SORT TEMPLATE file (#.401) contains a computed field labeled SORT FIELDS that displays a

SORT template exactly as it was entered. Use this entry point to make this display immediately available

to a user.

Input Variable

D0: (Required) Set D0 equal to the internal number of the template in the SORT

TEMPLATE file (#.401). For example, to display the SORT template whose

record number is 70:

S D0=70 D DIBT^DIPT

 NOTE: Use the number 0 (zero) not the letter O in this variable.

2.3.40 ^DIPZ: PRINT Template Compilation

PRINT templates can be compiled into M routines just as INPUT templates can be. The purpose of this

DIPZ code generation is simply to improve overall system throughput.

Only regular PRINT templates can be compiled. You cannot compile the following, which are also stored

in the PRINT TEMPLATE file (#.4):

 FILEGRAM

 EXTRACT

 Selected Fields for Export

 EXPORT templates

Call the ^DIPZ routine and specify the following:

 Maximum routine size

 Name of the PRINT template to be used

 Name of the M routine to be created

 Margin width to be used for output (typically 80 or 132)

If you specify the routine name XXX and if more code is generated than can fit into that one routine,

overflow routines (XXX1, XXX2, etc.) is created. Routine XXX can call XXX1, XXX2, etc.

Once DIPZ has been used to create a hard-coded output routine, that routine is usually invoked

automatically by VA FileMan within the Print File Entries and Search File Entries options and when

called at EN1^DIP whenever the corresponding PRINT template is used. The compiled routines are not

used if a user-specified output margin width is less than the compiled margin. Also, if the template is used

with ranked sorting (i.e., the ! sort qualifier is used), the compiled version is not used.

As with compiled INPUT templates, as soon as data dictionary definitions of fields used in the PRINT

template are changed, the hard-core routines are compiled immediately.

2.3.40.1 Invoking Compiled PRINT Templates

A DIPZ-compiled M routine can be called by any program that passes to it the variables DT, DUZ, IOSL

(screen length), U (^), and D0 (the entry number to be displayed). Additionally, the variable DXS must be

VA FileMan 22.2

Developer’s Guide 80 January 2017

KILLed before calling the routine and after returning from it. The compiled routine writes out its report

for that single entry. However, routines compiled from templates that include statistical totals cannot be

called in this way.

2.3.41 EN^DIPZ: Print Template Compilation

PRINT templates can be compiled into M routines just as INPUT templates can be. The purpose of this

DIPZ code generation is simply to improve overall system throughput.

Only regular PRINT templates can be compiled. You cannot compile the following, which are also stored

in the PRINT TEMPLATE file (#.4)

 FILEGRAM

 EXTRACT

 Selected Fields for Export

 EXPORT templates

This entry point recompiles a PRINT template without user intervention by setting the input variables:

Input Variables

X: The routine name.

Y: The internal number of the template to be compiled.

DMAX: The maximum size the compiled routines should reach. Consider using the

$$ROUSIZE^DILF function to set this variable.

2.3.42 D^DIQ: Display

This entry point takes an internal date in the variable Y and converts it to its external form. This call is

very similar to DD^%DT.

Input Variable

Y: (Required) Contains the internal date to be converted. If this has five or six

decimal places, seconds are automatically returned.

Output Variable

Y: External form of the date or date/time value (e.g., JAN 01, 1998).

2.3.43 DT^DIQ: Display

This call converts the date in Y exactly like D^DIQ. Unlike D^DIQ, however, it also writes the date after

it has been converted.

Input Variable

Y: (Required) Contains the internal date to be converted. If this has five or six

decimal places, seconds are automatically returned.

Output Variable

Y: External form of the date or date/time value (e.g., JAN 01, 1998).

VA FileMan 22.2

Developer’s Guide 81 January 2017

2.3.44 EN^DIQ: Display

This entry point displays a range of data elements in captioned format, to the current device. The output

from this call is very similar to that of the Inquiry to File Entries option [DIINQUIRE].

 REF: For more information on the Inquiry to File Entries option [DIINQUIRE], see the “Inquire

Option” section in the VA FileMan User Manual.

Input Variables

DIC: (Required) The global root of the file in the form ^GLOBAL(or ^GLOBAL(#,

If you are displaying an entry in a subfile, set DIC to the full global root leading

to the subfile entry, including all intervening subscripts and the terminating

comma, up to but not including the IEN of the subfile entry to display.

DA: (Required) If you are displaying an entry at the top-level of a file, set DA to the

internal entry number of the file entry to display.

If you are editing an entry in a subfile, set up DA as an array, where DA=entry

number in the subfile to display, DA(1) is the entry number at the next higher file

level,...DA(n) is the entry number at the file’s top-level.

DR: (Optional) Names the global subscript or subscripts that are to be displayed by

DIQ. If DR contains a colon (:), the range of subscripts is understood to be

specified by what precedes and follows the colon. Otherwise, DR is understood

to be the literal name of the subscript. All data fields stored within, and

descendent from, the subscripts are displayed, even those that normally have

Read access security protection.

If DR is not defined, all fields are displayed.

DIQ(0): (Optional) You can include the following flags in this variable to change the

display of the entry:

 A—To display Audit records for the entry.

 C—To display Computed fields.

 R—To display the entry’s Record number (IEN).

VA FileMan 22.2

Developer’s Guide 82 January 2017

2.3.45 Y^DIQ: Display

This entry point converts the internal form of any data element to its external form. It works for all VA

FileMan data types, uses output transforms, and follows pointer trails to their final resolution. The

equivalent Database Server call is $$EXTERNAL^DILFD.

Input Variables

Naked Global Reference:

The naked global reference must be at the zero node of the data dictionary

definition that describes the data [i.e., it must be at ^DD(File#,Field#,0)].

 REF: For an example of setting the naked reference, see the description

of input variable C below.

C: Set C to the second piece of the zero node of the data dictionary that defines that

element. Typically, the developer would:

S C=$P(^DD(file#,field#,0),U,2)

And then:

D Y^DIQ

This correctly sets the naked global reference as described above.

Y: Set Y to the internal form of the value being converted. This is the data that you

want to convert to external form.

Output Variable

Y: The external form of the value. Basically, Y is changed from internal to external.

2.3.46 EN^DIQ1: Data Retrieval

This entry point retrieves data from a file for a particular entry.

 NOTE: The equivalent Database Server calls are GETS^DIQ and $$GET1^DIQ.

It is your responsibility to KILL the output array, ^UTILITY(“DIQ1”,$J), before and after using this call.

Input Variables

DIC: The file number or global root.

DR: A string specifying the data fields to retrieve for the given entry. The DR-string

can contain:

 A single number corresponding to the internal number of a field in the

file.

 A range of field numbers, in the form M:N, where M is the first and N

the last number of the inclusive range. All fields whose numbers lie

within this range are retrieved.

 A combination of the above, separated by semicolons. If field numbers

.01, 1, 2, 4, 10, 11, 12, 13, 14, 15, and 101 exist for a file, and you want

VA FileMan 22.2

Developer’s Guide 83 January 2017

to retrieve the data in these fields, simply write:

S DR=“.01;1;4;10:15;101”

DR(subfile_number): If you want to retrieve values from fields from a subentry in a Multiple field,

include the top-level field number for the Multiple in DR. Then, include the

Multiple’s subfield numbers whose values you want to retrieve in a node in DR,

subscripted by the subfile number.

 REF: To specify which subfile entry to retrieve, see also

DA(subfile_number).

For example, if you want to retrieve data from subfields .01 and 7 for subentry 1

from field 4 that defines the Multiple 16000.02, then you write:

S DIC=16000,DR=“4”,DA=777

S DR(16000.02)=“.01:7”,DA(16000.02)=1

D EN^DIQ1

DA: The internal number of the entry from which data is to be extracted.

DA(subfile_number): If you want to retrieve values from fields from a subentry in a multiple, set DA to

the top-level entry number. Then, include the subentry number in a node in DA,

subscripted by the subfile number.

 REF: For how to specify which fields in the subfile entry to retrieve, see

DR(subfile_number) above.

You can descend one or more subfile levels; however, you can only retrieve

values for one subentry at any given subfile level. The full path from the top-

level of the file to the lowest-level subfile entry must be fully specified in nodes

in DR and DA.

DIQ: (Optional) The local array name into which the field values are placed.

^UTILITY(“DIQ1”,$J, is used if DIQ is not present. This array name should not

begin with DI.

DIQ(0): (Optional) This variable is used to control which is returned: internal values,

external values, or both. DIQ(0) also indicates when null values are not returned.

The DIQ(0) string can contain the values that follow:

 I—Return Internal values.

 E—Return External values.

 N—Do not return Null values.

Output

The format and location of the output from EN^DIQ1 depends on the status of input variables DIQ and

DIQ(0) and on whether or not a word-processing field is involved.

VA FileMan 22.2

Developer’s Guide 84 January 2017

2.3.46.1 DIQ and DIQ(0) Undefined

Output into:

Figure 41: EN^DIQ1 API—Data Retrieval: DIQ and DIQ(0) Undefined

^UTILITY(“DIQ1”,$J,file#,DA,field#)=external value

This is for backward compatibility. Each field requested is defined in the utility global but the value can

be null. The only exception to this would be when DA held the number of an entry that does not exist. In

that case, nothing is returned. The values returned are the external values. Printable values (e.g., pointers,

sets of codes, etc.) are resolved; dates are in external format.

2.3.46.2 DIQ(0) Defined, DIQ Undefined

Output into:

Figure 42: EN^DIQ1 API—Data Retrieval: DIQ(0) Defined, DIQ Undefined

^UTILITY(“DIQ1”,$J,file#,DA,field#,”E”)=external value

^UTILITY(“DIQ1”,$J,file#,DA,field#,”I”)=internal value

 If DIQ(0) contains “E”, the external value is returned with a final global subscript of “E”.

 If DIQ(0) contains “I”, the internally stored value is returned with a final global subscript of “I”.

The internal value is the value stored in the file, for example, the record number of the entry in

the pointed-to file, not the resolved value of the pointer. Since computed fields store no data, no

nodes are returned for computed fields.

 If DIQ(0) contains “N”, no nodes are set for either internal or external values if the field is null.

 If DIQ(0) contains both “I” and “E”, generally two nodes are returned for each field: one with the

internal value, one with the external value. However, no nodes are produced for the internal value

if the field is computed and no nodes are produced at all for null-valued fields if DIC(0) contains

“N”. Nodes are subscripted as described above.

2.3.46.3 DIQ Defined

The output is similar except that the data is stored in the specified local array. So if DIQ(0) is not defined,

then the output is:

Figure 43: EN^DIQ1 API—Data Retrieval: DIQ Defined

@(DIQ(file#,DA,field#))=external value

If DIQ(0) is defined, then the output is:

Figure 44: EN^DIQ1 API—Data Retrieval: DIQ Defined: Output

@DIQ(file#,DA,field#,”E”)=external value

@DIQ(file#,DA,field#,”I”)=internal value

VA FileMan 22.2

Developer’s Guide 85 January 2017

2.3.46.4 Word-processing Field

Output from a word-processing field is only an external value. The status of DIQ(0) has no effect. If DIQ

is not defined, it goes into the global nodes that follow:

Figure 45: EN^DIQ1 API—Data Retrieval: Word-processing Field

^UTILITY(“DIQ1”,$J,file#,DA,field#,1)

^UTILITY(“DIQ1”,$J,file#,DA,field#,2)

 .

 .

 .

If DIQ is defined, it goes into:

Figure 46: EN^DIQ1 API—Data Retrieval: Word-processing Field: DIQ is Defined

@DIQ(file#,DA,field#,1)=External Value 1

@DIQ(file#,DA,field#,2)=External Value 2

@DIQ(file#,DA,field#,3)=External Value 3

@DIQ(file#,DA,field#,4)=External Value 4

 .

 .

 .

2.3.47 ^DIR: Reader

DIR is a general purpose response reader that can be used to issue a prompt, read input interactively,

perform syntax checking on the input, issue error messages or help text, and return input in a processed

form. Its use is recommended to standardize user dialogue and to eliminate repetitive coding.

DIR is reentrant: A DIR call can be made from within a DIR call. To reenter DIR, use the NEW

command to save the DIR array (NEW DIR) before setting input variables and making the second call.

 Input and Output Variables (Summary)

 Required Input Variables (Full Listing)

 Optional Input Variables (Full Listing)

 Output Variables (Full Listing)

 Examples

 CAUTION: KILL the DIR variable after the ^DIR call, so that other VA FileMan APIs that
also use the ^DIR reader are not affected.

 NOTE: DIR exits after 50 consecutive failed read attempts (to prevent infinite loops).

 NOTE: If DIR fails the syntax checking, it will automatically uppercase the input and retry the

syntax checking.

VA FileMan 22.2

Developer’s Guide 86 January 2017

2.3.47.1 Input and Output Variables (Summary)

Make sure to perform the following steps before calling this API:

 NEW all variables.

 Set all input variables.

 Call the API.

Input Variables-Required

DIR(0): Required: First character of Piece-1 (first 3 characters for DD-type)

 Optional: Subsequent characters of Piece-1—Read type: Input modifiers

 Optional: Piece-2—Read type: Input parameters

 Optional: Piece-3—Read type: INPUT transform

Input Variables-Optional

DA: For DD-type reads, can specify entry from which to retrieve default value.

DIR(“A”): Developer-supplied prompt to override default.

DIR(“A”,#): Optional array of additional lines to display when DIR(“A”) is specified.

DIR(“B”): Default response.

DIR(“L”): For set-of-code fields: developer-specified format to display codes.

DIR(“L”,#): Optional array of additional lines to display when DIR(“L”) is specified.

DIR(“S”): Screen for pointer, set-of-code, and list/range reads.

DIR(“T”): Time specification to be used instead of DTIME.

DIR(“?”): Help displayed when the user enters a single question mark (“?”).

DIR(“?”,#) Optional array of additional lines to display when DIR(“?”) is specified.

DIR(“??”): Help displayed when the user enters a double question mark (“??”).

Output Variables-Always Returned

X: Unprocessed user response.

Y: Processed user response.

Output Variables-Conditionally Returned

Y(0): External form of response for set, pointer, list, and date.

DTOUT: Defined if the user times out.

DUOUT: Defined if the user entered a caret (“^”).

DIRUT: Defined if the user entered a caret (“^”), pressed Enter, or timed out.

DIROUT: Defined if the user enters two carets (“^^”).

VA FileMan 22.2

Developer’s Guide 87 January 2017

2.3.47.2 Required Input Variables (Full Listing)

DIR(0: DIR(0) is the only required input variable. It is a three-piece variable. The first

character of the first piece must be defined (or first 3 characters for DD-type).

Additional characters of the first piece and the second two pieces are all optional.

The first character of the first caret (“^”) piece indicates the type of the input to

be read. The second piece describes parameters, delimited by colons, to be

applied to the input. Examples are maximum length for free text data or decimal

digits for numeric data. The third piece is executable M code that acts on the

input in the same manner as an INPUT transform. The acceptable types are

shown in Table 30:

Table 30: DIR(0)—Summary

 Piece-1 Piece-2 Piece-3

DIR(0) Read Type First Character

(required)

Subsequent

Characters

(optional)

Format Executable M

code (optional)

Date D A,O Minimum date:-

Maximum date:%DT

code

End-of-Page E A -- --

Free-text F A,O,U,r Minimum length:

Maximum length

code

List or range L A,O,C Minimum:Maximum:M

aximum decimals

code

Numeric N A,O Minimum:Maximum:M

aximum decimals

code

Pointer P A,O,r Global Root or

#:DIC(0)

code

Set of Codes S A,O,X,B Code:

Stands for;Code:

stands for;

code

Yes/No Y A,O -- code

DD #,# A,O,r -- code

VA FileMan 22.2

Developer’s Guide 88 January 2017

DIR(0) (Detailed Explanation):

Piece-1 of DIR(0) (Subsequent Characters are Optional):

The first caret (“^”) piece of DIR(0) can contain other parameters that help to specify the nature of the

input or modify the behavior of the reader. These characters must appear after the character indicating

type (or after the field number if it is a DD type). They are described below and examples are provided

later in this section):

 A—Indicates that nothing should be Appended to the developer-supplied prompt DIR(“A”),

which is described below. If there is no DIR(“A”), then no prompt is issued.

 B—Only applies to a set of codes; indicates that the possible choices are to be listed horizontally

after the prompt.

 C—Only applies to list reads. The values returned in Y and the Y() array are Compressed. They

are not expanded to include each individual number, rather, ranges of values are returned using

the hyphen syntax. This is similar to the format in which the user can enter a range of numbers.

This flag is particularly useful when a user may select many numbers (e.g., when decimals are

involved). The call is much faster and the possibility of the local symbol table filling up with

nodes in the Y() array is eliminated.

 O—Indicates that a response is Optional. If this is not included, then a null response is not

allowed. For DD type reads, the O is automatically included if the field in question is not a

required field.

 r—If user does not choose to accept the default, they must type in their entire response. They do

not get the “Replace-With” prompt, no matter how long the default response is.

 U—Only applies to free text reads. It allows the user response to contain a caret (^; a.k.a. Up-

Arrow). A leading caret aborts the READ and SETs DUOUT and DIRUT whether or not U is in

DIR(0). However, U allows ^s to be embedded in the user response.

 X—Only applies to set of codes. Indicates a request for an eXact match. No lower- to uppercase

conversion is to be done.

Piece-2 of DIR(0) (Optional):

Qualifying limits on user response are as described in summary Table 30.

Piece-3 of DIR(0) (Optional):

The third piece of DIR(0) is executable M code that acts like the INPUT transform of a field in a data

dictionary. The value that was entered by the user is contained in the variable X. The code can examine X

and, if it is not appropriate, should KILL X. If X is undefined after the execution of the third piece of

DIR(0), the reader knows that the input was unacceptable, issues a help message, and re-asks for input. It

is unnecessary to put checks for minimum and maximum or length in the third piece. These should be

specified in the second piece of DIR(0). An example of DIR(0) with all three pieces is:

S DIR(0)=“F^3:30^K:X’?.U X”

This means that if the input is not all uppercase, then the data is unacceptable. The check for a length

from 3 to 30 characters takes place automatically because of the second piece. The third piece is not

executed if the specifications in the second piece are not met. If the user combines the DD data type with

a third piece in DIR(0), for example:

VA FileMan 22.2

Developer’s Guide 89 January 2017

S DIR(0)=“19,.01^^K:X’?1”“DI”“ X”

Then, the third piece of DIR(0) is not executed until after the INPUT transform has been executed and X

was not KILLed by the transform.

For pointer-type reads, the third piece of DIR(0) is executed after an entry is selected from the file.

 CAUTION: KILL the DIR variable after the ^DIR call, so that other VA FileMan APIs that
also use the ^DIR reader are not affected.

2.3.47.3 Optional Input Variables (Full Listing)

DA: (Optional) For DD-type reads only, if DIR(“B”) is not set, you can retrieve a

value from the database to display as a default. Identify the entry from which the

value should come by setting the DA variable to its record number. If a subfile is

involved, set up a DA() array where DA equals the record number for the lowest

level subfile, DA(1) for the next higher, and so on.

 NOTE: Although you can retrieve defaults from the database by using

DA, the values in the database are not changed by ^DIR calls.

DIR(“A”): (Optional) The reader provides a generic default prompt for each type (e.g., enter

a number or enter a response). To issue a more meaningful prompt, DIR(“A”)

can be set to a character string that more clearly indicates the nature of the data

being requested. For example, setting the following:

S DIR(“A”)=“PRICE PER DISPENSE UNIT: “

S DIR(0)=“NA^0:5:2”

Causes the prompt to appear as:

PRICE PER DISPENSE UNIT:

DIR(“A”,#): (Optional) If you want to issue a longer message before actually reading the

input, you can set the DIR(“A”,#) array in addition to DIR(“A”). The #’s must be

numeric. After the array has been displayed, DIR(“A”) is issued as the prompt

for the read. It is necessary for DIR(“A”) to be set if the developer is to use this

array. For example, setting the following:

S DIR(“A”)=“PRICE PER DISPENSE UNIT:”

S DIR(“A”,1)=“Enter price data with two decimal points.”

S DIR(“A”,2)=“Cost calculations require this precision.”

Causes the following dialogue to appear to the user:

Enter price data with two decimal points.

Cost calculations require this precision.

PRICE PER DISPENSE UNIT:

DIR(“B”): (Optional) Set this variable to the default response for the prompt issued. It

appears after the prompt and before the // (double slashes). If the user simply

presses Enter, the default response is accepted by the reader.

DIR(“L”) DIR(“L”,#): (Optional) Only applies to set-of-codes fields. Let’s replace the standard vertical

listing of codes that the Reader displays with your own listing. It is up to you to

VA FileMan 22.2

Developer’s Guide 90 January 2017

ensure that the contents of the DIR(“L”) array match the codes in the second ^-

piece of DIR(0).

The format of the DIR(“L”) array is similar to DIR(“A”) and DIR(“?”). The #’s

must be numeric starting from 1. The numeric subscripted array nodes are written

first and the DIR(“L”) node is written last. For example, if you code:

S DIR(0)=“SO^1:ONE;2:TWO;3:THREE;4:FOUR;5:FIVE”

S DIR(“L”,1)=“Select one of the following:”

S DIR(“L”,2)=““

S DIR(“L”,3)=“ 1 ONE 4 FOUR”

S DIR(“L”,4)=“ 2 TWO 5 FIVE”

S DIR(“L”)=“ 3 THREE”

D ^DIR

The user sees the following:

Select one of the following:

1 ONE 4 FOUR

2 TWO 5 FIVE

3 THREE

Enter response:

DIR(“PRE”): (Optional) This variable contains M code that acts as a pre-validation transform.

It can either change X, in which case the reader proceeds as though the user had

entered the new value in X, or KILL X, in which case the reader behaves as

though the user entered an illegal value. DIR(“PRE”) is executed almost

immediately after the READ takes place, just after DTOUT is set if the READ

timed out, and before any other checking is done. The only inputs are X and

DTOUT, and the only outputs are X and DTOUT.

In order for ^DIR to respond properly when the user times out, inputs “^”, or

inputs “?” the M code should check for DTOUT being defined, X containing

“^”, or X containing “?” and in each of these cases return X unchanged.

DIR(“S”): (Optional) Use the DIR(“S”) variable to screen the allowable responses for

pointer, set of codes, and list/range reads. This variable works as the DIC(“S”)

variable does for ^DIC calls. Set DIR(“S”) equal to M code containing an IF

statement. After execution, if $T is set to 1, the user response is accepted; if set to

0, it is not.

For pointer reads, when DIR(“S”) is executed, the M naked indicator is equal to

the 0 node of the entry being screened. The variable Y equals its record number.

For set of codes reads, when the DIR(“S”) is executed, Y equals the internal

code.

For list/range reads, if you also use the C flag in piece 1 of DIR(0), your output is

still compressed. Internally during the call, however, the range must be

uncompressed so that each number in the range can be screened. So using

DIR(“S”) with the C flag during list/range reads loses the C flag’s advantages in

speed (but the C flag’s advantage in avoiding storage overflows remains).

DIR(“T”): (Optional) Time-out value to be used in place of DTIME. Value is represented in

seconds.

VA FileMan 22.2

Developer’s Guide 91 January 2017

DIR(“?”) (Optional) This variable contains a simple help prompt, which is displayed to the

user when one question mark is entered. It usually takes the place of the reader’s

default prompt. For example, if you code:

S DIR(0)=“F^3:10”

S DIR(“?”)=“Enter from three to ten characters”

S DIR(“A”)=“NICKNAME”

D ^DIR

The user sees the following:

NICKNAME: ?

Enter from three to ten characters.

 NOTE: When displayed, a period (.) is added to the DIR(“?”) string.

Periods are not appended when displaying the DIR(“?”,#) array,

however.

When one question mark is entered in DD reads, the data dictionary’s help

prompt is shown before DIR(“?”). For pointer reads, a list of choices from the

pointed-to file is shown in addition to DIR(“?”).

As an alternative, you can set DIR(“?”) to a caret (“^”) followed by M code,

which is executed when the user enters one question mark. An example might be:

S DIR(“?”)=“^D HELP^%DTC”

Execution of this M code overrides the reader’s default prompt. If DIR(“?”) is

defined in this way (a non-null second piece), the DIR(“?”,#) array is not

displayed.

DIR(“?”,#) (Optional) This array allows the user to display more than one line of help when

the user types a single question mark. The first caret (“^”) piece of DIR(“?”)

must be set for the array to be used. The second caret piece of DIR(“?”) must be

null; otherwise, the DIR(“?”,#) array is ignored. The #’s must be numeric starting

from 1. The numbered lines are written first [i.e., first DIR(“?”,1), then

DIR(“?”,2), etc.] The last help line written is DIR(“?”). These lines are the only

ones written, which means that the reader’s default prompt is not issued.

DIR(“??”): (Optional) This variable, if defined, is a two-part variable. The first caret (“^”)

piece can contain the name of a help frame. The help processor displays this help

frame if the user enters two question marks.

The second part of this variable (after the first caret piece) can contain M code

that is executed after the help frame is displayed.

For example:

S DIR(“??”)=“DIHELPXX^D EN^XXX”

 NOTE: In order to use this variable, you must have Kernel’s help

processor on your system.

VA FileMan 22.2

Developer’s Guide 92 January 2017

2.3.47.4 Output Variables (Full Listing)

X: This is the unprocessed response entered by the user. It is always returned. If the

user accepts the default in DIR(“B”), it is the default. If the user enters a caret

(“^”) or just presses Enter on an optional input, X is the caret or null.

Y: Y is always defined as the processed output. The values returned are:

Table 31: ^DIR: Reader Output Variables (Full Listing)—Y Processed
Output

Type Y Returned As

Date The date/time in VA FileMan format.

End-of-page Y=1 for continue (user pressed Enter).

Y=0 for exit (the user entered a caret [“^”]).

Y=““ for time out (the user timed out).

Free-text The data typed in by the user. In this case, it is the same as

X.

List or Range The list of numeric values, delimited by commas and ending

with a comma.

If the C flag was not included in the first piece of DIR(0), an

expanded list of numbers, including each individual number

in a range, is returned. If the C flag was included, a

compressed list that uses the hyphen syntax to indicate a

range of numbers is returned.

Any leading zeroes or trailing zeroes following the decimal

point are removed (i.e., only canonic numbers are returned).

If the list of returned numbers has more than 245

characters, integer-subscripted elements of Y [Y(1), Y(2),

etc.] contain the additional numbers. Y(0) is always returned

equal to Y.

Numeric The canonic value of the number entered by the user

(i.e., leading zeroes are deleted and trailing zeroes after the

decimal are deleted).

Pointer The normal value of Y from a DIC lookup (i.e., Internal Entry

Number^Entry Name). If the lookup was unsuccessful, Y=-1.

Set of Codes The internal value of the response.

Yes/No  Y=1 for yes.

 Y=0 for no.

DD (#,#) The first ^-piece of Y contains the result of the variable X

after it has been passed through the INPUT transform of the

field specified. Depending on the data type involved,

subsequent ^-pieces can contain additional information.

VA FileMan 22.2

Developer’s Guide 93 January 2017

Table 32 summarizes the values of Y upon timeout, entering a caret (“^”), or

pressing the Enter key for all READs. Exceptions are noted.

Table 32: ^DIR: Reader Output Variables (Full Listing)—Y Values upon
Timeout

Condition Value of Y Comments

Timeout Y=“” --

Caret (“^”) Y=^ In all cases except end-

of-page reads.

Y=0 Upon end-of-page

reads.

--

Double Caret (“^^”) Y=^^ In all cases except end-

of-page reads.

Return Y=“” For optional reads

(reads allowing a null

response).

 Y=-1 For pointer reads.

 Y=0 For YES/NO type when

NO is the default.

 Y=1 For YES/NO type when

YES is the default.

 Y=1 For end-of-page reads.

 Y=default When a default is

provided other than for

YES/NO type questions.

Y(0): This is defined for the set of codes, list, pointer, date, and Yes/No reads. It is also

returned for DD reads when the DATA TYPE field value has a SET OF CODES,

POINTER, VARIABLE POINTER, or DATE/TIME. It holds the external value

of the response for set of codes or Yes/No, the zero node of the entry selected for

a POINTER, and the external date for a DATE/TIME and VARIABLE

POINTER. To have Y(0) returned for pointer-types, the DIC(0) string in the

second piece of DIR(0) must contain a Z. For example:

DIR(0)=“P^19:EMZ”

For list reads, it contains the same values as the Y variable. There can be

additional nodes in the Y() array depending on the size of the list selected by the

user.

DTOUT: If the read has timed-out, then DTOUT is defined.

DUOUT: If the user entered a leading caret (“^”), DUOUT is defined.

DIRUT: If the user enters a leading caret (“^”), times out, or enters a null response,

DIRUT is defined. A null response results from pressing Enter at a prompt with

VA FileMan 22.2

Developer’s Guide 94 January 2017

no default or entering the at-sign (“@”), signifying deletion. If, however, the user

presses Enter in response to an end of page read, DIRUT is not defined. If

DIRUT is defined, the user can enter the following common check to quit after a

reader call:

Q:$D(DIRUT)

DIROUT: If the user entered two carets (“^^”), DIROUT is defined.

2.3.47.5 Examples

1. Date Example

2. End-of-Page Example

3. Free-Text Example

4. List or Range Example

5. Numeric Example

6. Pointer Example

7. Set Example

8. Yes/No Example

9. DD Example

2.3.47.5.1 Date Example

Figure 47: ^DIR API—Date Example

S DIR(0)=“D^2880101:2880331:EX”

This tells the reader that the input must be an acceptable date. To determine that, ^%DT is invoked with

the %DT variable equal to EX. If the date is a legitimate date, then it is checked to see if the date falls

between January 1, 1988 and March 31, 1988. In general, both minimum and maximum are optional. If

they are there, they must be in VA FileMan format. The only exceptions are that NOW and DT can be

used to reference the current date/time. Remember that NOW contains a time stamp. If it is used as a

minimum or maximum value, an R or T should be put into the %DT variable. If DIR(0) is set up to

expect a time in the response, you can help the user by including that requirement in the prompt.

Otherwise, a response without a time stamp (e.g., TODAY) might unexpectedly fail.

2.3.47.5.2 End-of-Page Example

Figure 48: ^DIR API—End-of-Page Example: Input

S DIR(0)=“E”

There are no parameters. The Enter and caret (“^”) keys are the only acceptable responses. This DIR(0)

setting causes the following prompt to be issued:

Figure 49: ^DIR API—End-of-Page Example: Prompt Displayed

Press the return key to continue or ‘^’ to exit:

VA FileMan 22.2

Developer’s Guide 95 January 2017

2.3.47.5.3 Free-Text Example

Figure 50: ^DIR API—Free-Text Example: Input

S DIR(0)=“F^3:30”

This tells the reader that the input must be alphanumeric or punctuation, (control characters are not

allowed) and that the length of input must be no fewer than 3 and no more than 30 characters. The

maximum acceptable length for a free-text field is 245 characters.

 NOTE: A leading caret (“^”) always aborts the READ and SETs DIRUT or DUOUT.

2.3.47.5.3.1 With DIR(0) containing U

Figure 51: ^DIR API—With DIR(0) containing U Example: Input

S DIR(0)=“FU^3:30”

The user can enter any response that is from 3 to 30 characters long. The response can contain embedded

carets (“^”). Without U, an embedded caret causes the user to receive an error message.

2.3.47.5.3.2 With DIR(0) containing A

Figure 52: ^DIR API—With DIR(0) containing A Example: Input

S DIR(0)=“FA^2:5”,DIR(“A”)=“INITIAL”

The prompt is set only to the word INITIAL. If the A were not included, a colon and space would be

appended to the prompt and it would look like this:

Figure 53: ^DIR API—With DIR(0) containing A Example: Prompt Displayed

INITIAL:

2.3.47.5.4 List or Range Example

Figure 54: ^DIR API—List or Range Example: Input

S DIR(0)=“L^1:25”

This tells the reader that the input can be any set of numbers between 1 and 25. The numbers can be

separated by commas, dashes, or a combination of both. Two acceptable responses to the example above

are:

Figure 55: ^DIR API—List or Range Example: Acceptable Responses

1,2,20

4-8,16,22-25

Remember that this is a numeric range or list. It can only contain positive integers and zero (no negative

numbers).

VA FileMan 22.2

Developer’s Guide 96 January 2017

2.3.47.5.4.1 With DIR(0) containing C

Figure 56: ^DIR API—With DIR(0) containing C Example: Input and Output

>S DIR(0)=“LC^1:100:2” D ^DIR

Enter a list or range of numbers (1-100): 5,8.01,9-40,

7.03,45.9,80-100

>ZW Y

Y=5,7.03,8.01,9-40,45.9,80-100,

Y(0)=5,7.03,8.01,9-40,45.9,80-100,

Here the user can enter numbers from 1 to 100 with up to two decimal places. The C flag tells the reader

not to return each individual number in Y. Instead, inclusive ranges of numbers are returned. In this case,

without the C flag, 137 subscripted nodes of the Y() array would be returned; the call would be very slow

and might cause an error if the size of the Y() array exceeded local storage.

2.3.47.5.5 Numeric Example

Figure 57: ^DIR API—Numeric Example: Input

>S DIR(0)=“N^20:30:3”

This tells the reader that the input must be a number between 20 and 30 with no more than three decimal

digits.

 NOTE: If no maximum is specified in the second ^-piece, the default maximum is

999999999999.

2.3.47.5.5.1 With DIR(0) containing O

Figure 58: ^DIR API—With DIR(0) containing O Example: Input

S DIR(0)=“NO^0:120”,DIR(“A”)=“AGE”

This allows the user to press Enter without entering any response and leave the reader. Without the O, the

following messages appear:

Figure 59: ^DIR: Reader—With DIR(0) containing O Example: Prompt Displayed

This is a required response. Enter ‘^’ to exit.

2.3.47.5.6 Pointer Example

Figure 60: ^DIR API—Pointer Example: Input

S DIR(0)=“P^19:EMZ”

VA FileMan 22.2

Developer’s Guide 97 January 2017

This tells the reader to do a lookup on File #19, setting DIC(0)=“EMZ” before making the call.

If the user enters a response that causes the lookup to fail, the user is prompted again for a lookup value.

A pointer read can be used to look up in a subfile. In that case, the global root must be used in place of the

file number. For example, to look up in the menu subfile (stored descendent from subscript 10) for entry

#2 in File #19:

Figure 61: ^DIR API—Pointer Example: Subfile Lookup

S DIR(0)=“P^DIC(19,2,10,:QEM”

Remember to set any necessary variables [e.g., DA(1)].

2.3.47.5.7 Set Example

Figure 62: ^DIR API—Set Example: Input

S DIR(0)=“S^1:MARRIED;2:SINGLE”

This tells the reader to only accept one of the two members of the set. The response can be 1, 2,

MARRIED, or SINGLE. When DIR(“A”) is included without the A modifier on the first piece, the

prompting is done as follows:

Figure 63: ^DIR API—Set Example: Input and Prompt Displayed

>S DIR(0)=“S^M:MALE;F:FEMALE”

>S DIR(“A”)=“SEX” D ^DIR

Select one of the following:

 M MALE

 F FEMALE

SEX:

2.3.47.5.7.1 With DIR(0) containing A

Figure 64: ^DIR API—With DIR(0) containing A Example: Input

S DIR(0)=“SA^M:MALE;F:FEMALE”

S DIR(“A”)=“SEX: “ D ^DIR

Whereas, with the A, it would appear as follows:

Figure 65: ^DIR API—With DIR(0) containing A Example: Prompt Displayed

SEX:

VA FileMan 22.2

Developer’s Guide 98 January 2017

2.3.47.5.7.2 With DIR(0) containing B

Figure 66: ^DIR API—With DIR(0) containing B Example: Input

S DIR(0)=“SB^M:MALE;F:FEMALE”

S DIR(“A”)=“SEX” D ^DIR

When this is executed, instead of getting the vertical listing as shown above, the prompt would appear as:

Figure 67: ^DIR API—With DIR(0) containing B Example: Prompt displayed

SEX: (M/F):

2.3.47.5.7.3 With DIR(0) containing X

Figure 68: ^DIR API—With DIR(0) containing X Example: Input

S DIR(0)=“SX^M:MALE;F:FEMALE”

S DIR(“A”)=“SEX”

This would cause a lowercase M or F to be rejected. The prompting is done as follows:

Figure 69: ^DIR API—With DIR(0) containing X Example: Prompt Displayed

Select one of the following:

 M Male

 F Female

SEX: F <Enter>

Enter a code from the list.

2.3.47.5.8 Yes/No Example

Figure 70: ^DIR API—Yes/No Example: Input

S DIR(0)=“Y”,DIR(“B”)=“YES”

This tells the reader that the response can only be Yes or No. When using DIR(“B”) to provide a default

response, spell out the entire word so that when the user presses Enter to accept the default, echoing

functions properly.

2.3.47.5.9 DD Example

Figure 71: ^DIR API—DD Example: Input Format 1

S DIR(0)=“19,1”

This format is different from the others in that the first number is a file number and the second is a field

number in that file. The reader uses the data dictionary for Field #1 in File #19 and issues the label of that

field as the prompt. The input is passed through the INPUT transform in the dictionary. Help messages

are also the ones contained in the dictionary for this field.

Normally, DD reads based on a free text field do not allow embedded carets (“^”). However, if the field

specified is positioned on the data node using the Em,n format (instead of the ^-piece format), carets

embedded in the user’s response are accepted.

VA FileMan 22.2

Developer’s Guide 99 January 2017

 REF: For an explanation of locating fields on the data node, see the “Field Global Storage”

section in the “Advanced File Definition” section.

Initial carets abort the READ and SET DIRUT and DUOUT.

It is not possible to use this format if the field defines a subfile (i.e., the second piece of the zero node of

the field definition contains a subfile number). To use the reader for a field in a subfile, do the following:

Figure 72: ^DIR API—DD Example: Input Format 2

S DIR(0)=“Subfile#,field#”

It is the developer’s responsibility to set any variables necessary for the INPUT transform to execute

correctly.

Always NEW or KILL DA before doing a DD-type DIR call, unless you wish to use the default feature.

The default feature allows you to retrieve default values from the database for DD reads by setting DA (or

the DA array for subfiles) equal to the record number containing the desired default value.

2.3.48 EN^DIS: Search File Entries

You can call the Search File Entries option [DISEARCH] of VA FileMan for a given file when you want

the user to be able to specify the search criteria. This is done by invoking EN^DIS. In addition to DT and

DUZ, the program needs the DIC input variable.

Input Variable

DIC: (Required) The global root of the file in the form ^GLOBAL(or ^GLOBAL(#, or

the number of the file.

If the search is allowed to run to completion, and if the search criteria have been stored in a template, then

a list of the record numbers that meet the search criteria is stored in that same template.

 NOTE: The same global array is used to store a list of record numbers saved in VA FileMan

Inquire mode.

Figure 73: EN^DIS API—Sort Template

^DIBT(SORT_TEMPLATE#,1,IEN)=““

The 1 node indicates that the IEN list was created one of two ways:

 User was in VA FileMan INQUIRE mode, selected a number of records, and saved the list in a

template.

 User ran the VA FileMan SEARCH, either through the interactive VA FileMan menu or through

the EN^DIS API. In this case, the IEN list is the group of record numbers that met the search

criteria.

IEN is the internal entry number of a record in the file indicated by the fourth piece of the zero node of

the template, ^DIBT(SORT_TEMPLATE#,0).

The list of record numbers stored in the template can be used as input to the print routine, EN1^DIP, to

create further reports.

VA FileMan 22.2

Developer’s Guide 100 January 2017

2.3.49 EN^DIU2: Data Dictionary Deletion

Occasionally, you can delete a file’s data dictionary and its entry in ^DIC in order to properly update a

running system. Use this entry point to do it.

You usually have the option of deleting the data when you delete the data dictionary (see the DIU(0)

variable below). However, data is always be deleted if your file is in ^DIC(File#,.

 CAUTION: Be careful using this utility when your data is in the ^DIC global.:

In all cases, both DIU and DIU(0) are returned from the call. You find that DIU is returned as the global

root regardless of whether it was defined as the file number or as the global root when making the call.

 NOTE: If the root of a file’s data is an unsubscripted global [e.g., DIU=“^MYDATA(“], you

must make sure that the systems on which you want to perform the deletion do not restrict the

KILLing of the affected unsubscripted globals.

 CAUTION: It is your responsibility to clean up (KILL) DIU, the input variable, after any
call to this routine!

Input Variables

DIU: (Required) The file number or global root (e.g., ^DIZ(16000.1,)]. This must be a

subfile number when deleting a subfile’s data dictionary.

DIU(0): Input parameter string that can contain the following:

 D—Delete the data as well as the data dictionary.

 E—Echo back information during deletion.

 S—Subfile data dictionary is to be deleted.

 T—Templates are to be deleted.

2.3.49.1 Example

Figure 74: EN^DIU2 API—Example: Input

S DIU=“^DIZ(16000.1,”,DIU(0)=““ D EN^DIU2

Only the data dictionary is deleted. The data and templates remain. By including either the D or T, you

can also delete the data or the templates. If the E is included, then the user is asked whether or not the

global should be deleted.

2.3.49.1.1 Subfile Deletion

If you want to delete the dictionary for a subfile, you must include the S in DIU(0). The variable, DIU, in

this case must be a subfile data dictionary number. It cannot be a global root. When deleting a subfile’s

dictionary, all dictionaries subordinate to that dictionary are also deleted. Data can also be deleted when

deleting a subfile; this process could take some time depending on the number of entries in the whole file.

VA FileMan 22.2

Developer’s Guide 101 January 2017

2.3.49.1.2 Example

Figure 75: EN^DIU2 API—Example: Input for Subfile Deletion

S DIU=16000.01,DIU(0)=“S” D EN^DIU2

2.3.50 EN^DIWE: Text Editing

This routine is used to edit word-processing text using VA FileMan’s editors. If the user has established a

Preferred Editor through Kernel, that editor is presented for use. VA FileMan’s editors expect the text to

contain only printable ASCII characters.

Input Variables

DDWAUTO: (Optional) This variable can be set to an interval in minutes that the Screen

Editor should automatically save the text for the user. It can be an integer

between 1 and 120. If set to 0, no autosave occurs. The setting takes effect for

only the current invocation of the Screen Editor and can be changed by the user

via the <PF1><PF1>S key sequence. The default value of DDWAUTO is 0.

This variable is KILLed by VA FileMan.

DDWTAB: (Optional) This variable indicates to the Screen Editor the initial tab stop

positions. The setting takes effect for only the current invocation of the Screen

Editor and can subsequently be changed by the user via the <PF1><PF1><Tab>

key sequence.

To set individual tab stops, set DDWTAB to a series of numbers separated by

commas. For example:

DDWTAB = “4,7,15,20”

Sets tab stops at columns 4, 7, 15, and 20. To set tab stops at repeated intervals

after the last stop, or after column 1, type the interval as +n. For example:

DDWTAB = “10,20,+5”

Sets tab stops at columns 10, 20, 25, 30, 35, etc.

If not passed, the Screen Editor assumes DDWTAB = “+8” (i.e., it initially sets

tab stops at columns 1, 9, 17, 25, etc.). This variable is KILLed by VA FileMan.

DIC: The global root of where the text is located.

 NOTE: VA FileMan uses ^UTILITY($J,”W”) when EN^DIWE is

called. Thus, DIC should not be set equal to that global location.

DWLW: (Optional) This variable indicates the maximum number of characters that are

stored on a word-processing global node. When the user enters text, the input line

is not broken to DWLW-characters until after the Enter key is pressed. Thus, if

DWLW=40 and the user types 90 characters before pressing the Enter key, the

text would be stored in three lines in the global. If this variable is not set, the

default value is 245. This variable is always KILLed by VA FileMan.

DWPK: (Optional) This variable determines how lines that are shorter than the maximum

line length (set by DWLW) are treated by VA FileMan. It can be set to 1 or 2.

This variable is always KILLed by VA FileMan.

VA FileMan 22.2

Developer’s Guide 102 January 2017

DWPK=1: If the user enters lines shorter than the maximum line length in variable DWLW,

the lines are stored as is; they are not joined. If lines longer than DWLW are

entered, the lines are broken at word boundaries.

DWPK=2: If the user types lines shorter than the maximum line length in variable DWLW,

the lines are joined until they get to the maximum length; the lines are “filled” to

DWLW in length. If the lines are longer than DWLW, they are broken at word

boundaries. This is the default used if DWPK is not set prior to the EN^DIWE

call.

 NOTE: DWLW and DWPK only have an effect if text is entered using

the Line Editor. They do not affect how text is stored if the Screen Editor

or some other Alternate Editor is used.

DWDISABL: (Optional) This variable can be used to disable specific Line Editor commands.

For example, if DWDISABL contains “P”, then the Print command in the Line

Editor is disabled. This variable is KILLed by VA FileMan.

DIWEPSE: (Optional) If this variable is defined before entering the Preferred Editor (if the

Preferred Editor is not the Line Editor), the user receives the following prompt:

Press RETURN to continue or ‘^’ to exit:

Set this variable if you want to allow the user to read information on the screen

before the display is cleared by a screen-oriented editor. This variable is always

KILLed by VA FileMan.

DIWESUB: (Optional) The first 30 characters of this variable are displayed within angle

brackets (< and >) on the top border of the Screen Editor screen. This variable is

KILLed by VA FileMan.

DIWETXT: (Optional) The first IOM characters of this variable are displayed in high

intensity on the first line of the Screen Editor screen. This variable is KILLed by

VA FileMan.

DDWLMAR: (Optional) This variable indicates the initial column position of the left margin

when the Screen Editor is invoked. The user can subsequently change the

location of the left margin. This variable is KILLed by VA FileMan.

DDWRMAR: (Optional) This variable indicates the initial column position of the right margin

when the Screen Editor is invoked. The user can subsequently change the

location of the right margin. This variable is KILLed by VA FileMan.

DDWRW: (Optional) This variable indicates to the Screen Editor the line in the document

on which the cursor should initially rest. This variable has effect only if the

user’s preferred editor is the Screen Editor and applies only when the Screen

Editor is first invoked. If the user switches from the Screen Editor to another

editor and then back to the Screen Editor, the cursor always rests initially on line

1.

If this variable is set to “B”, the cursor initially rests at the bottom of the

document and the value of DDWC described immediately below is ignored. The

default value of DDWRW is 1. This variable is KILLed by VA FileMan.

VA FileMan 22.2

Developer’s Guide 103 January 2017

DDWC: (Optional) This variable indicates to the Screen Editor the initial column position

of the cursor. The same restrictions described above for DDWRW apply to

DDWC.

If this variable is set to “E”, the cursor initially rests at the end of the line defined

by DDWRW. The default value of DDWC is 1. This variable is KILLed by VA

FileMan.

DDWFLAGS: Flags to control the behavior of the Screen Editor. The possible values are:

 M—Indicates that the Screen Editor should initially be in NO WRAP

Mode when invoked.

 Q—Indicates that if the user attempts to Quit the editor with <PF1>Q,

the confirmation message “Do you want to save changes?” is not asked.

 R—Indicates that the Screen Editor should initially be in REPLACE

mode when invoked.

This variable is KILLed by VA FileMan. (Optional)

2.3.51 ^DIWF: Form Document Print

2.3.51.1 Form Document Print Introduction (^DIWF)

The entry points in ^DIWF are designed to use the contents of a word-processing field as a target

document into which data can be inserted at print time. The data can come from another VA FileMan file

or be provided by the user interactively at the time the document is printed. A file containing a word-

processing type field is first selected and then an entry from that file. The word-processing text in that

entry is then used as a form with which to print output from any other file.

The word-processing text used typically includes windows into which data from the target file

automatically gets inserted by DIWF. The window delimiter is the vertical bar (|). Thus, if a word-

processing document contains |NAME| somewhere within it, DIWF tries to pick the NAME field (if there

is one) out of the file being printed. Any non-Multiple field label or computed expression can be used

within a |-window, if both of the following are true:

 An expression within the |-window cannot be evaluated.

 The output of DIWF is being sent to a different terminal than the one used to call up the output.

Then, the user is asked to type in a value for the window, for each data entry printed. Thus, the word-

processing text used as a target document might include the window |SALUTATION|, where

SALUTATION is not a valid field name in the source file. When DIWF encounters this window, and

failing to find a SALUTATION field in the source file, it asks the user to enter SALUTATION text that

then immediately gets incorporated into the output in place of that window. Notice that you are referring

to two files:

 Document file, which contains the word-processing text.

 Print from file, which DIWF uses to try to fill-in data for the windows.

 NOTE: If there is a possibility that the output is to be queued, you must ensure that all windows

can be evaluated, since in a queued or tasked job, there can be no user interaction.

Invoking DIWF at the top (i.e., D ^DIWF) results in an interactive dialogue with the user.

VA FileMan 22.2

Developer’s Guide 104 January 2017

2.3.51.1.1 Example

Suppose you had a file called FORM LETTER (File #16001) and data is stored in ^DIZ(16001,. This

(fictitious) file has a word-processing type field where the text of a form letter is stored. In this file, as

shown below, there are several form letter entries one of which is (fictitious) APPOINTMENT

REMINDER:

Figure 76: ^DIWF API—Example: Word-processing type field

Select Document File: FORM LETTER

Select DOCUMENT: APPOINTMENT REMINDER

Print from what FILE: EMPLOYEE

WANT EACH ENTRY ON A SEPARATE PAGE? YES// <Enter>

SORT BY: NAME// FOLLOWUP DATE=MAY 1, 1999

DEVICE:

In this example, the word-processing text found in the (fictitious) APPOINTMENT REMINDER entry of

the (fictitious) FORM LETTER file is used to print a sheet of output for each (fictitious) EMPLOYEE file

entry where the (fictitious) FOLLOWUP DATE equals May 1,1999.

If the document file contains a pointer field pointing to File #1, and if the document entry selected has a

value for that pointer, then the file pointed to is automatically used to print from and the user is not asked

“Print from what FILE:”.

 NOTE: The Read access is checked by DIWF for both files selected.

 NOTE: If there is a possibility that the output is to be queued, you must ensure that all windows

can be evaluated, since in a queued or tasked job, there can be no user interaction.

2.3.52 EN1^DIWF: Form Document Print

2.3.52.1 Form Document Print Introduction (^DIWF)

 REF: For a complete description, see the “Form Document Print Introduction (^DIWF)” section.

This entry point is used when the calling program knows which file (document file) contains the desired

word-processing text to be used as a target document.

Input Variable

DIC: A file number or a global root. The file identified must contain a word-processing

field.

Output Variable

Y: This is -1 only if the file sent to DIWF in the variable DIC does not contain a

word-processing field.

2.3.52.1.1 Example

Figure 77: EN1^DIWF API—Example: Input

>S DIC=16001 D EN1^DIWF

The user is then branched to the “Select DOCUMENT:” prompt in the dialogue described above to select

a particular entry in the (fictitious) FORM LETTER file.

VA FileMan 22.2

Developer’s Guide 105 January 2017

2.3.53 EN2^DIWF: Form Document Print

2.3.53.1 Form Document Print Introduction (^DIWF)

 REF: For a complete description, see the “Form Document Print Introduction (^DIWF)” section.

This entry point is used when the calling program knows both the document file and the entry within that

file, which contains the desired word-processing text to be used as a target document.

Input Variables

DIWF: The global root at which the desired text is stored. Thus, in the example, if

(fictitious) APPOINTMENT REMINDER is the third document in the (fictitious)

FORM LETTER file (stored in ^DIZ(16001,) and the word-processing field is

stored in subscript 1, you can:

>S DIWF=“^DIZ(16001,3,1,”

DIWF then automatically uses this entry and the user is not asked to select the

document file and which document in that file.

DIWF(1): If the calling program wants to specify which file should be used as a source for

generating output, the number of that file should appear in the variable DIWF(1).

Otherwise, the user is asked the “Print from what FILE:” question.

After this point, EN1^DIP is invoked. You can have the calling program set the usual BY, FR, and TO

variables if you want to control the SORT sequence of the data file.

Output Variable

Y: Y is -1 if:

 There is no data beneath the root passed in DIWF.

 The file passed in DIWF(1) could not be found.

2.3.54 ^DIWP: Formatter/Word-processing Print

Call ^DIWP to format and (optionally) output any group of text lines.

Before calling ^DIWP, KILL the ^UTILITY($J,”W”) global.

^DIWP works in two modes (based on whether the DIWF input parameter contains “W” or not):

 Accumulate Mode—In ^DIWP’s “accumulate” mode, repeated calls to ^DIWP accumulate and

format text in ^UTILITY($J,”W”). After you have finished accumulating text, if you want to

write the text to the current device, call the ^DIWW: WP Print API to write the accumulated text

to the current device with the margins specified in the calls to ^DIWP, and then, it removes the

text from ^UTILITY.

 Write Mode—In ^DIWP’s “write” mode, if the text added to ^UTILITY($J,”W”) by ^DIWP

causes one or more (i.e., n) line breaks, n lines are written to the current device (and the

remaining partial line is stored in ^UTILITY. This leaves one line of text in ^UTILITY once all

calls to ^DIWP are completed. To write the remaining line of text to the current device and

remove it from ^UTILITY, call the ^DIWW: WP Print API.

VA FileMan 22.2

Developer’s Guide 106 January 2017

Input Variables

X: The string of text to be added as input to the formatter.

The X input string can contain |-windows, as described in the “Formatting Text

with Word-processing Windows” section in the “Advanced Edit Techniques”

section in the VA FileMan Advanced User Manual (e.g., |SETTAB(9,23,44)|).

The expressions within the windows are processed as long as they are not

context-dependent (i.e., as long as they do not refer symbolically to database

field names). Thus, |TODAY| causes today’s date to be inserted into the

formatted text, but |SSN| is printed out as it stands, because it cannot be

interpreted in context.

DIWL: The (integer-valued) left margin for the text. Set this to a positive number, 1 or

greater. Do not change the value of DIWL if you are making repeated calls to

^DIWP to format text.

DIWR: The (integer-valued) right margin for the text.

DIWF: A string of format control parameters. If contained in DIWF, the parameters have

the following effects:

 W—If the DIWF parameter contains “W”, ^DIWP operates in “write”

mode. If the DIWF parameter does not contain “W”, ^DIWP operates in

“accumulate” mode. See above for the discussion of these two modes.

When making repeated calls to ^DIWP, do not mix modes. Use “write”

or “accumulate” mode, but do not switch between them.

 Cn—The text is formatted in a Column width of n, thus overriding the

value of DIWR.

 D—The text is in Double-spaced format.

 In—The text is Indented n columns in from the left margin (DIWL).

 N—Each line is printed as it appears in the text (No-wrap). If DIWF

contains N, the value of DIWR is ignored.

 REF: For details about word wrapping, see the “Advanced Edit

Techniques” section in the VA FileMan Advanced User Manual.

 R—The text is in Right-justified format.

 X—Word-processing text that contains the vertical bar “|” character is

displayed exactly as they are stored, (i.e., no window processing takes

place).

Patch DI*22*152 added the “|” character to the list of optional characters

to use in the DIWF input variable. The “|” character means that any “|” in

the text should be printed as-is, but word-wrap should still function, and

margins respected.

Output

^UTILITY($J,”W”) Formatted output text.

VA FileMan 22.2

Developer’s Guide 107 January 2017

2.3.55 ^DIWW: WP Print

Use ^DIWW to output to the current device the remaining text left in ^UTILITY($J,”W”) by ^DIWP.

The ^DIWW entry point is designed to be used in conjunction with the ^DIWP entry point. Using

^DIWP, you can accumulate and format text in ^UTILITY($J,”W”), in one of two modes:

1. In ^DIWP’s “accumulate” mode, repeated calls to ^DIWP accumulate and format text in

^UTILITY($J,”W”). When you have finished accumulating text, you should call ^DIWW to

write the text to the current device. ^DIWW writes the accumulated text to the current device

with the margins you specified in your calls to ^DIWP and then removes the text from

^UTILITY.

2. In ^DIWP’s “write” mode, if the text added to ^UTILITY($J,”W”) by ^DIWP causes one or

more (i.e., n) line breaks, n lines are written to the current device (and the remaining partial line

is stored in ^UTILITY.) This leaves one line of text in ^UTILITY once all calls to ^DIWP are

completed. To write the remaining line of text to the current device and remove it from

^UTILITY, call ^DIWW.

2.3.56 ^%DT: Validates Date/Time Input and Converts to Internal
Format

 REF: For an introduction to Date/Time formats, see the “Introduction to Date/Time Formats:

%DT” section.

This routine accepts input and validates the input as being a correct date and time.

Input Variables

%DT: A string of alphabetic characters that alter how %DT responds. Briefly stated, the

acceptable characters are:

 A—Ask for date input.

 E—Echo the answer.

 F—Future dates are assumed.

 I—For Internationalization, assume day number precedes month number

in input.

 M—Only Month and year input is allowed.

 N—Pure Numeric input is not allowed.

 P—Past dates are assumed.

 R—Requires time input.

 S—Seconds should be returned.

 T—Time input is allowed but not required.

 X—EXact input is required.

 REF: For an explanation of each character, see the “%DT Input

Variables in Detail” section.

VA FileMan 22.2

Developer’s Guide 108 January 2017

X: If %DT does not contain an A, then the variable X must be defined as equal to

the value to be processed.

 REF: For acceptable values for X and for the interpretation of those

values, see Date Fields in the “Editing Specific Field Types” section in

the VA FileMan User Manual.

%DT(“A”): (Optional) A prompt that is displayed prior to the reading of the input. Without

this variable, the prompt “DATE:” is issued.

%DT(“B”): The default answer to the “DATE:” prompt. It is your responsibility to ensure

that %DT(“B”) contains a valid date/time.

 REF: Allowable date input formats are explained in the “Editing

Specific Field Types” section in the VA FileMan User Manual.

%DT(0): (Optional) Prevents the input date value from being accepted if it is

chronologically before or after a particular date:

 Set %DT(0) equal to a VA FileMan-format date

(e.g., %DT(0)=2690720) to allow input only of dates greater than or

equal to that date.

 Set it negative (e.g., %DT(0)=-2831109.15) to allow only dates less than

or equal to that date/time.

 Set it to NOW to allow dates from the current (input) time forward.

 Set it to -NOW to allow dates up to the current time.

 NOTE: Be sure to KILL this variable after returning from %DT.

Output Variables

Y: %DT always returns the variable Y, which can be one of two values:

 Y=-1—The date/time was invalid.

 Y=YYYMMDD.HHMMSS—The value determined by %DT.

X: X is always returned. It contains either what was passed to %DT (in the case

where %DT did not contain an A) or what the user entered.

DTOUT: This is only defined if %DT has timed-out waiting for input from the user.

2.3.56.1 %DT Input Variables in Detail

A: %DT Asks for input from the terminal. It continues to ask until it receives correct

input, a null, or a caret (“^”). If %DT does not contain the character A, the input

to %DT is assumed to be in the variable X.

E: The External format of the input is echoed back to the user after it has been

entered. If the input was erroneous, two question marks and a an audible sound

(“beep”) are issued.

VA FileMan 22.2

Developer’s Guide 109 January 2017

F: If a year is not entered (Example 1), or if a two-digit year is entered (Example 2),

a date in the Future is assumed.

EXCEPTION: If a two-digit year is entered and those two digits equal the

current year, the current year is assumed even if the date is in the past (Example

3).

Example Current Date User Input Date Returned Returned Without F

1 July 1, 2000 5/1 May 1, 2001 May 1, 2000

2 July 1, 2000 5/1/90 May 1, 2090 May 1, 1990

3 July 1, 2000 5/1/00 May 1, 2000 May 1, 2000

 REF: For the behavior of %DT when neither the F nor P flag is used,

see “Y2K Changes.”

I: For Internalization, this flag makes %DT assume that in the input, the day

number precedes the month number. For example, input of 05/11/2000 is

assumed to be November 5, 2000 (instead of May 11, 2000). Also, with this flag,

the month must be input as a number. For example, November must be input as

11, not NOV. The output provides DD MON YYYY example:

FM222>S %DT="AEIX" D ^%DT W Y

DATE: 10052015<Enter> (10 MAY 2015)3150510

M: Only Month and year input is allowed. Input with a specific day or time is

rejected (Example 1). If only a month and two digits are entered, the two digits

are interpreted as a year instead of a day (Example 2).

If the M flag is used with the X flag, a month must be specified; otherwise, the

input can be just a year (Example 3).

M Flag:

Example Date Input Date Returned Returned Without M

1 7-05-2005 invalid July 5, 2005

2 7-05 July 2005 July 5, 2000*

*Assuming the current year is 2000 and the F and P flags are not used.

M Flag (with X Flag):

Example Date Input Date Returned Returned Without X

3 05 or 2005 invalid 2005

N: Ordinarily, a user can enter a date in a purely Numeric form (i.e., MMDDYY).

However, if %DT contains an N, then this type of input is not allowed.

VA FileMan 22.2

Developer’s Guide 110 January 2017

P: If a year is not entered (Example 1), or if a two-digit year is entered (Example 2),

a date in the Past is assumed.

EXCEPTION: If a two-digit year is entered and those two digits equal the

current year, the current year is assumed even if the date is in the future

(Example 3).

Example Current Date User Input Date Returned Returned Without P

1 March 1, 1995 6/1 June 1, 1994 June 1, 1995

2 March 1, 1995 6/1/98 June 1, 1898 June 1, 1998

3 March 1, 1995 6/1/95 June 1, 1995 June 1, 1995

 REF: For the behavior of %DT when neither the F nor P flag is used,

see “Y2K Changes.”

R: Time is Required. It must be input.

S: Seconds are to be returned.

T: Time is allowed in the input, but it is not necessary.

 REF: For details of how user-input times are interpreted, see the “Date

Fields in the Editing Specific Field Types” section in the VA FileMan

User Manual.

X: EXact input is required. If X is used without M, date input must include a day

and month. Without X, the input can be just month-year or only a year.

If X is used with M, date input must include a month. If M is used without X,

then the input can be just a year.

VA FileMan 22.2

Developer’s Guide 111 January 2017

2.3.56.2 Y2K Changes

If no year is entered, the current year is assumed (Example 1).

If a two-digit year is entered, a year less than 20 years in the future and no more than 80 years in the past

is assumed. For example, in the year 2000, two-digit years are assumed to be between 1920 through 2019.

 NOTE: Only the year, not the current month and day, is taken into account in this calculation

(Examples 2 through 5).

Table 33: ^%DT: Internal to External Date—Y2K Changes

Example Current Date User Input Date Returned

1 Sep 15, 2000 3/15 Mar 15, 2000

2 Sep 15, 2000 1/1/20 Jan 01, 1920

3 Sep 15, 2000 12/31/20 Dec 31, 1920

4 Sep 15, 2000 1/1/19 Jan 01, 2019

5 Sep 15, 2000 12/31/19 Dec 31, 2019

2.3.57 DD^%DT: Converts Internal to External Date Format

 REF: For an introduction to Date/Time formats, see the “Introduction to Date/Time Formats:

%DT” section.

2.3.57.1 DD^%DT API

There are two ways to convert a date from internal to external format:

 DD^%DT (this call)

 X ^DD(“DD”)

This is the reverse of what %DT does. This entry point takes an internal date in the variable Y and

converts it to its external representation.

2.3.57.1.1 Example

Figure 78: DD^%DT API—Example: Input and Output

>S Y=2690720.163 D DD^%DT W Y

JUL 20, 1969@1630

This results in Y being equal to JUL 20, 1969@16:30. (Single space before the 4-digit year.)

VA FileMan 22.2

Developer’s Guide 112 January 2017

Input Variables

Y: (Required) This contains the internal date to be converted. If this has five or six

decimal places, seconds are automatically returned.

%DT: (Optional) This forces seconds to be returned even if Y does not have that

resolution. %DT must contain S for this to happen.

Output Variable

Y: Y is returned as the external form of the date.

 REF: See also the DT^DIO2: Writes External Date from Internal API, which takes an internal

date in the variable Y and writes out its external form.

2.3.58 ^%DTC: Returns Number of Days between Two Dates

^%DTC returns the number of days between two dates.

Input Variables

X1: (Required) One date in VA FileMan format. This is not returned.

X2: (Required) The other date in VA FileMan format. This is not returned.

Output Variables

X: The number of days between the two dates. X2 is subtracted from X1.

%Y: Returns:

 If %Y is equal to 1, the dates have both month and day values.

 If %Y is equal to 0, the dates were imprecise and therefore not workable.

2.3.59 C^%DTC: Adds/Subtracts Number of Days and Return VA
FileMan and $H Formats

C^%DTC takes a date and adds or subtracts a number of days, returning a VA FileMan date and a $H

format date. If time is included with the input, it is also included with the output.

Input Variables

X1: (Required) The date in VA FileMan format to which days are going to be added

or from which days are going to be subtracted. This is not returned.

X2: (Required) If positive, the number of days to add. If negative, the number of days

to subtract. This is not returned.

Output Variables

X: The resulting date, in VA FileMan format, after the operation has been

performed.

%H: The $H form of the date.

VA FileMan 22.2

Developer’s Guide 113 January 2017

2.3.60 COMMA^%DTC: Formats Number to String with Commas

Formats a number to a string that separates billions, millions, and thousands with commas.

Input Variables

X: (Required) The number you want to format. X can be positive or negative.

X2: (Optional) The number of decimal digits you want the output to have. If X2 is not

defined, two decimal digits are returned. If X2 is a number followed by the dollar

sign (e.g., 3$) then a dollar sign is prefixed to X before it is output.

X3: (Optional) The length of the desired output. If X3 is less than the formatted X,

X3 is ignored. If X3 is not defined, then a length of twelve is used.

Output Variable

X: The initial value of X, formatted with commas, rounded to the number of decimal

digits specified in X2.

 If X2 contained a dollar sign, then the dollar sign is next to the leftmost

digit.

 If X was negative, then the returned value of X is in parentheses.

 If X was positive, a trailing space is appended.

 If necessary, X is padded with leading spaces so that the length of X

equals the value of the X3 input variable.

2.3.60.1 Examples

2.3.60.1.1 Example 1

Figure 79: COMMA^%DTC API—Example 1: Input

>S X=12345.678 D COMMA^%DTC

The result is:

Figure 80: COMMA^%DTC API—Example 1: Output

X=“ 12,345.68 “

2.3.60.1.2 Example 2

Figure 81: COMMA^%DTC API—Example 2: Input

>S X=9876.54,X2=“0$” D COMMA^%DTC

The result is:

Figure 82: COMMA^%DTC API—Example 2: Output

X=“ $9,877 “

VA FileMan 22.2

Developer’s Guide 114 January 2017

2.3.60.1.3 Example 3

Figure 83: COMMA^%DTC API—Example 3: Input

>S X=-3,X2=“2$” D COMMA^%DTC

The result is:

Figure 84: COMMA^%DTC API—Example 3: Output

X=“ ($3.00)”

2.3.60.1.4 Example 4

Figure 85: COMMA^%DTC API—Example 4: Input

>S X=12345.678,X3=10 D COMMA^%DTC

The result is:

Figure 86: COMMA^%DTC API—Example 4: Output

X=“12,345.68 “

2.3.61 DW^%DTC: Converts VA FileMan Date to $H Format and
Outputs Name of the Day

This entry point produces results similar to H^%DTC. The difference is that X is reset to the name of the

day of the week (i.e., Sunday, Monday, and so on). If the date is imprecise, then X is returned equal to

null.

2.3.62 H^%DTC: Converts VA FileMan Date to $H Format

H^%DTC converts a VA FileMan date/time to a $H format date/time.

Input Variable

X: (Required) The date/time in VA FileMan format. This is not returned.

Output Variables

%H: The same date in $H format. If the date is imprecise, then the first of the month

or year is returned.

%T: The time in $H format (i.e., the number of seconds since midnight). If there is no

time, then %T equals zero.

%Y: The day-of-week as a numeric from 0 to 6, where 0 is Sunday and 6 is Saturday.

If the date is imprecise, then %Y is equal to -1.

VA FileMan 22.2

Developer’s Guide 115 January 2017

2.3.63 HELP^%DTC: Display Help Prompt Based on %DT
and %DT(0)

This entry point displays a help prompt based on %DT and %DT(0).

Input Variables

%DT: The format of %DT is described in the %DT section. The help prompt displays

different messages depending on the parameters in the variable.

%DT(0): (Optional) The format of %DT(0) is described in the %DT section. This input

variable causes HELP to display the upper or lower bound that is acceptable for

this particular call.

2.3.64 NOW^%DTC: Returns Current Date/Time in VA FileMan and
$H Formats

NOW^%DTC returns the current date/time in VA FileMan and $H formats.

Output Variables

%: VA FileMan date/time down to the second.

%H: $H date/time.

%I(1): The numeric value of the month.

%I(2): The numeric value of the day.

%I(3): The numeric value of the year.

X: VA FileMan date only.

2.3.65 S^%DTC: Converts Seconds to Hours, Minutes, and Seconds
into Decimal Part of VA FileMan Date

This entry takes the number of seconds from midnight and turns it into hours, minutes, and seconds as a

decimal part of a VA FileMan date.

Input Variable

%: A number indicating the number of seconds from midnight [e.g., $P($H,”,”,2)].

Output Variable

%: The decimal part of a VA FileMan date.

2.3.65.1 Example

Figure 87: S^%DTC API—Example: Input and Output

>SET %=44504 D S^%DTC W %

.122144

VA FileMan 22.2

Developer’s Guide 116 January 2017

2.3.66 YMD^%DTC: Converts $H to VA FileMan Format

Converts a $H format date to a VA FileMan date.

Input Variable

%H: (Required) A $H format date/time. This is not returned.

Output Variables

%: Time down to the second in VA FileMan format (i.e., as a decimal). If %H does

not have time, then % equals zero.

X: The date in VA FileMan format.

2.3.67 YX^%DTC: Returns Printable and VA FileMan Formats from
$H

This entry point takes a $H date and returns a:

 Printable date and time

 VA FileMan form of the date and time

Input Variable

%H: (Required) This contains the date and time in $H format that is to be converted.

Time is optional. This is not returned.

Output Variables

Y: The date and time (if time has been sent) in external format. Seconds are

included if the input contained seconds.

X: The date in VA FileMan format.

%: The time as a decimal value in VA FileMan format. If time was not sent, then %

is returned as zero.

2.3.68 %XY^%RCR: Array Moving

This entry point can be used to move arrays from one location to another. The location can be local or

global.

After the call has completed, both arrays are defined. They are identically subscripted if the %Y array did

not previously exist. If the array identified in %Y had existing elements, those elements still exist after the

call to %XY^%RCR. However, their values may have to be examined because an identically subscripted

element in the %X array replaces the one in the %Y array, but an element that existed in the %Y array

(but not in the %X array) remains as it was.

Input Variables

%X: The global or array root of an existing array. The descendants of %X is moved.

%Y: The global or array root of the target array. It is best if this array does not exist

before the call.

VA FileMan 22.2

Developer’s Guide 117 January 2017

2.3.68.1 Example

To move the local array X(to ^TMP($J, you would write:

Figure 88: %XY^%RCR API—Example: Input

>S %X=“X(“ S %Y=“^TMP($J,” D %XY^%RCR

VA FileMan 22.2

Developer’s Guide 118 January 2017

3 Database Server (DBS) API

3.1 Introduction

The VA FileMan Database Server (DBS) is an Application Program Interface (API) for accessing data

attributes and data in VA FileMan files. The principal function of these APIs is to separate database

access from user presentation. In Classic VA FileMan’s roll and scroll mode, the interaction with the end

user was closely tied to the code that actually changed the database. Whenever VA FileMan needed

information from the user, a Read was done; whenever VA FileMan needed to present information to the

user, a WRITE was done.

However, with VA FileMan’s DBS calls, no WRITEs to the current device are done. Interaction with the

user is managed by the client application. Package developers can manage user interaction from within

their own code and can call VA FileMan whenever interaction with the database is needed. The DBS calls

are used to update the database in a non-interactive mode. Information needed by the VA FileMan

routines is passed through parameters rather than through interactive dialogue with the user. Any

information that needs to be displayed to the end user is passed by VA FileMan back to the calling routine

in arrays.

This separation of data access from user I/O makes possible the construction of alternative front-ends to

the VA FileMan database (e.g., a windowed Graphical User Interface [GUI]). In addition, this API can be

the basis for data access by applications running outside M.

This section is structured as follows:

 How to Use DBS Calls—Describes the conventions used in the DBS API.

 How the Database Server (DBS) Communicates—Offers a detailed description of the way DBS

calls return information to the client application in arrays.

 Individual calls are described, including input parameters, output, and examples of their use.

3.2 How to Use DBS Calls

3.2.1 Format and Conventions of the Calls

All of the DBS calls use parameter passing instead of relying on variables set prior to the call that are

passed through the symbol table. However, VA FileMan’s key variables (e.g., DUZ and DT) are not

passed in the parameter list. When needed, VA FileMan continues to expect them to be defined in the

local symbol table.

Except where noted, the order of the parameters in the argument list follows a consistent pattern as

follows:

Figure 89: Database Server (DBS) API—Format and Conventions of the Calls: Order of the
Parameters in the Argument List

TAG^ROUTINE(FILE,IENS,FIELD,FLAGS,OTHER_REQUIRED_PARAMS,

 OTHER_OPTIONAL_PARAMS)

If a particular call does not use one or more of the first four parameters, that parameter is omitted from the

list of arguments. Generally, when a file is needed, the file number (not global root) must be passed. This

allows for consistency when referring either to a top-level file or to a subfile. Similarly, a field is

identified by its field number.

VA FileMan 22.2

Developer’s Guide 119 January 2017

When it is necessary to pass the root of a local or global array, the complete closed reference of the array

for use with subscript indirection is needed, not the traditional open VA FileMan root. Examples are

illustrated in Table 34:

Table 34: Database Server (DBS) API—Format and Conventions of the Calls—Acceptable vs.
Unacceptable Roots

Acceptable Roots Unacceptable Roots

^TMP(“NMSP”,$J) ^TMP(“NMSP”,$J,

LOCALVAR LOCALVAR(

Since the array identified by this root is accessed by indirection, the contents of the array may be changed

by the VA FileMan call. The description of the individual calls indicates whether you can rely on the

arrays not being changed. In addition, to assure that an input array is not inadvertently changed during the

DBS call, namespace the array.

3.2.2 IENS: Identify Entries and Subentries

The way to represent internal entry numbers for entries in the database is by a structure called an Internal

Entry Number String (IENS). It is VA FileMan’s way of representing the internal entry numbers for an

entry in all of the DBS calls.

An IENS is a comma-delimited list of internal entry numbers beginning with the lowest level subentry

and ending with the top-level entry number. Regardless of how many levels exist, a “,” is appended to the

end. For example, to specify subentry 2 in a multiple for entry 250, IENS would equal “2,250,”. The

corresponding values for the DA() array would be DA=2 and DA(1)=250 (or D0=250 and D1=2). If you

were referencing the top-level of the file, the IENS would be “250,”; DA=250 or D0=250. There are calls

that can be used to construct an IENS from a DA() array and a DA() array from an IENS-see descriptions

of DA^DILF and $$IENS^DILF.

In the simplest case, each comma-piece of the IENS is a number that directly and uniquely identifies an

entry in a file or subfile. However, sometimes the client application does not know the entry number. For

example, often the entry number is unknown when a call to the Updater is being made. In other situations,

the client application wants the DBS to find a record and then file data in it; the entry number is

unimportant to the client. In order to accommodate these circumstances, certain placeholders can be used

in the IENS if the particular DBS call supports their use. The extended IENSs (those including a

placeholder) are not accepted for all DBS calls. The calls that accept the extended IENSs are identified in

the call’s documentation.

The placeholder consists of a one- or two-character code identifying how you want the entry number

derived, followed by a positive integer. The integer uniquely identifies the record involved in different

nodes of the VA FileMan Data Array (FDA), as described below. The codes are lisated in Table 35.

Table 35: IENS: Identify Entries and Subentries—Placeholder Codes

Placeholder Code Description

+ Add a new entry or subentry.

? Find an entry or subentry and use it for filing.

?+ Find an entry or subentry; if one does not exist, add it (LAYGO).

VA FileMan 22.2

Developer’s Guide 120 January 2017

Thus, if you wanted to find an entry and then to add a new subentry into that entry, your IENS might look

like: “+2,?1,”. Every time you referenced that top-level entry in your FDA, you would use “?1”; every

time you referenced that particular subentry, you would use “+2”. A second new subentry might be “+3”,

and so on. See the descriptions of the Updater and Finder calls for more information about using the entry

number placeholders.

3.2.3 FDA: Format of Data Passed to and from VA FileMan

Data is passed to and from the DBS as values in the VA FileMan Data Array (FDA). The FDA contains

the file, internal entry numbers, and field information in its subscripting scheme.

Format

FDA_ROOT(file#,”iens”,field#)=“VALUE”

Input Parameters

file#: The number of the file or subfile to which the data belongs.

iens: As explained above, a comma-delimited string of entry and subentry numbers.

The IENS always ends with a comma.

field#: The number of the field being accessed.

value: The internal (and verified) or external (and unverified) value of the field. The

specific call that you are making along with the way certain flags are set

determines if the internal or external value is appropriate.

The values for word-processing fields are stored in the FDA differently. Instead

of setting the node equal to the actual value, set it equal to the root of an array

(local or global) that holds the data. The word-processing data must be stored at

nodes with positive numbers in the designated array or at the 0-node descendent

from those nodes. The subscripts need not be integers. For example, if the value

of an FDA node were “^TMP($J,”WP”)”, the location of the word-processing

data could be:

^TMP($J,”WP”,1,0)=Line 1

^TMP($J,”WP”,2,0)=Line 2

...etc.

Or:

^TMP($J,”WP”,1)=Line 1

^TMP($J,”WP”,2)=Line 2

...etc.

For word-processing data, the file and field numbers should reflect the file (or

subfile) and field of the word-processing field, not the subfile number of the

pseudo-Multiple where the word-processing data is actually stored.

Nodes in the FDA can be set in several ways. The Validator call (VAL^DIE) optionally creates nodes in

an FDA for valid user input. If the Validator is not being used, developers can use a call (FDA^DILF) that

creates an element in the FDA. Finally, the application developer can set the nodes manually in the client

application’s code.

VA FileMan 22.2

Developer’s Guide 121 January 2017

3.2.4 Documentation Conventions

If a parameter must be passed by reference, that parameter is preceded by a period (“.”) when the format

for the call is shown. In the example below, the ARGUMENT array must be passed by reference:

Figure 90: Database Server (DBS) API—Documentation Conventions: Passing by Reference Only

CALL^DIFM(.ARGUMENT)

If a parameter can be passed either by reference or by value, it is preceded by a period enclosed in

brackets (“[.]”). In the example below, the ARGUMENT parameter can be passed either by reference or

by value.

Figure 91: Database Server (DBS) API—Documentation Conventions: Passing by Reference or by
Value

CALL^DIFM([.]ARGUMENT)

 CAUTION: It is very important that arrays be passed as specified in the descriptions of
the calls (i.e., by value or reference as indicated).

3.3 How the Database Server (DBS) Communicates

3.3.1 Overview

A distinguishing feature of the Database Server (DBS) calls is that they do not “talk,” nothing is written

to a device. The DBS communicates with the client application by passing data in arrays instead of

communicating directly with the user by Writing to the screen. It is the client application’s responsibility

to determine if, when, and how to inform the user of the information originating from the DBS.

The way that the DBS passes primary information, like the value of a field when doing a Data Retriever

call or a record’s internal entry number when doing a Finder call, is documented for each call. Secondary

information consists of error messages, help text, and information currently written from nodes in the

Data Dictionary by Classic VA FileMan calls. The way secondary information is passed to the client

application is described in this section.

3.3.2 How Information Is Returned

Information is passed back to the client application in arrays. By default the arrays are:

Figure 92: Database Server (DBS) API—How Information Is Returned: Arrays

^TMP(“DIHELP”,$J) for help

^TMP(“DIMSG”,$J) for other user messages

^TMP(“DIERR”,$J) for error messages

 NOTE: In traditional VA FileMan Classic calls, the first two of these types of messages are

written directly to the screen; the last one did not exist or consisted solely of “<BEEP>??”.

VA FileMan 22.2

Developer’s Guide 122 January 2017

In addition, there is an output variable associated with each of these arrays. DIHELP and DIMSG equal

the number of nodes of text associated with their respective arrays. DIERR has the following two pieces:

number_of_errors^number_of_nodes_of_text

If the client application wants the data returned in another array (local or global), the array’s closed root

should be passed as a parameter in the DBS call. The major DBS calls have a parameter to accept this

root as the last parameter. Thus, if the call looks like:

Figure 93: Database Server (DBS) API—How Information Is Returned: Passing Parameters: Input

>D CALL^FM(“OTHER_PARAMETERS”,”MYMSGS”)

Information is returned in:

Figure 94: Database Server (DBS) API—How Information Is Returned: Passing Parameters: Output

MYMSGS(“DIHELP”)

MYMSGS(“DIMSG”)

MYMSGS(“DIERR”)

Also, the values stored in the corresponding local variables are put into the top-level nodes of these

arrays. When the application specifies an array for output, nothing is returned in the ^TMP arrays.

3.3.3 Contents of Arrays

3.3.3.1 DIHELP Array

Text in the DIHELP array has several sources. Some help text is stored in the DIALOG file (#.84); an

example of this sort of help is the text returned by %DT when you enter a “?” at a prompt requiring a

date. Other help comes directly from text in the Data Dictionary. Executable Help relies on calls to the

Loader (see EN^DDIOL) embedded in the executable code. The Loader call takes the place of Writes.

 NOTE: In other contexts, the Loader puts text under the DIMSG subscript. However, when

executing Executable Help, the Loader puts the text under the DIHELP subscript instead.

The following DBS call returns help for a particular field:

Figure 95: Database Server (DBS) API—DIHELP Array: Input to Return Help for a Particular Field

>D HELP^DIE(FILE,IENS,FIELD,TYPE_OF_HELP,MSG_ROOT)

TYPE_OF_HELP is a set of flags that allows the client application to specify which help text (help

prompt, description, list of set of codes, executable help, etc.) to return. Alternatively, a single or double

question mark returns the same information that is currently returned in scrolling mode.

 REF: For details, see the documentation for the Helper call.

If MSG_ROOT is not specified as a target, the help is returned in ^TMP(“DIHELP”, $J) as described

above. The local variable DIHELP equals the total number of nodes returned.

Text in the array that contains help is subscripted with integers. If more than one kind of help is being

returned, a null node is put between them.

If a flag is set by the client application when the CHK^DIE or VAL^DIE calls are made, help is returned

when a value is found to be invalid. The help is returned in the standard way described above.

VA FileMan 22.2

Developer’s Guide 123 January 2017

3.3.3.2 DIMSG Array

A main source of the DIMSG array is output from the Loader: EN^DDIOL. Writes that are currently

embedded in the database must be changed to calls to EN^DDIOL if the DBS is to be used. When running

applications in scrolling mode, the Loader simply WRITEs the text to the screen. However, if the node

containing the EN^DDIOL call is executed from within one of the DBS calls, the DBS returns text in an

array, usually subscripted by DIMSG.

 REF: For more detailed information about EN^DDIOL: Message Loader, see its description in

the “Classic VA FileMan API” section.

When the user is not in scrolling mode, the Loader most frequently places the text into the DIMSG array

with the local variable DIMSG set equal to the total number of lines in the array. There are certain

situations, however, where the output is put into another array. As mentioned above, when the DBS

HELP^DIE call is used to get help, the output of an EN^DDIOL call embedded in Executable Help is

placed into the DIHELP array.

Like DIHELP, the DIMSG array is simply a list of lines of text.

Suppose an INPUT transform currently contains:

Figure 96: Database Server (DBS) API—DIMSG Array: Sample Input Transform

N Y S Y=$L(X) K:Y>30!(Y<3) X I ‘$D(X) W !,”Your input was “_Y_

“ characters long.”,!,”This is the wrong length.”

It can be changed to:

Figure 97: Database Server (DBS) API—DIMSG Array: Changing Input Transform: Executed in
Scrolling Mode

N Y S Y=$L(X) K:Y>30!(Y<3) X I ‘$D(X) S Y(1)=“Your input was “_Y_

“ characters long.”,Y(2)=“This is the wrong length.” D EN^DDIOL(.Y)

This change would have no effect if the user were in scrolling mode; the same message is written to the

screen. However, if the second INPUT transform were executed from a silent call, nothing is written and

the “DIMSG” array returned to the client application might look like this:

Figure 98: Database Server (DBS) API—DIMSG Array: Changing Input Transform: Executed from a
Silent Call

^TMP(“DIMSG”,$J,1)=“Your input was 2 characters long.”

^TMP(“DIMSG”,$J,2)=“This is the wrong length.”

VA FileMan 22.2

Developer’s Guide 124 January 2017

3.3.3.3 DIERR Array

When an error condition is encountered during a DBS call, an error message and other information is

placed in the DIERR array. In addition, the DIERR variable is returned with the following two pieces of

information:

 Number of errors generated during the call in the first piece.

 Total number of lines of the error messages in the second.

Thus, a $D check on the variable DIERR after the completion of the call allows the client application to

determine if an error occurred. Both syntactical (e.g., the root of an array is not in the proper format for

subscript indirection) and substantive (e.g., a specified field does not exist in the specified file) errors are

returned.

The information contained in the DIERR array is designed to give the client application specific

information about the kind of error that occurred to allow for intelligent error handling and to provide

readable error messages. Here is an example of error reporting following a Filer call:

Figure 99: Database Server (DBS) API—DIERR Array: Sample Input and Output

>W $G(DIERR)

2^2

>D ^%G

Global ^TMP(“DIERR”,$J

 TMP(“DIERR”,$J

^TMP(“DIERR”,731990208,1) = 305

^TMP(“DIERR”,731990208,1,”PARAM”,0) = 1

^TMP(“DIERR”,731990208,1,”PARAM”,1) = ^TMP(“MYWPDATA”,$J)

^TMP(“DIERR”,731990208,1,”TEXT”,1) = The array with a root of

‘^TMP(“MYWPDATA”,$J)’ has no data associated with it.

^TMP(“DIERR”,731990208,2) = 501

^TMP(“DIERR”,731990208,2,”PARAM”,0) = 3

^TMP(“DIERR”,731990208,2,”PARAM”,1) = 89

^TMP(“DIERR”,731990208,2,”PARAM”,”FIELD”) = 89

^TMP(“DIERR”,731990208,2,”PARAM”,”FILE”) = 16200

^TMP(“DIERR”,731990208,2,”TEXT”,1) = File #16200 does not contain a field 89.

^TMP(“DIERR”,731990208,”E”,305,1) =

^TMP(“DIERR”,731990208,”E”,501,2) =

The DIERR variable acts like a flag. In the example above, it reports that two errors occurred and that

they have a total of two lines of text.

The ^TMP(“DIERR”,$J) global contains information about the errors.

^TMP(“DIERR”,$J,sequence#) = error number

In this case, two errors were returned: errors #305 and #501. Each error number corresponds to an entry in

the DIALOG file (#.84). The actual text of each error is stored in nodes descendent from “TEXT”:

^TMP(“DIERR”,$J,sequence#,”TEXT”,line#) = line of text

The ^TMP(“DIERR”,$J,sequence#,”PARAM”) subtree contains specific parameters that can be returned

with each error:

^TMP(“DIERR”,$J,sequence#,”PARAM”,0) = number of parameters returned with the error

^TMP(“DIERR”,$J,sequence#,”PARAM”,”param_name”) = parameter value

The VA FileMan error messages and their associated parameters are documented in “Appendix A—VA

FileMan Error Codes.” For example, Appendix A indicates that three parameters are returned with error

VA FileMan 22.2

Developer’s Guide 125 January 2017

#501: “1”, the field name or number; “FILE”, the File number; and “FIELD”, the Field number. So, in the

example above, for error #501, the “PARAM” nodes indicate that the error corresponds to (fictitious) File

#16200, Field #89.

Finally, the “E” cross-reference in the ^TMP(“DIERR”,$J) global allows you to determine quickly

whether a particular error occurred. For example, if you wanted to do some special error processing if a

DBS call generated error #305, you could check $D(^TMP(“DIERR”,$J,”E”,305)).

The DIERR array is more complicated than the other arrays discussed, thereby making more information

available to the client application for error handling.

3.3.4 Obtaining Formatted Text from the Arrays

If you want the text from any of the three arrays, the following call extracts it from the structures

described above and either writes it to the screen or puts it into a local array for further use:

Figure 100: Database Server (DBS) API—Obtaining Formatted Text from the Arrays: Input

>D MSG^DIALOG(FLAGS,.OUTPUT_ARRAY,TEXT_WIDTH,LEFT_MARGIN,INPUT_ROOT)

The flags for this call control whether the text is written to the current device or moved into the

output_array specified in the second parameter. The flags also direct whether the source arrays are saved

or deleted and which kinds of dialogue (errors, help, or other messages) are processed. Some formatting

of text is also supported.

 REF: For details of its use, see the description of the MSG^DIALOG(): Output Generator in this

DBS section.

3.3.5 Cleaning Up the Output Arrays

When you make a DBS call and use the default arrays in the ^TMP global for output of help, user, and

error messages, the DBS call KILLs off these arrays and their related variables at the start of the call.

Therefore, you know that any data that exists after the call was generated by that call.

If you do not use the default arrays for output, however, and instead specify your own arrays for this

information to be returned in, your arrays are not automatically KILLed at the start of a DBS call. So, if

there is any chance that these arrays might already exist, you should KILL them yourself before making

the DBS call.

After making a DBS call, if you used the default arrays in ^TMP for output of help, user, and error

messages, you should delete these arrays before your application Quits. To do this, use the following call:

Figure 101: Database Server (DBS) API—Cleaning Up the Output Arrays: Input

>D CLEAN^DILF

 REF: For details of its use, see the description of “CLEAN^DILF: Array and Variable Clean-up”

section.

If you are using your own arrays for output, however, you need to clean up your arrays yourself. You

should still call CLEAN^DILF to KILL off the variables related to these arrays, however.

VA FileMan 22.2

Developer’s Guide 126 January 2017

3.3.6 Example of Call to VA FileMan DBS

One of the DBS calls validates data. If the data is valid, the internal representation of that data is returned.

If the data is invalid, a caret (“^”) is returned along with various messages, optionally including the

relevant help text. The validate call looks like this:

VAL^DIE(FILE,IENS,FIELD,FLAGS,VALUE,.RESULT,FDA_ROOT,MSG_ROOT)

 REF: For details, see the Validator documentation.

Your call might look like this:

Figure 102: Database Server (DBS) API—Example of Call to VA FileMan DBS: Input

>D VAL^DIE(999000,”223,”,4,”H”,”AB”,.MYANSWER,”“,”MYMSGS(““WIN3”“)”)

If MYANSWER equaled “^” after the call, your MYMSGS(“WIN3”) array might look like:

Figure 103: Database Server (DBS) API—Example of Call to VA FileMan DBS: Sample Array Output

MYMSGS(“WIN3”,”DIERR”)=1^1

MYMSGS(“WIN3”,”DIERR”,1)=701

MYMSGS(“WIN3”,”DIERR”,1,”PARAM”,0)=4

MYMSGS(“WIN3”,”DIERR”,1,”PARAM”,3)=“AB”

MYMSGS(“WIN3”,”DIERR”,1,”PARAM”,”FIELD”)=4

MYMSGS(“WIN3”,”DIERR”,1,”PARAM”,”FILE”)=999000

MYMSGS(“WIN3”,”DIERR”,1,”PARAM”,”IENS”)=“223”

MYMSGS(“WIN3”,”DIERR”,1,”TEXT”,1)=“The value ‘AB’ for field ALPHA

 DATA in file TEST1 is not valid.”

MYMSGS(“WIN3”,”DIERR”,”E”,701,1)=““

MYMSGS(“WIN3”,”DIHELP”)=1

MYMSGS(“WIN3”,”DIHELP,1)=“Answer must be 3-30 characters in length.”

MYMSGS(“WIN3”,”DIMSG”)=1

MYMSGS(“WIN3”,”DIMSG”,1)=“Your input was 2 characters long.”

MYMSGS(“WIN3”,”DIMSG”,2)=“This is the wrong length.”

The DIERR portion of this array indicates that error number 701 is being reported. Documentation makes

clear that this means that an input value was invalid. The PARAM nodes (also documented) give the

client application the relevant file#, field#, IENS, and value. This information might be used by the

application in its error handling. The TEXT node contains the error message; note that it is customized to

include specifics of the current error. The DIHELP node contains single-question-mark help for the field.

The DIMSG nodes contain a message generated by the INPUT transform via an EN^DDIOL call. (The

sample INPUT transform discussed in the DIMSG section above produced this message.)

Now, the client application decides what (if anything) to show the user. In a GUI environment, you might

decide to put the error message along with any text from the INPUT transform into a document gadget. A

HELP button that could be used by the user to display the help information might be added to the box.

VA FileMan’s DBS has provided text; the client application is in complete control regarding the use of

this text.

VA FileMan 22.2

Developer’s Guide 127 January 2017

3.4 Database Server Calls Cross-referenced by Category

Table 36: Database Server (DBS) API—Database Server (DNS) Calls Cross-referenced by Category

Category Database Server Call (DBS)

Data Dictionary  FIELD^DID

 FIELDLST^DID

 FILE^DID

 FILELST^DID

 $$GET1^DID

 $$FL DNUM^DILFD

 PRD^DILFD

 $$ROOT^DILFD

 $$VFIELD^DILFD

 $$VFILE^DILFD

Data Dictionary Modification  DELIX^DDMOD

 DELIXN^DDMOD

 FILESEC^DDMOD

Data Editing  CHK^DIE

 FILE^DIE

 HELP^DIE

 $$KEYVAL^DIE

 UPDATE^DIE

 VAL^DIE

 VALS^DIE

 WP^DIE

 RECALL^DILFD

Data Retrieval  $$GET1^DIQ

 GETS^DIQ

Lookup  FIND^DIC

 $$FIND1^DIC

 LIST^DIC

User Dialogue  BLD^DIALOG

 $$EZBLD^DIALOG

 MSG^DIALOG

VA FileMan 22.2

Developer’s Guide 128 January 2017

Category Database Server Call (DBS)

Utilities  CLEAN^DILF

 $$CREF^DILF

 DA^DILF

 DT^DILF

 FDA^DILF

 $$HTML^DILF

 $$IENS^DILF

 LOCK^DILF

 $$OREF^DILF

 $$VALUE1^DILF

 VALUES^DILF

 $$EXTERNAL^DILFD

VA FileMan 22.2

Developer’s Guide 129 January 2017

3.5 Database Server (DBS) Calls Presented in
Alphabetical Order)

This section lists and describes the VA FileMan Database Server (DBS) calls in alphabetical order.

However, the table above cross-references the DBS calls by category:

3.5.1 CREIXN^DDMOD: New-Style Cross-Reference Creator

This procedure creates a New-Style cross-reference definition in the INDEX file (#.11). Optionally, it

builds the data in the index (for Regular cross-references) or executes the SET logic (for MUMPS cross-

references) for all entries in the file. Compiled input templates that contain one or more of the fields

defined in the cross-reference are recompiled. If cross-references on the file are compiled, they are

recompiled.

One use of CREIXN^DDMOD is in the pre-install or post-install routine of a Kernel Installation and

Distribution System (KIDS) build to create a New-Style cross-reference at the installing site.

 REF: For information on the call to delete a New-Style cross-reference definition, see the

DELIX^DDMOD: Traditional Cross-reference Delete API.

For information on a programmer mode utility that can be used to help create a routine that calls

the CREIXN^DDMOD API, see the ^DIKCBLD API in the “^DIKCBLD: Build an M Routine

that Makes a Call to CREIXN^DDMOD” section.

Format

CREIXN^DDMOD(.xref,flags,.result,output_root,msg_root)

Input Parameters

.xref: (Required) This input array contains information about the New-Style cross-

reference to be created. The elements in this array are as follows:

 (Required) XREF(“FILE”) = The number of the file or subfile on which

the index physically resides. For whole-file indexes, this should be the

file number of the upper-level file, not the subfile that contains the fields

in the index. For MUMPS cross-references that do not set an index,

XREF(“FILE”) should be the file that contains the fields in the cross-

reference.

 (Required) XREF(“TYPE”) = “R” or “REGULAR” for regular indexes;

or “MU” or “MUMPS” for MUMPS-type cross-references.

 XREF(“NAME”) = The name of the cross-reference.

 (Required if XREF(“USE”) is not passed.) If XREF(“NAME”) is not

passed, CREIXN^DDMOD gets the next available name based on the

XREF(“FILE”) and XREF(“USE”). In most cases, however, you should

explicitly give your new cross-reference a name.

 (Required for whole-file indexes) XREF(“ROOT FILE”) = For whole-

file indexes, the number of the file or subfile that contains the fields in

the cross-reference. This is the subfile number, not the upper-level file

number where the index physically resides. XREF(“ROOT FILE”)

should only be set for whole-file indexes.

VA FileMan 22.2

Developer’s Guide 130 January 2017

 (Required) XREF(“SHORT DESCR”) = Short description of the cross-

reference.

 XREF(“DESCR”,1) = Line 1 of the cross-reference description.

 (Optional) XREF(“DESCR”,n) = Line n of the cross-reference

description.

 (Required if XREF(“NAME”) is not passed.) XREF(“USE”) = “LS” or

“LOOKUP & SORTING” for indexes used for both lookup and sorting;

“S” or “SORTING ONLY” for indexes used for sorting only; or “A” or

“ACTION” for MUMPS cross-reference that do not set an index.

“LS” (“LOOKUP & SORTING”)—The cross-reference sets an index

and the index name must start with “B” or a letter that alphabetically

follows “B”. Calls to Classic VA FileMan lookup (^DIC) or the Finder

(FIND^DIC or $$FIND1^DIC) where the index is not specified include

this index in the search. The index is available for use by the VA

FileMan Sort and Print (EN1^DIP).

“S” (“SORTING ONLY”)—The cross-references sets an index, and the

index name must start with “A”. Calls to Classic VA FileMan lookup

(^DIC) or the Finder (FIND^DIC or $$FIND1^DIC) do not use this

index unless it is specified in the input parameters to those calls. The

index is available for use by the VA FileMan Sort and Print (EN1^DIP).

“A” (“ACTION”)—This is used for MUMPS cross-references that

perform some actions other than building an index. The cross-reference

name must start with “A”.

If XREF(“USE”) is not passed, CREIXN^DDMOD assumes a value

based on the cross-reference name and type. If the name starts with “A”,

XREF(“USE”) is assumed to be “S” (Sorting Only) for Regular indexes,

and “A” (Action) for MUMPS cross-references. If the name does not

start with an “A”, XREF(“USE”) is assumed to be “LS” (Lookup &

Sorting). Note that for clarity, however, it is recommended that you

explicitly set XREF(“USE”).

 (Optional; Defaults to “F” for simple cross-references, and “R” for

compound cross-references) XREF(“EXECUTION”) = “F” or “FIELD”

for field-level execution; or “R” or “RECORD” for record-level

execution.

This indicates whether the cross-reference logic should be executed after

a field in the cross-reference changes, or only after all fields in a record

are updated in an editing session. The logic for most simple (single-field)

cross-references should be executed immediately after the field changes,

and so should have an Execution of “F”. The logic for most compound

(multi-field) cross-references should be executed only once after a

transaction on the entire record is complete, and so should have an

Execution of “R”.

 (Optional; Defaults to “IR”) XREF(“ACTIVITY”) = One or both of the

following codes:

o I—Installing an entry at a site

o R—Re-cross-referencing this index

VA FileMan 22.2

Developer’s Guide 131 January 2017

If Activity contains an “I”, VA FileMan fires the cross-references during

a KIDS installation. If Activity contains an “R”, VA FileMan fires the

cross-reference during a re-cross-referencing operation.

 NOTE: VA FileMan automatically fires cross-references during

an edit, regardless of Activity, although you can control whether

a cross-reference is fired by entering SET and KILL conditions.

Also, if you explicitly select a cross-reference in an EN^DIK, EN1^DIK,

or ENALL^DIK call, or in the Re-Index File option [DIRDEX] on the

Utility Functions menu [DIUTILITY], that cross-reference is fired

whether or not its Activity contains an “R”.

 (Optional) XREF(“SET CONDITION”) = M code that sets the variable

X. The SET logic of the cross-reference is executed only if the set

condition, if present, sets X to Boolean true, according to the M rules for

Boolean interpretation.

The M code can assume the DA array describes the record to be cross-

referenced, and that the X(order#) array contains values after the

transform for storage is applied, but before the truncation to the

maximum length. The variable X also equals X(order#) of the lowest

order number.

When fields that make up a cross-reference are edited and the KILL and

SET conditions are executed, the X1(order#) array contains the old field

values, and the X2(order#) array contains the new field values. If a

record is being added, and there is an X1(order#) array element that

corresponds to the .01 field, it is set to null. When a record is deleted, all

X2(order#) array elements are null.

 (Optional) XREF(“KILL CONDITION”) = M code, that sets the variable

X. The KILL logic of the cross-reference is executed only if the KILL

condition, if present, sets X to Boolean true, according to the M rules for

Boolean interpretation.

 REF: For a description of the DA, X, X1, and X2 arrays that can

be used in the MUMPS code, see XREF(“SET CONDITION”).

For MUMPS cross-references, you can also set the following nodes in the XREF

array. (For Regular Indexes, the SET and KILL logic is determined automatically

for you, and so these nodes, if passed in, are ignored.) The code can also make

use of the DA, X, X1, and X2 arrays as described in XREF(“SET

CONDITION”) above.

 (Optional; Defaults to “Q”) XREF(“SET”) = M code that VA FileMan

should be executed when the values of fields that make up the cross-

reference are set or changed.

 (Optional; Defaults to “Q”) XREF(“KILL”) = M code that VA FileMan

should be executed when the values of fields that make up the cross-

reference are changed or deleted.

 (Optional) XREF(“WHOLE KILL”) = M code that can be executed to

remove an entire index for all records in a file. When an entire fire is

VA FileMan 22.2

Developer’s Guide 132 January 2017

reindexed, VA FileMan executes this code rather than looping through

all the entries in the file and executing the KILL logic once for each

entry.

Each value in the cross-reference is described in the

XREF(“VAL”,order#) portion of the XREF array. The order numbers

must be positive integers starting from 1, and determine the order in

which VA FileMan evaluates the cross-reference values to place in the

X(order#) array during cross-reference execution.

 (Required) XREF(“VAL”,order#) = The field number (for field-type

cross-reference values); or M code that sets X to the cross-reference

value (for computed-type cross-reference values). For computed-type

cross-reference values, the X(order#) array is available for those cross-

reference values with lower order numbers, and the DA array describes

the IEN of the current record.

 (Optional) XREF(“VAL”,order#,”SUBSCRIPT”) = The subscript

position number in the index, if this cross-reference value is used as a

subscript in the index. The first subscript to the right of the index name is

subscript number 1. All subscripts must be consecutive integers starting

from 1.

 (Optional) XREF(“VAL”,order#,”LENGTH”) = The maximum length of

the cross-reference value VA FileMan should use when storing the value

as a subscript in the index.

 (Optional; Defaults to “F”) XREF(“VAL”,order#,”COLLATION”) =

“F” for “forwards”; “B” for “backwards”. This indicates the direction

VA FileMan’s lookup utilities should $ORDER through this subscript

when entries are returned or displayed to the user.

 (Optional) XREF(“VAL”,order#,”LOOKUP PROMPT”) = Text that

becomes the prompt to the user when this index is used for lookup, and a

value is requested for this subscript.

For field-type cross-reference values only, the following nodes can also be set:

 XREF(“VAL”,order#,”XFORM FOR STORAGE”) = M code that sets

the variable X to a new value. X is the only variable guaranteed to be

defined and is equal to the internal value of the field. The Transform for

Storage can be used to the transform the internal value of the field before

it is stored as a subscript in the index.

 XREF(“VAL”,order#,”XFORM FOR LOOKUP”) = M code that sets the

variable X to a new value. X is the only variable guaranteed to be

defined and is equal to the lookup value entered by the user. During

lookup, if the lookup value is not found in the index, VA FileMan

executes the Transform for Lookup code to transform the lookup value X

and tries the lookup again.

 XREF(“VAL”,order#,”XFORM FOR DISPLAY”) = M code that sets the

variable X to a new value. X is the only variable guaranteed to be

defined and is set equal to the value of the subscript of in the index.

During lookup, if a match or matches are made to the lookup value, the

VA FileMan 22.2

Developer’s Guide 133 January 2017

Transform for Display code is executed before displaying the index value

to the user.

flags: (Optional) Flags to control processing. The possible values are:

 K—When CREIXN^DDMOD calls DELIXN^DDMOD to initially

delete the old cross-reference with the same name as the one it is

creating:

o Do not KILL the data in the old index if it is a Regular index.

o Do not execute the old KILL logic if it is a MUMPS cross-reference.

Whether or not this flag is passed, CREIXN^DDMOD deletes the old

cross-reference definition, if it exists, before bringing in the new

definition.

 S—For Regular indexes, Set the data in the index. For MUMPS cross-

references, execute the Set logic for all entries in the file.

 W—Write messages to the current device as the index is created and

cross-references and input templates are recompiled.

.result: (Optional) Local variable that receives the IEN of the entry that was created in

the INDEX file (#.11), if the call is successful, and the Name of the new index. If

the cross-reference could not be created, a value of null (““) is returned.

 RESULT = IEN in Index file ^ cross-reference name

Or:

 RESULT = ““ if cross-reference could not be created.

output_root: (Optional) The name of the array that should receive information about input

templates and cross-references that may have been recompiled.

 REF: See Output below.

This must be a closed root, either local or global.

msg_root: (Optional) The name of the array that should receive any error messages. This

must be a closed root, either local or global. If not passed, errors are returned

descendent from ^TMP(“DIERR”,$J).

Output

RESULT: See .RESULT under “Input Parameters.”

 RESULT = IEN in INDEX file ^ cross-reference name

Or:

 RESULT = ““ if cross-reference could not be created.

OUTPUT_ROOT: See OUTPUT ROOT under “Input Parameters.”

If a field used in the index is used in any compiled input templates, those input

templates are recompiled. Information about the recompiled input templates is

stored descendant from OUTPUT_ROOT(“DIEZ”):

VA FileMan 22.2

Developer’s Guide 134 January 2017

OUTPUT_ROOT(“DIEZ”,input template #) =

input template name ^ file # ^

compiled routine name

If cross-references for the file are compiled, they are recompiled, and the

compiled routine name is stored in OUTPUT_ROOT(“DIKZ”):

OUTPUT_ROOT(“DIKZ”) = compiled routine name

3.5.1.1 Examples

3.5.1.1.1 Example 1

In this example, a New-Style compound “C” index is created on File #16000. It contains two field-type

cross-reference values, Fields #1 and #2, both of which are used as subscripts in the index. The “S” flag

indicates that the index should be built after its definition is created, and the “W” flag indicates that

messages should be written to the current device as the index is created and built, and as templates and

cross-reference are recompiled.

Figure 104: CREIXN^DDMOD API—Example 1: Test Routine

ZZTEST ;Test routine

EXAMP1 ;Create a Regular “C” compound index

 S MYARRAY(“FILE”)=16000

 S MYARRAY(“NAME”)=“C”

 S MYARRAY(“USE”)=“LS”

 S MYARRAY(“TYPE”)=“R”

 S MYARRAY(“SHORT DESCR”)=“Regular compound index on fields 1 and

 2.”

 S MYARRAY(“DESCR”,1)=“This cross-reference contains as subscripts

 the values of”

 S MYARRAY(“DESCR”,2)=“fields #1 and #2 in the file #16000.”

 S MYARRAY(“VAL”,1)=1

 S MYARRAY(“VAL”,1,”SUBSCRIPT”)=1

 S MYARRAY(“VAL”,2)=2

 S MYARRAY(“VAL”,2,”SUBSCRIPT”)=2

 D CREIXN^DDMOD(.MYARRAY,”SW”,.MYRESULT,”MYOUT”)

 Q

VA FileMan 22.2

Developer’s Guide 135 January 2017

Figure 105: CREIXN^DDMOD API—Example 1: Input and Output

>D EXAMP1^ZZTEST

Cross-reference definition created.

Building index ...

Compiling ZZTEST Input Template of File 16000...

‘ZZCT’ ROUTINE FILED.

‘ZZCT1’ ROUTINE FILED.

Compiling Cross-Reference(s) 16000 of File 16000.

...SORRY, HOLD ON...

‘ZZCR1’ ROUTINE FILED.

‘ZZCR’ ROUTINE FILED.

>ZW MYRESULT

MYRESULT=214^C

>ZW MYOUT

MYOUT(“DIEZ”,125)=ZZTEST^16000^ZZCT

MYOUT(“DIKZ”)=ZZCR

The MYRESULT output variable indicates that the “C” index definition was created with the internal

entry number of 214 in the INDEX file (#.11).

The MYOUT output array indicates that one or both of the fields in the index are also used in the

compiled input template ZZTEST (#125), and that input template was recompiled. Cross-references on

File #16000 were also recompiled into the ZZCR namespaced routines.

Figure 106 is an example of a data dictionary listing of the index that was created:

Figure 106: CREIXN^DDMOD API—Example 1: Sample Data Dictionary Listing of the Created
Index

C (#214) RECORD REGULAR IR LOOKUP & SORTING

 Short Descr: Regular compound index on fields 1 and 2.

 Description: This cross-reference contains as subscripts the values of

 fields #1 and #2 in the file #16000.

 Set Logic: S ^DIZ(16000,”C”,X(1),X(2),DA)=““

 Kill Logic: K ^DIZ(16000,”C”,X(1),X(2),DA)

 Whole Kill: K ^DIZ(16000,”C”)

 X(1): AFIELD (16000,1) (Subscr 1) (forwards)

 X(2): BFIELD (16000,2) (Subscr 2) (forwards)

VA FileMan 22.2

Developer’s Guide 136 January 2017

3.5.1.1.2 Example 2

In this example, a New-Style “AC” index is created. It is a whole-file index based on fields in Subfile

#16000.02, but stored one level up, at the Subfile #16000.01 level. (One level above #16000.01 is the top-

level of the file, which has file number 16000.) The “AC” index contains two field-type cross-reference

values, Fields #.01 and #1, neither of which are used as subscripts in the index. The third cross-reference

value is computed and is the only subscript in the index. This computed subscript consists of the first five

characters of Field #.01, which is the first cross-reference value, concatenated with Field #1, the second

cross-reference value.

The “S” flag in the CREIXN^DDMOD call indicates that the index should be built after its definition is

created.

Figure 107: CREIXN^DDMOD API—Example 2: Test Routine

ZZTEST ;Test routine

EXAMP2 ;Create a whole-file “AC” index

 S MYARRAY(“FILE”)=16000.01 ;the file on which the index resides

 S MYARRAY(“ROOT FILE”)=16000.02 ;the file in which the fields in the

 index are defined.

 S MYARRAY(“NAME”)=“AC”

 S MYARRAY(“USE”)=“SORTING ONLY”

 S MYARRAY(“TYPE”)=“REGULAR”

 S MYARRAY(“SHORT DESCR”)=“Whole-file regular ‘AC’ index.”

 S MYARRAY(“DESCR”,1)=“This index stores at the 16000.01 file level

 values from fields”

 S MYARRAY(“DESCR”,2)=“in subfile #16000.02.”

 ;

 ;Cross-reference values 1 and 2 are field values

 ;defined so that cross-reference value 3 can

 ;reference their values via X(1) and X(2).

 S MYARRAY(“VAL”,1)=.01

 S MYARRAY(“VAL”,2)=1

 ;

 ;Cross-reference value 3 is a computed value

 ;based on cross-reference values 1 (field #.01)

 ;and 2 (field #1). It is used as a subscript in

 ;the index.

 S MYARRAY(“VAL”,3)=“S X=$E(X(1),1,5)_X(2)”

 S MYARRAY(“VAL”,3,”SUBSCRIPT”)=1

 ;

 D CREIXN^DDMOD(.MYARRAY,”S”,.MYRESULT)

 Q

Figure 108: CREIXN^DDMOD API—Example 2: Input and Output

>D EXAMP2^ZZTEST

>ZW MYRESULT

MYRESULT=216^AC

The MYRESULT output variable indicates that the “AC” index definition was created with the internal

entry number of 216 in the INDEX file (#.11).

VA FileMan 22.2

Developer’s Guide 137 January 2017

The resulting data dictionary listing of the new index definition is as follows:

Figure 109: CREIXN^DDMOD API—Example 2: Sample Data Dictionary Listing of the Created
Index

AC (#216) RECORD REGULAR IR SORTING ONLY WHOLE FILE (#16000.01)

 Short Descr: Whole-file regular ‘AC’ index.

 Description: This index stores at the 16000.01 file level values from

 fields in subfile #16000.02.

 Set Logic: S ^DIZ(16000,DA(2),100,”AC”,X(3),DA(1),DA)=““

 Kill Logic: K ^DIZ(16000,DA(2),100,”AC”,X(3),DA(1),DA)

 Whole Kill: K ^DIZ(16000,DA(2),100,”AC”)

 X(1): MULTIPLE NAME (16000.02,.01)

 X(2): CODE (16000.02,1)

 X(3): Computed Code: S X=$E(X(1),1,5)_X(2)

 (Subscr 1) (forwards)

VA FileMan 22.2

Developer’s Guide 138 January 2017

3.5.1.1.3 Example 3

In this example, a New-Style MUMPS cross-reference is created with the name “AD”. It has one cross-

reference value, Field #1 in File #16000. Whenever the value of Field #1 is deleted, the MUMPS cross-

reference files today’s date into the DATE DELETED field (#2). When the value of Field #1 changes

from null to some non-null value, the MUMPS cross-reference deletes the contents of DATE DELETED.

Since this cross-reference should not be executed during a reindexing operation or during a KIDS install,

the Activity is set to null.

Figure 110: CREIXN^DDMOD API—Example 3: Test Routine

ZZTEST ;Test routine

EXAMP3 ;Create MUMPS cross-reference

 S MYARRAY(“FILE”)=16012

 S MYARRAY(“NAME”)=“AD”

 S MYARRAY(“USE”)=“ACTION”

 S MYARRAY(“TYPE”)=“MUMPS”

 S MYARRAY(“ACTIVITY”)=““

 S MYARRAY(“SHORT DESCR”)=“This MUMPS cross-reference updates field #2

 when field #1 is deleted.”

 S MYARRAY(“DESCR”,1)=“The kill logic of this cross-reference calls the

 Filer to stuff today’s”

 S MYARRAY(“DESCR”,2)=“date into field #2 whenever the value of field #1

 is deleted.”

 S MYARRAY(“DESCR”,3)=““

 S MYARRAY(“DESCR”,4)=“The set logic calls the Filer to delete the

 contents of field #2”

 S MYARRAY(“DESCR”,5)=“when a value is placed into field #1.”

 ;

 S MYARRAY(“SET”)=“N ZZFDA,ZZMSG,DIERR

 S ZZFDA(16012,DA_”“,”“,2)=““““

 D FILE^DIE(““““,”“ZZFDA”“,”“ZZMSG”“)”

 S MYARRAY(“SET CONDITION”)=“S X=X1(1)=“““““

 S MYARRAY(“KILL”)=“N ZZFDA,ZZMSG,DIERR

 S ZZFDA(16012,DA_”“,”“,2)=DT

 D FILE^DIE(““““,”“ZZFDA”“,”“ZZMSG”“)”

 S MYARRAY(“KILL CONDITION”)=“S X=X2(1)=“““““

 ;

 S MYARRAY(“VAL”,1)=1

 D CREIXN^DDMOD(.MYARRAY,”W”,.MYRESULT)

 Q

Figure 111: CREIXN^DDMOD API—Example 3: Input and Output

>D EXAMP3^ZZTEST

Cross-reference definition created.

>ZW MYRESULT

MYRESULT=220^AD

The MYRESULT output variable indicates that the “AD” cross-reference definition was created with the

internal entry number of 220 in the INDEX file (#.11).

VA FileMan 22.2

Developer’s Guide 139 January 2017

The new cross-reference definition is:

Figure 112: CREIXN^DDMOD API—Example 3: Sample Data Dictionary Listing of the Created
Index

AD (#220) FIELD MUMPS ACTION

 Short Descr: This MUMPS cross-reference updates field #2 when field #1 is

 deleted.

 Description: The kill logic of this cross-reference calls the Filer to

 stuff today’s date into field #2 whenever the value of field

 #1 is deleted.

 The set logic calls the Filer to delete the contents of field

 #2 when a value is placed into field #1.

 Set Logic: N ZZFDA,ZZMSG,DIERR S ZZFDA(16012,DA_”,”,2)=““ D FILE^DIE(““,

 “ZZFDA”,”ZZMSG”)

 Set Cond: S X=X1(1)=““

 Kill Logic: N ZZFDA,ZZMSG,DIERR S ZZFDA(16012,DA_”,”,2)=DT D FILE^DIE(““,

 “ZZFDA”,”ZZMSG”)

 Kill Cond: S X=X2(1)=““

 X(1): MYFIELD (16012,1)

3.5.1.2 Error Codes Returned

Table 37: CREIXN^DDMOD API—Error Codes Returned

Code Description

202 The specified parameter is missing or invalid.

401 The file does not exist.

402 The global root is missing or invalid.

406 The file has no .01 definition.

407 A word-processing field is not a file.

502 The field has a corrupted definition.

The New-Style Cross-Reference Creator may also return any error returned by:

 CHK^DIE

 UPDATE^DIE

 WP^DIE

VA FileMan 22.2

Developer’s Guide 140 January 2017

3.5.2 DELIX^DDMOD: Traditional Cross-reference Delete

This procedure deletes a traditional cross-reference definition from the data dictionary of a file.

Optionally, it deletes the data in the index or executes the KILL logic for all entries in the file. Compiled

input templates that contain the field on which the cross-reference is defined are recompiled. If cross-

references on the file are compiled, they are recompiled.

DELIX^DDMOD can be used is the pre-install or post-install routine of a KIDS (Kernel Installation and

Distribution System) Build, for example, to delete a traditional cross-reference from the installing site.

 REF: For information on the call to delete a New-Style index definition, see DELIXN^DDMOD.

Format

DELIX^DDMOD(file,field,cross_ref,flags,output_root,msg_root)

Input Parameters

file: (Required) File or subfile number.

field: (Required) Field number.

cross_ref: (Required) Cross-reference number. Traditional cross-references are defined in

the data dictionary under^DD(file#,field#,1,cross-reference number).

flags: (Optional) Flags to control processing. The possible values are:

 K—For Regular, KWIC, Mnemonic, and Soundex-type cross-references,

delete the data in the index. For MUMPS and Trigger-type cross-

references, execute the KILL logic of the cross-reference for all entries

in the file. For Bulletin-type cross-references, the “K” flag is ignored; the

KILL logic for Bulletin-type cross-references is never executed by this

procedure.

 W—WRITE messages to the current device as the index is deleted and

cross-references and input templates are recompiled.

output_root: (Optional) The name of the array that should receive information about input

templates and cross-references that may have been recompiled and a flag to

indicate that the deletion was audited in the DD AUDIT file (#.6).

 REF: See Output below.

This must be a closed root, either local or global.

msg_root: (Optional) The name of the array that should receive any error messages. This

must be a closed root, either local or global. If not passed, errors are returned

descendent from ^TMP(“DIERR”,$J).

VA FileMan 22.2

Developer’s Guide 141 January 2017

Output

output_root: See OUTPUT_ROOT under Input Parameters.

If the field on which the deleted cross-reference was defined is used in any

compiled input templates, those input templates are recompiled. Information

about the recompiled input templates is stored descendant from

OUTPUT_ROOT(“DIEZ”):

OUTPUT_ROOT(“DIEZ”,input template #) = input template name ^ file #

^compiled routine name

If cross-references for the file are compiled, they are recompiled, and the

compiled routine name is stored in OUTPUT_ROOT(“DIKZ”):

OUTPUT_ROOT(“DIKZ”) = compiled routine name

If the data dictionary for the file is audited, an entry is made in the DD AUDIT

file (#.6) and OUTPUT_ROOT(“DDAUD”) is set to 1:

OUTPUT_ROOT(“DDAUD”) = 1

3.5.2.1 Examples

3.5.2.1.1 Example 1

In this example, regular cross-reference #4 (the “C” index), defined on Field #12 in File #16200, is

deleted. The “K” flag indicates that the entire ^DIZ(16200,”C”) index should be removed from the file.

Figure 113: DELIX^DDMOD API—Example 1: Input and Output

>D DELIX^DDMOD(16200,12,4,”K”,”MYOUT”)

>ZW MYOUT

MYOUT(“DDAUD”)=1

MYOUT(“DIEZ”,100)=ZZTEST EDIT^16200^ZZIT

MYOUT(“DIKZ”)=ZZCR

The MYOUT output array indicates that the deletion was recorded in the DD AUDIT file (#.6). The input

template ZZTEST EDIT (#100) was recompiled into the ZZIT namespaced routines, because Field #12 is

used in that template. Cross-references on File #16200 are recompiled under the ZZCR namespace.

VA FileMan 22.2

Developer’s Guide 142 January 2017

3.5.2.1.2 Example 2

In this example, the whole-file regular cross-reference #7 (the “N” index), defined on Field #15 within

Subfile #16200.075, is deleted. The “K” flag indicates that the entire ^DIZ(16200,”N”) index should be

removed, and the “W” flag indicates that messages should be printed to the current device.

Figure 114: DELIX^DDMOD API—Example 2: Input and Output

>D DELIX(16200.075,15,7,”KW’

Removing index …

Deleting cross-reference definition …

Compiling ZZ TEST CR Input Template of File 16200…

‘ZZIT1’ ROUTINE FILED..

‘ZZIT’ ROUTINE FILED….

‘ZZIT2’ ROUTINE FILED.

Compiling Cross-Reference(s) 16200 of File 16200.

…SORRY, HOLD ON…

‘ZZCR1’ ROUTINE FILED.

‘ZZCR2’ ROUTINE FILED.

‘ZZCR3’ ROUTINE FILED.

‘ZZCR4’ ROUTINE FILED.

‘ZZCR5’ ROUTINE FILED.

‘ZZCR’ ROUTINE FILED.

3.5.2.2 Error Codes Returned

Table 38: DELIX^DDMOD API—Error Codes Returned

Code Description

202 The specified parameter is missing or invalid.

301 The passed flags are incorrect.

401 The file does not exist.

406 The file has no .01 definition.

407 A word-processing field is not a file.

501 The file does not contain the specified field.

VA FileMan 22.2

Developer’s Guide 143 January 2017

3.5.3 DELIXN^DDMOD: New-Style Index Delete

This procedure deletes a New-Style index definition from the INDEX file (#.11). Optionally, it deletes the

data in the index or executes the KILL logic for all entries in the file. Compiled input templates that

contain one or more of the fields defined in the index are recompiled. If cross-references on the file are

compiled, they are recompiled.

DELIXN^DDMOD can be used is the pre-install or post-install routine of a Kernel Installation and

Distribution System (KIDS) build, for example, to delete a New-Style index from the installing site.

 REF: For information on the call to delete a traditional cross-reference definition, see the

DELIX^DDMOD: Traditional Cross-reference Delete API.

Format

DELIXN^DDMOD(file,index,flags,output_root,msg_root)

Input Parameters

file: (Required) File or subfile number. For whole-file indexes, this is the number of

the file at the upper level where the data in the index resides.

index: (Required) Index name.

flags: (Optional) Flags to control processing. The possible values are:

 K—For Regular indexes, delete the data in the index. For MUMPS (M)

indexes, execute the KILL logic for all entries in the file.

 W—WRITE messages to the current device as the index is deleted and

cross-references and input templates are recompiled.

output_root: (Optional) The name of the array that should receive information about input

templates and cross-references that may have been recompiled.

 REF: See Output below.

This must be a closed root, either local or global.

msg_root: (Optional) The name of the array that should receive any error messages. This

must be a closed root, either local or global. If not passed, errors are returned

descendent from ^TMP(“DIERR”,$J).

Output

output_root: See OUTPUT_ROOT under Input Parameters.

If a field used in the index is used in any compiled input templates, those input

templates are recompiled. Information about the recompiled input templates is

stored descendant from OUTPUT_ROOT(“DIEZ”):

OUTPUT_ROOT(“DIEZ”,input template #) = input template name ^ file # ^

compiled routine name

If cross-references for the file are compiled, they are recompiled, and the

compiled routine name is stored in OUTPUT_ROOT(“DIKZ”):

OUTPUT_ROOT(“DIKZ”) = compiled routine name

VA FileMan 22.2

Developer’s Guide 144 January 2017

3.5.3.1 Examples

3.5.3.1.1 Example 1

In this example, the New-Style “G” index defined on File #16200 is deleted. The “K” flag indicates that

the entire ^DIZ(16200,”G”) index should be removed from the file.

Figure 115: DELIXN^DDMOD API—Example 1: Input and Output

>D DELIXN^DDMOD(16200,”G”,”K”,”MYOUT”)

>ZW MYOUT

MYOUT(“DIEZ”,94)=ZZ TEST^16200^ZZIT

MYOUT(“DIEZ”,100)=ZZ TEST A^16200^ZZITA

MYOUT(“DIKZ”)=ZZCR

The MYOUT output array indicates that a field or fields used in the deleted index are also used in the

compiled input templates ZZ TEST (#94) and ZZ TEST 2 (#100). Those two input templates were

recompiled. Cross-references on File #16200 were also recompiled under the ZZCR namespace.

3.5.3.1.2 Example 2

In this example, the whole-file regular index (the “J” index) is deleted. The fields in the index come from

fields in a multiple, Subfile #16200.075, but the whole-file index resides at the top-level File #16200. The

“K” flag indicates that the entire ^DIZ(16200,”J”) index should be removed, and the “W” flag indicates

that messages should be printed to the current device.

Figure 116: DELIXN^DDMOD API—Example 2: Input and Output

>D DELIXN^DDMOD(16200,”J”,”KW”,”MYOUT”)

Removing index ...

Deleting index definition ...

Compiling ZZ TEST Input Template of File 16200....

‘ZZIT’ ROUTINE FILED....

‘ZZIT1’ ROUTINE FILED.

Compiling ZZ TEST A Input Template of File 16200....

‘ZZITA’ ROUTINE FILED....

‘ZZITA’ ROUTINE FILED.

Compiling Cross-Reference(s) 16200 of File 16200.

...SORRY, JUST A MOMENT PLEASE...

‘ZZCR1’ ROUTINE FILED.

‘ZZCR2’ ROUTINE FILED.

‘ZZCR3’ ROUTINE FILED.

‘ZZCR4’ ROUTINE FILED.

‘ZZCR5’ ROUTINE FILED.

‘ZZCR6’ ROUTINE FILED.

‘ZZCR7’ ROUTINE FILED.

‘ZZCR8’ ROUTINE FILED.

‘ZZCR9’ ROUTINE FILED.

‘ZZCR10’ ROUTINE FILED.

‘ZZCR’ ROUTINE FILED.

VA FileMan 22.2

Developer’s Guide 145 January 2017

3.5.3.2 Error Codes Returned

Table 39: DELIXN^DDMOD API—Error Codes Returned

Code Description

202 The specified parameter is missing or invalid.

301 The passed flags are incorrect.

3.5.4 FILESEC^DDMOD: Set File Protection Security Codes

This entry point sets the security access codes for a file. The call allows developers to change only the

File Security Codes at a target site without having to transport the entire file. The codes are stored in the

following nodes:

 ^DIC(filenumber,0,”AUDIT”)—AUDIT Access

 ^DIC(filenumber,0,”DD”)—DATA DICTIONARY Access

 ^DIC(filenumber,0,”DEL”)—DELETE Access

 ^DIC(filenumber,0,”LAYGO”)—LAYGO Access

 ^DIC(filenumber,0,”RD”)—READ Access

 ^DIC(filenumber,0,”WR”)—WRITE Access

Format

FILESEC^DDMOD(file,.security_codes,msg_root)

Input Parameters

file: (Required) File number. (Cannot be less than 2.)

security codes: (Required) Array of security access codes:

 SECURITY_CODES(“AUDIT”) = AUDIT Access

 SECURITY_CODES(“DD”) = DATA DICTIONARY Access

 SECURITY_CODES(“DEL”) = DELETE Access

 SECURITY_CODES(“LAYGO”) = LAYGO Access

 SECURITY_CODES(“RD”) = READ Access

 SECURITY_CODES(“WR”) = WRITE Access

msg_root: (Optional) The root of an array into which error messages are returned. If this

parameter is not included, errors are returned in the default array:

^TMP(“DIERR”,$J)

Output

None.

VA FileMan 22.2

Developer’s Guide 146 January 2017

3.5.4.1 Examples

3.5.4.1.1 Example 1

In this example, you are going to set all of the File Security Code nodes:

Figure 117: FILESEC^DDMOD API—Example 1: Input and Output

>D ^%G

. . . . Global ^DIC(16028

 DIC(16028

. . . . ^DIC(16028,0) = ZPATR FILE^16028

. . . . ^DIC(16028,0,”GL”) = ^DIZ(16028,

. . . . ^DIC(16028,”%”,0) = ^1.005^^0

. . . . Global ^

. . . . S SECURITY(“DD”)=“@”

. . . . S SECURITY(“RD”)=““

. . . . S SECURITY(“WR”)=“A”

. . . . S SECURITY(“DEL”)=“@”

. . . . S SECURITY(“LAYGO”)=“@”

. . . . S SECURITY(“AUDIT”)=“@”

. . . . D FILESEC^DDMOD(16028,.SECURITY)

>D ^%G

. . . . Global ^DIC(16028

. . . . Global ^DIC(16028

 DIC(16028

. . . . ^DIC(16028,0) = ZPATR FILE^16028

. . . . ^DIC(16028,0,”AUDIT”) = @

. . . . ^DIC(16028,0,”DD”) = @

. . . . ^DIC(16028,0,”DEL”) = @

. . . . ^DIC(16028,0,”GL”) = ^DIZ(16028,

. . . . ^DIC(16028,0,”LAYGO”) = @

. . . . ^DIC(16028,0,”RD”) =

. . . . ^DIC(16028,0,”WR”) = A

. . . . ^DIC(16028,”%”,0) = ^1.005^^0

3.5.4.1.2 Example 2

In this example, you are going to use the results from the previous example and change just the Write

Access.

Figure 118: FILESEC^DDMOD API—Example 2: Input and Output

>S SECURITY(“WR”)=“a”

>D FILESEC^DDMOD(16028,.SECURITY)

>D ^%G

Global ^DIC(16028

 DIC(16028

^DIC(16028,0) = ZPATR FILE^16028

^DIC(16028,0,”AUDIT”) = @

^DIC(16028,0,”DD”) = @

^DIC(16028,0,”DEL”) = @

^DIC(16028,0,”GL”) = ^DIZ(16028,

^DIC(16028,0,”LAYGO”) = @

^DIC(16028,0,”RD”) =

^DIC(16028,0,”WR”) = a

^DIC(16028,”%”,0) = ^1.005^^0

Global ^

VA FileMan 22.2

Developer’s Guide 147 January 2017

3.5.4.2 Error Codes Returned

Table 40: FILESEC^DDMOD API—Error Codes Returned

Code Description

401 The file does not exist or the File Number that was passed was less than 2.

3.5.5 BLD^DIALOG(): DIALOG Extractor

This entry point performs the following functions:

1. Extracts a dialogue from a VA FileMan DIALOG file (#.84) entry.

2. Substitutes dialogue parameters into the text if requested.

3. Returns the text in an array.

If the DIALOG file (#.84) entry has a POST MESSAGE ACTION code, this code is executed after the

message has been built, but before quitting.

Format

BLD^DIALOG(dialog#,[.]text_param,[.]output_param, output_array,flags)

Input Parameters

dialog#: (Required) Record number from the DIALOG file (#.84) for the text to be

returned.

[.]text_param: (Optional) Local array containing the dialogue parameters to substitute into the

resulting text. Set the subscript of each node in this array to a dialogue parameter

that is in a |window| in the referenced DIALOG file (#.84) entry’s text. The value

of each node should be in external, printable format and is substituted in the

DIALOG text for that DIALOG parameter.

If there is only one parameter in the list, you can pass its value in a local variable

or as a literal; otherwise, pass it by reference.

[.]output_param: (Optional) This is useful mainly if you are returning error messages as part of an

API for other developers to use. Use it to pass dialogue parameters back to the

user of your API, such that they can be accessed individually instead of just

being embedded in the error text.

Use only with DIALOG file (#.84) entries of type Error. Pass this local array by

reference. Subscript each node by the parameter name and set the node to the

corresponding parameter value. The parameter values can be in any format

(external or internal).

For example, if you pass DIPAROUT by reference and want to pass back

standalone values for the “1” and “FILE” parameters in the output array along

with dialogue text, set DIPAROUT to:

DIPAROUT(1)=TEST FILE

DIPAROUT(“FILE”)=662001

Dialogue text is returned as expected but, in addition, DIALOG parameter values

are returned in:

VA FileMan 22.2

Developer’s Guide 148 January 2017

^TMP(“DIERR”,$J,msg#,”PARAM”,1)

^TMP(“DIERR”,$J,msg#,”PARAM”,”FILE”)

 NOTE: If you only want to return one parameter, you can pass its value

in a local variable or as a literal rather than in an array by reference.

However, the subscript for such a parameter in the output array is always

1.

output_array: (Optional) If provided, the text is output in the local or global array named by

this parameter. If this parameter is null, output is returned in the ^TMP global,

under the “DIERR”, “DIHELP”, or “DIMSG” subscripts as documented in the

DBS “Contents of Arrays” section.

If you specify DIR(“A”) or DIR(“?”) as the output array, special handling is

provided for populating the output array for use in a call to the Reader, ^DIR.

Text is output in the format needed for input to the Reader.

 NOTE: You are responsible for cleaning up the output array or global

before calling the BLD^DIALOG API. If the array already exists,

BLD^DIALOG simply appends its output to the current contents of the

output array, under a new message subscript.

flags: (Optional) Flags to control processing. The possible values are:

 S—Suppress the blank line that is normally inserted between discrete

blocks of text that are built by separate calls to this routine.

 F—Format the local array similar to the default output format of the

^TMP global, so that you can call the MSG^DIALOG API to either

Write the array to the current device or to a simple local array.

Output

If the output_array input parameter is not passed, DIALOG file (#.84) text is returned in ^TMP under the

“DIERR”, “DIHELP”, or “DIMSG” subscripts as documented in the DBS “Contents of Arrays” section.

If the DIALOG file (#.84) text is returned in a local array instead, the name of the array and leading

subscripts are defined by the name of the array passed to this routine.

In addition to the DIALOG file (#.84) text, a local variable is returned. Table 41 lists the local variables:

Table 41: BLD^DIALOG API—Output variables returned

Variable Name Returned if DIALOG Type Is: Variable Value

DIERR Error Piece 1: # of discrete error messages returned.

Piece 2: Total # of lines of text returned.

DIHELP Help Total # of lines of text returned.

DIMSG General Message Total # of lines of text returned.

VA FileMan 22.2

Developer’s Guide 149 January 2017

 NOTE:

 If the variable to be used (DIHELP, DIERR, or DIMSG) already exists before calling the

BLD^DIALOG API, the number or numbers already stored in the variable are

incremented (not overwritten) to reflect the cumulative total over repetitive calls to the

BLD^DIALOG API.

The local variable (DIHELP, DIERR, or DIMSG) is not set if you ask for text to be built

in the special variables DIR(“A”) and DIR(“?”), used as input to ^DIR.

 To add entries to the DIALOG file (#.84), you must use a numberspace assigned by the

Database Administrator.

 REF: For more information, see “Developer Tools” in the “DIALOG File” section.

3.5.5.1 Examples

The DIALOG file (#.84) entry numbers shown in the examples below are for demonstration purposes and

are not distributed as part of VA FileMan.

3.5.5.1.1 Example 1

In the case of errors, the output looks like the following example (Figure 119).

^TMP(“DIERR”,$J,error_number) is set equal to the IEN from the DIALOG file (#.84). The actual error

text is contained descendent from the “TEXT” subscript. If output parameters were passed to the routine,

they are returned descendent from the “PARAM” subscript, where “PARAM”,0) contains the total

number of output parameters. Finally, there is an entry descendent from “E”, where the next subscript is

the IEN from the DIALOG file (#.84), and the final subscript refers to the error number in this output

array. This serves as a sort of cross-reference by error code. When errors are generated by a routine called

from developers’ code, this cross-reference can be used by the developer to quickly check whether a

specified error had been generated:

Figure 119: BLD^DIALOG() API—Example 1: Input

DIPAROUT(1)=TEST FILE

DIPAROUT(“FILE”)=662001

>D BLD^DIALOG(10999,”Myfile”,.DIPAROUT)

The output looks like:

Figure 120: BLD^DIALOG() API—Example 1: Output

DIERR=1^1

^TMP(“DIERR”,591465626,1) = 10999

^TMP(“DIERR”,591465626,1,”PARAM”,0) = 2

^TMP(“DIERR”,591465626,1,”PARAM”,1) = TEST FILE

^TMP(“DIERR”,591465626,1,”PARAM”,”FILE”) = 662001

^TMP(“DIERR”,591465626,1,”TEXT”,1) = Entries in file Myfile cannot be edited.

^TMP(“DIERR”,591465626,”E”,10999,1) =

VA FileMan 22.2

Developer’s Guide 150 January 2017

3.5.5.1.2 Example 2

In this example, you generate a second error to show how it is appended to the previous error in the ^TMP

global:

Figure 121: BLD^DIALOG() API—Example 2: Input

DIPARIN(1)=‘B’

DIPARIN(“FILE”)=662001

DIPAROUT(1)=‘B’

DIPAROUT(“FILE”)=662001

>D BLD^DIALOG(10202,.DIPARIN,.DIPAROUT)

The output looks like this:

Figure 122: BLD^DIALOG() API—Example 2: Output

DIERR=2^2

^TMP(“DIERR”,591465626,1) = 10999

^TMP(“DIERR”,591465626,1,”PARAM”,0) = 2

^TMP(“DIERR”,591465626,1,”PARAM”,1) = TEST FILE

^TMP(“DIERR”,591465626,1,”PARAM”,”FILE”) = 662001

^TMP(“DIERR”,591465626,1,”TEXT”,1) = Entries in file Myfile cannot be edited.

^TMP(“DIERR”,591465626,2) = 10202

^TMP(“DIERR”,591465626,2,”PARAM”,0) = 2

^TMP(“DIERR”,591465626,2,”PARAM”,1) = ‘B’

^TMP(“DIERR”,591465626,2,”PARAM”,”FILE”) = 662001

^TMP(“DIERR”,591465626,2,”TEXT”,1) = There is no ‘B’ index for File #662001.

^TMP(“DIERR”,591465626,”E”,10999,1) =

^TMP(“DIERR”,591465626,”E”,10202,2) =

3.5.5.1.3 Example 3

In this example, you build the same error message as in Example 1, but this time you put the output into a

local array. Notice that you do not send a flag in the FLAGS parameter for this call, so only the error text

is returned. This would ordinarily be done when the developer planned to process the output from their

own routine.

Figure 123: BLD^DIALOG() API—Example 3: Input

>D BLD^DIALOG(10999,”Myfile”,.DIPAROUT,”MYARRAY”)

The output looks like:

Figure 124: BLD^DIALOG() API—Example 3: Output

DIERR=1^1

MYARRAY(1)=Entries in file Myfile cannot be edited.

VA FileMan 22.2

Developer’s Guide 151 January 2017

3.5.5.1.4 Example 4

In this example, you build the same error message as in Example 3, again sending the output to a local

array. This time, however, you pass the F flag in the FLAGS parameter so that all of the error information

is returned in a format similar to that of the ^TMP global, but without the $J subscript. In this format, the

developer could then call the MSG^DIALOG API to either write the array to the current device or to copy

the text into a simple array. This might, for example, be done when the developer wanted to examine the

error messages returned and KILL some of them before having VA FileMan write the remaining

messages.

Figure 125; BLD^DIALOG() API—Example 4: Input

>D BLD^DIALOG(10999,”Myfile”,.DIPAROUT,”MYARRAY”,”F”)

The output looks like:

Figure 126: BLD^DIALOG() API—Example 4: Output

DIERR=1^1

MYARRAY(“DIERR”,1)=10999

MYARRAY(“DIERR”,1,”PARAM”,0)=2

MYARRAY(“DIERR”,1,”PARAM”,1)=TEST FILE

MYARRAY(“DIERR”,1,”PARAM”,”FILE”)=662001

MYARRAY(“DIERR”,1,”TEXT”,1)=Entries in file Myfile cannot be edited.

 MYARRAY(“DIERR”,”E”,10999,1)=

3.5.5.1.5 Example 5

In this example, you build a help message with a single input parameter. Notice that the only output is the

DIHELP variable and the text. Similarly, other types of messages only return the DIMSG variable and the

text.

Figure 127: BLD^DIALOG() API—Example 5: Input

>D BLD^DIALOG(10335,”PRINT”)

The output looks like:

Figure 128: BLD^DIALOG() API—Example 5: Output

DIHELP=4

^TMP(“DIHELP”,591469242,1) = This number is used to determine how large to

 make the generated

^TMP(“DIHELP”,591469242,2) = compiled PRINT routines. The size must be a number

 greater

^TMP(“DIHELP”,591469242,3) = than 2400, the larger the better, up to the maximum

 routine size for

^TMP(“DIHELP”,591469242,4) = your operating system.

VA FileMan 22.2

Developer’s Guide 152 January 2017

3.5.5.1.6 Example 6

In this example, you build the same help message as Example 5 but put it into a local array.

Figure 129: BLD^DIALOG() API—Example 6: Input

>D BLD^DIALOG(10335,”PRINT”,”“,”MYARRAY”)

The output looks like:

Figure 130: BLD^DIALOG() API—Example 6: Output

DIHELP=4

MYARRAY(1)=This number is used to determine how large to make the generated

MYARRAY(2)=compiled PRINT routines. The size must be a number greater

MYARRAY(3)=than 2400, the larger the better, up to the maximum routine size for

MYARRAY(4)=your operating system.

3.5.5.1.7 Example 7

In this final example, you build the same help message as in Example 6 but put it into the special array

DIR(“?”). Note that for the special local variables used for calls to the VA FileMan Reader, ^DIR, this

call puts the text into the format that the Reader expects. It does not set the DIMSG, DIHELP, or DIERR

variables.

Figure 131: BLD^DIALOG() API—Example 7: Input

>D BLD^DIALOG(10335,”PRINT”,”“,”DIR(““?”“)”)

The output looks like:

Figure 132: BLD^DIALOG() API—Example 7: Output

DIR(“?”)=your operating system.

DIR(“?”,1)=This number is used to determine how large to make the generated

DIR(“?”,2)=compiled PRINT routines. The size must be a number greater

DIR(“?”,3)=than 2400, the larger the better, up to the maximum routine size for

3.5.5.2 Error Codes Returned

None.

VA FileMan 22.2

Developer’s Guide 153 January 2017

3.5.6 $$EZBLD^DIALOG(): DIALOG Extractor (Single Line)

This extrinsic function returns the first line of text from an entry in the DIALOG file (#.84). It can be used

when the text entry is only one line and when the output does not need to be put into an array. For

example, use it to extract a single word or short phrase to use as a text parameter to embed into another

DIALOG file (#.84) entry. If the DIALOG file (#.84) entry has a POST MESSAGE ACTION code, this

code is executed after the message has been built but before quitting.

Format

$$EZBLD^DIALOG(dialog#,[.]text_param)

Input Parameters

dialog#: (Required) Record number from the DIALOG file (#.84) for the text to be

returned.

[.]text_param: (Optional) Name of local array containing the parameter list for those parameters

that are to be incorporated into the resulting text. These parameters should be in

external, printable format. If there is only one parameter in the list, it can be

passed in a local variable or as a literal.

Output

This extrinsic function returns the first line of text from a DIALOG file (#.84) entry. No output variables

are returned.

 NOTE: To add entries to the DIALOG file (#.84), you must use a numberspace assigned by the

Database Administrator.

 REF: For more information, see “Developer Tools” in the “DIALOG File” section.

3.5.6.1 Examples

3.5.6.1.1 Example 1

To write a single line of text with no parameters, do the following:

Figure 133: $$EZBLD^DIALOG() API—Example 1: Input and Output

>W $$EZBLD^DIALOG(110)

The record is currently locked.

3.5.6.1.2 Example 2

To write a single line of text with a single parameter passed as a literal, do the following:

Figure 134: $$EZBLD^DIALOG() API—Example 2: Input and Output

>W $$EZBLD^DIALOG(201,”PARAM”)

The input variable PARAM is missing or invalid.

VA FileMan 22.2

Developer’s Guide 154 January 2017

3.5.6.1.3 Example 3

To write a single line of text with parameters in an input array, do the following:

Figure 135: $$EZBLD^DIALOG() API—Example 3: Input and Output

>S TESTPAR(1)=“PAR2”

>W $$EZBLD^DIALOG(201,.TESTPAR)

The input variable PAR2 is missing or invalid.

3.5.6.2 Error Codes Returned

None.

3.5.7 MSG^DIALOG(): Output Generator

This procedure takes text from one of the VA FileMan dialogue arrays (for errors, help text, or other text)

or from a similarly structured local array, writes it and/or moves it into a simple local array.

The subscripting of these arrays tells the developer whether the dialogue is a “help” message, an “Error”

message, or other dialogue, such as a prompt. Different combinations of these messages can be returned

from the DBS calls. In addition, error messages are returned whenever an error occurs, either in the way

the call was made or in attempting to interact with the database.

With the DBS calls, it becomes the job of the developer to display dialogue to the end-user as needed,

perhaps in a Graphical User Interface (GUI) box or in the bottom portion of a screen-oriented form. The

developer can also save error messages in a file.

The MSG^DIALOG API is designed to make it easier for the developer to use the dialogue arrays. The

developer can use the MSG^DIALOG API to do simple formatting of the dialogue and to either write

dialogue to the current device or to move the dialogue to a simple local array for further processing.

Format

MSG^DIALOG(flags,.output_array,text_width,left_margin,input_root)

Input Parameters

flags: (Optional) Flags to control processing. If none of the text-type flags (E, H, or M)

is entered, the routine behaves as if E were entered. If no flags are entered, it

behaves as if FLAGS contained WE. The possible values are:

 A—Local Array specified by the second parameter receives the text.

 W—Writes the text to the current device.

 S—Saves the ^TMP or other designated input array (does not KILL the

array).

 E—Error array text is processed.

 H—Help array text is processed.

 M—Message array text (other text) is processed.

 B—Blank lines are suppressed between error messages.

 T—Return Total number of lines in the top-level node of the local array

specified by the second parameter.

VA FileMan 22.2

Developer’s Guide 155 January 2017

.output_array: (Optional) This parameter contains the name of the local array to which the text

is to be written. If FLAGS contains an A, this parameter must be sent; otherwise,

the parameter is ignored. Note that the output array is KILLed before the text is

added, not appended to what is already there.

text_width: (Optional) Maximum line length for formatting text. If specified, the text is

broken into lines of this length when writing to the current device or when

moving the text to the OUTPUT_ARRAY. Lines are not “joined” to fill out to

this width.

If you do not specify TEXT_WIDTH:

 Text that is displayed on the current device is formatted to a line length

of IOM-5 if IOM is defined; otherwise, 75 characters.

 Text written to an OUTPUT_ARRAY is not reformatted.

left_margin: (Optional) Left margin for writing text. If sent, the text is lined up in a column

starting at this column number; otherwise, the text is lined up with the left margin

(column 0). This parameter has no effect on text sent to an array (A flag).

input_root: (Optional) Closed root of local input array in which text resides. If the text

resides in a local array, this parameter must be sent. The last non-variable

subscript of the local array must describe the type of text it contains, as the ^TMP

global normally does (“DIERR” for errors, “DIHELP” for help text, or “DIMSG”

for other text).

Output

If W is passed in the FLAGS parameter, the text is written to the current device. If A is passed in the

FLAGS parameter, the text is written to the local array whose name is specified in the second parameter.

The format of that array is:

ARRAY: Total number of lines (only returned if the T flag is passed in the FLAGS

parameter).

ARRAY(n): A line of formatted text (n = sequential integer starting with 1).

If FLAGS does not contain S, then the input array and associated local variables (DIMSG, DIHELP,

DIERR) are KILLed.

 NOTE: To add entries to the DIALOG file (#.84), you must use a numberspace assigned by the

Database Administrator.

For more information, see the “DIALOG File” section.

VA FileMan 22.2

Developer’s Guide 156 January 2017

3.5.7.1 Examples

3.5.7.1.1 Example 1

In this first example, you want to write the error text to the current device and KILL the input array.

Notice that because no flags are sent to the call, the default flags for Write Error message (WE) are

assumed. Thus, the call writes the single error message “The record is currently locked,” from the

“DIERR” portion of the ^TMP global. It also KILLs ^TMP(“DIERR”,$J) and the local variable DIERR

as follows:

Figure 136: MSG^DIALOG() API—Example 1: “DIERR” Portion of the ^TMP Global

^TMP(“DIERR”,698526778,1) = 110

^TMP(“DIERR”,698526778,1,”TEXT”,1) = The record is currently locked.

^TMP(“DIERR”,698526778,”E”,110,1) =

^TMP(“DIHELP”,698526778,1) = This number is used to determine how large to

 make the generated

^TMP(“DIHELP”,698526778,2) = compiled PRINT TEMPLATE routines. The size must be a

 number greater

^TMP(“DIHELP”,698526778,3) = than 2400, the larger the better, up to the maximum

 routine size for

^TMP(“DIHELP”,698526778,4) = your operating system.

^TMP(“DIMSG”,698526778,1) = Records from list on ZZMYARRAY SEARCH template.

Then, write the error text to the current device and KILL the input array:

Figure 137: MSG^DIALOG() API—Example 1: Input and Output

>D MSG^DIALOG()

The record is currently locked.

3.5.7.1.2 Example 2

In this example, you want to write the help text from the “DIHELP” subscripted portion of the ^TMP

global, both to the current device and to the local “MYARRAY” array. In addition, you want to format

each line to 50 as follows:

Figure 138: MSG^DIALOG() API—Example 2: Input

>D MSG^DIALOG(“HAW”,.MYARRAY,50,5)

This number is used to determine how large to make the generated compiled PRINT template routines.

The size must be a number greater than 2400, the larger the better, up to the maximum routine size for

your operating system.

Figure 139: MSG^DIALOG() API—Example 2: Output

>ZW MYARRAY

MYARRAY(1)=This number is used to determine how large to

MYARRAY(2)=make the generated

MYARRAY(3)=compiled PRINT TEMPLATE routines. The size must

MYARRAY(4)=be a number greater

MYARRAY(5)=than 2400, the larger the better, up to the

MYARRAY(6)=maximum routine size for

MYARRAY(7)=your operating system.

VA FileMan 22.2

Developer’s Guide 157 January 2017

3.5.7.1.3 Example 3

In the third example, help text was returned from a DBS call in a local array. This was done because the

developer specified to the DBS call that dialogue was to be returned in its own local array rather than in

the ^TMP global. Suppose the local array looks like this:

Figure 140: MSG^DIALOG() API—Example 3: Sample Local Array with Help Text Returned

MYHELP(“DIHELP”,1)=This number is used to determine how large to make the

 generated

MYHELP(“DIHELP”,2)=compiled PRINT TEMPLATE routines. The size must be a number

 greater

MYHELP(“DIHELP”,3)=than 2400, the larger the better, up to the maximum routine size

 for

MYHELP(“DIHELP”,4)=your operating system.

If the developer wishes to write the text to the current device and to preserve the “MYHELP” local array,

the call and the results look like this:

Figure 141: MSG^DIALOG() API—Example 3: Input

>D MSG^DIALOG(“WSH”, “”,“”,“”,“MYHELP”)

This number is used to determine how large to make the generated compiled PRINT template routines.

The size must be a number greater than 2400, the larger the better, up to the maximum routine size for

your operating system.

3.5.7.2 Error Codes Returned

None.

3.5.8 FIND^DIC(): Finder

This procedure finds records in a file based on input values. The caller must specify a file number and the

input values to be used for the lookup. The caller can also specify the indexes to be used in the search, the

data to output, and a number of records to retrieve. The caller can also pass screening logic. By default,

the Finder returns the IEN and the .01 field of the entries along with all identifiers. The developer can

override the default output and return other information for the entries.

This call was designed as a non-interactive lookup, to find entries that are at least a partial match to the

lookup values input to the call. This procedure cannot file data or add new records.

 NOTE: The Finder does not honor the Special Lookup or Post-Lookup Action nodes defined in

the data dictionary for a file.

VA FileMan 22.2

Developer’s Guide 158 January 2017

 NOTE: The VA FileMan Database Server (DBS) APIs typically work like their VA FileMan

Classic counterparts. However, the DBS APIs listed below do not perform numeric lookups the

way the classic ^DIC API does:

 FIND^DIC(): Finder

 $$FIND1^DIC(): Finder (Single Record)

 LIST^DIC(): Lister

Rather, these three APIs perform numeric lookups the way ^DIC performs them when the

lowercase “n” flag is set.

REF: For information on the use of the lowercase “n” flag in conjunction with the DIC(0) input

variable, see the “^DIC: Lookup/Add” section in the “Classic VA FileMan API” section.

Format

FIND^DIC(file,iens,fields,flags,[.]value,number,[.]indexes,[.]screen,identifier,tar

get_root,msg_root)

Input Parameters

file: (Required) The number of the file or subfile to search. If this parameter is a

subfile, it must be accompanied by the IENS parameter.

iens: (Optional) The IENS that identifies the subfile, if FILE is a subfile number. To

identify a subfile, rather than a subfile entry, leave the first comma-piece empty.

For example, a value of “,67,” indicates that the subfile within entry #67 should

be used. If FILE is a file number, this parameter should be empty. Defaults to no

subfile.

fields: (Optional) The fields to return with each entry found. This parameter can be set

equal to any of the specifications listed below. The individual specifications

should be separated by semicolons (“;”).

 NOTE: In most cases, a developer wants to include the “@” specifier

(described below) to suppress the default output values normally

returned by the Finder and then specify the fields and other elements to

return here in the FIELDS parameters. This gives the developer full

control over exactly what is returned in the output list and makes the call

more self-documenting in the developer’s code.

 Field Number—This specifier causes the Finder to return the value of

the field for each record found. For example, specifying .01 returns the

value of the .01 field. You can specify computed fields. You cannot

specify word-processing or multiple fields. By default, fields are returned

in external format. The “I” suffix (described below) can be appended to

the field number to get the VA FileMan internal format of the field.

 Computed Expression—This specifier causes the Finder to return the

result of a computed expression.

VA FileMan 22.2

Developer’s Guide 159 January 2017

 REF: For more information on computed expression syntax, see

the “Computed Expressions” section in the VA FileMan

Advanced User Manual.

 IX—This returns for each record, the values from the index on which the

lookup match was made. The number of index values returned depends

on the number of data value subscripts in the starting lookup index. If a

subscript in the index is derived from a field, the external format of that

field is returned by default. Otherwise, the value is returned directly as it

appears in the index. The “I” suffix (described below) can be appended

to IX to get the internal index values. The index values are returned in

the “ID” nodes as described in the Output section below.

 NOTE: For records located on a mnemonic index entry, the

value from the index entry is always returned, rather than its

corresponding external field value.

 FID—This returns the fields display identifiers (i.e., field identifiers). By

default, the field values are returned in external format. The “I” suffix

(described below) can be appended to FID to get the VA FileMan

internal format of the field identifiers.

 WID—This returns the fields WRITE (display only) identifiers. The

Finder executes each WRITE identifier’s M code and copies contents of

^TMP(“DIMSG”,$J) to the output. You must ensure that the WRITE

identifier code issues no direct I/O, but instead calls EN^DDIOL.

 NOTE: The “I” suffix, described below, cannot be used with

“WID” and generates an error.

 E suffix—You can append an “E” to a field number, the specifier “IX”,

or the specifier “FID” to force the fields to be returned in external

format. You can use both the “E” and “I” suffix together (e.g., .01EI) to

return both the internal and external value of the field.

 I suffix—You can append an “I” to a field number, the specifier “IX”, or

the specifier “FID” to force the fields to be returned in VA FileMan

internal format. You can use both the “E” and “I” suffix together

(e.g., .01IE) to return both the internal and external value of the field.

 - prefix—A minus sign (-) prefixing one of the other field specifiers tells

the Finder to exclude it from the returned list. This could be used, for

example, in combination with the “FID” specifier to exclude one of the

identifier fields. For example, if Field 2 was one of the field identifiers

for a file, “FID;-2” would output all of the field identifiers except for

Field 2.

 @—This suppresses all the default values normally returned by the

Finder, except for the IEN and any fields and values specified in the

FIELDS parameter. It is recommended that developers always use the

“@” specifier in Finder calls. Use of the “@” specifier allows the

developer to control exactly what is returned in the output.

VA FileMan 22.2

Developer’s Guide 160 January 2017

 REF: For the default values normally returned by the Finder, see

the “Default Values” section.

Default Values:

If you do not pass anything in the FIELDS parameter, the Finder returns:

 IEN

 .01 field in VA FileMan internal format

 Any field display identifiers

 Any WRITE (display-only) identifiers

 Results of executing the Finder’s IDENTIFIER parameter

If you do pass a FIELDS parameter, the Finder returns (unless you use the @

field specifier):

 IEN

 .01 field in VA FileMan internal format

 Fields and values specified by the FIELDS parameter

 Any WRITE (display-only) identifiers

 Results of executing the Finder’s IDENTIFIER parameter

flags: (Optional) Flags to control processing. This parameter lets the caller adjust the

Finder’s algorithm. The possible values are:

 A—Allow pure numeric input to always be tried as an IEN. Normally,

the Finder will only try pure numbers as IENs if:

o File has a .001 field

o Its .01 field is not numeric and the file has no lookup index.

When this flag is used, records that match other numeric interpretations

of the input is found in addition to a record with a matching IEN. For

example, a lookup value of “2” would match a record with a lookup field

of “2FMPATIENT” as well as a record with an IEN of 2. If more than

one match is found, all matching records are returned.

 NOTE: If the numeric lookup value is preceded by an accent

grave character (`), lookup interprets the input as an IEN, and

only attempts to match by IEN. The A flag is not required in this

case.

VA FileMan 22.2

Developer’s Guide 161 January 2017

 B—B index used on lookups to pointed-to files. Without the B flag, if

there are cross-referenced pointer fields in the list of indexes to use for

lookup then:

o For each cross-referenced pointer field, VA FileMan checks all

lookup indexes in each pointed-to file for a match to X (time-

consuming).

AND

o If X matches any value in any lookup index (not just on the .01 field)

in a pointed-to file and the IEN of the matched entry is in the home

file’s pointer field cross-reference, VA FileMan considers this a

match (perhaps not the lookup behavior desired).

The B flag prevents this behavior by looking for a match to X only in the

“B” index (.01 field) of files pointed to by cross-referenced pointer

fields. This makes lookups quicker and avoids the risk of VA FileMan

matching an entry in the pointed-to file based on something other than

the .01 field.

 REF: For an explanation of the “Lookup Index” and for more

information on use of the B flag, see the “Details and Features”

and “Examples” sections.

 C—Use the Classic way of performing lookups on names (i.e., like the

classic VA FileMan lookup routine ^DIC). If C is passed in the FLAGS

parameter and, for example, the user enters a lookup value of “Fme,O”,

the Finder find “Fmemployee,One” but also “ Fmemployee,Two O.” The

Finder takes the first comma piece of the lookup value “Fme”, and looks

for partial matches to that. It then takes the second comma piece of the

lookup value “O” and looks for partial matches to “O” on the second or

any other piece of the value on the entry being examined. It uses any

punctuation or space for a delimiter.

The default, without passing C in the FLAGS parameter, look for partial

matches only on the second comma-piece; thus, in our example, finding

“Fmemployee,One” but not “Femployee,Two O.”. It uses only comma

for a delimiter. The old style of comma-piece processing can be quite

slow, especially with common names like “Fmemployee”.

 E—Errors are ignored. When returning external values without the “E”

flag, results will be truncated if invalid data (e.g., an incorrect code in a

set of codes field) is encountered. An error will be produced. The “E”

flag suppresses the error and continues the reporting of results. The data

value for the entry with invalid data is set to null.

If internal values for a field are being returned, the value stored in the

database for the field will be returned even if that value is invalid

whether or not the “E” flag is set.

To assure that every entry is returned, regardless of the validity of the

data, set the “E” flag.

 K—Primary Key used for starting index. If no index is specified in the

INDEXES parameter, this flag causes the Finder to use the Uniqueness

VA FileMan 22.2

Developer’s Guide 162 January 2017

index for the Primary Key as the starting index for the search. Without

the K flag, or if there is no Primary Key for this file (in the KEY file

[#.31]), the Finder defaults to the “B” index.

 M—Multiple index lookup allowed. If more than one index is passed in

the INDEXES parameter, all indexes in the list are searched. Otherwise,

the M flag causes the Finder to search the starting index and all indexes

that alphabetically follow it. This includes both indexes from the

traditional location in the data dictionary, as well as lookup indexes

defined on the INDEX file (#.11) that have an “L” (for LOOKUP) in the

“Use” field.

The starting index is taken from the INDEXES parameter. If that is null,

the search begins with the default starting Index (see K flag description

above).

 NOTE: If the first index passed in the INDEXES parameter is a

compound index, the M flag is removed and only that one index

is searched.

 REF: For more information, see “Lookup Index” in the “Details

and Features” section.

 O—Only find exact matches if possible. The Finder first searches for

exact matches on the requested Indexes; if any are found, it returns all

exact matches to the lookup value. Only if it finds none in the file does it

search for partial matches, returning every partial match. For example, if

the lookup value is “FMUSER” and the file contains entries “FMUSER”

and “FMUSER,ONE”, only the first record is returned. If the first record

did not exist, the Finder would return “ FMUSER,ONE “ as a match. If

FLAGS does not contain an O, the Finder returns all matches, partial and

exact.

If the lookup is done on a compound index, exact matches must be made

for every data value subscript in the index in order to consider the entry

to be an exact match.

 P—Pack output. This flag changes the Finder’s output format to pack the

information returned for each record onto a single node per record. A

MAP node is introduced to make it easier to locate di data elements in

the output.

 REF: For more information, see the “Output,” “Details and

Features,” and “Examples” sections.

 Q—Quick lookup. If this flag is passed, the Finder assumes the passed-

in value is in VA FileMan internal format. The Finder performs NO

transforms of the input value, but only tries to find the value in the

specified lookup indexes. Therefore, when the Q flag is passed, the

lookup is much more efficient. If the FLAGS parameter does not contain

a Q, the Finder assumes the lookup value is an external or user-entered

value and performs all normal transforms as documented below.

VA FileMan 22.2

Developer’s Guide 163 January 2017

 U—Unscreened lookup. This flag makes the Finder ignore any whole

file screen [stored at ^DD(file#,0,”SCR”)] on the file specified in the

FILE parameter.

 NOTE: Passing this flag does not make the Finder ignore the

SCREEN parameter.

 X—EXact matches only. The Finder returns every exact match to the

lookup value on the requested Indexes. Any partial matches present in

the file are ignored, and transforms, such as changing the lookup value to

uppercase, are not performed. For example, in the scenarios described

under the O flag, the Finder behaves identically in the first situation, but

under the second it returns no matches, since “FMUSER,ONE” is not an

exact match to “FMUSER”. If both the O and X flags are passed, the O

flag is ignored. If the lookup is done on a compound index, exact

matches must be made for every data value subscript in the index.

[.]value: (Required) The lookup values. These should be in external format as they would

be entered by an end-user, unless the Q flag is used. If the lookup index is

compound, then lookup values can be provided for each of the data value

subscripts in the index. In that case, VALUE is passed by reference as an array

where VALUE(n) represents the lookup value to be matched to the nth subscript

in the index. If only one lookup value is passed in VALUE, it is assumed to apply

to the first data value subscript in the index.

In addition, certain values generate special behavior by the Finder as follows:

 Control characters—This value always results in no matches. Control

characters are not permitted in the database.

 ^ (Caret [shift-6])—This value always results in no matches. This single

character value signifies to VA FileMan that the current activity should

be stopped.

 “” (empty string)—On single field indexes, this value always results in

no matches. The empty string, used by VA FileMan to designate fields

that have no value, cannot be found in VA FileMan indexes. However, if

the lookup uses a compound index, VALUE(n) can be null for any of the

lookup values as long as at least one of them is non-null. If VALUE(1) is

null, it can make the lookup slower. If VALUE(n) is null, all non-null

values for that subscript position are returned.

 “ ” (space character)—This value indicates that the Finder should

return the current user’s previous selection from this file. This

corresponds to the “Spacebar Recall” feature of VA FileMan’s user

interface. If VA FileMan has no such previous selection for this user, or

if this selection is now prohibited from selection somehow (see

discussion of SCREEN below), then the Finder returns no matches. The

Finder itself never preserves its found values for this recall; applications

wishing to preserve found values should call the RECALL^DILFD API.

The special lookup characters should appear either in VALUE or in

VALUE(1).

VA FileMan 22.2

Developer’s Guide 164 January 2017

 “`”-Number (accent-grave followed by a number)—This indicates

that the Finder should select the entry whose internal entry number

equals the number following the accent-grave character. This

corresponds to an equivalent feature of VA FileMan’s user interface. If

this entry is prohibited from selection, the Finder returns no match. The

use of ‘-number input does not require passing A in the FLAGS

parameter. The special lookup characters should appear either in VALUE

or in VALUE(1).

 Numbers—The Finder tries strictly numeric input as an IEN under any

of the following four conditions:

o Caller passes A in the FLAGS parameter.

o File has a .001 field.

o File’s .01 field is not numeric and the file has no lookup index.

o INDEXES parameter contains “#” as one of its index names.

In all cases, the numeric lookup value is expected to be in either VALUE

or VALUE(1). In condition 4, if the “#” is the only INDEX, and if the

lookup value does not match an IEN, the lookup fails; otherwise, the

Finder continues the search using the other indexes.

In conditions 1, 2 and 3, strictly numeric input differs from `-numeric

input in that whether or not a record corresponding to this IEN exists or

is selectable, the Finder proceeds with a regular lookup, using the

numeric value to find matches in the file’s indexes. Even used this way,

however, numeric input has the following special restriction: it is not

used as a lookup value in any indexed pointer or variable pointer field

(unless Q is passed in the FLAGS parameter).

For example, suppose an application performs a Finder call on the

(fictitious) EMPLOYEE file, passing a lookup value of 12; that the

(fictitious) EMPLOYEE file points to the STATE file (#5), in which

Washington is record number 12; and that the (fictitious) EMPLOYEE

file’s pointer to the STATE file (#5) is indexed. The application would

not be able to use the input value of 12 to find every employee who lives

in Washington state.

number: (Optional) The maximum number of entries to find. If the Finder actually

matches the input to this many entries, it breaks out of its search and returns what

it has found so far. In such a situation, there is no way for the Finder to resume its

search later where it left off. A value of “*” designates all entries.

Defaults to “*”.

[.]indexes: (Optional) The indexes the Finder should search for matches. This parameter

should be set to a list of index names separated by ^ characters. This parameter

specifies which indexes to check and the order in which to check them. The

caller does not need to pass the M flag for the INDEXES parameter to work

properly. For example, a value of “B^C^ZZALBERT^D” specifies four indexes

to check in the order shown.

VA FileMan 22.2

Developer’s Guide 165 January 2017

If the first index passed is a compound index, only that one index can be in the

list. Attempting to put more than one index in the list when the first one is

compound generates an error. If the first index in the list is a single subscript

index, however, compound indexes can follow that one in the list. In that case,

the lookup expects only one lookup value and only the first subscript of any

compound index is checked for matches.

If no index name, or only one index name, is passed in the INDEXES parameter,

and if the FLAGS parameter contains an M, then the Finder does the search

using the starting index, as well as all indexes that follow the starting one

alphabetically (unless the starting index is compound; see paragraph above).

 REF: See also the documentation on the M flag.

If the index is not specified, the default starting index is “B” unless the FLAGS

parameter contains a K, in which case the default is the Uniqueness Index

defined for the Primary Key on the file.

Mnemonic cross-references folded into the specified index are included in the

output.

When the first subscript of one of the indexes on the file you are searching

indexes a pointer or variable pointer, then the Finder searches the pointed-to file

for matches to the lookup value. Array entries can be passed in the INDEXES

parameter to control this search on the pointed-to file. Suppose the name of the

array is NMSPIX. Then you can set

NMSPIX(“PTRIX”,from_file#,pointer_field#,to_file#)=

“^”_delimited_index_list. This array entry allows the user to pass a list of

indexes that is used when doing the search on the pointed-to file.

For example, if your File #662001 has a pointer Field #5 to File #200 (NEW

PERSON), and you wanted the lookup on Field #5 to find entries in the NEW

PERSON file (#200) only by name (“B” index), or by the first letter of the last

name concatenated with the last 4 digits of the social security number (“BS5”

index), set NMSPIX(“PTRIX”,662001,5,200)=“B^BS5”.

[.]screen: (Optional) Entry Screen. The screen to apply to each potential entry in the

returned list to decide whether or not to include it. This can be set to any valid M

code that sets $TEST to 1 if the entry should be included, to 0 if not. This is

exactly equivalent to the DIC(“S”) input variable for the Classic VA FileMan

lookup ^DIC. The Finder executes this screen in addition to any SCR node

(whole-file screen) defined on the data dictionary for the file. Optionally, the

screen can be defined in an array entry subscripted by “S” [e.g., SCR(“S”)],

allowing additional screen entries to be defined for variable pointer fields as

described below.

The entry screen code can rely upon the following:

 Naked indicator—Zero-node of entry’s record.

 D—Index being traversed.

 DIC—Open global reference of file being traversed.

 DIC(0)—Flags passed to the Finder.

VA FileMan 22.2

Developer’s Guide 166 January 2017

 Y—Record number of entry under consideration.

 Y() array—For subfiles, descendants give record numbers for all upper

levels. Structure resembles the DA array as used in a call to the Classic

VA FileMan edit routine ^DIE.

 Y1—IENS equivalent to Y array.

The code can also safely change any of these values.

For example, “I Y<100” ensures that only records with an internal entry number

less than 100 are accepted as matches.

 REF: For an explanation of the other conditions and screens involved in

finding an entry, see the “Details and Features” section.

Defaults to adding no extra conditions to those listed in that section.

Variable Pointer Screen. If one of the fields indexed by the cross-reference

passed in the INDEXES parameter is a variable pointer, then additional screens

equivalent to the DIC(“V”) input variable to Classic VA FileMan lookup ^DIC

can also be passed. Suppose the screens are being passed in the SCR array. Then

for a simple index with just one data value field, the code can be passed in

SCR(“V”). For simple or compound indexes, screens can be passed for any

indexed fields that are variable pointers in the format SCR(“V”,n) where “n”

represents the subscript location of the variable pointer field on the index.

The Variable Pointer screen restricts the user’s ability to see entries on one or

more of the files pointed-to by the variable pointer. The screen logic is set equal

to a line of M code that returns a truth value when executed. If it evaluates

TRUE, then entries that point to the file can be included in the output; if

FALSE, any entry pointing to the file is excluded. At the time the code is

executed, the variable Y(0) is set equal to the information for that file from the

data dictionary definition of the variable pointer field. You can use Y(0) in the

code set into the variable pointer screen parameter. Y(0) contains:

Table 42: FIND^DIC() API—Variable Pointer Screen: Y(0)

^-Piece Contents

Piece 1
File number of the pointed-to file.

Piece 2
Message defined for the pointed-to file.

Piece 3
Order defined for the pointed-to file.

Piece 4
Prefix defined for the pointed-to file.

Piece 5
y/n indicating if a screen is set up for the pointed-to file.

Piece 6
y/n indicating if the user can add new entries to the
pointed-to file.

All of this information was defined when that file was entered as one of the

possibilities for the variable pointer field.

For example, suppose your .01 field is a variable pointer pointing to files 1000,

2000, and 3000. If you only want the user to be able to enter values from files

1000 or 3000, you could set up SCR(“V”) like this:

VA FileMan 22.2

Developer’s Guide 167 January 2017

S SCR(“V”)=“I +Y(0)=1000!(+Y(0)=3000)”

identifier: (Optional) The text to accompany each found entry to help identify it to the end

user. This should be set to M code that calls the EN^DDIOL utility to load

identification text. The identification text generated by this parameter is listed

after that generated by any WRITE identifiers on the file itself. The code should

not issue WRITE commands.

For example, a value of “D EN^DDIOL(““KILROY WAS HERE!”“)” would

include that string with each entry returned, as a separate node under the

“ID”,”WRITE” nodes of the output array.

This code relies upon all of the same input as the SCREEN parameter described

above and can safely change the same things. Defaults to no code.

target_root: (Optional) The array that should receive the output list of found entries. This

must be a closed array reference and can be either local or global.

If the TARGET_ROOT is not passed, the list is returned descendent from

^TMP(“DILIST”,$J).

msg_root: (Optional) The array that should receive any error messages. This must be a closed array

reference and can be either local or global. For example, if MSG_ROOT equals “OROUT(42)”, any

errors generated appear in OROUT(42,”DIERR”).

If the MSG_ROOT is not passed, errors are returned descendent from ^TMP(“DIERR”,$J).

Output

target_root: The examples in this section assume that the output from the Finder was returned

in the default location descendent from ^TMP(“DILIST”,$J), but it could just as

well be in an array specified by the caller in the TARGET_ROOT parameter

described above.

There are two different formats possible for the output:

 Standard Output Format

 Packed Output Format (returned when the P flag is included in the

FLAGS parameter)

Standard Output Format

The format of the Output List is:

 Header Node

Unless the Finder has run into an error condition, it always returns a header node for its output

list, even if the list is empty, because no matches were found. The header node, on the zero node

of the output array, has this format:

^TMP(“DILIST”,$J,0) = # of entries found ^ maximum

requested ^any more? ^ results flags

o The # of entries found is equal to or less than the maximum requested.

o The maximum requested should equal the NUMBER parameter, or, if NUMBER was not

passed, “*”.

VA FileMan 22.2

Developer’s Guide 168 January 2017

o The any more? value is 1 if there are more matching entries in the file than were returned in

this list, or 0 if not.

o The results flag at present is usually empty. If the output was packed and some of the data

contained embedded “^” characters, the results flag contains the H flag. In the future the

Finder may return other flags as well in this piece, so check whether it contains H, not

whether it equals it.

 REF: For more information, see the “Details and Features” section.

 Record Data

Standard output for the Finder returns its output with each field of each matching record on a

separate node. Records are subscripted in this array by arbitrary sequence number that reflects the

order in which the record was found.

o .01 Field

Unless suppressed with the at-sign (“@”) in the FIELDS parameter (the suggested practice),

the .01 field of each record is returned under the 1 subtree of the array, in VA FileMan

internal format.

^TMP(“DILIST”,$J,1,seq#) = .01_field_value_in_

internal_format

 NOTE: This is different from the Lister, which returns the indexed field values in the

1 subtree.

o IEN

Each record’s IEN is returned under the 2 subtree:

^TMP(“DILIST”,$J,2,seq#) = IEN

The other values returned for each record are grouped together under the “ID” subtree, and

then by record.

o Field Values or Field Identifiers

The output format is the same whether the field value is one of the Field Identifiers from the

data dictionary for the file or the field was requested in the FIELDS parameter.

Field identifiers and field values are subscripted by their field numbers. Each node shows up

as:

^TMP(“DILIST”,$J,”ID”,seq#,field #) = field_value

If both the “I” and “E” suffix are specified, an additional subscript level with the values of

“E” and “I” is used to distinguish the external and internal values of the field. If a field is

only returned in one format, the extra subscript is never included. Values output with the

extra format specifier look like:

VA FileMan 22.2

Developer’s Guide 169 January 2017

^TMP(“DILIST”,$J,”ID”,seq#,field#,”E” or “I”) = field_value

o Output for field specifier “IX” in FIELDS

A field specifier of “IX” in the FIELDS parameter retrieves the value of the indexed fields. In

the output, the values of these fields are returned as follows, where the final subscript is a

sequential number indicating the subscript location in the index.

^TMP(“DILIST”,$J,”ID”,seq#,0,1) = first_subscript_index_value

^TMP(“DILIST”,$J,”ID”,seq#,0,2) = second_subscript_index_value

If both the “I” and “E” suffix are specified, an additional subscript level with the values of

“E” and “I” is used to distinguish the external and internal values from the index. If the

subscript on the index is not derived from a field (i.e., if it’s a computed subscript), then the

internal and external value both are the same; the value directly from the index).

 NOTE: If both the “I” and “E” suffix are specified for a Computed field type that

evaluates to a date, the output will be in external format and will not have the

additional subscript level.

o WRITE Identifiers

WRITE (display-only) identifiers are grouped under the “WRITE” subtree of the “ID” tree,

then by record number. It is the caller’s responsibility to ensure that none of the WRITE

identifiers issue direct READ or WRITE commands and that they issue any output through

the EN^DDIOL API, so it can be collected by the Finder. The output from all the WRITE

identifiers for a single record is listed as individual lines of text:

^TMP(“DILIST”,$J,”ID”,”WRITE”,seq#,line #) = text generated by

 WRITE IDs

o IDENTIFIER parameter

Any text generated by the caller’s IDENTIFIER parameter is returned in the last lines of the

WRITE identifier text.

 Map Node for Unpacked Format

In order to facilitate finding information in the output, a Map Node is built for unpacked format.

This node is returned in ^TMP(“DILIST”,$J,0,”MAP”).

The Map node for unpacked format describes Field Identifier data in the “ID” output data nodes.

It contains “^”delimited pieces described below. The position of the piece in the map node

corresponds to the order in which it can be found in the “ID” output nodes. If the data is returned

in VA FileMan internal format, the piece is followed by “I” (e.g., ”2I” means that the internal

value of Field #2 was returned in the output).

o #: Individually requested field number, where # is the field number, for each field requested

in the FIELDS parameter.

o FID(#): Field Identifier, where # is the field number.

VA FileMan 22.2

Developer’s Guide 170 January 2017

Packed Output Format

If the P flag is used to request packed output, the Finder packs all the return values into one output node

per record. You must ensure that all requested data fits onto a single node. Overflow causes error 206.

Return values containing embedded “^” characters make the Finder encode the output data using HTML

encoding (described in “Details and Features”).

 Header Node

Identical to Standard Output Format.

 Record Data

Values in the output are delimited by “^” characters. Piece 1 is always the IEN. The values of

other pieces depend on the value of the FIELDS parameter. If the FIELDS parameter is not

passed, each record’s packed node follows this format:

^TMP(“DILIST”,$J,seq#,0)=IEN^Internal_.01_field_value^field_Identifiers^Writ

e_Identifiers^Output_from_Identifier_parameter

Field Identifiers are sequenced by field number. Output values specified by the FIELDS

parameter are packed in the order in which they occur in the FIELDS parameter. WRITE

identifiers are packed in the same order as their subscripts occur in the ID subtree of the file’s

data dictionary.

To parse the output of the packed nodes, use the MAP node described below.

 Map Node for Packed Format

Because the packed format is not self-documenting and because individual field specifiers can

correspond to a variable number of field values (e.g., FID), the Finder always includes a map

node when returning output in Packed format. This node is returned in

^TMP(“DILIST”,$J,0,”MAP”).

Its value resembles a data node’s value in that it has the same number of ^-pieces, but the value

of each piece identifies the field or value used to populate the equivalent location in the data

nodes. The possible values for each piece in the map node are:

o IEN: the IEN

o 01: the .01 field

o FID(#): Field identifier, where # is the field number of the identifier

o WID(string): WRITE identifier, where string is the value of the subscript in the ^DD where

the identifier is stored (e.g. “WRITE”)

o IDP: Identifier parameter

o IX(n): Indexed field values, where “n” refers to the subscript position in the index

VA FileMan 22.2

Developer’s Guide 171 January 2017

o #: Individually requested field, by field number

 NOTE: For any piece except IEN, WID or IDP, if the internal value is to be returned,

the piece is followed by “I”. Thus, instead of IX(1), you would see IX(1)I, indicating

that the internal index value was being returned.

For example, the map node for a Finder call on the OPTION file (#19), if FIELDS =>

“3.6I;3.6;4”, might look like this:

^TMP(“DILIST”,$J,0,”MAP”) = “IEN^.01^3.6I^3.6^4”

3.5.8.1 Examples

3.5.8.1.1 Example 1

First, do a lookup on the OPTION file (#19), using the “C” index (Upper Case Menu Text). Let the

Finder return default output, so you get the .01 field, the IEN, and the Identifier field (#1, Menu Text).

Figure 142: FIND^DIC() API—Example 1: Input and Output

>D FIND^DIC(19,”“,”“,”“,”STAT”,”“,”C”,”“,”“,”OUT”)

OUT(“DILIST”,0)=2^*^0^

OUT(“DILIST”,0,”MAP”)=FID(1)

OUT(“DILIST”,1,1)=DISTATISTICS

OUT(“DILIST”,1,2)=ZISL STATISTICS MENU

OUT(“DILIST”,2,1)=15

OUT(“DILIST”,2,2)=187

OUT(“DILIST”,”ID”,1,1)=Statistics

OUT(“DILIST”,”ID”,2,1)=Statistics Menu

3.5.8.1.2 Example 2

This example looks in the OPTION file (#19) for entries that are at least partial matches to “DIS”. It uses

the “B” index and, since you do not include the M flag to search multiple indexes. Look only on the “B”

index; use the “@” in the FIELDS parameter to suppress the default values and specify that you want the

.01 field NAME, field 1 DESCRIPTION, and the index values in the output.

Figure 143: FIND^DIC() API—Example 2: Input and Output

>D FIND^DIC(19,“”,“@;.01;1;IX”,“”,“DIS”,5,“B”,“”,“”,“OUT”)

OUT(“DILIST”,0)=2^5^0^

OUT(“DILIST”,0,”MAP”)=IX(1)^.01^1

OUT(“DILIST”,2,1)=11

OUT(“DILIST”,2,2)=15

OUT(“DILIST”,”ID”,1,0,1)=DISEARCH

OUT(“DILIST”,”ID”,1,.01)=DISEARCH

OUT(“DILIST”,”ID”,1,1)=Search File Entries

OUT(“DILIST”,”ID”,2,0,1)=DISTATISTICS

OUT(“DILIST”,”ID”,2,.01)=DISTATISTICS

OUT(“DILIST”,”ID”,2,1)=Statistics

VA FileMan 22.2

Developer’s Guide 172 January 2017

3.5.8.1.3 Example 3

Next, do a call almost identical to Example 2, but this time use the M flag to indicate that you want to

search all the lookup indexes starting from “B”. This time you get more records back and looking at the

index values in the entries OUT(“DILIST”,”ID”,seq#,0,subscript_location), you see that the new entries

were found on an index other than the “B” index (since the values do not match the .01 field). In fact, they

were found on the index for the field UPPER CASE MENU TEXT (index “C” on the file).

Figure 144: FIND^DIC() API—Example 3: Input and Output

>D FIND^DIC(19,“”,“@;.01;1;IX”,“M”,“DIS”,5,“B”,“”,“”,“OUT”)

OUT(“DILIST”,0)=5^5^1^

OUT(“DILIST”,0,”MAP”)=IX(1)^.01^1

OUT(“DILIST”,2,1)=11

OUT(“DILIST”,2,2)=15

OUT(“DILIST”,2,3)=468

OUT(“DILIST”,2,4)=470

OUT(“DILIST”,2,5)=469

OUT(“DILIST”,”ID”,1,0,1)=DISEARCH

OUT(“DILIST”,”ID”,1,.01)=DISEARCH

OUT(“DILIST”,”ID”,1,1)=Search File Entries

OUT(“DILIST”,”ID”,2,0,1)=DISTATISTICS

OUT(“DILIST”,”ID”,2,.01)=DISTATISTICS

OUT(“DILIST”,”ID”,2,1)=Statistics

OUT(“DILIST”,”ID”,3,0,1)=DISK DRIVE RAW DATA STATISTICS

OUT(“DILIST”,”ID”,3,.01)=XUCM DISK

OUT(“DILIST”,”ID”,3,1)=Disk Drive Raw Data Statistics

OUT(“DILIST”,”ID”,4,0,1)=DISK DRIVE REQUEST QUEUE LENGT

OUT(“DILIST”,”ID”,4,.01)=XUCM DSK QUE

OUT(“DILIST”,”ID”,4,1)=Disk Drive Request Queue Length

OUT(“DILIST”,”ID”,5,0,1)=DISK I/O OPERATION RATE

OUT(“DILIST”,”ID”,5,.01)=XUCM DSK IO

OUT(“DILIST”,”ID”,5,1)=Disk I/O Operation Rate

3.5.8.1.4 Example 4

In this example, use the K flag to do a lookup on a file with a Primary Key made up of the .01 field

(NAME) and field 1 (DATE OF BIRTH). Suppress all of the output with “@” and then ask only for both

the internal and external index values. Notice that the P flag causes the output to be returned in Packed

format. The MAP node tells you what is in each “^” piece of the output.

Figure 145: FIND^DIC() API—Example 4: Input and Output

>K VAL S VAL(1)=“ADD”,VAL(2)=“01/01/69”

>D FIND^DIC(662001,”“,”@;IXIE”,”PK”,.VAL,”“,”“,”“,”“,”OUT”)

OUT(“DILIST”,0)=1^*^0^

OUT(“DILIST”,0,”MAP”)=IEN^IX(1)I^IX(2)I^IX(1)^IX(2)

OUT(“DILIST”,1,0)=15^ADDFIFTEEN^2690101^ADDFIFTEEN^JAN 01, 1969

VA FileMan 22.2

Developer’s Guide 173 January 2017

3.5.8.1.5 Example 5

This example demonstrates how the B flag works. You have a file whose .01 field points to the NEW

PERSON file (#200). When you do a lookup without the B flag, you find several entries; but if you look

at the .01 field, you see that not all of them begin with the lookup value “F”. The entry

“FMPERSON,FOUR” was found because his initials “FF” begin with “F” and “FMPERSON,FIVE” was

found because her nickname “FILLY” begins with “F”.

Figure 146: FIND^DIC() API—Example 5: Input and Output

>D FIND^DIC(662002,”“,”@;.01”,”P”,”F”,”“,”B”,”“,”“,”OUT”)

OUT(“DILIST”,0)=5^*^0^

OUT(“DILIST”,0,”MAP”)=IEN^.01

OUT(“DILIST”,1,0)=7^FMPERSON,FOUR

OUT(“DILIST”,2,0)=3^FMPERSON,SIX

OUT(“DILIST”,3,0)=4^FMPERSON,SEVEN

OUT(“DILIST”,5,0)=1^FMPERSON,FIVE

OUT(“DILIST”,6,0)=13^FMPERSON,FIVE

When you use the B flag, the FINDER looks ONLY at the “B” index of the NEW PERSON file (#200).

Figure 147: FIND^DIC() API—Example 5: Input with “B” Flag and Output

>D FIND^DIC(662002,”“,”@;.01”,”PB”,”F”,”“,”B”,”“,”“,”OUT”)

>ZW OUT

OUT(“DILIST”,0)=2^*^0^

OUT(“DILIST”,0,”MAP”)=IEN^.01

OUT(“DILIST”,1,0)=3^FMPERSON,SIX

OUT(“DILIST”,2,0)=4^FMPERSON,SEVEN

VA FileMan 22.2

Developer’s Guide 174 January 2017

3.5.8.1.6 Example 6

This example shows use of the new INDEX parameter array that can control lookup on a pointed-to file.

In this example, the .01 field of File #662002 points to the NEW PERSON file (#200). Here is a

demonstration of the different results you get when you control the list of indexes used when the Finder

goes off to File #200 to look for matches to your lookup value. It shows the same call, with and without

the new INDEX parameter array.

First, make a call without the new parameter, using a lookup value of “T”. There are indexes on both the

NICKNAME and the INITIALS field. Because you did not specify which indexes to use, VA FileMan

uses all lookup indexes during the lookup on the pointed-to file. In this call, you pick up several entries.

The NICKNAME for EIGHT FMPERSON happens to be “TOAD”, and the INITIALS field for TWO

FMPERSON is “TF”.

Figure 148: FIND^DIC() API—Example 6: Input with “T” Lookup Value and Output

>S INDEX=“B^C^E”

>LD FIND^DIC(662002,,”.01;IXIE;@”,”PM”,”T”,,INDEX,,,”TKW”)

>ZW TKW

TKW(“DILIST”,0)=4^*^0^

TKW(“DILIST”,0,”MAP”)=IEN^.01^IX(1)I^IX(1)

TKW(“DILIST”,1,0)=4^ FMPERSON,EIGHT^9^FMPERSON,EIGHT

TKW(“DILIST”,2,0)=12^T_FMPERSON,TWENTY^12^T_FMPERSON,TWENTY

TKW(“DILIST”,3,0)=1^FMPERSON,TWO^4^FMPERSON,TWO

TKW(“DILIST”,4,0)=13^FMPERSON,TWO^4^FMPERSON,TWO

This time, INDEX still contains “B” and “E”, so you still look at those indexes on our starting File

#662002, but you set the new parameter so that it only looks at the “B” and “BS5” indexes on the

pointed-to File #200. This time you do not find any entries whose INITIALS or NICKNAME field start

with “T”. You just pick up the person whose last name starts with “T”.

Figure 149: FIND^DIC() API—Example 6: Input with “B” and “BS5” Lookup Values and Output

>S INDEX(“PTRIX”,662002,.01,200)=“B^BS5”

>D FIND^DIC(662002,,”.01;IXIE;@”,”PM”,”T”,,.INDEX,,,”TKW”)

>ZW TKW

TKW(“DILIST”,0)=1^*^0^

TKW(“DILIST”,0,”MAP”)=IEN^.01^IX(1)I^IX(1)

TKW(“DILIST”,1,0)=12^T_FMUSER,TWENTY^12^T_FMUSER,TWENTY

VA FileMan 22.2

Developer’s Guide 175 January 2017

3.5.8.2 Error Codes Returned

Table 43: FIND^DIC() API—Error Codes Returned

Code Description

120 Error occurred during execution of a FileMan hook.

202 An input parameter is missing or not valid.

204 The input value contains control characters.

205 The File and IENS represent different subfile levels.

206 The data requested for the record is too long to pack together.

207 The value is too long to encode into HTML.

301 The passed flags are unknown or inconsistent.

304 The IENS lacks a final comma.

306 The first comma-piece of the IENS should be empty.

401 The file does not exist.

402 The global root is missing or not valid.

406 The file has no .01 field definition.

407 A word-processing field is not a file.

420 The index is missing.

501 The file does not contain that field.

520 That kind of field cannot be processed by this utility.

8090 Pre-lookup transform (7.5 node).

8095 First lookup index is compound, so “M”ultiple index lookups not allowed.

The Finder can also return any error returned by $$EXTERNAL^DILFD.

3.5.8.3 Details and Features

3.5.8.3.1 Lookup Index

If the “Use” flag for an index entry in the INDEX file (#.11) is set to “L” for Lookup, the index name

must be “B” or must alphabetically follow “B”. Also, traditional indexes whose names follow “B” are

considered to be Lookup type indexes.

What does this mean? For a Finder call (FIND^DIC or $$FIND1^DIC), it means that if M is passed in the

FLAGS parameter and a list of indexes is not specified in the INDEXES parameter, then VA FileMan

automatically uses any lookup type index it finds by ordering through the index name alphabetically,

starting with the beginning index (“B”, unless a different one is specified in the input parameters). Any

index, however, can be used for lookup if it is specified in the INDEXES parameter. The developer

should be careful to make sure the MUMPS-type indexes are formatted similar to VA FileMan regular

indexes, with the data subscripts followed by the IEN at the level of the file/subfile passed in the FILE

input parameter.

VA FileMan 22.2

Developer’s Guide 176 January 2017

3.5.8.3.2 Screens Applied

Valid Entry Conditions. To be considered for selection, an entry must have a properly formatted index to

get the Finder’s attention and a defined zero-node with a non-null first piece.

File Pre-Lookup Action (7.5 Node). Prior to performing any search of the database whatsoever, the Finder

executes the 7.5 Node for the file. This code can alter the variable X, the lookup value, to alter the value

used by the Finder in its search.

 NOTE: The 7.5 node only works on a simple index, not a compound one. It assumes just one

lookup value X.

Call Pre-Selection Action. The SCREEN parameter is executed once a potential match has been identified

(as described in the “Input Parameters” section).

File Pre-Selection Action. If the file has a pre-selection action defined (the SCR node), then after passing

the pre-selection action for the call, the entry must also pass the action for the whole file.

3.5.8.3.3 Partial Matches

For most values on most indexes, an input value partially matches an entry if the index value begins with

the input value (e.g., index value of “FMEMPLOYEE,ONE” partially matches input value of

“FMEMPLOYEE”). The exception is numeric input. On a numeric field’s index, a numeric input must

match exactly.

If the lookup value is numeric but the cross-referenced field is free-text, the Finder finds all partial

matches to the numeric lookup value. For example, lookup value 1 matches to 1, 199, 1000.23 and 1ABC.

3.5.8.3.4 Space Bar Recall

Although the Finder honors the “Spacebar Recall” feature whenever passed the input value “ “,

selections made through the Finder are not stored for later use by Spacebar Recall because the Finder has

no way of knowing whether the selection results from interaction with the user. Only deliberate user

selections should affect the Spacebar Recall value. As a result, to support this feature, applications should

call the RECALL^DILFD API when managing the user interface whenever the user makes a selection.

3.5.8.3.5 Lookup Value Transforms List

The original lookup values passed to the Finder are not the only values used during the lookup. Certain

transforms are done on the original lookup value and matches are made for these transformed values

along with the original ones. The Q flag suppresses all of these transforms and looks on the indexes only

for the original lookup value.

 REF: for more information, see the “Upper Case”, “Long Input”, “Comma-Piecing” and “Data

Type Transforms” sections.

3.5.8.3.6 Upper Case

The first basic transform ensures that lookups succeed when users leave their Caps Lock keys off. If the

VALUE parameter contains any lowercase characters, the Finder also looks for an all-uppercase version

of the value.

3.5.8.3.7 Long Input

The second basic transform ensures that lookups work properly when lookup and field values are longer

than the maximum length of a data-values subscript in the index. This is 30 characters for traditional

indexes, but is set by the developer for indexes defined in the INDEX file (#.11).

VA FileMan 22.2

Developer’s Guide 177 January 2017

3.5.8.3.8 Comma-Piecing

The third and final basic transform provides a special feature of VA FileMan’s lookup. This feature,

known as comma-piecing, helps the user enter fewer characters to distinguish between similar entries. VA

FileMan uses lookup values that contain embedded commas to build a pattern match based on all the

comma-pieces. For example, distinguishing between “FMUSER,ONE FRANCIS” and “FMUSER,TWO

FRANK” would normally take eight keystrokes-”FMUSER,T”-but comma-piecing lets the user do it in

three: “F,T”.

Although commas are used to trigger the comma-piecing feature, the characters used to break up the entry

in the file can be any kind of punctuation, not only commas. For example, “T,R” matches “THE ROAD

LESS TRAVELED”.

If the C flag is used in the FLAGS parameter, then the second comma piece of the lookup value can be a

match to any of the pieces in the file entry following the first one. So, for example, “F,S” distinguishes

“FMUSER,ONE SEBASTIAN” from his sons “FMUSER,ONE CHRISTIAN” and “FMUSER,ONE

CHRISTOPH FRIEDRICH”.

3.5.8.3.9 Data Type Transforms

Indexes store the VA FileMan internal format of field values, but users typically enter the external format

as lookup values. Therefore, the Finder attempts to do conversions of the lookup values when it searches

an index on a Date, Set of Codes, Pointer or Variable Pointer field.

For example, a lookup value of “t” would also be evaluated as today’s date in internal VA FileMan

format, if the Finder is searching the index on a date type field, since VA FileMan normally recognizes a

user entry of “T” at a date prompt as meaning “TODAY”.

If a Q flag is passed in the FLAGS parameter, no data type transforms are attempted.

 NOTE: The data type transform for indexes on pointer and variable pointer fields involves a

complete lookup on the pointed-to file. For example, if an application calls the Finder with the

input value “W” on a file with an indexed pointer to the STATE file (#5), the Finder locates

every state starting with W (Washington, West Virginia, Wisconsin and Wyoming). It returns

every record in the pointing file that points to one of those states.

Also, if the pointed-to file has indexed pointers or variable pointers, the search continues to these

pointed-to files.

Therefore, to make more efficient searches, and to find just the entries desired, applications

should make use of all available features of the Finder to narrow down the search. For example,

use the INDEXES parameter when appropriate to limit the list of indexes searched, and the B flag

when appropriate to make sure that only the “B” index is searched on any pointed-to file.

3.5.8.3.10 HTML Encoding

Since the Finder uses the “^” character as its delimiter for Packed output, it cannot let any of the data

contain that character. If any does, it encodes all of the data using an HTML encoding scheme.

In this scheme, all “&” characters are replaced with the substring “&” and all “^” characters with

the string “^”. This keeps the data properly parsable and decodable. The data for all records found,

not just the ones with embedded “^”s, are encoded if embedded “^”s are found in the data of any of the

records.

If the Finder has encoded the output, it includes an H flag in ^-piece four of the output header node.

VA FileMan 22.2

Developer’s Guide 178 January 2017

Data can be decoded using the VA FileMan library function call $$HTML^DILF(encoded string,-1). It

can properly decode individual fields or complete packed data nodes.

3.5.8.3.11 WRITE ID Nodes

The Finder executes each individual WRITE ID node from the data dictionary. If an individual node

results in creating multiple lines in the output from the EN^DDIOL calls it contains, then in Standard

Output Format the results appear on multiple lines in the output array. Thus, there is not a direct

correlation between the number of WRITE ID nodes and the number of nodes that are returned in the

output array of a Finder call for each record. In packed output format, each WRITE ID node appears in a

separate “^” piece, and line feeds are designated with a tilde “~” character.

3.5.8.3.12 Repeating a Field in FIELDS parameter

If a field is listed multiple times in the FIELDS parameter, it is returned multiple times in packed output,

but only once in unpacked output. This is because the field number is one of the subscripts of unpacked

output. The exception is when the occurrences are for different formats, internal and external.

3.5.9 $$FIND1^DIC(): Finder (Single Record)

This extrinsic function finds a single record in a file based on input values. If more than one match is

found, the function returns an error. The caller must specify a file number and the input values to be used

for the lookup. The caller can also specify the indexes to be used in the search, and can also pass

screening logic.

 NOTE: $$FIND1 does not honor the Special Lookup or Post-Lookup Action nodes defined in

the data dictionary for a file.

 NOTE: The VA FileMan Database Server (DBS) APIs typically work like their VA FileMan

Classic counterparts. However, the DBS APIs listed below do not perform numeric lookups the

way the classic ^DIC API does:

 FIND^DIC(): Finder

 $$FIND1^DIC(): Finder (Single Record)

 LIST^DIC(): Lister

Rather, these three APIs perform numeric lookups the way ^DIC performs them when the

lowercase “n” flag is set.

REF: For information on the use of the lowercase “n” flag in conjunction with the DIC(0) input

variable, see the “^DIC: Lookup/Add” section in the “Classic VA FileMan API” section.

Format

$$FIND1^DIC(file,iens,flags,[.]value,[.]indexes,[.]screen,msg_root)

Input Parameters

file: (Required) The number of the file or subfile to search. If this parameter is a

subfile, it must be accompanied by the IENS parameter.

iens: (Optional) The IENS that identifies the subfile, if FILE is a subfile number. To

identify a subfile, rather than a subfile entry, leave the first comma-piece empty.

For example, a value of “,67,” indicates that the subfile within entry #67 should

VA FileMan 22.2

Developer’s Guide 179 January 2017

be used. If FILE is a file number, this parameter should be empty. Defaults to no

subfile.

flags: (Optional) Flags to control processing. This parameter lets the caller adjust the

Finder’s algorithm. The possible values are:

 A—Allow pure numeric input to always be tried as an IEN. Normally,

the Finder only tries pure numbers as IENs if:

o File has a .001 field

Or:

o The .01 field is not numeric and the file has no lookup index.

When this flag is used, records that match other numeric interpretations

of the input are found in addition to a record with a matching IEN. For

example, a lookup value of “2” would match a record with a lookup field

of “2ONE” as well as a record with an IEN of 2.

 NOTE: If the numeric lookup value is preceded by an accent

grave character (`), lookup interprets the input as an IEN, and

only attempts to match by IEN. The A flag is not required in this

case.

 B—B index used on lookups to pointed-to files. Without the B flag, if

there are cross-referenced pointer fields in the list of indexes to use for

lookup then:

o For each cross-referenced pointer field, VA FileMan checks all

lookup indexes in each pointed-to file for a match to X (time-

consuming).

And:

o If X matches any value in any lookup index (not just on the .01 field)

in a pointed-to file and the IEN of the matched entry is in the home

file’s pointer field cross-reference, VA FileMan considers this a

match (perhaps not the lookup behavior desired).

The B flag prevents this behavior by looking for a match to X only in the

“B” index (.01 field) of files pointed to by cross-referenced pointer

fields. This makes lookups quicker and avoids the risk of VA FileMan

matching an entry in the pointed-to file based on something other than

the .01 field.

 REF: For an explanation of the “Lookup Index” and for more

information on use of the B flag, see the “Details and Features”

and “Examples” sections.

 C—Use the Classic way of performing lookups on names (i.e., like the

classic VA FileMan lookup routine ^DIC). If C is passed in the FLAGS

parameter and, for example, the user enters a lookup value of “FMU,J”;

the Finder finds “FMUSER,ONE” but also “FMUSER,ONEHUNDRED

J.” The Finder takes the first comma piece of the lookup value “ONE”,

VA FileMan 22.2

Developer’s Guide 180 January 2017

and looks for partial matches to that. It then takes the second comma

piece of the lookup value “J” and looks for partial matches to “J” on the

second or any other piece of the value on the entry being examined. It

uses any punctuation or space for a delimiter.

The default, without passing C in the FLAGS parameter, looks for partial

matches only on the second piece; thus, in the example, finding

“FMUSER,ONE” but not “FMUSER,ONEHUNDRED J.”. The old style

of comma-piece processing can be quite slow, especially with common

names.

 K—Primary Key used for starting index. If no index is specified in the

INDEXES parameter, this flag causes the Finder to use the Uniqueness

index for the Primary Key as the starting index for the search. Without

the K flag, or if there is no Primary Key for this file (in the KEY file

[#.31]), the Finder defaults to the “B” index.

 M—Multiple index lookup allowed. If more than one index is passed in

the INDEXES parameter, all indexes in the list are searched. Otherwise,

the M flag causes the Finder to search the starting index and all indexes

that alphabetically follow it. This includes both indexes from the

traditional location in the data dictionary, as well as lookup indexes

defined on the INDEX file (#.11) that have an “L” (for LOOKUP) in the

“Use” field.

The starting index is taken from the INDEXES parameter. If that is null,

the search begins with the default starting Index (see K flag description

above).

 NOTE: If the first index passed in the INDEXES parameter is a

compound index, the M flag is removed and only that one index

is searched.

REF: For more information, see “Lookup Index” in the “Details

and Features” section.

 O—Only find an exact match if possible. The Finder first searches for an

exact match; if one is found, it is returned. Only if it does not find one in

the file does it search for a partial match. For example, if the lookup

value is “FMUSER” and the file contains entries “ FMUSER” and “

FMUSER,ONE”, only the first record is returned. If the first record did

not exist, the Finder would return “ FMUSER,ONE” as a match.

 NOTE: The presence of a partial match does not constitute an

error condition, because a single exact match is present. If the

FLAGS parameter does not contain O (or an X, see below), the

presence of both partial and exact matches is treated as an error

condition.

If the lookup is done on a compound index, exact matches must

be made for every data value subscript in the index in order to

consider the entry to be an exact match.

VA FileMan 22.2

Developer’s Guide 181 January 2017

 Q—Quick lookup. If this flag is passed, the Finder assumes the passed-

in value is in VA FileMan internal format. The Finder performs no

transforms of the input value, but only tries to find the value in the

specified lookup indexes. Therefore, when the Q flag is passed, the

lookup is much more efficient. If the FLAGS parameter does not contain

a Q, the Finder assumes the lookup value is an external or user-entered

value and performs all normal transforms as documented below.

 U—Unscreened lookup. This flag makes the Finder ignore any whole

file screen (stored at ^DD(file#,0,”SCR”)) on the file specified in the

FILE parameter.

 NOTE: Passing this flag does not make the Finder ignore the

SCREEN parameter.

 X—EXact match only. The Finder returns only an exact match to the

lookup value. Any partial matches present in the file are ignored. For

example, in the scenarios described under the O flag, the Finder behaves

identically in the first situation, but under the second it returns no match,

since “FMUSER,ONE” is not an exact match to “FMUSER”. If both the

O and X flags are passed, the O flag is ignored. If the lookup is done on

a compound index, exact matches must be made for every data value

subscript in the index.

[.]value: (Required) The lookup values. These should be in external format as they would

be entered by an end-user, unless the Q flag is used. If the lookup index is

compound, then lookup values can be provided for each of the data value

subscripts in the index. In that case, VALUE is passed by reference as an array

where VALUE(n) represents the lookup value to be matched to the nth subscript

in the index. If only one lookup value is passed in VALUE, it is assumed to apply

to the first data value subscript in the index.

In addition, certain values generate special behavior by the Finder as follows:

 Control characters—This value always results in no matches. Control

characters are not permitted in the database.

 ^ (Caret [shift-6])—This value always results in no matches. This single

character value signifies to VA FileMan that the current activity should

be stopped.

 “” (The empty string)—On single field indexes, this value always

results in no matches. The empty string, used by VA FileMan to

designate fields that have no value, cannot be found in VA FileMan

indexes. However, if the lookup uses a compound index, VALUE(n) can

be null for any of the lookup values as long as at least one of them is

non-null. If VALUE(1) is null, it can make the lookup slower. If

VALUE(n) is null, all non-null values for that subscript position is

returned.

 “ ” (The space character)—This value indicates that the Finder should

return the current user’s previous selection from this file. This

corresponds to the “Spacebar-Recall” feature of VA FileMan’s user

interface. If VA FileMan has no such previous selection for this user, or

VA FileMan 22.2

Developer’s Guide 182 January 2017

if this selection is now prohibited from selection somehow (see

discussions of SCREEN, below), then the Finder returns no matches. The

Finder itself never preserves its found values for this recall; applications

wishing to preserve found values should call RECALL^DILFD. The

special lookup characters should appear either in VALUE or in

VALUE(1).

 “`”-Number (accent-grave followed by a number)—This indicates

that the Finder should select the entry whose internal entry number

equals the number following the accent-grave character. This

corresponds to an equivalent feature of VA FileMan’s user interface. If

this entry is prohibited from selection, the Finder returns no match. The

use of ‘-number input does not require passing A in the FLAGS

parameter. The special lookup characters should appear either in VALUE

or in VALUE(1).

 Numbers—The Finder tries strictly numeric input as an IEN under any

of the following four conditions:

o Caller passes A in the FLAGS parameter.

o File has a .001 field.

o File’s .01 field is not numeric and the file has no lookup index.

o INDEXES parameter contains “#” as one of its index names.

In all cases, the lookup value is expected to be in either VALUE or VALUE(1).

In condition 4, if the “#” is the only INDEX, and if the lookup value does not

match an IEN, the lookup fails, otherwise, the Finder continues the search using

the other indexes.

In conditions 1, 2 and 3, strictly numeric input differs from `-numeric input in

that whether or not a record corresponding to this IEN exists or is selectable, the

Finder proceeds with a regular lookup, using the numeric value to find matches

in the file’s indexes. Even used this way, however, numeric input has the

following special restriction: it is not used as a lookup value in any indexed

pointer or variable pointer field (unless Q is passed in the FLAGS parameter).

For example, suppose an application performs a Finder call on the (fictitious)

EMPLOYEE file, passing a lookup value of 12; that the (fictitious) EMPLOYEE

file points to the STATE file (#5), in which Washington is record number 12; and

that the (fictitious) EMPLOYEE file’s pointer to the STATE file (#5) is indexed.

The application would not be able to use the input value of 12 to find every

employee who lives in Washington state.

[.]indexes: (Optional) The indexes the Finder should search for a match. This parameter

should be set to a list of index names separated by ^ characters. This parameter

specifies which indexes to check and the order in which to check them. The

caller does not need to pass the M flag for the INDEXES parameter to work

properly. For example, a value of “B^C^ZZALBERT^D” specifies four indexes

to check in the given order.

If the first index passed is a compound index, only that one index can be in the

list. Attempting to put more than one index in the list when the first one is

compound generates an error. If the first index in the list is a single subscript

VA FileMan 22.2

Developer’s Guide 183 January 2017

index, however, compound indexes can follow that one in the list. In that case,

the lookup expects only one lookup value and only the first subscript of any

compound index is checked for matches.

If no index name, or only one index name, is passed in the INDEXES parameter,

and if the FLAGS parameter contains an M, then the Finder does the search

using the starting index, as well as all indexes that follow the starting one

alphabetically (unless the starting index is compound; see paragraph above).

 REF: See also the documentation on the M flag.

If the index is not specified, the default starting index is “B” unless the FLAGS

parameter contains a K, in which case the default is the Uniqueness Index

defined for the Primary Key on the file.

Mnemonic cross-references folded into the specified index are included in the

output.

When the first subscript of one of the indexes on the file you are searching

indexes a pointer or variable pointer, then the Finder searches the pointed-to file

for matches to the lookup value. Array entries can be passed in the INDEXES

parameter to control this search on the pointed-to file. Suppose the name of the

array is NMSPIX. Then you can set

NMSPIX(“PTRIX”,from_file#,pointer_field#,to_file#)=“^”_delimited_index_list

. This array entry allows the user to pass a list of indexes that is used when doing

the search on the pointed-to file.

For example, if your File #662001 has a pointer Field #5 to File #200 (NEW

PERSON), and you wanted the lookup on Field #5 to find entries in the NEW

PERSON file (#200) only by name (“B” index), or by the first letter of the last

name concatenated with the last 4 digits of the social security number (“BS5”

index), set NMSPIX(“PTRIX”,662001,5,200)=“B^BS5”.

[.]screen: (Optional) Entry Screen. The screen to apply to each potential entry in the

returned list to decide whether or not to include it. This may be set to any valid M

code that sets $TEST to 1 if the entry should be included, to 0 if not. This is

exactly equivalent to the DIC(“S”) input variable for the Classic VA FileMan

lookup ^DIC. The Finder executes this screen in addition to any SCR node

(whole-file screen) defined on the data dictionary for the file. Optionally, the

screen can be defined in an array entry subscripted by “S” (for example,

SCR(“S”)), allowing additional screen entries to be defined for variable pointer

fields as described below.

The entry screen code can rely upon the following:

 Naked indicator—Zero-node of entry’s record.

 D—Index being traversed.

 DIC—Open global reference of file being traversed.

 DIC(0)—Flags passed to the Finder.

 Y—Record number of entry under consideration.

VA FileMan 22.2

Developer’s Guide 184 January 2017

 Y() array—For subfiles, descendants give record numbers for all upper

levels. Structure resembles the DA array as used in a call to the Classic

VA FileMan edit routine ^DIE.

 Y1—IENS equivalent to Y array.

The code can also safely change any of these values.

For example, “I Y>99” ensures that only a record numbered 100 or higher can be

accepted as a match.

 REF: For an explanation of the other conditions and screens involved in

finding an entry, see “Details and Features.”

If duplicate entries exist, but only one passes the screens, then that one is

returned and no error is generated. Defaults to adding no extra conditions to those

listed in that section.

Variable Pointer Screen. If one of the fields indexed by the cross-reference

passed in the INDEXES parameter is a variable pointer, then additional screens

equivalent to the DIC(“V”) input variable for Classic VA FileMan lookup ^DIC

can also be passed. Suppose the screens are being passed in the SCR array, then

for a simple index with just one data value field, the code can be passed in

SCR(“V”). For simple or compound indexes, screens can be passed for any

indexed fields that are variable pointers in the format SCR(“V”,n) where “n”

represents the subscript location of the variable pointer field on the index.

The Variable Pointer screen restricts the user’s ability to see entries on one or

more of the files pointed to by the variable pointer. The screen logic is set equal

to a line of M code that returns a truth value when executed. If it evaluates

TRUE, then entries that point to the file can be included in the output; if

FALSE, any entry pointing to the file is excluded. At the time the code is

executed, the variable Y(0) is set equal to the information for that file from the

data dictionary definition of the variable pointer field. You can use Y(0) in the

code set into the variable pointer screen parameter. Y(0) contains:

Table 44: $$FIND1^DIC() API—Variable Pointer Screen: Y(0)

^-Piece Contents

Piece 1
File number of the pointed-to file.

Piece 2
Message defined for the pointed-to file.

Piece 3
Order defined for the pointed-to file.

Piece 4
Prefix defined for the pointed-to file.

Piece 5
y/n indicating if a screen is set up for the pointed-to file.

Piece 6
y/n indicating if the user can add new entries to the pointed-to
file.

All of this information was defined when that file was entered as one of the

possibilities for the variable pointer field.

VA FileMan 22.2

Developer’s Guide 185 January 2017

For example, suppose your .01 field is a variable pointer pointing to Files #1000,

#2000, and #3000. If you only want the user to be able to enter values from Files

#1000 or #3000, you could set up SCR(“V”) like this:

S SCR(“V”)=“I +Y(0)=1000!(+Y(0)=3000)”

msg_root: (Optional) The array that should receive any error messages. This must be a

closed array reference and can be either local or global. For example, if

MSG_ROOT equals “OROUT(42)”, any errors generated appear in

OROUT(42,”DIERR”).

If the MSG_ROOT is not passed, errors are returned descendent from

^TMP(“DIERR”,$J).

Output

The function evaluates to an internal entry number (IEN) if a single match is found, 0 if no matches are

found, or ““ if an error occurred.

3.5.9.1 Examples

3.5.9.1.1 Example 1

In this example, you look for an option DIFG on the OPTION file (#19). You use the M flag to search all

indexes and the X flag to specify that you want exact matches only. It returns the IEN of the entry found.

Figure 150: $$FIND1^DIC() API—Example 1: Input and Output

>W $$FIND1^DIC(19,”“,”MX”,”DIFG”,”“,”“,”ERR”)

327

3.5.9.1.2 Example 2

In this example, you look for an option that is not on the OPTION file (#19). You set up the call exactly

the same as Example 1. This time it returns 0, because no matching entry was found.

Figure 151: $$FIND1^DIC() API—Example 2: Input and Output

>W $$FIND1^DIC(19,”“,”MX”,”DIFG ZZZZ”,”“,”“,”ERR”)

0

VA FileMan 22.2

Developer’s Guide 186 January 2017

3.5.9.1.3 Example 3

In this example, you do the exact same call as in Example 1, but this time you do not include the X flag,

so it finds not only “DIFG”, but also any partial matches to “DIFG”. Since there are several, it cannot find

just one match, so the call fails. The return is null and an error message is returned as well.

Figure 152: $$FIND1^DIC() API—Example 3: Input and Output

>W $$FIND1^DIC(19,”“,”M”,”DIFG”,”“,”“,”ERR”)

DIERR=1^1

ERR(“DIERR”)=1^1

ERR(“DIERR”,1)=299

ERR(“DIERR”,1,”PARAM”,0)=2

ERR(“DIERR”,1,”PARAM”,1)=DIFG

ERR(“DIERR”,1,”PARAM”,”FILE”)=19

ERR(“DIERR”,1,”TEXT”,1)=More than one entry matches the value(s) ‘DIFG’.

ERR(“DIERR”,”E”,299,1)=

3.5.9.1.4 Example 4

In this example, you do two different calls to find an entry on a test file. There are two entries whose .01

field equals “ADDFIFTEEN”. In the first call, you do the lookup on the “B” index and the call fails,

because there are two entries that match the lookup value.

Figure 153: $$FIND1^DIC() API—Example 4: Input and Output: Failure

>W $$FIND1^DIC(662001,”“,”“,”ADDFIF”,”B”,”“,”ERR”)

>ZW ERR

ERR(“DIERR”)=1^1

ERR(“DIERR”,1)=299

ERR(“DIERR”,1,”PARAM”,0)=2

ERR(“DIERR”,1,”PARAM”,1)=ADDFIF

ERR(“DIERR”,1,”PARAM”,”FILE”)=662001

ERR(“DIERR”,1,”TEXT”,1)=More than one entry matches the value(s) ‘ADDFIF’.

ERR(“DIERR”,”E”,299,1)=

However, if you try the call again and this time use the “BB” index for the file, which indexes the NAME

field (#.01) and also DATE OF BIRTH field (#1), you can pass lookup values for both the fields; the call

is successful, because you now have a single match. The two entries with the same .01 field have different

values in their DATE OF BIRTH field.

Figure 154: $$FIND1^DIC() API—Example 1: Input and Output: Success

>K VAL S VAL(1)=“ADDFIF”,VAL(2)=“1/1/69”

>W $$FIND1^DIC(662001,”“,”“,.VAL,”BB”,”“,”ERR”)

15

VA FileMan 22.2

Developer’s Guide 187 January 2017

3.5.9.2 Error Codes Returned

Table 45: $$FIND1^DIC() API—Error Codes Returned

Code Description

120 Error occurred during execution of a FileMan hook.

202 An input parameter is missing or not valid.

204 The input value contains control characters.

205 The File and IENS represent different subfile levels.

299 More than one entry matches that value.

301 The passed flags are unknown or inconsistent.

304 The IENS lacks a final comma.

306 The first comma-piece of the IENS should be empty.

401 The file does not exist.

402 The global root is missing or not valid.

406 The file has no .01 field definition.

407 A word-processing field is not a file.

420 The index is missing.

501 The file does not contain that field.

520 That kind of field cannot be processed by this utility.

8090 Pre-lookup transform (7.5 node).

8095 First lookup index is compound, so “M”ultiple index lookups not allowed.

The Finder can also return any error returned by $$EXTERNAL^DILFD.

3.5.9.3 Details and Features

The details and features of $$FIND1^DIC and FIND^DIC are the same except that FIND^DIC has three

features (“HTML Encoding,” “WRITE ID nodes,” and “Repeating a field in FIELDS parameter”) that

$$FIND1^DIC does not have. The following describes the details and features of $$FIND1^DIC.

3.5.9.3.1 Lookup Index

If the “Use” flag for an index entry in the INDEX file (#.11) is set to “L” for Lookup, the index name

must be “B” or must alphabetically follow “B”. Also, traditional indexes whose names follow “B” are

considered to be Lookup type indexes.

What does this mean? For a Finder call (FIND^DIC or $$FIND1^DIC), it means that if M is passed in the

FLAGS parameter and a list of indexes is not specified in the INDEXES parameter, then VA FileMan

automatically uses any lookup type index it finds by ordering through the index name alphabetically,

starting with the beginning index (“B”, unless a different one is specified in the input parameters). Any

index, however, can be used for lookup if it is specified in the INDEXES parameter. The developer

should be careful to make sure the MUMPS-type indexes are formatted similar to VA FileMan regular

VA FileMan 22.2

Developer’s Guide 188 January 2017

indexes, with the data subscripts followed by the IEN at the level of the file/subfile passed in the FILE

input parameter.

3.5.9.3.2 Screens Applied

Table 46 lists the VA FileMan screens are applied:

Table 46: $$FIND1^DIC() API—Screens Applied

Screen Desxcription

Valid Entry Conditions To be considered for selection, an entry must have a properly

formatted index to get the Finder’s attention and a defined zero-

node with a non-null first piece.

File Pre-Lookup Action (7.5 Node) Prior to performing any search of the database whatsoever, the

Finder executes the 7.5 Node for the file. This code can alter the

variable X, the lookup value, to alter the value used by the Finder

in its search.

 NOTE: The 7.5 node only works on a simple index, not a

compound one. It assumes just one lookup value X.

Call Pre-Selection Action The SCREEN parameter is executed once a potential match has

been identified (as described under the “Input Parameters”

section).

File Pre-Selection Action If the file has a pre-selection action defined (the SCR node), then

after passing the pre-selection action for the call, the entry must

also pass the action for the whole file.

3.5.9.3.3 Partial Matches

For most values on most indexes, an input value partially matches an entry if the index value begins with

the input value (e.g., index value of “FMUSER,ONE” partially matches input value of “FMUSER”). The

exception is numeric input. On a numeric field’s index, a numeric input must match exactly.

If the lookup value is numeric but the cross-referenced field is free-text, the Finder finds all partial

matches to the numeric lookup value. For example, lookup value 1 matches to 1, 199, 1000.23, and

1ABC.

3.5.9.3.4 Space Bar Recall

Although the Finder honors the Spacebar Recall feature whenever passed the input value “”, selections

made through the Finder are not stored for later use by Spacebar Recall, because the Finder has no way of

knowing whether the selection results from interaction with the user. Only deliberate user selections

should affect the Space Bar Recall value. As a result, to support this feature, applications should call

RECALL^DILFD when managing the user interface whenever the user makes a selection.

3.5.9.3.5 Lookup Value Transforms List

The original lookup values passed to the Finder are not the only values used during the lookup. Certain

transforms are done on the original lookup value and matches are made for these transformed values

along with the original ones. The Q flag suppresses all of these transforms and looks on the indexes only

for the original lookup value.

VA FileMan 22.2

Developer’s Guide 189 January 2017

 REF: For more information, see the “Upper Case”, “Long Input”, “Comma-Piecing” and “Data

Type Transforms” sections.

3.5.9.3.6 Upper Case

The first basic transform ensures that lookups succeed when users leave their Caps Lock keys off. If the

VALUE parameter contains any lowercase characters, the Finder also looks for an all-uppercase version

of the value.

3.5.9.3.7 Long Input

The second basic transform ensures that lookups work properly when lookup and field values are longer

than the maximum length of a data-values subscript in the index. (This is 30 characters for traditional

indexes, but is set by the developer for indexes defined in the INDEX file [#.11]).

3.5.9.3.8 Comma-Piecing

The third and final basic transform provides a special feature of VA FileMan’s lookup. This feature,

known as comma-piecing, helps the user enter fewer characters to distinguish between similar entries. VA

FileMan uses lookup values that contain embedded commas to build a pattern match based on all the

comma-pieces. For example, distinguishing between “MFUSER,ONE FRANCIS” and “FMUSER,TWO

FITZGERALD” would normally take eight keystrokes-”FMUSER,O”-but comma-piecing lets the user do

it in three: “F,O”.

Although commas are used to trigger the comma-piecing feature, the characters used to break up the entry

in the file can be any kind of punctuation, not only commas. For example, “T,R” matches “THE ROAD

LESS TRAVELED”.

If the C flag is used in the FLAGS parameter, then the second comma piece of the lookup value can be a

match to any of the pieces in the file entry following the first one. So, for example, “F,S” distinguishes

“FMUSER,ONE SEBASTIAN” from his sons “ FMUSER,ONE CHRISTIAN” and “ FMUSER,ONE

CHRISTOPH FRIEDRICH”.

3.5.9.3.9 Data Type Transforms

Indexes store the VA FileMan internal format of field values, but users typically enter the external format

as lookup values. Therefore, the Finder attempts to do conversions of the lookup values when it searches

an index on a Date, Set of Codes, Pointer, or Variable Pointer field.

For example, a lookup value of “t” would also be evaluated as today’s date in internal VA FileMan

format, if the Finder is searching the index on a date type field, since VA FileMan normally recognizes a

user entry of “T” at a date prompt as meaning “TODAY”.

If a Q flag is passed in the FLAGS parameter, no data type transforms are attempted.

 NOTE: The data type transform for indexes on pointer and variable pointer fields involves a

complete lookup on the pointed-to file. For example, if an application calls the Finder with the

input value “W” on a file with an indexed pointer to the STATE file (#5), the Finder locates

every state starting with W (Washington, West Virginia, Wisconsin and Wyoming). It returns

every record in the pointing file that points to one of those states.

Also, if the pointed-to file has indexed pointers or variable pointers, the search continues to these pointed-

to files.

Therefore, to make more efficient searches, and to find just the entries desired, applications should make

use of all available features of the Finder to narrow down the search. For example, use the INDEXES

VA FileMan 22.2

Developer’s Guide 190 January 2017

parameter when appropriate to limit the list of indexes searched, and the B flag when appropriate to make

sure that only the “B” index is searched on any pointed-to file.

3.5.10 LIST^DIC(): Lister

This procedure returns a sorted list of entries from a file. Callers must specify a file number. Callers can

also specify any of the following:

 Index to be used in sorting the output

 Starting location

 Number of records to retrieve

 Partial match value

They can also pass screening logic. By default, the Lister returns the .01 field of the entries, along with

the index values used to retrieve them, and all identifiers for the entries. The developer can override the

default output and return other information for the entries.

This call is designed to populate a GUI Listbox gadget. It merely returns a list of entries from an index.

Starting values must be in the same format as the index, unlike a lookup that allows search values to be in

external format. The caller can make an initial call to the Lister to return a number of records “n” from the

file and follow that by subsequent calls to return the next “n” records.

 NOTE: The VA FileMan Database Server (DBS) APIs typically work like their VA FileMan

Classic counterparts. However, the DBS APIs listed below do not perform numeric lookups the

way the classic ^DIC API does:

 FIND^DIC(): Finder

 $$FIND1^DIC(): Finder (Single Record)

 LIST^DIC(): Lister

Rather, these three APIs perform numeric lookups the way ^DIC performs them when the

lowercase “n” flag is set.

REF: For information on the use of the lowercase “n” flag in conjunction with the DIC(0) input

variable, see the “^DIC: Lookup/Add” section in the “Classic VA FileMan API” section.

Format

LIST^DIC(file,iens,fields,flags,number,[.]from,[.]part,index,[.]screen,identifier,t

arget_root,msg_root)

Input Parameters

file: (Required) The file whose entries are to be listed. This should equal the file or

subfile number, depending on what the caller wishes to list.

iens: (Optional) If the FILE parameter equals a file number, the Lister ignores the

IENS parameter. If the FILE parameter equals a subfile number, the Lister needs

the IENS parameter to help identify which subfile to list. In other words, files can

be specified with the FILE parameter alone, but subfiles require both the FILE

and IENS parameters.

VA FileMan 22.2

Developer’s Guide 191 January 2017

When the IENS parameter is used, it must equal an IENS that identifies the

parent record of the exact subfile to list. Since this parameter identifies the

subfile under that record, and not the subrecord itself, the first comma-piece of

the parameter should be empty.

 REF: For more information on the IENS, see the discussion in the DBS

Introduction.

For example, to specify the Menu Item subfile under option number 67, you must

pass FILE = 19.01 (the subfile number for the Menu subfile) and IENS = “,67,”

(showing that record number 67 holds the Menu subfile you want to list).

Defaults to empty string.

fields: (Optional) The fields to return with each entry found. This parameter can be set

equal to any of the specifications listed below. The individual specifications

should be separated by semicolons (“;”).

 NOTE: In most cases, a developer wants to include the “@” specifier

(described below) to suppress the default output values normally

returned by the Lister and then specify the fields and other elements to

return here in the FIELDS parameters. This gives the developer full

control over exactly what is returned in the output list and makes the call

more self-documenting in the developer’s code.

 Field Number—This specifier makes the Lister return the value of the

field for each record found. For example, specifying .01 returns the value

of the .01 field. You can specify computed fields. You cannot specify

word-processing or Multiple fields. By default, fields are returned in

external format. The “I” suffix (described below) can be appended to the

field number to get the VA FileMan internal format of the field.If a field

is listed multiple times in the FIELDS parameter, it is returned multiple

times in packed output, but only once in unpacked output, since the field

number is one of the subscripts of the unpacked output.

 Computed Expression—This specifier causes the Finder to return the

result of a computed expression.

 REF: For more information on computed expression syntax, see

the “Computed Expressions” section in the VA FileMan

Advanced User Manual.

 IX—This returns, for each record, the values from the index used in the

call. If a subscript in the index is derived from a field, the external format

of that field is returned by default. Otherwise, the value is returned

directly as it appears in the index. The “I” suffix (described below) can

be appended to IX to get the internal index values. The index values are

returned in the “ID” nodes as described in the “Output” section below.

VA FileMan 22.2

Developer’s Guide 192 January 2017

 NOTE: For records located on a mnemonic index entry, the

value from the index entry is always returned, rather than its

corresponding external field value.

 FID—This returns the fields display identifiers (i.e., field identifiers). By

default, the field values are returned in external format. The “I” suffix

(described below) can be appended to FID to get the VA FileMan

internal format of the field identifiers.

 WID—This returns the fields WRITE (display only) identifiers. The

Lister executes each WRITE identifier’s M code and copies contents of

^TMP(“DIMSG”,$J) to the output. You must ensure that the WRITE

identifier code issues no direct I/O, but instead calls EN^DDIOL.

 NOTE: The “I” suffix, described below, cannot be used with

“WID” and generates an error.

 .E suffix—You can append an “E” to a field number, the specifier “IX”,

or the specifier “FID” to force the fields to be returned in external

format. You can use both the “E” and “I” suffix together (e.g., .01EI) to

return both the internal and external values of the field.

 .I suffix—You can append an “I” to a field number, the specifier “IX”,

or the specifier “FID” to force the fields to be returned in VA FileMan

internal format. You can use both the “E” and “I” suffix together

(e.g., .01IE) to return both the internal and external value of the field.

 - prefix—A minus sign (-) prefixing one of the other field specifiers tells

the Lister to exclude it from the returned list. This could be used, for

example, in combination with the “FID” specifier to exclude one of the

identifier fields. For example, if Field #2 was one of the field identifiers

for a file, “FID;-2” would output all of the field identifiers except for

Field #2.

 @—This suppresses all the default values normally returned by the

Lister, except for the IEN and any fields and values specified in the

FIELDS parameter. It is recommended that developers always use the

“@” specifier in their Lister calls. Use of the “@” specifier allows the

developer to control exactly what is returned in the output.

 REF: To see what is normally returned by the Lister, see the

default values below.

Default Values:

If you do not pass a FIELDS parameter, the Lister returns:

 IEN

 Indexed field value, in external format (note that for mnemonic cross-

referenced entries, this would be the mnemonic subscript, not a field

value)

 .01 field, in external format, if the indexed field value is not .01

VA FileMan 22.2

Developer’s Guide 193 January 2017

 Any field display identifiers

 Any WRITE (display-only) identifiers

 Results of executing the Lister’s IDENTIFIER parameter

If you do pass a FIELDS parameter but it does not contain the @ specifier, the

Lister returns:

 IEN

 Indexed field value, in external format (note that for mnemonic cross-

referenced entries, this would be the mnemonic subscript, not a field

value)

 .01 field, in external format, if the indexed field value is not .01

 Fields and values specified by the FIELDS parameter

 Any WRITE (display-only) identifiers

 Results of executing the Lister’s IDENTIFIER parameter

flags: (Optional) Flags to control processing:

 B—Backwards. Traverses the index in the opposite direction of normal

traversal.

 E—Errors are ignored. When returning external values without the “E”

flag, results will be truncated if invalid data (e.g., an incorrect code in a

set of codes field) is encountered. An error will be produced. The “E”

flag suppresses the error and continues the reporting of results. The data

value for the entry with invalid data is set to null.

If internal values for a field are being returned, the value stored in the

database for the field will be returned even if that value is invalid

whether or not the “E” flag is set.

To assure that every entry is returned regardless of the validity of the

data, set the “E” flag.

 I—Internal format is returned. All output values are returned in VA

FileMan internal format (the default is external). Because the “I” suffix

can be used in the FIELDS parameter to return information in VA

FileMan internal format, using I in the FLAGS parameter is virtually

obsolete. It greatly simplifies the call to use the “@” specifier in the

FIELDS parameter to suppress return of default values and to specify in

the FIELDS parameter exactly what other data elements are to be

returned. You can use the “I” suffix to have them returned in VA

FileMan internal format.

 K—Primary Key used for default index.

 M—Mnemonic suppression. Tells the Lister to ignore any mnemonic

cross-reference entries it finds in the index.

 P—Pack output. This flag changes the Lister’s output format to pack the

information returned for each record onto a single node per record.

VA FileMan 22.2

Developer’s Guide 194 January 2017

 REF: For more details, see the information in the “Output”,

“Details and Features,” and “Examples” sections.

 Q—Quick List. If this flag is passed, the Lister uses the order of the

index to return the output, rather than sorting the information into a more

user-friendly order. This makes a difference when doing Lister calls

where the index value is a pointer or variable pointer. The call is more

efficient but the output may not be in an intuitive order.

When the Q flag is used, both the FROM and PART parameters must be

in the same format as the subscripts found in the index whose name is

passed in the INDEX parameter. In the case of a pointer, for example, the

FROM and PART parameters would be an internal pointer value.

 REF: For more information, see the description of the FROM,

PART, and INDEX parameters.

 U—Unscreened lookup. This flag makes the Lister ignore any whole file

screen (stored at ^DD(file#,0,”SCR”)) on the file specified in the FILE

parameter.

 NOTE: Passing this flag does not make the Lister ignore any

code passed in the SCREEN parameter.

 X—If X flag is used then the (index) parameter can be either a Field,

Sort Template, or Computed expression.

o Field #1:

FM222>K TMP D

LIST^DIC(5,,".01","X",3,"I",,1,,,"TMP") ZW TMP

TMP("DILIST",0)="3^3^1^"

TMP("DILIST",0,"MAP")=.01

TMP("DILIST",1,1)="IA"

TMP("DILIST",1,2)="ID"

TMP("DILIST",1,3)="IL"

o Sort Template:

FM220>D LIST^DIC(5,,".01;COUNT(COUNTY)",,,,,"[ZZD

STATE SORT 3]",,,"TMP")

ZW TMP

TMP("DILIST",0)="82^*^0^"

TMP("DILIST",0,"MAP")=".01^C2"

TMP("DILIST",1,1)="ALABAMA"

TMP("DILIST",1,2)="ALASKA"

TMP("DILIST",1,3)="ALBERTA"

TMP("DILIST",1,4)="AMERICAN SAMOA

VA FileMan 22.2

Developer’s Guide 195 January 2017

o Computed Expression:

FM220>K TMP D

LIST^DIC(5,,".01","X",3,"A",,"AB",,,"TMP") ZW TMP

TMP("DILIST",0)="3^3^1^"

TMP("DILIST",0,"MAP")=.01

TMP("DILIST",1,1)="AA"

TMP("DILIST",1,2)="AB"

TMP("DILIST",1,3)="AE"

number: (Optional) The number of entries to return. If the Lister reaches the end of its list,

the number of entries output can be fewer than this parameter. A value of “*” or

no value in this parameter designates all entries. The developer has the option to

make multiple calls to the Lister, in order to control the number of records

returned. In that case, the FROM value (described below) must be passed by

reference, and should not be altered between calls. The Lister returns, in the

FROM parameter, the values needed to find the next record on a subsequent call.

Defaults to “*”.

[.]from: (Optional) The index entries from which to begin the list (e.g., a FROM value of

“XQ” would list entries following XQ). The FROM values must be passed as

they appear in the index, not in external value. The index entry for the FROM

value itself is not included in the returned list.

If the INDEX parameter specifies a compound index (i.e., one with more than

one data-valued subscript), then the FROM parameter should be passed by

reference as an array where FROM(n) represents the “nth” subscript on the

compound index. This array helps VA FileMan find a single entry in the index.

Generally, the developer can set the FROM array to establish a starting point

from which the Lister should traverse the index. However, the FROM array is

especially useful when making multiple calls to the Lister to return records in

discrete chunks. The Lister sets the FROM array to information about the last

record returned, so the developer can simply pass this array unchanged from one

Lister call to the next to return the next set of records.

This parameter can contain an array node FROM(“IEN”). This subscript can be

set equal to a record number that identifies the specific entry from which to begin

the list. This can alternately be passed as FROM(m) where “m” is equal to the

number of data value subscripts in the index plus 1. This array entry would be

passed only when there is more than one entry in the index with the same values

in all of the data value subscripts. For example, using a regular single-field index

on a NAME field, if there were two “FMUSER,ONE” entries in the file with

IENs of 30 and 43, then passing FROM(1)=“FMUSER,ONE” and either

FROM(2) or FROM(“IEN”)=30 would return a list of entries starting with name

of FMUSER,ONE and IEN of 43. If the list is built using the upright file

(INDEX parameter=“#”), then FROM, FROM(1) and FROM(“IEN”) would all

be the same and would represent the starting internal entry number for the list.

When listing an index on a Pointer or Variable Pointer field, the FROM value

should equal a value from the “B” index at the end of the pointer chain, not a

pointer value. However, the FROM(“IEN”) should still equal the number of a

record in the pointing file as it does for other Lister calls. For example, suppose

you have listed entries from a simple index that points to the STATE file (#5)

VA FileMan 22.2

Developer’s Guide 196 January 2017

and the previous call finished with entry 12 that points to Utah (record 49 in the

STATE file [#5]). Then FROM(1) would be set to “UTAH” and FROM(“IEN”)

or FROM(2) would be set to 12. Again, you would only want to set FROM(2) if

there were other entries in your file that pointed to Utah, with IENs that followed

12.

This parameter lets the caller make multiple calls to the Lister to return a limited

number of records with each call, rather than one large one. If the FROM

parameter values are passed by reference, then the Lister returns, in the FROM

array, information that tells it which record to start with on subsequent Lister

calls.

To start a new list, pass FROM undefined or equal to the empty string. This starts

the list with the first entry in the index unless you are traversing the index

backwards; in which case, it starts the list with the last entry in the index.

 REF: For more help on how to use this parameter, see the “Details and

Features” and “Examples” sections.

[.]part (Optional) The partial match restriction. For example, a PART value of “DI”

would restrict the list to those entries starting with the letters “DI”. Again, this

value must be a partial match to an index value, not the external value of a field.

This can be passed by reference and subscripted the same as the FROM

parameter so that PART values can be specified for any subscript in a compound

index.

PART is often a partial match to FROM. For example, FROM(1)=“ZTMMGR”,

and PART(1)=“ZTM” would return only entries that began with “ZTM” and

came after “ZTMMGR”. It would not include “ZTZERO”, even though it comes

after “ZTMMGR”. (If traversing the index backwards, it would find only entries

that came before ZTMMGR).

If FROM is passed and PART is not a partial match to FROM, then the Lister

returns all partial matches to PART that come after FROM. Thus, if

FROM(1)=“DI” and PART(1)=“ZTM”, then the Lister returns all partial matches

to “ZTM”. If in this example you were traversing the index backwards, then the

Lister would return nothing, because there would be nothing that came before

“DI” and started with “ZTM”.

For indexes on pointers or variable pointers, PART should refer to values on the

“B” index of the pointed-to file at the end of the pointer chain. For example, if

the index was on a field pointing to the STATE file (#5), PART(1) could be set

to “A” to find all states whose name begins with “A”.

index: (Optional) The name of the index from which to build the list. For example,

setting this to “C” could refer to the Upper Case Menu Text index on the

OPTION file (#19). Whether the specified index is simple (single data-value

subscript like the “B” index on most files) or compound (more than one data-

value subscript) affects the FROM and PART parameters as previously

described.

If the index is not specified, the default is “B” unless the FLAGS parameter

contains a K, in which case, the default is the Uniqueness Index defined for the

Primary Key on the file.

VA FileMan 22.2

Developer’s Guide 197 January 2017

If there is no “B” index and either “B” is passed in the INDEX parameter or is

the default index, then a temporary index is built on the file (which could take

some time). The index is removed after the Lister call.

If “#” is passed in the INDEX parameter, then the list is built from the upright

file (i.e., in order by internal entry number) rather than from an index. In that

case, if a FROM value is passed, it should be an IEN and could be passed either

as a literal or in FROM(1) or FROM(“IEN”), all of which are equivalent (see

FROM parameter above).

Unless the M flag is used to suppress them, mnemonic cross-references folded

into the specified index are included in the output.

 NOTE: Index can also be a Field, Sort Template, or Computed

Expression, see the X flag documentation under Flags.

[.]screen: (Optional) Entry Screen. The screen to apply to each potential entry in the

returned list to decide whether or not to include it. This can be set to any valid M

code that sets $TEST to 1 if the entry should be included, to 0 if not. This is

exactly equivalent to the DIC(“S”) input variable to Classic VA FileMan lookup

^DIC. The Lister executes this screen in addition to any SCR node (whole-file

screen) defined for the file. Optionally, the screen can be defined in an array

entry subscripted by “S” (for example, SCR(“S”)), allowing additional screen

entries to be defined for variable pointer fields as described below.

The Entry Screen code can rely upon the following:

 Naked indicator—Zero-node of entry’s record.

 D—Index being traversed.

 DIC—Open global reference of file being traversed.

 DIC(0)—Flags passed to the Lister.

 Y—Record number of entry under consideration.

 Y() array—For subfiles, descendants give record numbers for all upper

levels. Structure resembles the DA array as used in a call to the Classic

VA FileMan edit routine ^DIE.

 Y1—IENS equivalent to Y array.

The SCREEN parameter can safely change any of these values. For example,

suppose there is a set of codes field defined as the 5th piece of the 0 node on the

file and you only want to find entries that have the value “Y” in that field. Then

the code might look like “I $P(^(0),U,5)=““Y”““. All other variables used,

however, must be carefully namespaced.

Defaults to no extra screening.

Variable Pointer Screen. If one of the fields indexed by the cross-reference

passed in the INDEX parameter is a variable pointer, then additional screens

equivalent to the DIC(“V”) input variable to Classic VA FileMan lookup ^DIC

can also be passed. Suppose the screens are being passed in the SCR array. Then

for a simple index with just one data value field, the code can be passed in

SCR(“V”). For simple or compound indexes, screens can be passed for any

VA FileMan 22.2

Developer’s Guide 198 January 2017

indexed fields that are variable pointers in the format SCR(“V”,n) where “n”

represents the subscript location of the variable pointer field on the index from

the INDEX parameter.

The Variable Pointer screen restricts the user’s ability to see entries on one or

more of the files pointed to by the variable pointer. The screen logic is set equal

to a line of M code that returns a truth value when executed. If it evaluates

TRUE, then entries that point to the file can be included in the output; if

FALSE, then any entry pointing to the file is excluded. At the time the code is

executed, the variable Y(0) is set equal to the information for that file from the

data dictionary definition of the variable pointer field. You can use Y(0) in the

code set into the DIC(“V”) variable. Y(0) contains:

Table 47: LIST^DIC() API—Variable Pointer screen—Y(0)

^-Piece Contents

Piece 1
File number of the pointed-to file.

Piece 2
Message defined for the pointed-to file.

Piece 3
Order defined for the pointed-to file.

Piece 4
Prefix defined for the pointed-to file.

Piece 5
y/n indicating if a screen is set up for the pointed-
to file.

Piece 6
y/n indicating if the user can add new entries to
the pointed to file.

All of this information was defined when that file was entered as one of the

possibilities for the variable pointer field.

For example, suppose your .01 field is a variable pointer pointing to Files #1000,

#2000, and 33000. If you only want the user to be able to enter values from Files

#1000 or #3000, you could set up DIC(“V”) like this:

S DIC(“V”)=“I +Y(0)=1000!(+Y(0)=3000)”

identifier: (Optional) The text to accompany each potential entry in the returned list to help

identify it to the end user. This can be set to any valid M code that calls the

EN^DDIOL utility to load identification text. The Lister lists this text after that

generated by any M identifiers on the file itself. This parameter takes and can

change the same input as the screen parameter.

For example, a value of “D EN^DDIOL(““KILROY WAS HERE!””)” would

include that string with each entry returned as a separate node under the “ID”,

“WRITE” nodes of the output array.

This parameter should issue no READ or WRITE commands itself nor should it

call utilities that issue READs or WRITEs (except for EN^DDIOL itself).

Defaults to no extra identification text.

VA FileMan 22.2

Developer’s Guide 199 January 2017

 REF: For more information, see the description of EN^DDIOL.

target_root: (Optional) The array that should receive the output list. This must be a closed

array reference and can be either local or global. For example, if target_root

equals OROUT(42), the output list appears in OROUT(42,”DILIST”).

If the target_root is not passed, the list is returned descendent from

^TMP(“DILIST”,$J).

msg_root: (Optional) The array that should receive any error messages. This must be a

closed array reference and can be either local or global. For example, if msg_root

equals “OROUT(42)”, any errors generated appear in OROUT(42,”DIERR”).

If the msg_root is not passed, errors are returned descendent from

^TMP(“DIERR”,$J).

Output

from: See FROM under Input Parameters. If the FROM parameter is passed by

reference and if there are more entries to return in the list, then the FROM array

is set to information about the last entry returned in the current Lister call.

Subsequent Lister calls use this information to know where to start the next list.

Other than FROM(1), none of the other FROM values from the index contains

data unless the next entry to return has the same index value as the last entry

returned by the current Lister call. For example, if the index is on NAME and

DATE_OF_BIRTH: if the last entry returned was for “FMUSER,ONE” and there

is only one “FMUSER,ONE” in the file, then FROM(1)=“FMUSER,ONE”,

FROM(2)=““, FROM(3)=““. However, if there is another “FMUSER,ONE”,

with a different DOB, then you might have FROM(1)=“FMUSER,ONE”,

FROM(2)=2690101. If there are two “FMUSER,ONE” entries with the same

DOB, then FROM(1)=“FMUSER,ONE”, FROM(2)=2690101, FROM(3)=the

IEN of the last entry output.

target_root: The examples in this section assume that the output from the Lister was returned

in the default location descendent from ^TMP(“DILIST”,$J), but it could just as

well be in an array specified by the caller in the target_root parameter described

above.

There are two different formats possible for the output:

 Standard Output Format

 Packed Output Format

(returned when the P flag is included in the FLAGS parameter)

VA FileMan 22.2

Developer’s Guide 200 January 2017

Standard Output Format

The format of the Output List is:

 Header Node

Unless the Lister has run into an error condition, it always returns a header node for its output list,

even if the list is empty because no matches were found. The header node on the zero node of the

output array, has this format:

^TMP(“DILIST”,$J,0) = # of entries found ^ maximum requested ^ any more?

^ results flags

o The # of entries found is equal to or less than the maximum requested.

o The maximum requested should equal the NUMBER parameter, or, if NUMBER was not

passed, “*”.

o The any more? value is 1 if there are more matching entries in the file than were returned in

this list, or 0 if not.

o The results flags at present is usually empty. If the output was packed, and some of the data

contained embedded “^” characters, the results flag contains the flag H. Check for the results

containing H rather than results equal to H.

 REF: For more information, see “Details and Features.”

 Record Data

Standard output for the Lister returns each field of each matching record on a separate node.

Records are subscripted in this array by arbitrary sequence number that reflects the order in which

the record was found.

o Indexed Field (Simple Index)

Unless suppressed with the “@” in the FIELDS parameter (the suggested practice), the

indexed values are returned descendent from the 1 nodes in external format.

^TMP(“DILIST”,$J,1,seq#) = index_value

 NOTE: This is different from the Finder, which returns the .01 field value in the 1

subtree.

o Indexed Field (Compound Index)

If the Lister call used a compound index, an additional sequential integer reflects the

subscript position at which the value was found.

^TMP(“DILIST”,$J,1,seq#,1) = first_subscript_index_value

^TMP(“DILIST”,$J,1,seq#,2) = second_subscript_index_value

VA FileMan 22.2

Developer’s Guide 201 January 2017

o IEN

Each record’s IEN is returned under the 2 subtree:

^TMP(“DILIST”,$J,2,seq#) = IEN

The other values returned for each record are grouped together under the “ID” subtree, then

by record.

o Field Values or Field Identifiers.

The output format is the same whether the field value is one of the Field Identifiers from the

data dictionary for the file, or the field was requested in the FIELDS parameter. In addition, if

the .01 field is not one of the indexed fields and is not suppressed by use of “@” in the

FIELDS parameter, then it is also returned along with the other Field values. By default, field

values are returned in external format.

Field identifiers and field values are subscripted by their field numbers. Each node shows up

as:

^TMP(“DILIST”,$J,”ID”,seq#,field#) = field_value

Fields default to external format unless I is passed in the FLAGS parameter (obsolete) or the

I suffix is specified in the FIELDS parameter (recommended way to get internal field values).

If both the “I” and “E” suffix are specified, an additional subscript level with the values of

“E” and “I” is used to distinguish the external and internal values of the field. If a field is

only returned in one format, the extra subscript is never included. Values output with the

extra format specifier look like:

^TMP(“DILIST”,$J,”ID”,seq#,field#,”E” or “I”) = field_value

o Output for field specifier “IX” in FIELDS

A field specifier of “IX” in the FIELDS parameter retrieves the value of the indexed fields. In

the output, the values of these fields are returned as follows, where the final subscript is a

sequential number indicating the subscript location in the index.

^TMP(“DILIST”,$J,”ID”,seq#,0,1) = first_subscript_index_value

^TMP(“DILIST”,$J,”ID”,seq#,0,2) = second_subscript_index_value

If both the “I” and “E” suffix are specified, an additional subscript level with the values of

“E” and “I” is used to distinguish the external and internal values from the index. If the

subscript on the index is not derived from a field (i.e. if it’s a computed subscript, then the

internal and external value is both the same, the value directly from the index).

VA FileMan 22.2

Developer’s Guide 202 January 2017

o WRITE Identifiers

WRITE (display-only) identifiers are grouped under the “WRITE” subtree of the “ID” tree,

then by record number. It is the caller’s responsibility to ensure that none of the WRITE

identifiers issue direct READ or WRITE commands and that they issue any output through

EN^DDIOL so it can be collected by the Lister. The output from all the WRITE identifiers

for a single record is listed as individual lines of text:

^TMP(“DILIST”,$J,”ID”,”WRITE”,seq#,line #) = text generated by WRITE IDs

o IDENTIFIER parameter

Any text generated by the caller’s IDENTIFIER parameter is returned in the last lines of the

WRITE identifier text.

 Map Node for Unpacked Format

In order to facilitate finding information in the output, a Map Node is built for unpacked format.

This node is returned in ^TMP(“DILIST”,$J,0,”MAP”).

The Map node for unpacked format describes what Field Identifier data can be found in the “ID”

output data nodes. It contains ^-delimited pieces described below. The position of the piece in the

map node corresponds to the order in which it can be found in the “ID” output nodes. If the data

is returned in VA FileMan internal format, the piece is followed by “I” (e.g., ”2I” means that the

internal value of Field #2 was returned in the output).

o #—Individually requested field number, where # is the field number, for each field requested

in the FIELDS parameter

o FID(#)—Field Identifier, where # is the field number.

Packed Output Format

If the P flag is used to request packed output, the Lister packs all the return values into one output node

per record. You must ensure that all requested data will fit onto a single node. Overflow causes error 206.

Return values containing embedded “^” characters make the Lister encode the output data using HTML

encoding (see “Details and Features”).

 Header Node

Identical to Standard Output Format

 Record Data

Values in the output are delimited by “^” characters. Piece 1 is always the IEN. The values of

other pieces depend on the value of the FIELDS parameter. If the FIELDS parameter is not

passed, each record’s packed node follows this format:

^TMP(“DILIST”,$J,seq#,0)=IEN^Indexed_field_

values^field_Identifiers^Write_Identifiers^

Output_from_Identifier_parameter

Field Identifiers are sequenced by field number. Output values specified by the FIELDS

parameter are packed in the order in which they occur in the FIELDS parameter. WRITE

identifiers are packed in the same order as their subscripts occur in the ID subtree of the file’s

data dictionary.

VA FileMan 22.2

Developer’s Guide 203 January 2017

To parse the output of the packed nodes, use the MAP node described below.

 Map Node for Packed Format

Because the packed format is not self-documenting and because individual field specifiers such as

FID can correspond to a variable number of field values, the Lister always includes a map node

when returning output in Packed format. This node is returned in ^TMP(“DILIST”,$J,0,”MAP”).

Its value resembles a data node’s value in that it has the same number of ^-pieces, but the value of

each piece identifies the field or value used to populate the equivalent location in the data nodes.

The possible values for each piece in the map node are:

o IEN—The IEN

o .01—The .01 field

o FID(#)—Field identifier, where # is the field number of the identifier

o WID(string)—Write identifier, where string is the value of the subscript in the ^DD where

the identifier is stored (e.g., ”WRITE”)

o IDP—Identifier parameter

o IX(n)—Indexed field values, where “n” refers to the subscript position in the index.

o #—Individually requested field, by field number.

 NOTE: For any piece except IEN, the WID, or the IDP, if the internal value is to be

returned, the piece is followed by “I”. Thus, instead of “IX(1)”, you would have

“IX(1)I”, indicating that the internal index value was being returned.

For example, the map node for a Lister call on the OPTION file (#19), if FIELDS =>

“3.6I;3.6;4”, might look like this:

^TMP(“DILIST”,$J,0,”MAP”) = “IEN^.01^3.6I^3.6^4”

VA FileMan 22.2

Developer’s Guide 204 January 2017

3.5.10.1 Examples

3.5.10.1.1 Example 1

This is an example of a forward traversal of the “B” index on the OPTION file (#19), limited to five

entries that all begin with the characters “DIFG”, but skipping any first entry that might equal “DIFG”

(the FROM value is always skipped):

Figure 155: LIST^DIC() API—Example 1: Input and Output

>D LIST^DIC(19,“”,“”,“”,5,“DIFG”,“DIFG”,“”,“”,“”,“OUT”)

OUT(“DILIST”,0)=5^5^1^

OUT(“DILIST”,0,”MAP”)=FID(1)

OUT(“DILIST”,1,1)=DIFG CREATE

OUT(“DILIST”,1,2)=DIFG DISPLAY

OUT(“DILIST”,1,3)=DIFG GENERATE

OUT(“DILIST”,1,4)=DIFG INSTALL

OUT(“DILIST”,1,5)=DIFG SPECIFIERS

OUT(“DILIST”,2,1)=321

OUT(“DILIST”,2,2)=322

OUT(“DILIST”,2,3)=323

OUT(“DILIST”,2,4)=326

OUT(“DILIST”,2,5)=325

OUT(“DILIST”,”ID”,1,1)=Create/Edit Filegram Template

OUT(“DILIST”,”ID”,2,1)=Display Filegram Template

OUT(“DILIST”,”ID”,3,1)=Generate Filegram

OUT(“DILIST”,”ID”,4,1)=Install/Verify Filegram

OUT(“DILIST”,”ID”,5,1)=Specifiers

3.5.10.1.2 Example 2

This related example reveals that there is a DIFG option (Filegrams option). When you traverse

backward, starting with the first entry from the previous example, DIFG is the only option that meets both

the FROM and PART parameter criteria. The sequence number is 5. When you traverse an index

backward to get a set number of records, the sequence number counts backward from that number in

order to make the output come out in the same order as when you traverse forward. This type of Lister

call is normally used in a GUI ListBox when the user is backing up on a list.

Figure 156: LIST^DIC() API—Example 2: Input and Output

>D LIST^DIC(19,“”,“”,“B”,5,“DIFG CREATE”,“DIFG”,“”,“”,“”,“OUT”)

OUT(“DILIST”,0)=1^5^0^

OUT(“DILIST”,0,”MAP”)=FID(1)

OUT(“DILIST”,1,5)=DIFG

OUT(“DILIST”,2,5)=327

OUT(“DILIST”,”ID”,5,1)=Filegrams

VA FileMan 22.2

Developer’s Guide 205 January 2017

3.5.10.1.3 Example 3

In this example, you return just one entry from a file using a compound index. This index is on the .01

field (NAME) and field 1 (DATE OF BIRTH). Note how the two index entries are returned in the 1

nodes. Also note that this file has several field identifiers and WRITE identifiers. After the call, because

there are two different entries in the file with a .01 equal to “ADDFIFTEEN”, but different dates of birth,

the DIFR array has been set up ready for a subsequent call. On this index, the DATE OF BIRTH field has

a collation of “backwards”, so you see the most current date first in the output.

Figure 157: LIST^DIC() API—Example 3: Input and Output

>K DIFR,DIPRT S DIPRT(1)=“ADD”

>D LIST^DIC(662001,“”,“”,“”,1,.DIFR,.DIPRT,“BB”,“”,“”,“OUT”)

OUT(“DILIST”,0)=1^1^1^

OUT(“DILIST”,0,”MAP”)=FID(2)^FID(4)^FID(10)

OUT(“DILIST”,1,1,1)=ADDFIFTEEN

OUT(“DILIST”,1,1,2)=JAN 03, 1997

OUT(“DILIST”,2,1)=17

OUT(“DILIST”,”ID”,1,2)=SEVENTEEN*

OUT(“DILIST”,”ID”,1,4)=MITTY,WALTER

OUT(“DILIST”,”ID”,1,10)=MAY 02, 1997@09:00

OUT(“DILIST”,”ID”,”WRITE”,1,1)=2970103

OUT(“DILIST”,”ID”,”WRITE”,1,2)=

OUT(“DILIST”,”ID”,”WRITE”,1,3)= FIRST LINE

OUT(“DILIST”,”ID”,”WRITE”,1,4)=

OUT(“DILIST”,”ID”,”WRITE”,1,5)= SECOND LINETHIRD LINE

OUT(“DILIST”,”ID”,”WRITE”,1,6)=SIXTHCODE

>ZW DIFR

DIFR=ADDFIFTEEN

DIFR(1)=ADDFIFTEEN

DIFR(2)=2970103

DIFR(3)=

DIFR(“IEN”)=

VA FileMan 22.2

Developer’s Guide 206 January 2017

3.5.10.1.4 Example 4

However, if you do another Lister call on the same file, using the DIFR array that was passed back from

the previous call, this time it returns two records. You get back the second record in the index with

“ADDFIFTEEN” as the .01 field, and the next one that follows it alphabetically. In this call, you

suppressed the normal default values returned by the call, and instead asked for the index field values

“IX”, the internal value of the field identifiers “FIDI”, both the internal and external values of field 3 (a

set-of-codes type field), and the external value of computed Field #8. All of this was done with entries in

the FIELDS parameter. As you see, Field #4 is a pointer, Field #10 is a variable pointer. Note how the

MAP node describes what is found in the “ID” nodes.

Figure 158: LIST^DIC() API—Example 4: Input and Output

>D LIST^DIC(662001,“”,“@;IX;FIDI;3IE;8”,“”,2,.DIFR,.DIPRT,“BB”,“”,“”,“OUT”)

OUT(“DILIST”,0)=2^2^1^

OUT(“DILIST”,0,”MAP”)=IX(1)^IX(2)^FID(2)I^3^3I^FID(4)I^8^FID(10)I

OUT(“DILIST”,2,1)=15

OUT(“DILIST”,2,2)=14

OUT(“DILIST”,”ID”,1,0,1)=ADDFIFTEEN

OUT(“DILIST”,”ID”,1,0,2)=JAN 01, 1969

OUT(“DILIST”,”ID”,1,2)=FIFTEEN

OUT(“DILIST”,”ID”,1,3,”E”)=SIXTHCODE

OUT(“DILIST”,”ID”,1,3,”I”)=SIX

OUT(“DILIST”,”ID”,1,4)=1

OUT(“DILIST”,”ID”,1,8)=0

OUT(“DILIST”,”ID”,1,10)=327;DIC(19,

OUT(“DILIST”,”ID”,2,0,1)=ADDFOURTEEN

OUT(“DILIST”,”ID”,2,0,2)=JAN 01, 1949

OUT(“DILIST”,”ID”,2,2)=FOURTEEN

OUT(“DILIST”,”ID”,2,3,”E”)=

OUT(“DILIST”,”ID”,2,3,”I”)=

OUT(“DILIST”,”ID”,2,4)=

OUT(“DILIST”,”ID”,2,8)=32.6

OUT(“DILIST”,”ID”,2,10)=10;DIZ(662003,

3.5.10.1.5 Example 5

In this example, you use the P flag to return the next two records in Packed output format. You revert to

letting the Lister return default values, rather than controlling them with the FIELDS parameter, but it

returns additional output by using the IDENTIFIER parameter. Note that although you asked for two

records, there was only one left that fit the PART criteria:

 First piece of the header node tells you one record was returned.

 Second piece tells you that two records were requested.

 Third piece tells you there are no records left that meet the criteria.

VA FileMan 22.2

Developer’s Guide 207 January 2017

Figure 159 illustrates what the FROM values are set to going into the call:

Figure 159: LIST^DIC() API—Example 5: Input and Output

DIFR=ADDFOURTEEN

DIFR(1)=ADDFOURTEEN

DIFR(2)=

DIFR(3)=

DIFR(“IEN”)=

>D LIST^DIC(662001,”“,”“,”P”,2,.DIFR,.DIPRT,”BB”,”“,”D EN^DDIOL(““Hi there”“)”,”

OUT”)

OUT(“DILIST”,0)=1^2^0^

OUT(“DILIST”,0,”MAP”)=IEN^IX(1)^IX(2)^FID(2)^FID(4)^FID(10)^WID(WRITE1)^WID(WRITE2)

^WID(WRITE3)^WID(WRITE4)^IDPOUT(“DILIST”,1,0)=16^ADDSIXTEEN^MAR 28, 1970^MA HERE

TOO*^^DIFG^2700328^^ FIRST LINE~~ SECOND LINETHIRD LINE^^Hi there

3.5.10.2 Error Codes Returned

Table 48: LIST^DIC() API—Error Codes Returned

Code Description

120 Error occurred during execution of a FileMan hook.

202 Missing or invalid input parameter.

205 The File and IENS represent different subfile levels.

206 The data requested for the record is too long to pack together.

207 The value is too long to encode into HTML.

301 The passed flags are missing or inconsistent.

304 The IENS lacks a final comma.

306 The first comma-piece of the IENS should be empty.

401 The file does not exist.

402 The global root is missing or not valid.

406 The file has no .01 field definition.

407 A word-processing field is not a file.

420 The index is missing.

501 The file does not contain that field.

520 That kind of field cannot be processed by this utility.

The Lister can also return any error returned by $$EXTERNAL^DILFD.

VA FileMan 22.2

Developer’s Guide 208 January 2017

3.5.10.3 Details and Features

3.5.10.3.1 Screens Applied

Aside from the optional screen parameter, the Lister applies one other screen to each index entry before

adding it to the output list as follows: ^DD(file#,0,”SCR”). Other screens, such as the 7.5 node and field-

level screens on various data types, are not checked because they relate specifically to entry and editing,

not selection.

3.5.10.3.2 Output Transform

It is possible for any field with an output transform to sort differently than a user would expect. Although

the value displayed is the output value, the value that determines its order is its internal value. When the I

flag is used, the output transform is never executed, and the output always appears in the expected order.

3.5.10.3.3 HTML Encoding

Since the Lister uses the “^” character as its delimiter for packed output, it cannot let any of the data

contain that character. If any does, it will encode all of the data using an HTML encoding scheme.

In this scheme, all “&” characters are replaced with the substring “&” and all “^” characters with

the string “^”. This keeps the data properly parsable and decodable. The data for all records found,

not just the ones with embedded ^s, is encoded if embedded ^s are found in the data of any of the records.

If the Lister has encoded the output, it includes an H flag in ^-piece four of the output header node.

Data can be decoded using the VA FileMan library function call $$HTML^DILF(encoded string,-1). It

can properly decode individual fields or complete packed data nodes.

3.5.10.3.4 Pointers and Variable Pointers

The Lister treats indexes on fields of these two data types specially. For every other data type, the value

of the indexed field is completely contained in the file indicated by the FILE parameter. For pointer and

variable pointers, this is not the case. All index values come from the B index of the pointed-to file. The

Lister uses the values in the pointed-to file, extending the search to the end of the pointer chain, to select

records in the pointing file at the beginning of the chain.

For example, suppose the FILE parameter picks File A, and the INDEX parameter picks the X index, a

cross-reference on a pointer field. Suppose further that field points to File B, whose .01 field points to File

C, and File C’s .01 is a set of codes. Then this Lister call selects records in File A (the pointing file) based

on the index values it finds in File C (the pointed-to file).

The FROM(“IEN”), SCREEN, and IDENTIFIER parameters always apply to the pointing file, the one

identified by the FILE parameter, because they deal with actual record selection. However, for pointers

and variable pointers, the FROM and PART parameters apply to the “B” index on the pointed-to file,

since they deal with index values.

Variable pointers work similarly, except that their index values usually come from more than one pointed-

to file.

3.5.10.3.5 WRITE ID nodes

The Lister executes each individual WRITE ID node from the data dictionary. If an individual node

results in creating multiple lines in the output from the EN^DDIOL calls it contains, then in Standard

Output Format the results appear on multiple lines in the output array. Thus, there is not a direct

correlation between the number of WRITE ID nodes and the number of nodes that are returned in the

output array of a Lister call for each record. In Packed output format, each WRITE ID node appears in a

separate “^” piece and line feeds are designated with a tilde (~) character.

VA FileMan 22.2

Developer’s Guide 209 January 2017

3.5.10.3.6 FROM parameter with Compound Indexes

The FROM parameter designates only a starting point on the index defined in the INDEX parameter. For

example, you have a compound index where the first subscript is a NAME and the second is a DATE OF

BIRTH. Supposing that after a Lister call, FROM(1)=“FMUSER,ONE” and FROM(2)=“2690101. A

subsequent Lister call assumes that there must be another entry with the name “FMUSER,ONE”, but a

date-of-birth that follows 1/1/69. Any other entries returned will have names that equal or follow

FMUSER,ONE, but after processing all of the FMUSER,ONE entries, other output entries could have

any date-of-birth. This is not like a sort where you say that you want only entries where the date-of-birth

follows 1/1/69.

3.5.11 FIELD^DID(): DD Field Retriever

This procedure retrieves the values of the specified field-level attributes for the specified field.

Format

FIELD^DID(file,field,flags,attributes,target_root,msg_root)

Input Parameters

file: (Required) File or subfile number.

field: (Required) Field name or number.

flags: (Optional) Flags to control processing. The possible values are:

 N—No entry in the target array is created if the attribute is null.

 Z—Word-processing attributes include Zero (0) nodes with text.

attributes: (Required) A list of attribute names separated by semicolons. Full attribute

names must be used. Following are the attributes that can be requested:

 AUDIT

 AUDIT CONDITION

 COMPUTE ALGORITHM

 COMPUTED FIELDS USED

 DATE FIELD LAST EDITED

 DECIMAL DEFAULT

 DELETE ACCESS

 DESCRIPTION

 FIELD LENGTH

 GLOBAL SUBSCRIPT LOCATION

 HELP-PROMPT

 INPUT TRANSFORM

 LABEL

 MULTIPLE-VALUED

VA FileMan 22.2

Developer’s Guide 210 January 2017

 OUTPUT TRANSFORM

 POINTER

 READ ACCESS

 SOURCE

 SPECIFIER

 TECHNICAL DESCRIPTION

 TITLE

 TYPE

 WRITE ACCESS

 EXECUTABLE HELP

target_root: (Required) The closed root of the array that should receive the attributes.

msg_root: (Optional) The name of a closed root reference that is used to pass error

messages. If not passed, ^TMP(“DIERR”,$J) is used.

Output

target_root: The array is subscripted by the attribute names.

3.5.11.1 Example

Figure 160: FIELD^DID() API—Example: Input and Output

>D FIELD^DID(999000,.01,“”,“LABEL;TYPE”,“TEST1”)

>ZW TEST1

TEST1(“LABEL”)=NAME

TEST1(“TYPE”)=FREE TEXT

3.5.11.2 Error Codes Returned

Table 49: FIELD^DID() API—Error Codes Returned

Code Description

200 There is an error in one of the variables passed.

202 Missing or invalid input parameter.

301 Flags passed are unknown or incorrect.

401 The specified file or subfile does not exist.

403 The file lacks a Header Node.

404 The file Header Node lacks a file #.

501 The field name or number does not exist.

505 The field name passed is ambiguous.

VA FileMan 22.2

Developer’s Guide 211 January 2017

Code Description

510 The data type for the specified field cannot be determined.

520 An incorrect kind of field is being processed.

537 Field has a corrupted pointer definition.

3.5.12 FIELDLST^DID(): DD Field List Retriever

This procedure returns a list of field-level attributes that are supported by VA FileMan. It shows

specifically which attributes the Data Dictionary retriever calls can return.

Format

FIELDLST^DID(target_root)

Input Parameters

target_root: (Required) The root of an output array.

Output

target_root: The descendants of the array root are subscripted by the attribute names. “WP”

nodes indicate that the attribute consists of a word-processing field.

3.5.12.1 Example

Figure 161 is a partial capture of what is returned:

Figure 161: FIELDLST^DID() API—Example: Input and Output

>D FIELDLST^DID(“TEST”)

>ZW TEST

TEST(“AUDIT”)=

TEST(“AUDIT CONDITION”)=

TEST(“COMPUTE ALGORITHM”)=

TEST(“COMPUTED FIELDS USED”)=

 .

 .

 .

VA FileMan 22.2

Developer’s Guide 212 January 2017

3.5.13 FILE^DID(): DD File Retriever

This procedure retrieves the values of the file-level attributes for the specified file. It does not return

subfile attributes.

Format

FILE^DID(file,flags,attributes,target_root,msg_root)

Input Parameters

file: (Required) File number (but not subfile attributes).

flags: (Optional) Flags to control processing. The possible values are:

 N—No entry in the target array is created if the attribute is null.

 Z—Word-processing attributes include Zero (0) nodes with text.

attributes: (Required) A list of attribute names separated by semicolons. Full attribute

names must be used:

 ARCHIVE FILE

 AUDIT ACCESS

 DATE

 DD ACCESS

 DEL ACCESS

 DESCRIPTION

 DEVELOPER

 DISTRIBUTION PACKAGE

 ENTRIES

 GLOBAL NAME

 LAYGO ACCESS

 LOOKUP PROGRAM

 NAME

 PACKAGE REVISION DATA

 REQUIRED IDENTIFIERS

 RD ACCESS

 VERSION

 WR ACCESS

target_root: (Required) The name of a closed array reference.

msg_root: (Optional) The name of a closed root array reference that is used to pass error

messages. If not passed, messages are returned in ^TMP(“DIERR”,$J).

VA FileMan 22.2

Developer’s Guide 213 January 2017

Output

target_root: The array is subscripted by the attribute names. Some attributes can have

multiple sub-attributes and these are further subscripted with a sequence number

and the sub-attribute name. Attributes that contain word-processing text also

have a sequence number for each line of text.

3.5.13.1 Example

Figure 162: FILE^DID() API—Example: Input and Output

>D FILE^DID(999000,“”,“NAME;GLOBAL NAME;REQUIRED IDENTIFIERS”,“TEST”)

>ZW TEST

TEST(“GLOBAL NAME”)=^DIZ(999000,

TEST(“NAME”)=ZZZDLTEST

TEST(“REQUIRED IDENTIFIERS”)=TEST(“REQUIRED IDENTIFIERS”)

TEST(“REQUIRED IDENTIFIERS”,1,”FIELD”)=.01

TEST(“REQUIRED IDENTIFIERS”,2,”FIELD”)=1

3.5.13.2 Error Codes Returned

Table 50: FILE^DID() API—Error Codes Returned

Code Description

200 There is an error in one of the variables passed.

202 Missing or invalid input parameter.

301 Flags passed are unknown or incorrect.

401 The specified file or subfile does not exist.

403 The file lacks a Header Node.

404 The file Header Node lacks a file #.

501 The field name or number does not exist.

505 The field name passed is ambiguous.

510 The data type for the specified field cannot be determined.

520 An incorrect kind of field is being processed.

537 Field has a corrupted pointer definition.

VA FileMan 22.2

Developer’s Guide 214 January 2017

3.5.14 FILELST^DID(): DD File List Retriever

This procedure returns a list of file-level attributes that are supported by VA FileMan. It shows

specifically which attributes the Data Dictionary retriever calls can return.

Format

FILELST^DID(target_root)

Input Parameters

target_root: (Required) The root of an output array.

Output

target_root: The descendants of the array root are subscripted by the attribute names. “WP”

nodes indicate that the attribute consists of a word-processing field. “M” nodes

indicate that the attribute can consist of multiple sub-attributes.

3.5.14.1 Example

Figure 163: FILELST^DID() API—Example: Input and Output

>D FILELST^DID(“TEST”)

>ZW TEST

TEST(“ARCHIVE FILE”)=

TEST(“AUDIT ACCESS”)=

TEST(“DATE”)=

TEST(“DD ACCESS”)=

TEST(“DEL ACCESS”)=

TEST(“DESCRIPTION”)=

TEST(“DESCRIPTION”,”#(word-processing)”)=

TEST(“DEVELOPER”)=

TEST(“DISTRIBUTION PACKAGE”)=

TEST(“ENTRIES”)=

TEST(“GLOBAL NAME”)=

TEST(“LAYGO ACCESS”)=

TEST(“LOOKUP PROGRAM”)=

TEST(“NAME”)=

TEST(“PACKAGE REVISION DATA”)=

TEST(“REQUIRED IDENTIFIERS”)=

TEST(“REQUIRED IDENTIFIERS”,”#”,”FIELD”)=

TEST(“RD ACCESS”)=

TEST(“VERSION”)=

TEST(“WR ACCESS”)=

“RD ACCESS” in the example above is a new ATTRIBUTES Input Parameter.

VA FileMan 22.2

Developer’s Guide 215 January 2017

3.5.15 $$GET1^DID(): Attribute Retriever

This extrinsic function retrieves a single attribute from a single file or field.

Format

$$GET1^DID(file,field,flags,attribute,target_root,msg_root)

Input Parameters

file: (Required) File number.

field: Field number or name.

Required only when field attributes are being requested; otherwise, this function

assumes a file attribute is being requested.

flags: (Optional) Flag to control processing:

Z—Zero nodes on word-processing attributes are included in the array

subscripts.

attribute: (Required) A list of data dictionary attribute names separated by semicolons. Full

attribute names must be used.

 REF: For a list of file attributes that you can use, see FILE

ATTRIBUTES.

For a list of the field attributes that you can use, see FIELD

ATTRIBUTES.

target-root: Closed array reference where multi-lined attributes are returned.

Required only when multi-line values are returned, such as word-processing

attributes like “DESCRIPTION”.

msg-root: (Optional) The name of a closed root reference that is used to pass error

messages. If not passed, ^TMP(“DIERR”,$J) is used.

Output

A successful call returns the attribute requested. This can either be set into a variable or written to the

output device.

3.5.15.1 Examples

3.5.15.1.1 Example 1

Figure 164: $$GET1^DID() API—Example 1: Input and Output

>S X=$$GET1^DID(999000,“”,“”,“DESCRIPTION”,“ARRAY”,“ERR”) ZW @X

ARRAY(1)=This is the description of the file (ZZZDLTEST).

ARRAY(2)=And this is the second line of the description.

3.5.15.1.2 Example 2

Figure 165: $$GET1^DID() API—Example 2: Input and Output

>W $$GET1^DID(999000,“”,“”,“GLOBAL NAME”)

^DIZ(999000,

VA FileMan 22.2

Developer’s Guide 216 January 2017

3.5.15.1.3 Example 3

Figure 166: $$GET1^DID() API—Example 3: Input and Output

>W $$GET1^DID(999000,.01,“”,“LABEL”)

NAME

3.5.15.1.4 Example 4

Figure 167: $$GET1^DID() API—Example 4: Input and Output

>S X=$$GET1^DID(999000,.01,“Z”,“DESCRIPTION”,“ARRAY”,“ERR”) ZW @X

ARRAY(1,0)=This is the description of the .01 filed

ARRAY(2,0)=in file 999000.

>W X

ARRAY

3.5.15.2 Error Codes Returned

Table 51: $$GET1^DID() API—Error Codes Returned

Code Description

200 Parameter is invalid or missing.

202 Specified parameter in missing or invalid.

505 Ambiguous field.

3.5.15.3 Details and Features

3.5.15.3.1 File/Field

This retriever call differentiates whether the request is for a file or a field by the second parameter. If the

second parameter is null, the retriever assumes (since no field is passed) that a file attribute is desired. If

the second parameter is not null, the retriever assumes a field attribute is requested.

VA FileMan 22.2

Developer’s Guide 217 January 2017

3.5.16 CHK^DIE(): Data Checker

This procedure checks user-supplied data against the data dictionary definition of a field. If the input data

passes the validation, the internal and, optionally, the external forms of the data are returned. In this

respect, CHK^DIE is the inverse of the $$EXTERNAL^DILFD call.

While this procedure indicates that a user’s response is valid according to a field’s definition, it does not

assure that a value can be filed in a particular record. In order to verify that a value can be filed, use the

VAL^DIE or FILE^DIE calls (with the E flag). CHK^DIE does not have IENS as input; it is ignorant of

the state of the data.

Do not pass a VALUE of null or “@” to CHK^DIE. This procedure cannot verify that deletion of values

from the database is appropriate. Again, use VAL^DIE or FILE^DIE (with E flag) for this purpose.

Format

CHK^DIE(file,field,flags,value,.result,msg_root)

Input Parameters

file: (Required) File or subfile number.

field: (Required) Field number for which data is being validated.

flags: (Optional) Flags to control processing. The possible values are:

 H—Help (single “?”) is returned if VALUE is not valid.

 E—External value is returned in RESULT(0).

value: (Required) Value to be validated, as entered by a user. VALUE can take several

forms depending on the DATA TYPE field value involved, such as a partial,

unambiguous match for a pointer or any of the supported ways to input dates

(e.g., ”TODAY” or “11/3/93”).

.result: (Required) Local variable that receives output from the call. If VALUE is valid,

the internal value is returned. If not valid, ^ is returned. If the E flag is passed,

external value is returned in RESULT(0).

 NOTE: This array is KILLed at the beginning of each call.

msg_root: (Optional) Root into which error, help, and message arrays are put. If this

parameter is not passed, these arrays are put into nodes descendent from ^TMP.

Output

See input parameters .RESULT and MSG_ROOT.

 RESULT = internal value or ^ if the passed VALUE is not valid.

 RESULT(0) = external value if the passed VALUE is valid and E flag is present.

VA FileMan 22.2

Developer’s Guide 218 January 2017

3.5.16.1 Example

In Figure 168, data for a DATA TYPE field value of DATE/TIME is being checked. Note that the

external form of the user’s input, which was “T-180”, is passed. In this case, the value was acceptable, as

shown below:

Figure 168: CHK^DIE() API—Example: Input and Output

>S FILE=16200,FIELD=201,FLAG=“E”,VALUE=“T-180”

>D CHK^DIE(FILE,FIELD,FLAG,VALUE,.RESULT)

>ZW RESULT

RESULT=2930625

RESULT(0)=JUN 25,1993

3.5.16.2 Error Codes Returned

In addition to errors that indicate that the input parameters are invalid, Table 52 lists the primary error

codes returned:

Table 52: CHK^DIE() API—Error Codes Returned

Code Description

120 Error occurred during execution of a FileMan hook.

701 Value is invalid.

3.5.16.3 Details and Features

3.5.16.3.1 What is Checked

This call verifies that the VALUE passed is valid by passing it through the field’s INPUT transform.

Also, if the field has any screens, those screens must be passed. If the field is a pointer or variable pointer,

this call verifies that there is an unambiguous match (or partial match) for VALUE.

3.5.16.3.2 Entry Number Caution

No internal entry numbers are available when the INPUT transform or screens for the field are executed.

Therefore, the INPUT transform and screens cannot reference any entry numbers using either the DA()

array or the D0, D1, D2, etc., variables. Likewise, Executable Help cannot reference an entry number if

the H flag is sent.

3.5.17 FILE^DIE(): Filer

This procedure does either of the following:

 Puts validated data that is in internal VA FileMan format into the database.

Or:

 Validates data that is in external (user-provided) format, converts it to internal VA FileMan

format, and files valid data into the database.

VA FileMan 22.2

Developer’s Guide 219 January 2017

If the data to be filed is in external format, you can specify that nothing is filed unless the values for every

field being filed are valid. (Use the T and E flags).

Uniqueness and completeness of keys are enforced (unless the U flag is used). This check is performed on

values passed in both internal and external formats.

The associated functions of firing cross-references and of performing data audits are also performed.

 NOTE: The Filer only files data into existing entries and subentries. To add new entries or

subentries, use the UPDATE^DIE(): Updater API.

Format

FILE^DIE(flags,fda_root,msg_root)

Input Parameters

flags: (Optional) Flags to control processing. The possible values are:

 E—External values are processed. If this flag is set, the values in the

FDA must be in the format input by the user. The value is validated and

filed if it is valid.

If the flag is not set, values must be in VA FileMan internal format and

must be valid; no validation or transformation is done by the Filer, but

key integrity is enforced.

 K—LocKing is done by the Filer. (See discussion of Locking.)

 S—Save FDA. If you use the “T” flag, you must also pass the “E” flag,

and pass values in external format. If any value is invalid, nothing is

filed, and the error array specifies which fields were invalid.

 T—Transaction is either completely filed or nothing is filed. The E flag

must be used with the T flag, with values passed in external format. If

any value is invalid, nothing is filed, and the error array will specify

which fields were invalid.

Without this flag, valid values are filed and only the invalid ones are not.

If neither the T nor the U flag is` sent, simple keys are checked as they

are encountered in the FDA. Compound keys are checked only after the

entire record is filed. If the key is invalid, changes to fields making up

that key are backed out.

U—Do not enforce key Uniqueness or completeness. Without the U flag,

the values in the FDA are checked to ensure that the integrity of any key

in which an included field participates is not violated.

 CAUTION: If this flag is used, the FILE^DIE API call can
result in records that contain null key fields or records
with duplicate keys. It is the developer’s responsibility to
ensure that the database is not left in a state in which the
integrity of keys is violated.

fda_root: (Required) The root of the FDA that contains the data to file. The array can be a

local or global one. The root is the closed array reference to be used with

subscript indirection not the traditional VA FileMan root.

VA FileMan 22.2

Developer’s Guide 220 January 2017

 REF: For details of the structure of the FDA, see the “Introduction”

section in the “Database Server (DBS) API”section.

msg_root: (Optional) The root of an array (local or global) into which error messages are

returned. If this parameter is not included, error messages are returned in the

default array-^TMP(“DIERR”,$J).

Output

Ordinarily the “output” of this call is the updating of the database. Error messages and information

supplied via the EN^DDIOL API are returned in the standard array in ^TMP or in the array specified by

msg_root.

3.5.17.1 Error Codes Returned

This call returns error messages in many circumstances. Most of the messages report bad input parameters

or input to a file, field, or record that does not exist. Primary user-oriented codes include:

Table 53: FILE^DIE(): Filer—Error Codes Returned

Code Description

110 Record is locked.

120 Error occurred during execution of a FileMan hook.

701 Input data was invalid.

712 Deletion was attempted but not allowed.

740 New values are invalid because they would create a duplicate key.

742 Deletion was attempted on a key field.

744 A key field was not assigned a value.

3.5.17.2 Details and Features

3.5.17.2.1 +Security

The Filer does not check user access when filing. This check must be done by the client application.

3.5.17.2.2 Deleting Data

You can delete the value in a field by setting the value for the field equal to null or “@”.

This works for word-processing fields, too. Instead of setting the value for the field equal to the root of

the array where the new word-processing text is to be found, set it equal to null or “@”.

 NOTE: When the E (external) flag is used, you cannot delete the field value if the field is either

Required or Uneditable. Without the E flag, deletion occurs in both cases. When key integrity is

checked (the U flag is not used), you cannot delete the value of a key field whether the E flag is

used or not.

You can delete an entire entry or subentry by setting the value of the .01 field to “@” or null. In this case,

it does not matter whether the .01 field is Required, Uneditable, or a key field.

The Filer never asks for confirmation of the deletion.

VA FileMan 22.2

Developer’s Guide 221 January 2017

3.5.17.2.3 Scope of a Single Filer Call

Data passed to the Filer should comprise one logical record. Thus, the data can consist of values for fields

in the primary file and its Multiples and in related files. (“Navigation” to other files is handled by the

calling application, not by the Filer.)

3.5.17.2.4 Cross-References

New-Style indexes that have an execution value of RECORD are fired once after all the data for a single

record or subrecord is filed.

All other cross-references (and data audits) are fired as the data is filed (i.e., on a field-by-field basis).

Any possible conflict between the cross-reference and updated data must be noted by the client

application and resolved by modifying the cross-reference. The most common situation in which conflicts

can arise is when a cross-reference (most frequently a trigger or MUMPS cross-reference) has been used

to provide information to the user while data is being edited. Default values that are dependent on the

values of other fields being edited can be provided in this way. These “user interface” cross-references are

fired by the Filer with the rest of the cross-references after the data editing is complete. Thus, they cannot

have their desired effect of providing the user with information during the editing session. However, they

can have the undesired effect of overwriting user-entered values. This type of cross-reference must be

removed from the DD as part of the preparation for using the DBS. Also, if the functionality provided by

these cross-references is still desirable during the editing session, the client application needs to provide

it.

3.5.17.2.5 Locking

If requested, the Filer incrementally locks records and subrecords before beginning to file any data. If a

lock on any record fails, no filing is done and an error message is returned to the calling program.

It is recommended that locking be done outside of the Filer by the client application. There are several

reasons for this:

 It can be frustrating to the user to edit a screen’s worth of data and then to have the SAVE fail,

because the necessary lock could not be obtained.

 Data successfully validated can become invalid before it is filed.

 The client application can more selectively determine which records to lock. Of necessity, the

Filer locks all entries and subentries referenced in the FDA passed to it. In many instances, this is

more than is actually required.

 Locking inside the Filer requires additional processing that slows the filing action down.

However, there are situations in which it is appropriate for the Filer to do the locking; for example, if only

a single file is involved and the source of the data is not an interactive editing session.

VA FileMan 22.2

Developer’s Guide 222 January 2017

3.5.18 HELP^DIE(): Helper

This procedure retrieves user-oriented help for a field from the Data Dictionary and other sources. The

help is returned in arrays. (The MSG^DIALOG procedure can be used to display the help.) You control

the kind of help obtained by using the FLAGS input parameter—either a specific kind of help, the help

normally returned with one or two question marks, or all available help for a field.

Format

HELP^DIE(file,iens,field,flags,msg_root)

Input Parameters

file: (Required) File or subfile number.

iens: (Optional) Standard IENS indicating internal entry numbers. This parameter is

only needed if code in the Data Dictionary for Executable Help or Screen on a

Set of Codes references the entry number using DA() array or D0, D1, etc., and if

that kind of help is being requested.

field: (Required) Field number for which help is requested.

flags: (Required) Flags used to determine what kind of help is returned by the call. If a

lower case letter is shown, use it to suppress that kind of help—useful in

conjunction with ? or ??. The possible values are:

 ?—Help equivalent to user entering one “?” at an edit prompt. (Also help

returned for an invalid response.)

 ??—Help equivalent to user entering “??” at an edit prompt.

 A—All available help for the field.

 B (b)—Brief variable pointer help. A single line beginning with “To see

the entries ...”.

 REF: See also “Limitations” under the “Details and Features”

section.

 C—Set of Codes screen description.

 D—Description text for the field; this can be multiple lines.

 F—Fields that can be used for lookups. Returned for top-level .01 fields

and for pointed-to files for a DATA TYPE field value of POINTER data.

For pointed-to files, the F flag is effective only if the G flag is also sent.

 G (g)—Getting help from pointed-to file. Help for the .01 field of

pointed-to file is returned.

 H—Help prompt text.

 M—More variable pointer help. Detailed description of how to enter

variable pointer data.

 P—Pointer screen description.

 S—Set of codes possible choices. Any screen that exists on the set of

codes field is applied so that only actually selectable choices are

presented.

VA FileMan 22.2

Developer’s Guide 223 January 2017

 T—Date/Time generic help. This help text is customized based on the

allowable and required elements of the particular Date/Time field.

 U—Unscreened set of codes choices.

 V—Variable pointer help that lists the prefixes and messages associated

with a particular variable pointer field.

 X—EXecutable help-the M code contained in executable help is

executed. In order to have the help returned in an array, the executed

code must use EN^DDIOL to load the help message.

msg_root: (Optional) Closed root into which the output from the call is put. If not supplied,

output is returned in ^TMP-see Output.

Output

The default output from this call is:

DIHELP: Number of lines of help text returned.

^TMP(“DIHELP”,$J,n): Array containing the lines of help text. The text is found in integer subscripted

nodes (n), beginning with 1. A blank node is inserted between each different type

of help returned.

If error messages are necessary, they are returned in the standard manner.

If the MSG_ROOT is included in the input parameters, output is returned there instead of ^TMP. The

help text is returned in nodes descendent from MSG_ROOT(“DIHELP”).

3.5.18.1 Example

Figure 169 illustrates the use of this call to return help text from a field that has a DATA TYPE field

value of SET OF CODES. This is the same help that can be obtained with a “?” in a traditional VA

FileMan call.

 NOTE: The help is returned in the specified array descendent from MYHELP(1).

Figure 169: HELP^DIE() API—Example: Input and Output

>D HELP^DIE(16200,”“,5,”?”,”MYHELP(1)”)

>ZW MYHELP

MYHELP(1,”DIHELP”)=5

MYHELP(1,”DIHELP”,1)=Only YES and MAYBE are acceptable.

MYHELP(1,”DIHELP”,2)=

MYHELP(1,”DIHELP”,3)=Choose from:

MYHELP(1,”DIHELP”,4)=Y YES

MYHELP(1,”DIHELP”,5)=M MAYBE

VA FileMan 22.2

Developer’s Guide 224 January 2017

3.5.18.2 Error Codes Returned

Table 54: HELP^DIE() API—Error Codes Returned

Code Description

120 Error occurred during execution of a FileMan hook.

301 An invalid flag was passed.

501 Field does not exist.

3.5.18.3 Details and Features

3.5.18.3.1 Helper and Validator

Based on a flag passed to the Validator call, single question mark help is returned by the Validator if the

value being checked is invalid.

3.5.18.3.2 Pointed-to Files

By default you receive help for the .01 field of pointed-to files with ? or ?? when the field on which you

are requesting help is a pointer. If you do not want this extended help returned, use the g flag.

3.5.18.3.3 Limitations

This call does not return lists of entries for .01, pointer, or variable pointer fields. Use the Lister utility to

obtain these lists.

The b flag suppresses the line of Variable Pointer help that indicates a user can get a list of entries if they

type <Prefix.?>. Use this flag with “?” if you are not supporting this capability.

3.5.19 $$KEYVAL^DIE(): Key Validator

The Key Validator extrinsic function verifies that new values contained in the FDA do not produce an

invalid key. All keys in which any field in the FDA participates are checked. If the value for a field in a

key being checked is not present in the FDA, the value used to verify the key is obtained from the

previously filed data.

Format

$$KEYVAL^DIE(flags,fda_root,msg_root)

Input Parameters

flags: (Optional) Flags to control processing. The possible values are:

Q—Quit when the first problem in the FDA is encountered.

fda_root: (Required) The root of the FDA that contains the data to be checked. The array

can be a local or global one.

 REF: For details of the structure of the FDA, see the Database Server

Introduction.

The value of fields in the FDA must be the internal value. Do not pass external

(e.g., unresolved pointer values, non- VA FileMan dates) in the FDA.

VA FileMan 22.2

Developer’s Guide 225 January 2017

No action is taken on fields in the referenced FDA if those fields do not

participate in a Key defined in the KEY file (#.31).

msg_root: (Optional) The root of an array into which error messages are returned. If this

parameter is not included, errors are returned in the default array:

^TMP(“DIERR”,$J).

Output

This Boolean function returns a 1 if key integrity is not violated by any value in the FDA and a 0 if an

invalid key was produced by any of the values. Error messages and DIERR are also returned when

necessary.

3.5.19.1 Example

In Figure 170, two fields from (fictitious) File #99999 are set into an FDA. These are values for a new

record; therefore, the IENS is “+1,”. The values (“.111” and “One Fmuser”) are valid internal values for

fields .01 and .02. $$KEYVAL^DIE returns “0” indicating that key integrity is violated by these values.

The returned error message states the values create a duplicate key. The key that is duplicated is the “A”

key.

Figure 170: $$KEYVAL^DIE() API—Example: Input and Output

>K MYERRORS,MYFDA

>S MYFDA(99999,“+1,”,.01)=.111

>S MYFDA(99999,“+1,”,.02)=“One Fmuser”

>W $$KEYVAL^DIE(“”,“MYFDA”,“MYERRORS”)

0

>W DIERR

1^1

>ZW MYERRORS

MYERRORS(“DIERR”)=1^1

MYERRORS(“DIERR”,1)=740

MYERRORS(“DIERR”,1,“PARAM”,0)=3

MYERRORS(“DIERR”,1,“PARAM”,“FILE”)=99999

MYERRORS(“DIERR”,1,“PARAM”,“IENS”)=+1,

MYERRORS(“DIERR”,1,“PARAM”,“KEY”)=11

MYERRORS(“DIERR”,1,“TEXT”,1)=New values are invalid because they create a duplicate

 Key ‘A’ for the SAMPLE file.

MYERRORS(“DIERR”,“E”,740,1)=

3.5.19.2 Error Codes Returned

Table 55: $$KEYVAL^DIE() API—Error Codes Returned

Code Description

740 A duplicate key is produced by a field’s new value.

742 A value for a field in a key is being deleted.

744 Not all fields in a key have a value.

VA FileMan 22.2

Developer’s Guide 226 January 2017

3.5.19.3 Details and Features

3.5.19.3.1 Possible IENS

The only placeholder the IENS in the FDA can contain is the “+”‘ for records not yet added to the

database. You cannot use the “?” or “?+”placeholders, since the Key Validator does not attempt to look

up an entry to obtain existing values for a key.

 REF: For details of the IENS see the Database Server Introduction.

For description of placeholders, see UPDATE^DIE.

3.5.20 UPDATE^DIE(): Updater

This procedure adds new entries in files or subfiles. The caller uses a standard FDA structure to specify

the field values of the new entries. The caller should restrict each Updater call to one logical entry,

possibly made up of multiple physical entries. The record numbers for the new entries are returned in an

array; the caller can assign their own record numbers to new entries by presetting the array. Any

appropriate indexing and auditing automatically occurs for the new record.

 CAUTION: Although the Updater can safely add entries to top-level files and to subfiles
within those same new entries, there is one caution. If the subfile contains an INPUT
transform that assumes the existence of the parent record, the developer should make
two separate Updater calls: 1) first to add the parents, 2) and then to add the children.

This procedure includes some elementary filing capabilities to permit the adding of required identifiers

and key values at the time new records are created. It also includes elementary finding capabilities to

facilitate the identification of top-level entries to which subentries are being added. For full filing and

finding capabilities beyond the scope of adding new records, developers should use the Filer (FILE^DIE)

or Finder (FIND^DIC). If you are filing data in existing records and you know the record numbers, use

the Filer instead of the Updater.

Format

UPDATE^DIE(flags,fda_root,ien_root,msg_root)

Input Parameters

flags: (Optional) Flags to control processing. The possible values are:

 E—External values are processed. If this flag is set, the values in the

FDA must be in the format input by the user. The Updater validates all

values and converts them to VA FileMan internal format. Invalid values

cancel the entire transaction.

If the flag is not set, values must be in VA FileMan internal format and

must be valid.

 K—If a file has a primary key, the primary Key fields, not the .01 field,

are used for lookup for Finding and LAYGO Finding nodes.

 S—The Updater Saves the FDA instead of KILLing it at the end.

VA FileMan 22.2

Developer’s Guide 227 January 2017

 U—Do not check key integrity.

 CAUTION: If this flag is used, the UPDATE^DIE call can
result in records that contain null key fields or records
with duplicate keys. It is the developer’s responsibility to
ensure that the database is not left in a state in which the
integrity of keys is violated.

fda_root: (Required) The name of the root of a VA FileMan Data Array, which describes

the entries to add to the database. The Updater accepts Adding Nodes, Filing

Nodes, Finding Nodes, and LAYGO Finding Nodes in its FDAs.

 REF: For a description of the format of the array named by the FDA

parameter, see the “Details and Features” section.

ien_root” (Optional) The name of the Internal Entry Number Array (or IEN Array). This

should be a closed root. This array has two functions:

 Requesting Record Numbers for New Entries

 Locating Feedback on What the Updater Did

Requesting Record Numbers for New Entries

The application can set nodes in the IEN Array to direct the Updater to use

specific record numbers for specific new records. These nodes should have a

single subscript equal to the sequence number in the IENS subscript of the FDA

entry and a value equal to the desired record number.

For example, if the application sets the IEN_ROOT parameter to ORIEN, and

sets ORIEN(1)=1701, the Updater tries to assign record number 1701 to the new

record denoted by the “+1” value in the FDA subscripts.

This feature also affects LAYGO Finding nodes. When these nodes result in

adding a new record, the Updater checks the IEN Array to see if the application

wants to place the new record at a specific record number. When LAYGO

Finding nodes result in a successful lookup, the IEN Array node passed in by the

application is changed to the record number of the record found.

If the application sets an entry in the IEN Array for a Finding node, the Updater

ignores it (actually, it overwrites it when it finds the record number for that

node).

This feature is meaningless for Filing nodes, since they have no sequence

numbers.

Unlike FDA_ROOT, IEN_ROOT is optional, both partially and as a whole. The

Updater picks the next available record numbers for any new records not listed

by sequence number in the IEN Array. If the IEN Array is empty or if the

IEN_ROOT is not passed, the Updater picks all the new record numbers.

VA FileMan 22.2

Developer’s Guide 228 January 2017

Locating Feedback on What the Updater Did

As the Updater decodes and processes the sequence numbers, it gradually

converts them into genuine record numbers (see Output). The IEN Array named

by the IEN_ROOT parameter is where this feedback is given. Those sequence

numbers not already assigned by the application are filled in by the Updater (or

sometimes replaced, in the case of LAYGO Finding nodes).

msg_root: (Optional) The array that should receive any error messages. This must be a

closed array reference and can be either local or global. For example, if

MSG_ROOT equals “OROUT(42)”, any errors generated appear in

OROUT(42,”DIERR”).

If the MSG_ROOT is not passed, errors are returned descendent from

^TMP(“DIERR”,$J).

Output

IEN Array: As the Updater assigns record numbers to the records described in the FDA, it

sets up nodes in the IEN Array to indicate how it decoded the sequence numbers.

 REF: For more information on sequence numbers, see “Details and

Features.”

This lets the application find out what was done with the various nodes in the

FDA.

The meaning of IEN Array entries varies depending on the type of node the

sequence number came from. For example, the significance of an IEN Array

entry of ORIEN(3) = 1701 depends on which type of node in the FDA the

sequence number 3 came from.

For Adding Node sequence numbers, the value in the IEN Array indicates the

record number of the new record. If the example came from an Adding Node,

such as FDA(19,”+3,”,.01) =“ZTMDQ”, it means the new record was assigned

the record number 1701.

For Finding Node sequence numbers, the value indicates at which record number

the value was found. If the example came from a Finding Node, such as

FDA(19,”?3,”,.01) =“ZTMDQ”, it means a call to $$FIND1^DIC found record

number 1701 based on a lookup value of “ZTMDQ”.

For LAYGO Finding sequence numbers, an extra zero-node equal to ? or +

identifies whether the entry was found (?) or added (+). If the example came

from a LAYGO Finding Node, such as FDA(19,”?+3,”,.01)=“ZTMDQ”, an extra

node of ORIEN(3,0)=“?” means ZTMDQ was found, whereas ORIEN(3,0)=“+”

means it was added.

By the time the Updater finishes processing an FDA, every sequence number is

listed with a value in the IEN Array (some set by the application as input for new

record numbers and the rest set by the Updater).

If the IEN_ROOT parameter was not passed, the IEN Array is not returned.

VA FileMan 22.2

Developer’s Guide 229 January 2017

3.5.20.1 Examples

3.5.20.1.1 Example 1

Figure 171 illustrates the use of this call to create a new record in a top-level file. In this case, a new

option is being added at a specified record number. Notice the triggered 9 on the 0-node and the triggered

“U” node:

Figure 171: UPDATE^DIE() API—Example 1: Input and Output

>S FDA(42,19,“+1,”,.01)=“ZZ FDA TEST NAME”

>S FDA(42,19,“+1,”,1)=“ZZ Toad Test Menu Text”

>S FDAIEN(1)=2067642283

>D UPDATE^DIE(“”,“FDA(42)”,“FDAIEN”)

>D ^%G

Global ^DIC(19,2067642283

 DIC(19,2067642283

^DIC(19,2067642283,0) = ZZ FDA TEST NAME^ZZ Toad Test Menu Text^^^9

^DIC(19,2067642283,”U”) = ZZ FDA TEST MENU TEXT

3.5.20.1.2 Example 2

Figure 172 illustrates the use of UPDATE^DIE to create a new record in a multiple field. A new subentry

Person Class is created for a user, in this example IEN #82, in the NEW PERSON file (#200):

Figure 172: UPDATE^DIE() API—Example 2: Input and Output

>S USERIEN=82

>S ZZ(1,200.05,“+2,”_USERIEN_“,”,.01)=144

>S ZZ(1,200.05,“+2,”_USERIEN_“,”,2)=3070605

>S ZZ(1,200.05,“+2,”_USERIEN_“,”,3)=3070615

>D UPDATE^DIE(“”,”ZZ(1)”)

>D ^%G

Global ^VA(200,82,“USC1”

^VA(200,82,“USC1”,0)=^200.05P^1^1

^VA(200,82,“USC1”,1,0)=144^3070605^3070615

^VA(200,82,“USC1”,”AD”,3070605,1)=

^VA(200,82,“USC1”,”B”,144,1)=

VA FileMan 22.2

Developer’s Guide 230 January 2017

3.5.20.1.3 Example 3

Figure 173 is another example of adding a new subentry to a menu option. In this case, the menu is EVE

and the new option that is to be added is “ZZSO SECURITY DEMO”.

Figure 173: UPDATE^DIE() API—Example 3: Input and Output

; Demo Adding Sub-file Entry N DIERR,IEN,IENS,FDA,NOPT

; Get “EVE” menu IEN

;;;;

S IEN=$$FIND1^DIC(19,”“,”X”,”EVE”,”B”)

I $G(DIERR)’=““ D Q

. W !,”LOOKUP FOR ‘EVE’ FAILED”

. D CLEAN^DILF

. Q

;

; Get the option to be added to EVE IEN

S NOPT=$$FIND1^DIC(19,”“,”X”,”ZZSO SECURITY DEMO”,”B”)

I $G(DIERR)’=““ D Q

. W !,”LOOKUP FOR ‘ZZSO SECURITY DEMO’ FAILED”

. D CLEAN^DILF

. Q

;

; Now add the option to EVE using UPDATE^DIE

; The ‘?’ says to see if the .01 value already exists, if it does

; then just edit the existing entry.

; The ‘+’ says if the .01 value doesn’t already exists, then add it.

; The ‘1’ is just a place holder number.

; The value for IEN is equal to DA(1).

; The value ‘?+1’ is a place holder for DA.

S IENS=“?+1”

S FDA(19.01,IENS_”,”_IEN_”,”,.01)=NOPT

S FDA(19.01,IENS_”,”_IEN_”,”,2)=“ZZ”

D UPDATE^DIE(““,”FDA”)

W:$G(DIERR)’=““ !,”THE MENU ADDITION FAILED.”

D CLEAN^DILF

Q

3.5.20.2 Error Codes Returned

Table 56: UPDATE^DIE() API—Error Codes Returned

Error Description

110 The record is currently locked.

111 The File Header Node is currently locked.

120 Error occurred during execution of a FileMan hook.

202 An input parameter is missing or not valid.

205 The File and IENS represent different subfile levels.

301 The passed flags are unknown or inconsistent.

302 Entry already exists.

304 The IENS lacks a final comma.

307 The IENS has an empty comma-piece.

VA FileMan 22.2

Developer’s Guide 231 January 2017

Error Description

308 The IENS is syntactically incorrect.

310 The IENS conflicts with the rest of the FDA.

311 The new record lacks some required identifiers.

330 The value is not valid.

351 FDA Node has a bad IENS.

352 The new record lacks a .01 field.

401 The file does not exist.

402 The global root is missing or not valid.

403 The file lacks a header node.

405 Entries in file cannot be edited.

406 The file has no .01 field definition.

407 A word-processing field is not a file.

408 The file lacks a name.

501 The file does not contain that field.

502 The field has a corrupted definition.

510 The data type cannot be determined.

520 That kind of field cannot be processed by this utility.

601 The entry does not exist.

602 The entry is not available for editing.

603 The entry lacks a required field.

630 The field value is not valid.

701 The value is not valid for that field.

703 The value cannot be found in the file.

712 The value in that field cannot be deleted.

730 The value is not valid according to the DD definition.

740 New values are invalid because they would create a duplicate key.

742 Deletion was attempted on a key field.

744 A key field was not assigned a value.

746 The K flag was used, but no primary key fields were provided in the FDA for Finding and

LAYGO Finding nodes.

VA FileMan 22.2

Developer’s Guide 232 January 2017

The Updater can also return any error returned by:

 $$FIND1^DIC

 FILE^DIE

3.5.20.3 Details and Features

3.5.20.3.1 Adding

Adding Nodes let applications create new entries in a file. In the place of the actual IENS subscript for the

new record in the FDA array, the application instead uses a unique value consisting of a + followed by a

positive number.

“+#” Always adds without regard to duplication.

Thus, for example, an FDA of “FDA(42)” might be accompanied by the following array:

FDA(42,19,”+1,”,.01)=“NAME OF OPTION”

FDA(42,19,”+1,”,1)=“MENU TEXT OF NEW OPTION”

FDA(42,19.01,”+2,+1,”,.01)=45

FDA(42,19.01,”+2,+1,”,2)=“TM”

FDA(42,19.01,”+3,+1,”,.01)=408

The FDA_ROOT value directs the Updater to the FDA(42) array, whose format instructs the Updater to

add one new entry to the OPTION file (#19) and two new entries to the MENU Multiple of that entry.

 NOTE: The sequence number for each new entry to be added to a file or subfile must be unique

throughout the FDA.

3.5.20.3.2 Adding—Identifiers and Keys

The FDA for a new record must include the .01 field, all of the required identifiers, and all key fields. If

any of these needed fields is missing, the entire FDA transaction fails; none of the entries is added if any

one lacks required data.

3.5.20.3.3 Filing

Filing Nodes let the application file new data under existing entries. This may be necessary to complete a

logical record addition. Any FDA node whose IENS subscript consists solely of record numbers and

commas is considered a Filing Node. If you know all of the record numbers (i.e., if all of the nodes in

your FDA are Filing Nodes), you should use the Filer instead of the Updater to file the data.

For example, FDA(42,19,”408,”,1)=“NEW MENU TEXT” instructs the Updater to update field 1 of

record 408, so no actual record creation takes place as a result of this node.

3.5.20.3.4 Finding

Finding Nodes let applications work with existing entries for which the application does not yet have a

record number. Instead of +#, the application uses the notation ?# to stand in for an unknown record

number. The sequence number that follows the ? must be unique throughout the FDA.

Every FDA of this type must include an FDA node for the .01 field, or, if the K flag is passed, nodes for

at least one field in the primary key. The value of this FDA node is used to perform a lookup on the file. It

must match only one entry in that file; ambiguity or failure to find a match is an error condition. The

record number found is then used for this FDA entry.

VA FileMan 22.2

Developer’s Guide 233 January 2017

For example the following FDA adds a new menu item to the ZTMMGR menu and changes the menu’s

text:

FDA(42,19,”?1,”,.01)=“ZTMMGR”

FDA(42,19,”?1,”,1)=“New Menu Text”

FDA(42,19.01,”+2,?1,”,.01)=45

FDA(42,19.01,”+2,?1,”,2)=“TM”

In this example, the Updater first uses the value ZTMMGR in a lookup to find the record number that

replaces ?1. It then adds a new entry to subfile 19.01 under that entry, and changes the menu text of the

option to “New Menu Text”. The first node shown is a Finding Node that specifies the value of the .01

field to be used for lookup. The next node specifies a new value for field 1, the menu’s text. The last two

nodes are Adding Nodes that specify the values for fields .01 and 2 of the new menu item.

When the E flag is used, the .01 Finding node can equal any valid input value for the Lookup. For

example, to pick based on a set of codes where WA stands for WASHINGTON, when using the E flag,

you can enter WASH.

But, when the E flag is not used, the .01 Finding node must equal an internal value, though the special

lookup values—<Spacebar> and accent grave (`) concatenated with the IEN—still work. For example,

a .01 Finding node equal to WASH would return an error in the above scenario if the E flag were not

passed. To succeed, the .01 Finding node would need to equal WA, the internal value.

3.5.20.3.5 LAYGO Finding

LAYGO Finding Nodes let the application refer to entries that may or may not already exist. If they do

exist, the Updater finds and uses their record numbers. If not, the Updater adds the entries. The IENS

notation used to stand in for these entries is ?+#. The # is a unique positive number that acts as a

placeholder until an actual internal entry number can be produced by the Updater.

For example, this call expects to find the ZTMMGR option, but adds it if it is missing:

FDA(42,19,“?+1,”,.01)=“ZTMMGR”

FDA(42,19.01,“+2,?+1,”,.01)=45

FDA(42,19.01,“+2,?+1,”,2)=“TM”

The IEN Array node for this entry includes an extra zero node equal to ? or + to identify if the entry was

found or added. For example, if the entry for the previous example was found, the IEN Array node for

this FDA might look like this:

IEN(1)=388

IEN(1,0)=“?”

IEN(2)=9

All LAYGO Finding Nodes are processed in order after Finding Nodes and before other kinds of nodes.

Like Finding Nodes, .01 LAYGO Finding Nodes must match the format of the overall call: external if the

E flag has been passed, internal if not.

 REF: For details, see the “Finding” section.

VA FileMan 22.2

Developer’s Guide 234 January 2017

3.5.20.3.6 Sequence Numbers

A positive number that acts as a placeholder to identify a record until an actual internal entry number can

be created or found by the Updater. This positive number must be unique throughout the FDA array. For

example, if “+1,” is used in an FDA, you cannot also use “?1,” or “?+1”.

3.5.21 VAL^DIE(): Validator

The purpose of the Validator procedure is to take the external form of user input and determine if that

value is valid (i.e., if that value can be put into the VA FileMan database). In addition, the Validator

converts the user-supplied value into the VA FileMan internal value when necessary. It is this internal

value that is stored. If the Validator determines that the value passed is invalid, a caret (“^”) is returned.

Word-processing and computed fields cannot be validated. The .01 field of a Multiple must be input using

FILE = subfile number and FIELD = .01.

Optionally, the Validator does the following:

 Returns the resolved external value of the data.

 Returns help text for invalid values.

 Loads the internal value into the VA FileMan Data Array (FDA) to prepare for a later Filer call.

Format

VAL^DIE(file,iens,field,flags,value,.result,fda_root,msg_root)

Input Parameters

file: (Required) File or subfile number.

iens: (Required) Standard IENS indicating internal entry numbers.

field: (Required) Field number for which data is being validated.

flags: (Optional) Flags to control processing. The possible values are:

 E—External value is returned in RESULT(0).

 F—FDA node is set for valid data in array identified by FDA_ROOT.

 H—Help (single ?) is returned if VALUE is not valid.

 R—Record identified by IENS is verified to exist and to be editable. Do

not include “R” if there are placeholders in the IENS.

 U—Do not perform key validation. Without this flag, the data in

VALUE is checked to ensure that no duplicate keys are created and that

key field values are not deleted.

value: (Required) Value to be validated as input by a user. VALUE can take several

forms depending on the data type involved, such as a partial, unambiguous match

for a pointer) and any of the supported ways to input dates (e.g., ”TODAY” or

“11/3/93”).

.result: (Required) Local variable that receives output from call. If VALUE is valid, the

internal value is returned. If not valid, ^ is returned. If E flag is present, external

value is returned in RESULT(0).

VA FileMan 22.2

Developer’s Guide 235 January 2017

 NOTE: This array is KILLed at the beginning of each Validator call.

fda_root: (Optional; required if F flag present) Root of FDA into which internal value is

loaded if F flag is present.

msg_root: (Optional) Root into which error, help, and message arrays are put. If this

parameter is not passed, these arrays are put into nodes descendent from ^TMP.

Output

See input parameters .result, fda_root, and msg_root.

RESULT = internal value or ^ if the passed VALUE is not valid.

RESULT(0) = external value if the passed VALUE is valid and E flag is present.

3.5.21.1 Example

This example checks the validity of a value for a set of codes field. Note that the flags indicate that the

external value should be returned and that a node in the FDA should be built. In this situation a VALUE

of “YES” would also have been acceptable and would have resulted in exactly the same output as shown

below:

Figure 174: VAL^DIE() API—Example: Input and Output

>S FILE=16200,FIELD=5,IENS=“3,”,FLAG=“EHFR”,VALUE=“Y”

>D VAL^DIE(FILE,IENS,FIELD,FLAG,VALUE,.ANSWER,”MYFDA(1)”)

>ZW ANSWER

ANSWER=Y

ANSWER(0)=YES

>ZW MYFDA(1)

MYFDA(1,16200,”3,”,5)=Y

3.5.21.2 Error Codes Returned

In addition to codes indicating that the input parameters are incorrect and that the file, field, or entry does

not exist, primary error messages include:

Table 57: VAL^DIE() API—Error Codes Returned

Code Description

120 Error occurred during execution of a FileMan hook.

299 Ambiguous value. (Variable Pointer data type only.)

405 The file is uneditable.

520 The field’s data type or INPUT transform is inappropriate.

602 The entry cannot be edited.

701 Value is invalid.

710 The field is uneditable.

712 An inappropriate deletion of a field’s value is being attempted.

VA FileMan 22.2

Developer’s Guide 236 January 2017

Code Description

740 A duplicate key is produced by a field’s new value.

742 A value for a field in a key is being deleted.

1610 Help was improperly requested.

3.5.21.3 Details and Features

3.5.21.3.1 What is Validated

The Validator takes the following steps in validating the input data:

 Rejects value starting with “?”. Help should be requested using the HELP^DIE API.

 If R flag is sent, verifies that the entry is present and that editing is not blocked because the entry

is being archived.

 If the field is uneditable, rejects the input if there is already data in the field.

 If the passed value is null or “@”, signifying data deletion, rejects the input if the field is

required, if the field is a key field, or if the tests present in any “DEL” nodes for the field are not

passed. For multiples, the deletion of the last subentry in the multiple is rejected if the multiple is

required.

 Verifies that the value of the field is not DINUMed.

 Checks all keys in which the field participates to ensure the new value does not create any

duplicate keys.

 Passes the value through the field’s INPUT transform and executes any screens on pointer,

variable pointer, or set of codes fields. For pointer and variable pointer, values that do not yield at

least a partial match are rejected (no LAYGO); ambiguous values are rejected (see note below for

variable pointers). If these tests are passed, the input value is accepted and the internal value

becomes the value resulting in the execution of the INPUT transform or the pointer value

resulting from the lookup.

 NOTE: No file or field access security checks on either the file or field level are done.

3.5.21.3.2 Note for Pointers

The internal entry number of the entry in the pointed-to file that corresponds to the input is returned. If the

lookup value partially matches more than one entry in the pointed-to file, the call fails.

3.5.21.3.3 Note for Variable Pointers

For a DATA TYPE field value of VARIABLE POINTER, the VALUE can include the variable pointer

PREFIX, MESSAGE, or FILENAME followed by a period (.) before the lookup value. If no particular

file is specified in this way, all of the pointed-to files are searched. If the lookup value is not found in any

file searched or if more than one match is found in any files, the call fails (i.e., VALUE is not valid).

3.5.21.3.4 Note for Set of Codes

For a DATA TYPE field value of SET OF CODES, VALUE is treated as case insensitive. If the VALUE

is ambiguous, the validation fails.

VA FileMan 22.2

Developer’s Guide 237 January 2017

3.5.21.3.5 Returning External Values

If the E flag is sent, the Validator returns the external value of VALUE in addition to its internal value.

This is returned in RESULT(0). For DATA TYPE field values of FREE TEXT, NUMBER, and MUMPS,

the external value is created by passing VALUE through the INPUT transform (if any) and then the

OUTPUT transform (if any). For a DATA TYPE field value of DATE/TIME, the external value is the

standard VA FileMan external date/time format. For DATA TYPE field value s of POINTERS and

VARIABLE POINTERS, the external value is the .01 of the entry in the pointed-to file. For set of codes,

the external value is the “translation” of the code.

3.5.21.3.6 Validate and File

If you want to validate a set of data and then file the valid data, make a call to the FILE^DIE (the Filer)

API with an E flag passed in the first parameter. The nodes in the FDA identified by the second parameter

should be set to the external, unvalidated value used as input to the Validator. Based on this flag, the Filer

calls the Validator for each field and only files the valid, internal values. Error messages are returned for

the fields that could not be filed.

 NOTE: You cannot mix internal and external values in the FDA when calling the Filer.

3.5.22 VALS^DIE(): Fields Validator

The Fields Validator procedure validates data for a group of fields and converts valid data to internal VA

FileMan format. It is intended for use with a set of fields that comprise a logical record; fields from more

than one file can be validated by a single call. By default, the integrity of any keys affected by the new

values is checked.

The Fields Validator performs the same checks performed by VAL^DIE (see for details).

Format

VALS^DIE(flags,fda_ext_root,fda_int_root,msg_root)

Input Parameters

flags: (Optional) Flags to control processing. The possible values are:

 K—If the file has a Primary Key, this flag indicates that the Primary Key

fields, not the .01 field, are to be used for lookup in the Finding and

LAYGO/Finding nodes of the FDA. Without this flag, VALS^DIE

assumes that you want to file the fields in the Primary Key, rather than

use them for lookup, and performs the uniqueness check. This flag is

equivalent to the “K” flag in the Updater (UPDATE^DIE).

 R—Records identified by IENSs in the FDA_EXT are verified to exist

and to be editable. (Same as R flag for VAL^DIE.)

 U—Do not perform key validation. Without this flag, the data in the

FDA is checked to ensure that no duplicate keys are created and that key

field values are not deleted.

fda_ext_root: (Required) The root of a standard FDA. This array should contain the external

values that you want to validate. This is the input array.

 REF: For details of the structure of the FDA, see the Database Server

Introduction.

VA FileMan 22.2

Developer’s Guide 238 January 2017

fda_int_root: (Required) The root of a standard FDA. This FDA is the output array, and upon

return is set equal to the internal values of each validated field. If a field fails

validation, its value is set to a caret (“^”).

 NOTE: If a field is valid, the corresponding node in the output array is

set to the internal value, not a caret (“^”), even if that field violates key

integrity.

 REF: For details of the structure of the FDA, see the “Introduction”

section in the “Database Server (DBS) API” section.

msg_root: (Optional) The root of an array (local or global) into which error messages are

returned. If this parameter is not included, error messages are returned in the

default array: ^TMP(“DIERR”,$J).

Output

 REF: For an explanation of how internal values are returned to the client application, see the

description of the FDA_INT_ROOT.

If an error occurs in any of the validations, the DIERR variable is set and appropriate error messages are

returned.

3.5.22.1 Examples

3.5.22.1.1 Example 1

This simple example validates and converts the values for two fields:

Figure 175: VALS^DIE() API—Example 1: Input and Output

>S MYFDA(“EXT”,16997,“1,”,1)=“SOME TEXT”

>S MYFDA(“EXT”,16997,“1,”,2)=“JAN 1, 1996”

>D VALS^DIE(“”,“MYFDA(““EXT””)”,“MYFDA(““INT””)”)

>W $G(DIERR)

>ZW MYFDA(“INT”)

MYFDA(“INT”,16997,”1,”,1)=SOME TEXT

MYFDA(“INT”,16997,”1,”,2)=2960101

VA FileMan 22.2

Developer’s Guide 239 January 2017

3.5.22.1.2 Example 2

This example reports that one of the values does not pass validation. Note that the value for the invalid

field equals ^ in MYFDAINT.

Figure 176: VALS^DIE() API—Example 2: Input and Output

>S MYFDA(“EXT”,16997,“1,”,1)=“SOME TEXT”

>S MYFDA(“EXT”,16997,“1,”,2)=“JAN 1, 6”

>D VALS^DIE(“”,“MYFDA(““EXT””)”,“MYFDA(““INT””)”)

>W DIERR

1^1

>D ^%G

Global ^TMP(“DIERR”,$J

 TMP(“DIERR”,$J

^TMP(“DIERR”,610279233,1) = 701

^TMP(“DIERR”,610279233,1,”PARAM”,0) = 4

^TMP(“DIERR”,610279233,1,”PARAM”,3) = JAN 1, 6

^TMP(“DIERR”,610279233,1,”PARAM”,”FIELD”) = 2

^TMP(“DIERR”,610279233,1,”PARAM”,”FILE”) = 16997

^TMP(“DIERR”,610279233,1,”PARAM”,”IENS”) = 1,

^TMP(“DIERR”,610279233,1,”TEXT”,1) = The value ‘JAN 1,

6’ for field REVERSE DATE FIELD IN KEY in file ZZD

KEYTEST is not valid.

^TMP(“DIERR”,610279233,”E”,701,1) =

Global ^

>ZW MYFDA(“INT”)

MYFDA(“INT”,16997,”1,”,1)=SOME TEXT

MYFDA(“INT”,16997,”1,”,2)=^

VA FileMan 22.2

Developer’s Guide 240 January 2017

3.5.22.1.3 Example 3

In this example, the values pass field validation, but an error is returned because they fail the requested

key integrity check.

Figure 177: VALS^DIE() API—Example 3: Input and Output

>K MYFDA

>S MYFDA(“EXT”,16997,“1,”,1)=“TEXT INTO SECOND”

>S MYFDA(“EXT”,16997,“1,”,2)=“MAR 4, 1996”

>D VALS^DIE(“U”,”MYFDA(““EXT”“)”,”MYFDA(““INT”“)”)

>W $G(DIERR)

1^1

>D ^%G

Global ^TMP(“DIERR”,$J

 TMP(“DIERR”,$J

^TMP(“DIERR”,610279233,1) = 740

^TMP(“DIERR”,610279233,1,”PARAM”,0) = 3

^TMP(“DIERR”,610279233,1,”PARAM”,”FILE”) = 16997

^TMP(“DIERR”,610279233,1,”PARAM”,”IENS”) = 13,

^TMP(“DIERR”,610279233,1,”PARAM”,”KEY”) = 34

^TMP(“DIERR”,610279233,1,”TEXT”,1) = New values are invalid

because they create a duplicate Key ‘C’ for the ZZD KEYTEST file.

^TMP(“DIERR”,610279233,”E”,740,1) =

Global ^

>ZW MYFDA(“INT”)

MYFDA(“INT”,16997,”1,”,1)=TEXT INTO SECOND

MYFDA(“INT”,16997,”1,”,2)=2960304

3.5.22.2 Error Codes Returned

In addition to codes indicating that the input parameters are incorrect and that the file, field, or entry does

not exist, primary error messages include:

Table 58: VALS^DIE() API—Error Codes Returned

Code Description

120 Error occurred during execution of a FileMan hook.

299 Ambiguous value. (Variable Pointer data type only.)

405 The file is uneditable.

520 The field’s data type or INPUT transform is inappropriate.

602 The entry cannot be edited.

701 Value is invalid.

710 The field is uneditable.

712 An inappropriate deletion of a field’s value is being attempted.

740 A duplicate key is produced by a field’s new value.

VA FileMan 22.2

Developer’s Guide 241 January 2017

Code Description

742 A value for a field in a key is being deleted.

744 Not all fields in a key have a value.

1610 Help was improperly requested.

3.5.22.3 Details and Features

3.5.22.3.1 Key Integrity Validation

Unless the U flag is passed, the internal values produced by the validation of the values passed in the

FDA_EXT are checked to make sure that no key’s integrity is violated.

3.5.23 WP^DIE(): Word-processing Filer

This procedure files a single word-processing field.

Format

WP^DIE(file,iens,field,flags,wp_root,msg_root)

Input Parameters

file: (Required) File or subfile number.

iens: (Required) Standard IENS indicating internal entry numbers.

field: (Required) Field number of the word-processing field into which data is being

filed.

flags: (Optional) Flags to control processing. The possible values are:

 A—Append new word-processing text to the current word-processing

data. If this flag is not sent, the current contents of the word-processing

field are completely erased before the new word-processing data is filed.

 K—LocK the entry or subentry before changing the word-processing

data.

wp_root: (Required) The root of the array that contains the word-processing data to be

filed. The data must be in nodes descendent from this root. The subscripts of the

nodes below the WP_ROOT must be positive numbers. The subscripts do not

have to be integers, and there can be gaps in the sequence. The word-processing

text must be in these nodes or in the 0-node descendent from these nodes. To

delete the word-processing field, set WP_ROOT equal to “@”.

msg_root: (Optional) Root into which errors are put. If this parameter is not passed, these

arrays are put into nodes descendent from ^TMP.

Output

The typical result of this call is the updating of the database with new word-processing data. If the call

fails, an error message is returned either in ^TMP or, if it is passed, descendent from MSG_ROOT.

VA FileMan 22.2

Developer’s Guide 242 January 2017

3.5.23.1 Example

The following call files the data into Field #4 of File #16200 for record number 606. The entry is locked

before filing and the new data is added to any word-processing data that is already there.

Figure 178: WP^DIE() API—Example: Input

>D WP^DIE(16200,”606,”,4,”KA”,”^TMP($J,”“WP”“)”)

In this example, the word-processing text must be located at:

Figure 179: WP^DIE() API—Example: Word-processing Text Location 1

^TMP($J,”WP”,1,0) =Line 1

^TMP($J,”WP”,2,0) =Line 2

 ...etc.

Or at:

Figure 180: WP^DIE() API—Example: Word-processing Text Location 2

^TMP($J,”WP”,1) =Line 1

^TMP($J,”WP”,2) =Line 2

 ...etc.

3.5.23.2 Error Codes Returned

In addition to errors indicating that input parameters are missing or incorrect and that the file, field, or

entry does not exist, Table 59 lists the error codes returned with this procedure:

Table 59: WP^DIE() API—Error Codes Returned

Code Description

110 Lock could not be obtained because the entry was locked.

305 There is no data in the array identified by WP_ROOT.

726 The specified field is not a word-processing field.

3.5.24 CLEAN^DILF: Array and Variable Clean-up

This procedure KILLs the standard message arrays and variables that are produced by VA FileMan.

Format

CLEAN^DILF

Input Parameters

None.

VA FileMan 22.2

Developer’s Guide 243 January 2017

Output

The call KILLs the following arrays:

Figure 181: CLEAN^DILF API—Array KILLed

^TMP(“DIERR”,$J)

^TMP(“DIHELP”,$J)

^TMP(“DIMSG”,$J)

The call KILLs the following variables:

Figure 182: CLEAN^DILF API—Variables KILLed

DIERR

DIHELP

DIMSG

DUOUT

DIRUT

DIROUT

DTOUT

3.5.24.1 Error Codes Returned

None.

3.5.25 $$CREF^DILF(): Root Converter (Open to Closed Format)

This extrinsic function converts the traditional open-root format to the closed-root format used by

subscript indirection. It converts an ending comma to a close parenthesis. If the last character is an open

parenthesis, the last character is dropped.

Format

$$CREF^DILF(open_root)

Input Parameters

open_root: (Required) An open root that is a global root ending in either an open parenthesis

or a comma.

3.5.25.1 Example

Figure 183: $$CREF^DILF() API—Example: Input and Output

>W $$CREF^DILF(“^DIZ(999000,”)

^DIZ(999000)

VA FileMan 22.2

Developer’s Guide 244 January 2017

3.5.26 DA^DILF(): DA() Creator

This procedure converts an IENS into an array with the structure of a DA() array.

Format

DA^DILF(iens,.da)

Input Parameters

iens: (Required) A string with record and subrecord numbers in IENS format.

.da: (Required) The name of the array that receives the record numbers.

 NOTE: This array is cleaned out (KILLed) before the record numbers

are loaded.

Output

An array with the record numbers from the IENS; the array is structured like the traditional VA FileMan

DA() array.

3.5.26.1 Example

Figure 184: DA^DILF() API—Example: Input and Output

>S IENS=“4,1,2,532,”

>D DA^DILF(IENS,.MYDA)

>ZW MYDA

MYDA=4

MYDA(1)=1

MYDA(2)=2

MYDA(3)=532

3.5.26.2 Error Codes Returned

None.

VA FileMan 22.2

Developer’s Guide 245 January 2017

3.5.27 DT^DILF(): Date Converter

This procedure converts a user-supplied value into VA FileMan’s internal date format and (optionally)

into the standard VA FileMan external, readable date format.

Format

DT^DILF(flags,in_date,.result,limit,msg_root)

Input Parameters

flags: (Optional) Flags to control processing of user input and the type of output

returned. Generally, FLAGS is the same as %DT input variable to ^%DT entry

point, with the following exceptions: “A” is not allowed and the meaning of “E”

is different (see below). The possible values are:

 E—External, readable date returned in zero-node of RESULT.

 F—Future dates are assumed.

 N—Numeric-only input is not allowed.

 P—Past dates are assumed.

 R—Required time input.

 S—Seconds are returned.

 T—Time input is allowed but not required.

 X—EXact date (with month and day) is required.

in_date: (Required) Date input as entered by the user in any of the formats known to VA

FileMan. Also, help based on the FLAGS passed can be requested with a “?”.

.result: (Required) Local array that receives the internal value of the date/time and, if the

E flag is sent, the readable value of the date. If input is not a valid date, -1 is

returned.

limit: (Optional) A value equal to a date/time in VA FileMan internal format or NOW.

IN_DATE is accepted only if it is greater than or equal to LIMIT if it is positive,

or less than or equal to LIMIT if it is negative. This is equivalent to the %DT(0)

variable in the ^%DT call.

msg_root: (Optional) Root into which error, help, and message arrays are put.

Output

Output is returned in the local array passed by reference in the RESULT parameter, shown below:

RESULT: Date in internal VA FileMan format. If input is invalid or if help is requested

with a “?”, -1 is returned.

RESULT(0): If requested, date in external, readable format. When appropriate, error messages

and help text are returned in the standard manner in ^TMP or in MSG_ROOT (if

it is specified).

VA FileMan 22.2

Developer’s Guide 246 January 2017

3.5.27.1 Examples

3.5.27.1.1 Example 1

Figure 185 is an example of one of the many kinds of user inputs that can be processed by this call. Use

of the E flag ensures that the readable form of the data is returned in the 0-node as follows:

Figure 185: DT^DILF() API—Example 1: Input and Output

>D DT^DILF(“E”,”T+10”,.ANSWER)

>ZW ANSWER

ANSWER=2931219

ANSWER(0)=DEC 19, 1993

3.5.27.1.2 Example 2

This is an example of a request for help when time is allowed as input:

Figure 186: DT^DILF() API—Example 2: Input and Output

>D DT^DILF(“T”,”?”,.ANSWER,”“,”MYHELP”)

>ZW ANSWER

ANSWER=-1

>ZW MYHELP

MYHELP(“DIHELP”)=10

MYHELP(“DIHELP”,1)=Examples of Valid Dates:

MYHELP(“DIHELP”,2)= JAN 20 1957 or JAN 57 or 1/20/57 or 012057

MYHELP(“DIHELP”,3)= T (for TODAY), T+1 (for TOMORROW), T+2, T+7, etc.

MYHELP(“DIHELP”,4)=T-1 (for YESTERDAY), T-3W (for 3 WEEKS AGO), etc.

MYHELP(“DIHELP”,5)=If the year is omitted, the computer uses the CURRENT YEAR.

MYHELP(“DIHELP”,6)=You may omit the precise day, as: JAN, 1957.

MYHELP(“DIHELP”,7)=

MYHELP(“DIHELP”,8)=If the date is omitted, the current date is assumed.

MYHELP(“DIHELP”,9)=Follow the date with a time, such as JAN 20@10, T@10AM, 10:30,

 etc.

MYHELP(“DIHELP”,10)=You may enter NOON, MIDNIGHT, or NOW to indicate the time.

3.5.27.2 Error Codes Returned

In addition to errors indicating that the input parameters are incorrect or missing, Table 60 lists the error

code that can be returned:

Table 60: DT^DILF() API—Error Codes Returned

Code Description

330 Date/time is not acceptable.

3.5.27.3 Details and Features

3.5.27.3.1 Acceptable User Input

This call processes a wide range of formats for dates and times. Example 2 shows the response to an

IN_DATE of “?” summarizes the acceptable formats. Remember that the allowable values are controlled

by the FLAGS sent and by the LIMIT parameter.

VA FileMan 22.2

Developer’s Guide 247 January 2017

3.5.27.3.2 Internal Format

The primary use of this call is to transform the date/time passed in the IN_DATE parameter into the

format used by VA FileMan to store values in DATA TYPE fields with a value of DATE/TIME. That

format is “YYYDDMM.HHMMSS” where YYY is the number of years since 1700.

When the E flag is sent to request that the readable form of the data be returned, the format is always

“MON dd,yyyy@ hh:mm:ss.”

3.5.28 FDA^DILF(): FDA Loader

This procedure can be used to load data into the FDA. It accepts either the traditional DA() array or the

IENS for specifying the entry. No validation of VALUE is done.

Format

1. FDA^DILF(file,iens,field,flags,value,fda_root,msg_root)

2. FDA^DILF(file,.da,field,flags,value,fda_root,msg_root)

Input Parameters

file: (Required) File or subfile number.

.da: (Required for format 2) DA() array containing entry and subentry numbers.

iens: (Required for format 1) Standard IENS indicating internal entry numbers.

field: (Required) Field number for which data is being loaded into the FDA.

flags: (Optional) Flag to control processing:

R—Record identified by IENS or .DA is verified to exist. Do not use the R

FLAG if the IENS or DA() array contain placeholder codes instead of actual

record numbers.

value: (Required, can be null) Value to which the FDA node is set. Depending on how

the FDA is used, this could be the internal or external value. For word-processing

fields, this is the root of the array that contains the word-processing data. Internal

and external values cannot be mixed in a single FDA.

fda_root: (Required) The root of the FDA in which the new node is loaded.

msg_root: (Optional) Root into which error, help, and message arrays are put. If this

parameter is not passed, these arrays are put into nodes descendent from ^TMP.

Output

Successful completion of this call results in the creation of a node descendent from the root passed in

fda_root. The format of the node is:

Figure 187: FDA^DILF() API—Node Format

FDA_ROOT(FILE,”IENS”,FIELD)=VALUE

 REF: For more information on the format of the FDA, see the “Database Server Introduction.”

By default, error messages are returned in ^TMP. If MSG_ROOT is passed, messages are returned there.

VA FileMan 22.2

Developer’s Guide 248 January 2017

3.5.28.1 Example

This example loads the FDA for the first sub-subentry in the second subentry of entry number 4 for Field

#4 in subfile #16200.32 with a value of “NEW DATA” [the FDA is descended from

^TMP(“MYDATA”,$J)]:

Figure 188: FDA^DILF() API—Example: Input and Output

>S FILE=16200.32,IENS=“1,2,4,”,FIELD=4,VALUE=“NEW DATA”,ROOT=“^TMP(““MYDATA”“,$J)”

>D FDA^DILF(FILE,IENS,FIELD,”“,VALUE,ROOT)

>D ^%G

Global ^TMP(“MYDATA”,$J

 TMP(“MYDATA”,$J

^TMP(“MYDATA”,000101456,16200.32,”1,2,4,”,4) = NEW DATA

3.5.28.2 Error Codes Returned

Table 61: FDA^DILF() API—Error Codes Returned

Code Description

202 One of the input parameters is not properly specified.

401 The file does not exist.

501 The field does not exist.

601 The entry does not exist.

3.5.29 $$HTML^DILF(): HTML Encoder/Decoder

This function has two capabilities:

 Encodes a string that can contain embedded caret (“^”) characters according to the rules of

HTML so that the “^” characters are replaced with the string “^”. As a side effect, “&”

characters are encoded as the string “&”. Other encodings typical of HTML are not

performed by this function, since its focus is on encoding the “^” character used as the delimiter

in VA FileMan databases.

 Decodes an encoded string, restoring its “^” and “&” characters.

Format

$$HTML^DILF(string,action)

Input Parameters

string: (Required) The string to be either encoded or decoded. Encoding a string that

contains no “^” or “&” characters has no effect on the string. Nor does decoding

one that lacks “^” and “&” substrings.

action: (Optional) Set this parameter to 1 to encode the string, or -1 to decode it.

Defaults to 1.

VA FileMan 22.2

Developer’s Guide 249 January 2017

Output

The function evaluates to the encoded or decoded string. If encoding the string makes it overflow the

string length limit, it returns error 207. Decoding never makes it overflow.

3.5.29.1 Error Codes Returned

Table 62: $$HTML^DILF()—Error Codes Returned

Code Description

207 The value is too long to encode into HTML.

3.5.30 $$IENS^DILF(): IENS Creator

This extrinsic function returns the IENS when passed an array in the traditional DA() structure.

Format

$$IENS^DILF(.da)

Input Parameters

.da: (Required) An array with the structure of the traditional VA FileMan DA() array

[i.e., DA=lowest subfile record number, DA(1)=next highest subfile record

number, etc.].

Output

A string of record numbers in the IENS format [i.e., “DA,DA(1),...DA(n),”].

 NOTE: The string always ends with a comma (,). If the array passed by reference is empty, a 0 is

returned.

3.5.30.1 Example

Figure 189: $$IENS^DILF() API—Example: Input and Output

>S NMSPDA=4,NMSPDA(1)=1,NMSPDA(2)=2,NMSPDA(3)=532

>W $$IENS^DILF(.NMSPDA)

4,1,2,532,

3.5.30.2 Error Codes Returned

None.

3.5.31 LOCK^DILF(): Lock Global Reference

The purpose of this API is to lock a global reference using VA FileMan’s Lock time out value

(DILOCKTM).

Format

LOCK^DILF(closed_root)

Input Parameter

closed_root: (Required) A closed root, which is a global root ending in a close parenthesis.

VA FileMan 22.2

Developer’s Guide 250 January 2017

Output

$Truth value:

 1—lock obtained.

 0—lock failed.

3.5.31.1 Example

Figure 190: LOCK^DILF() API—Example: Input and Output

>D LOCK^DILF(“^MYFILE(123,1,0)”)

>W $T

1

>W DILOCKTM

3

3.5.32 $$OREF^DILF(): Root Converter (Closed to Open Format)

This extrinsic function converts a closed root to an open root. It converts an ending close parenthesis to a

comma.

Format

$$OREF^DILF(closed_root)

Input Parameter

closed_root: (Required) A closed root, which is a global root ending in a close parenthesis.

3.5.32.1 Example

Figure 191: $$OREF^DILF() API—Example: Input and Output

>W $$OREF^DILF(“^DIZ(999000)”)

^DIZ(999000,

3.5.33 $$VALUE1^DILF(): FDA Value Retriever (Single)

This extrinsic function returns the value associated with a particular file and field in a standard FDA.

Only a single value is returned. If there is more than one node in the FDA array for the same field, the

first value encountered by this function is returned. Use the VALUES^DILF(): FDA Values Retriever

API if you want more than one value returned.

Format

$$VALUE1^DILF(file,field,fda_root)

Input Parameters

file: (Required) File or subfile number.

field: (Required) Field number for which data is being requested.

fda_root: (Required) The root of the FDA from which data is being requested.

VA FileMan 22.2

Developer’s Guide 251 January 2017

Output

This function returns the value for the specified file and field that is stored in the FDA identified by

FDA_ROOT. If the field is a word-processing field, only the root at which word-processing data is stored

is returned. No IENS information is returned. If more than one value is associated with a particular field

(e.g., in a subfile), only a single value is returned.

If there is no node in the FDA for a particular field, a caret (“^”) is returned. If the node has a null value,

null is returned.

3.5.33.1 Example

Figure 192: $$VALUE1^DILF() API—Example: Input and Output

>ZW MYFDA

MYFDA(“DATA”,16200,”33,”,4)=FREE TEXT DATA

MYFDA(“DATA”,16200.04,”1,33,”,1)=16

MYFDA(“DATA”,16200.04,”2,33,”,1)=45

>W $$VALUE1^DILF(16200,4,”MYFDA(““DATA”“)”)

FREE TEXT DATA

3.5.33.2 Error Codes Returned

None.

3.5.34 VALUES^DILF(): FDA Values Retriever

This procedure returns values from an FDA for a specified field. The IENS associated with a particular

value is also returned. Use the $$VALUE1^DILF(): FDA Value Retriever (Single) API if you want the

single value associated with a particular file and field in a standard FDA.

Format

VALUES^DILF(file,field,fda_root,.result)

Input Parameters

file: (Required) File or subfile number.

field: (Required) Field number for which data is being requested.

fda_root: (Required) The root of the FDA from which data is being requested.

.result: (Required) Local array that receives output from the call. The array is KILLed at

the beginning of each call.

 REF: For the structure of the array, see the “Output” section.

VA FileMan 22.2

Developer’s Guide 252 January 2017

Output

 REF: See the .result input parameter.

The output from the call is returned in the array identified by RESULT. Its structure is:

RESULT: Number of values found for the specified field. If no node exists in the FDA for

the field, RESULT=0.

RESULT(seq#): Value for a particular instance of the field. Seq# is an integer starting with 1 that

identifies the particular value.

RESULT(seq#,”IENS”): The IENS of the entry or subentry with the value in RESULT(seq#).

3.5.34.1 Example

Figure 193: VALUES^DILF() API—Example: Input and Output

>ZW MYFDA

MYFDA(“DATA”,16200,”33,”,4)=FREE TEXT DATA

MYFDA(“DATA”,16200.04,”1,33,”,1)=16

MYFDA(“DATA”,16200.04,”2,33,”,1)=45

>D VALUES^DILF(16200.04,1,”MYFDA(““DATA”“)”,.MYVALUES)

>ZW MYVALUES

MYVALUES=2

MYVALUES(1)=16

MYVALUES(1,”IENS”)=1,33,

MYVALUES(2)=45

MYVALUES(2,”IENS”)=2,33,

3.5.34.2 Error Codes Returned

None.

3.5.35 $$EXTERNAL^DILFD(): Converter to External

This extrinsic function converts any internal value to its external format. It decodes codes, makes VA

FileMan dates readable, and follows pointer or variable pointer chains to resolve their values. OUTPUT

transforms are applied to their fields.

 REF: For more information about how VA FileMan handles OUTPUT transforms and pointers,

see the “Details and Features” section.

Format

$$EXTERNAL^DILFD(file,field,flags,internal,msg_root)

Input Parameters

file: (Required) The number of the file or subfile that contains the field that describes

the internal value passed.

field: (Required) The number of the field that describes the internal value passed.

flags: (Optional) To control processing.

VA FileMan 22.2

Developer’s Guide 253 January 2017

A single-character code that explains how to handle OUTPUT transforms found

along pointer chains. The default describes how fields not found along a pointer

chain are always handled, regardless of whether a flag is passed.

 REF: For definition and explanation of pointer chains, see the “Details

and Features” section.

The default, if no flag is passed, is the way this function generally handles

OUTPUT transforms. If a field has an OUTPUT transform, the transform is

applied to the internal value of the field and VA FileMan does not process the

value further. This means it is the responsibility of the OUTPUT transform to

resolve codes, transform dates, and follow pointer or variable pointer chains to

their destination.

The default handling of pointer chains, therefore, is to follow the chain either

until:

 The last field is found, at which point the field is transformed according

to its data type.

Or:

 A field with an OUTPUT transform is found, at which point VA FileMan

applies the OUTPUT transform to the field where it is found and quits.

The possible values are:

 F—If the First field in a pointer chain has an OUTPUT transform, apply

the transform to that first field and quit. Ignore any other OUTPUT

transforms found along the pointer chain. With the exception of this

function, VA FileMan regularly handles OUTPUT transforms this way.

 L—If the Last field in a pointer chain has an OUTPUT transform, apply

the transform to that last field and quit. Ignore any other OUTPUT

transforms found along the pointer chain.

 U—Use the first OUTPUT transform found on the last field in the

pointer chain. Following the pointer chain, watch for OUTPUT

transforms. When one is found, remember it, but keep following the

pointer chain. When the last field in the chain is reached, apply the

remembered transform to that last field.

internal: (Required) The internal value that is to be converted to its external format.

msg_root: (Optional) The array that should receive any error messages. This must be a

closed array reference and can be either local or global. For example, if

MSG_ROOT equals “OROUT(42)”, any errors generated appear in

OROUT(42,”DIERR”).

If the MSG_ROOT is not passed, errors are returned descendent from

^TMP(“DIERR”,$J).

Output

This function evaluates to an external format value, as defined by a field in a file in the database. In the

event of an error, this function outputs the empty string instead.

VA FileMan 22.2

Developer’s Guide 254 January 2017

3.5.35.1 Examples

3.5.35.1.1 Example 1

Figure 194: $$EXTERNAL^DILFD() API—Example 1: Input and Output

>W $$EXTERNAL^DILFD(19,4,”“,”A”)

action

3.5.35.1.2 Example 2

Figure 195: $$EXTERNAL^DILFD() API—Example 2: Input and Output

>W $$EXTERNAL^DILFD(4.302,.01,”“,2940209.0918)

FEB 09, 1994@09:18

3.5.35.1.3 Example 3

Figure 196: $$EXTERNAL^DILFD() API—Example 3: Input and Output

>W $$EXTERNAL^DILFD(3.7,.01,”“,DUZ)

FMPATIENT,27

3.5.35.1.4 Example 4

Figure 197: $$EXTERNAL^DILFD() API—Example 4: Input and Output

>W $$EXTERNAL^DILFD(3298428.1,.01,”“,1)

11111 1 11111

3.5.35.1.5 Example 5

Figure 198: $$EXTERNAL^DILFD() API—Example 5: Input and Output

>W $$EXTERNAL^DILFD(3298428.1,.01,”F”,1)

11111 1 11111

3.5.35.1.6 Example 6

Figure 199: $$EXTERNAL^DILFD() API—Example 6: Input and Output

>W $$EXTERNAL^DILFD(3298428.1,.01,”L”,1)

22222 TOAD 22222

3.5.35.1.7 Example 7

Figure 200: $$EXTERNAL^DILFD() API—Example 7: Input and Output

>W $$EXTERNAL^DILFD(3298428.1,.01,”U”,1)

11111 TOAD 11111

VA FileMan 22.2

Developer’s Guide 255 January 2017

3.5.35.1.8 Example 8

Figure 201: $$EXTERNAL^DILFD() API—Example 8: Input and Output

>W $$EXTERNAL^DILFD(3298428.1,.01,”GGG”,1) W DIERR D ^%G

1^1

Global ^TMP(“DIERR”

 TMP(“DIERR”

^TMP(“DIERR”,731987397,1) = 301

^TMP(“DIERR”,731987397,1,”PARAM”,0) = 1

^TMP(“DIERR”,731987397,1,”PARAM”,1) = GGG

^TMP(“DIERR”,731987397,1,”TEXT”,1) = The passed flag(s) ‘GGG’ are unknown or

 inconsistent.

^TMP(“DIERR”,731987397,”E”,301,1) =

3.5.35.2 Error Codes Returned

Table 63: $$EXTERNAL^DILFD() API—Error Codes Returned

Code Description

202 The input parameter is missing or invalid.

301 The passed flag(s) are unknown or inconsistent.

348 The passed value points to a file that does not exist or lacks a Header Node.

401 File # does not exist.

403 File # lacks a Header Node.

404 The Header node of the file lacks a file number.

501 File # does not contain a field.

510 The data type cannot be determined.

537 Corrupted pointer definition.

603 Entry lacks the required Field #.

648 The value points to a file that does not exist or lacks a Header Node.

VA FileMan 22.2

Developer’s Guide 256 January 2017

3.5.35.3 Details and Features

3.5.35.3.1 Data Types

The internal value of a field is the way it is stored in the database. The external value is the way a user

expects the field to look. (See also OUTPUT Transforms.) VA FileMan must perform the transformation

whenever such a value is displayed. The data types that undergo this process are listed in Table 64:

Table 64: $$EXTERNAL^DILFD() API—VA FileMan Data Types

Data Type Description

Date/Time The internal value is a numeric code, while the external is readable text. For

example, the internal value of 2940214.085938 has an external value of FEB

14,1994@ 08:59:57.

Numeric The internal and external values are identical.

Set of Codes The full external value is decoded from abbreviated internal value. Each set of

codes field defines which codes are allowed and what they mean. For example, the

internal value of F can have the external value of FEMALE for a certain field.

Free Text The internal and external values are identical.

Word-

Processing

$$EXTERNAL^DILFD does not handle this data type.

Computed This data type does not have an internal value, so $$EXTERNAL^DILFD does not

handle this data type.

Pointer to a File The internal value of this field is the internal entry number of one record in the

pointed-to file. The external format of a pointer value is the external format of the

.01 field of the record identified by the pointer’s internal value. The definition of a

pointer must always identify the pointed-to file. For example, if 1 is the internal

value of a pointer to the STATE file (#5), then the external value is ALABAMA,

because the .01 of the STATE file (#5) is defined as Free Text (needing no

transform) and the .01 field of record #1 in the STATE file (#5) is ALABAMA.

Variable Pointer Unlike the DATA TYPE field with a value of POINTER, the internal value of a

variable pointer identifies the pointed-to file. Like the Pointer, the variable pointer’s

external format is the external value of the .01 field of the pointed-to record. The

Prefix.Value notation many users are familiar with is not the external format of a

variable pointer; that is merely a user interface convention. For example, the

internal value 1;DIC(5, has the external format of ALABAMA (it is the variable

pointer equivalent of the previous example).

MUMPS The internal and external values are identical.

3.5.35.3.2 OUTPUT Transforms

OUTPUT transforms assume full responsibility for transforming the internal value to its external format.

So, transforms on sets of codes work with values like F, not FEMALE; those on pointers deal with 1, not

ALABAMA; etc. This includes following Pointer Chains to their conclusions.

VA FileMan 22.2

Developer’s Guide 257 January 2017

3.5.35.3.3 Pointer Chains

A pointer chain is a list of one or more pointer fields that point to one another in sequence, the final

pointer of which points to a file with a non-pointer .01 field. Thus, for example, if the .01 field of File A

points to the STATE file (#5), that is a pointer chain with one link. If File B points to File A, that makes a

pointer chain with two links. Chains can be made up of any mix of pointers and variable pointers. Every

field in the chain except the first one must be a .01 field, since pointers point to files, not fields; the first

pointer field may or may not be a .01 field.

When VA FileMan converts a pointer or variable pointer to its external value, it must follow the links to

the final field and convert that field to its external value. An OUTPUT transform on a pointer field,

therefore, must do the same. The flags available for this function allow developers to try out different

ways of handling OUTPUT transforms on pointer fields. These flags only alter this function’s behavior,

however. The rest of VA FileMan continues to treat OUTPUT transforms on pointer chains as described

under the F flag (under “Input Parameters,” above).

3.5.36 $$FLDNUM^DILFD(): Field Number Retriever

This extrinsic function returns a field number when passed a file number and a field name.

Format

$$FLDNUM^DILFD(file,fieldname)

Input Parameters

file: (Required) The file number of the field’s file or subfile.

fieldname: (Required) The full name of the field for which you want the number.

Output

The field number of the requested field is returned by this extrinsic function. If the field name does not

exist or if there is more than one field with that name, a 0 is returned.

3.5.36.1 Example

Figure 202: $$FLDNUM^DILFD() API—Example: Input and Output

>W $$FLDNUM^DILFD(200,”DUZ(0)”)

3

3.5.36.2 Error Codes Returned

Table 65: $$FLDNUM^DILFD() API—Error Codes Returned

Code Description

401 The file does not exist.

501 The file does not contain the field.

505 More than one field has the name.

VA FileMan 22.2

Developer’s Guide 258 January 2017

3.5.37 PRD^DILFD(): Package Revision Data Initializer

This procedure sets the PACKAGE REVISION DATA attribute for a file. The file Data Dictionary must

exist in order to successfully set this attribute.

Format

PRD^DILFD(file,data)

Input Parameters

file: (Required) File or subfile number.

data: (Required) Free text information, determined by the developer.

Output

A successful call sets the data into the appropriate Data Dictionary location.

3.5.37.1 Example

The call in Figure 203 sets the PACKAGE REVISION DATA as follows:

Figure 203: PRD^DILFD() API—Example: Input and Output

>D PRD^DILFD(999088,”REVISION #5”)

>W $$GET1^DID(999088,”“,”“,”PACKAGE REVISION DATA”)

REVISION #5

3.5.37.2 Error Codes Returned

None.

3.5.38 RECALL^DILFD(): Recall Record Number

This procedure saves a record number for later retrieval using Space Bar Recall. While Classic VA

FileMan has automatically performed this procedure for applications in the past, the VA FileMan DBS

lookup calls cannot do so. The decision to perform this procedure can only be made by code that knows

its context, which knows whether the selection taking place results from a user’s selection or from some

silent activity. In addition, VA FileMan often is inactive when a user selection occurs (e.g., when a user

picks a single entry from a listbox managed by the application). For these reasons, the maintenance of the

Spacebar Recall feature is increasingly the responsibility of the applications.

Format

RECALL^DILFD(file,iens,user)

Input Parameters

file: (Required) The file or subfile number.

iens: (Required) The IENS that identifies the record selected.

user: (Required) The user number (i.e., DUZ) of the user who made the selection.

VA FileMan 22.2

Developer’s Guide 259 January 2017

3.5.38.1 Example

Figure 204: RECALL^DILFD() API—Example: Input and Output

>D RECALL^DILFD(19,”1,”,9) W $G(DIERR) D ^%G

Global ^DISV(9,”^DIC(19,”)

 DISV(9,”^DIC(19,”)

^DISV(9,”^DIC(19,”) = 1

3.5.38.2 Error Codes Returned

Table 66: RECALL^DILFD() API—Error Codes Returned

Code Description

202 An input parameter is missing or invalid.

205 The FILE and IENS represent different subfile levels.

401 File # does not exist.

402 The global root is missing or not valid.

3.5.39 $$ROOT^DILFD(): File Root Resolver

This extrinsic function resolves the file root when passed file or subfile numbers. At the top-level of the

file $$ROOT returns the global name. When passing a subfile number, $$ROOT uses the IENS to build

the root string.

Format

$$ROOT^DILFD(file,iens,flags,error_flag)

Input Parameters

file: (Required) File number or subfile number.

iens: (Optional) If the FILE parameter equals a file number, the Lister ignores the

IENS parameter. If the FILE parameter equals a subfile number, the Lister needs

the IENS parameter to help identify which subfile to list. In other words, files can

be specified with the FILE parameter alone, but subfiles require both the FILE

and IENS parameters.

When the IENS parameter is used, it must equal an IENS that identifies the

parent record of the exact subfile to list. Since this parameter identifies the

subfile under that record, and not the subrecord itself, the first comma-piece of

the parameter should be empty. If the first comma-piece of the IENS is not

empty, that first comma-piece is ignored.

 REF: For more information on the IENS, see the discussion in the DBS

Introduction.

For example, to specify the Menu Item subfile under option number 67, you must

pass FILE=19.01 (the subfile number for the Menu subfile) and IENS=“,67,”

(showing that record number 67 holds the Menu subfile you want to list).

VA FileMan 22.2

Developer’s Guide 260 January 2017

Defaults to empty string.

flags: (Optional) If set to 1 (true), returns a closed root. The default is to return an open

root.

error_flag: (Optional) If set to 1 (true), processes an error message if an error is encountered.

3.5.39.1 Examples

3.5.39.1.1 Example 1

Figure 205: $$ROOT^DILFD() API—Example 1: Input and Output

>S DIC=$$ROOT^DILFD(999000.07,”1,38,”)

>W DIC

^DIZ(999000,38,2,

3.5.39.1.2 Example 2

Figure 206: $$ROOT^DILFD() API—Example 2: Input and Output

>S DIC=$$ROOT^DILFD(999000)

>W DIC

^DIZ(999000,

3.5.39.1.3 Example 3

Figure 207; $$ROOT^DILFD() API—Example 3: Input and Output

>S CROOT=$$ROOT^DILFD(999000,”“,1)

>W CROOT

^DIZ(999000)

3.5.39.2 Error Codes Returned

Table 67: $$ROOT^DILFD() API—Error Codes Returned

Code Description

200 Invalid parameter

205 The File and IENS represent different subfile levels.

VA FileMan 22.2

Developer’s Guide 261 January 2017

3.5.40 $$VFIELD^DILFD(): Field Verifier

This extrinsic function verifies that a field in a specified file exists.

Format

$$VFIELD^DILFD(file,field)

Input Parameters

file: (Required) The number of the file or subfile in which the field to be checked

exists.

field: (Required) The number of the field to be checked.

Output

This Boolean function returns a 1 if the field exists in the specified file and a 0 if it does not exist.

3.5.40.1 Example

Figure 208: $$VFIELD^DILFD() API—Example: Input and Output

>W $$VFIELD^DILFD(200,99999)

0

3.5.40.2 Error Codes Returned

None.

3.5.41 $$VFILE^DILFD(): File Verifier

This extrinsic function verifies that a file exists.

Format

$$VFILE^DILFD(file)

Input Parameters

file: (Required) The number of the file or subfile that you want to check.

Output

This Boolean extrinsic function returns a 1 if the file exists or a 0 if it does not.

3.5.41.1 Example

Figure 209: $$VFILE^DILFD() API—Example: Input and Output

>W $$VFILE^DILFD(200)

1

3.5.41.2 Error Codes Returned

None.

VA FileMan 22.2

Developer’s Guide 262 January 2017

3.5.42 $$GET1^DIQ(): Single Data Retriever

This extrinsic function retrieves data from a single field in a file.

Data can be retrieved from any field, including computed or word-processing fields, and fields specified

using relational syntax. A basic call does not require that any local variables be present and the symbol

table is not changed by this utility. However, computed expressions can require certain variables be

present and can change the symbol table, because the data retriever does execute Data Dictionary nodes.

The text for word-processing fields is returned in a target array. If data exists for word-processing fields,

this function returns the resolved TARGET_ROOT; otherwise, null is returned.

Format

$$GET1^DIQ(file,iens,field,flags,target_root,msg_root)

Input Parameters

file: (Required) A file number or subfile number.

iens: (Required) Standard IENS indicating internal entry numbers.

field: (Required) Field number, or field name, or field identified in another file by

simple extended pointer (i.e., POINTER:FIELD) relational syntax.

 NOTE: You cannot use a variable pointer as part of relational syntax in

this parameter (i.e., varpointer:field).

flags: (Optional) Flags to control processing. The possible values are:

 I—Internal format is returned. (The default is external.)

 Z—Zero node included for word-processing fields on target array.

 A#—Audit Trail is used to retrieve the value of “FIELD” at a particular

point in time. # is a date/time in VA FileMan internal format

(e.g., 3021015.8). The value retrieved is the (audited) value of the field

as of that date/time.

target_root: (Required for word-processing fields only) The root of an array into which word-

processing text is copied.

msg_root: (Optional) Closed root into which the error message arrays are put. If this

parameter is not passed, the arrays are put into nodes descendent from ^TMP.

3.5.42.1 Examples

3.5.42.1.1 Example 1

Figure 210 is an example of retrieving the value from the .01 field of record #1 in (fictitious) File

#999000:

Figure 210: $$GET1^DIQ() API—Example 1: Input and Output

>W $$GET1^DIQ(999000,”1,”,.01)

FMPATIENT,TWENTY

VA FileMan 22.2

Developer’s Guide 263 January 2017

3.5.42.1.2 Example 2

Figure 211 is an example of retrieving the internally-formatted value from the SEX field of Record #1 in

(fictitious) File #999000:

Figure 211: $$GET1^DIQ() API—Example 2: Input and Output

>S X=$$GET1^DIQ(999000,”1,”,”SEX”,”I”)

>W X

M

3.5.42.1.3 Example 3

Use the SUBTYPE pointer field in the DEVICE file (#3.5) to navigate to the TERMINAL TYPE file

(#3.2) and retrieve the DESCRIPTION field as follows:

Figure 212: $$GET1^DIQ() API—Example 3: Input and Output

>S X=$$GET1^DIQ(3.5,”55,”,”SUBTYPE:DESCRIPTION”)

>W X

WYSE 85

3.5.42.1.4 Example 4

Figure 213 is an example of retrieving the contents of a word-processing field and storing the text in the

target array, WP:

Figure 213: $$GET1^DIQ() API—Example 4: Input and Output

>S X=$$GET1^DIQ(999000,”1,”,12,”“,”WP”)

>ZW

WP(1)=THIS WP LINE 1

WP(2)=WP LINE2

WP(3)=AND SO ON

X=WP

3.5.42.1.5 Example 5

Retrieve the contents of a word-processing field, storing the text in the target array, WP. The format

parameter “Z” means the target array is formatted like the nodes of a VA FileMan word-processing field.

If no data exists, WP is equal to null as follows:

Figure 214: $$GET1^DIQ() API—Example 5: Input and Output

>S WP=$$GET1^DIQ(999000,1,12,”Z”,”WP”) ZW WP

WP=WP

WP(1,0)=THIS WP LINE 1

WP(2,0)=WP LINE2

WP(3,0)=AND SO ON

VA FileMan 22.2

Developer’s Guide 264 January 2017

3.5.42.1.6 Example 7

Figure 215 is an example of retrieving data from a subfile. Here is a partial record entry, number 323, in

^DIZ(999000:

Figure 215: $$GET1^DIQ() API—Example 6: Input and Output

^DIZ(999000,323...

.

.

^DIZ(999000,323,4,2,1,0) = ^999000.163^1^1

^DIZ(999000,323,4,2,1,1,0) = XXX2M3F.01^XXX2M3F1^XXX2M3F2

^DIZ(999000,323,4,2,1,”B”,”XXX2M3F.01”,1) =

^DIZ(999000,323,4,”B”,”XXX1”,1) =

^DIZ(999000,323,4,”B”,”XXX2”,2) =

>S IENS=“1,2,323,”

>W $$GET1^DIQ(999000.163,IENS,2)

XXX2M3F2

3.5.42.1.7 Example 8

Retrieve the value of the .01 field of record #1 in (fictitious) File #999000 as of 1 January, 2000. Suppose

that Auditing has been turned on for that field, and that early in 2000, an incorrect spelling of

“FMPATIENCE,TWENTY” had been corrected:

Figure 216: $$GET1^DIQ() API—Example 7: Input and Output

>W $$GET1^DIQ(999000,”1,”,.01,”A3000000”)

FMPATIENCE,TWENTY

3.5.42.2 Error Codes Returned

Table 68: $$GET1^DIQ() API—Error Codes Returned

Code Description

200 There is an error in one of the variables passed.

202 Missing or invalid input parameter.

301 Flags passed are unknown or incorrect.

309 Either the root of the multiple or the necessary entry numbers are missing.

348 The passed value points to a file that does not exist or lacks a Header Node.

401 The specified file or subfile does not exist.

403 The file lacks a Header Node.

404 The file Header Node lacks a file #.

501 The field name or number does not exist.

505 The field name passed is ambiguous.

510 The data type for the specified field cannot be determined.

VA FileMan 22.2

Developer’s Guide 265 January 2017

Code Description

520 An incorrect kind of field is being processed.

537 Field has a corrupted pointer definition.

601 The entry does not exist.

602 The entry is not available for editing.

603 A specific entry in a specific file lacks a value for a required field.

648 The value points to a file that does not exist or lacks a Header Node.

3.5.43 GETS^DIQ(): Data Retriever

This procedure retrieves one or more fields of data from a record or sub-records and places the values in a

target array.

Format

GETS^DIQ(file,iens,field,flags,target_root,msg_root)

Input Parameters

file: (Required) File or subfile number.

iens: (Required) Standard IENS indicating internal entry numbers.

field: (Required) Can be one of the following:

 A single field number.

 A list of field numbers, separated by semicolons.

 A range of field numbers, in the form M:N, where M and N are the end

points of the inclusive range. All field numbers within this range are

retrieved.

 * For all fields at the top-level (no sub-Multiple record).

 ** For all fields including all fields and data in sub-Multiple fields.

Field number of a multiple followed by an * to indicate all fields and records in

the sub-multiple for that field.

flags: (Optional) Flags to control processing. The possible values are:

 E—Returns External values in nodes ending with “E”.

 I—Returns Internal values in nodes ending with “I”; otherwise, external

is returned.

 N—Does not return Null values.

 R—Resolves field numbers to field names in target array subscripts.

 Z—Word-processing fields include Zero nodes.

 A#—Audit Trail is used to retrieve the value of “FIELD” at a particular

point in time.

VA FileMan 22.2

Developer’s Guide 266 January 2017

is a date/time in VA FileMan internal format (e.g., 3021015.08). The

values retrieved are the (audited) values of the fields as of that date/time.

target_root: (Required) The name of a closed root reference.

msg_root: (Optional) The name of a closed root reference that is used to pass error

messages.

Output

target_root: The output array is in the FDA format

[i.e., TARGET_ROOT(FILE,IENS,FIELD)=DATA]. WP fields have data

descendent from the field nodes in the output array.

3.5.43.1 Examples

3.5.43.1.1 Example 1

Retrieve the values of all fields for a record.

Figure 217: GETS^DIQ() API—Example 1: Input and Output

>D GETS^DIQ(999000,”1,”,”**”,”“,”ARRAY”)

>ZW

ARRAY(999000,”1,”,.01)=TEST1

ARRAY(999000,”1,”,1)=OCT 01, 1992

ARRAY(999000,”1,”,2)=YES

ARRAY(999000,”1,”,3)=1

ARRAY(999000,”1,”,4)=DTM-PC

ARRAY(999000,”1,”,5)=SUPPORTED

ARRAY(999000,”1,”,6)=S Y=“SET Y=TO THIS”

ARRAY(999000,”1,”,8)=AUDIT,Z

ARRAY(999000,”1,”,9)=ACCESS,Z

ARRAY(999000,”1,”,10)=GRP,Z

ARRAY(999000,”1,”,11)=DESCRIP,Z

ARRAY(999000,”1,”,12)=ARRAY(999000,”1,”,12)

ARRAY(999000,”1,”,12,1)=THIS WP LINE 1

ARRAY(999000,”1,”,12,2)=WP LINE2

ARRAY(999000,”1,”,12,3)=AND SO ON

ARRAY(999000,”1,”,13)=LASTNAME,FIRST

ARRAY(999000.07,”1,1,”,.01)=TEST1 ONE

ARRAY(999000.07,”1,1,”,1)=

ARRAY(999000.07,”2,1,”,.01)=TEST1 TWO

ARRAY(999000.07,”2,1,”,1)=

ARRAY(999000.07,”3,1,”,.01)=TEST1 THREE

ARRAY(999000.07,”3,1,”,1)=

ARRAY(999000.07,”4,1,”,.01)=TEST1 FOUR

ARRAY(999000.07,”4,1,”,1)=MUMPS

VA FileMan 22.2

Developer’s Guide 267 January 2017

3.5.43.1.2 Example 2

Retrieve the values of all fields for a record, excluding Multiples.

Figure 218: GETS^DIQ() API—Example 2: Input and Output

>D GETS^DIQ(999000,”1,”,”*”,”“,”ARRAY1”)

>ZW

ARRAY1(999000,”1,”,.01)=TEST1

ARRAY1(999000,”1,”,1)=OCT 01, 1992

ARRAY1(999000,”1,”,2)=YES

ARRAY1(999000,”1,”,3)=1

ARRAY1(999000,”1,”,4)=DTM-PC

ARRAY1(999000,”1,”,5)=SUPPORTED

ARRAY1(999000,”1,”,6)=S Y=“SET Y=TO THIS”

ARRAY1(999000,”1,”,8)=AUDIT,Z

ARRAY1(999000,”1,”,9)=ACCESS,Z

ARRAY1(999000,”1,”,10)=GRP,Z

ARRAY1(999000,”1,”,11)=DESCRIP,Z

ARRAY1(999000,”1,”,12)=ARRAY(999000,”1,”,12)

ARRAY1(999000,”1,”,12,1)=THIS WP LINE 1

ARRAY1(999000,”1,”,12,2)=WP LINE2

ARRAY1(999000,”1,”,12,3)=AND SO ON

ARRAY1(999000,”1,”,13)=LASTNAME,FIRST

3.5.43.1.3 Example 3

Retrieve both internal and external values of three specific fields for a record.

Figure 219: GETS^DIQ() API—Example 3: Input and Output

>D GETS^DIQ(999000,”1,”,”.01;3;5”,”IE”,”ARRAY3”)

>ZW

ARRAY3(999000,”1,”,.01,”E”)=TEST1

ARRAY3(999000,”1,”,.01,”I”)=TEST1

ARRAY3(999000,”1,”,3,”E”)=1

ARRAY3(999000,”1,”,3,”I”)=1

ARRAY3(999000,”1,”,5,”E”)=SUPPORTED

ARRAY3(999000,”1,”,5,”I”)=

VA FileMan 22.2

Developer’s Guide 268 January 2017

3.5.43.1.4 Example 4

Retrieve both internal and external values for a range of fields in a record.

Figure 220: GETS^DIQ() API—Example 4: Input and Output

>D GETS^DIQ(999000,”1,”,”.01:6”,”IE”,”ARRAY4”)

>ZW

ARRAY4(999000,”1,”,.01,”E”)=TEST1

ARRAY4(999000,”1,”,.01,”I”)=TEST1

ARRAY4(999000,”1,”,1,”E”)=OCT 01, 1992

ARRAY4(999000,”1,”,1,”I”)=2921001

ARRAY4(999000,”1,”,2,”E”)=NO

ARRAY4(999000,”1,”,2,”I”)=0

ARRAY4(999000,”1,”,3,”E”)=66

ARRAY4(999000,”1,”,3,”I”)=66

ARRAY4(999000,”1,”,4,”E”)=DTM-PC

ARRAY4(999000,”1,”,4,”I”)=9

ARRAY4(999000,”1,”,5,”E”)=SUPPORTED

ARRAY4(999000,”1,”,5,”I”)=

ARRAY4(999000,”1,”,6,”E”)=S Y=“SET Y=TO THIS”

ARRAY4(999000,”1,”,6,”I”)=S Y=“SET Y=TO THIS”

3.5.43.1.5 Example 5

Retrieve the values of five specific fields, including all of the values of a Multiple field.

Figure 221: GETS^DIQ() API—Example 5: Input and Output

>D GETS^DIQ(999000,”1,”,”.01;3;7*;11;13”,”“,”ARRAY5”)

>ZW

ARRAY5(999000,”1,”,.01)=TEST1

ARRAY5(999000,”1,”,3)=1

ARRAY5(999000,”1,”,11)=DESCRIP,Z

ARRAY5(999000,”1,”,13)=LASTNAME,FIRST

ARRAY5(999000.07,”1,1,”,.01)=TEST1 ONE

ARRAY5(999000.07,”1,1,”,1)=

ARRAY5(999000.07,”2,1,”,.01)=TEST1 TWO

ARRAY5(999000.07,”2,1,”,1)=

ARRAY5(999000.07,”3,1,”,.01)=TEST1 THREE

ARRAY5(999000.07,”3,1,”,1)=

ARRAY5(999000.07,”4,1,”,.01)=TEST1 FOUR

ARRAY5(999000.07,”4,1,”,1)=MUMPS 0S

VA FileMan 22.2

Developer’s Guide 269 January 2017

3.5.43.2 Error Codes Returned

Table 69: GETS^DIQ() API—Error Codes Returned

Code Description

200 There is an error in one of the variables passed.

202 Missing or invalid input parameter.

301 Flags passed are unknown or incorrect.

309 Either the root of the multiple or the necessary entry numbers are missing.

348 The passed value points to a file that does not exist or lacks a Header Node.

401 The specified file or subfile does not exist.

403 The file lacks a Header Node.

404 The file Header Node lacks a file #.

501 The field name or number does not exist.

505 The field name passed is ambiguous.

510 The data type for the specified field cannot be determined.

520 An incorrect kind of field is being processed.

537 Field has a corrupted pointer definition.

601 The entry does not exist.

602 The entry is not available for editing.

603 A specific entry in a specific file lacks a value for a required field.

648 The value points to a file that does not exist or lacks a Header Node.

VA FileMan 22.2

Developer’s Guide 270 January 2017

II. ScreenMan

4 ScreenMan Forms

4.1 Introduction

The basic steps to prepare and present screens to the user are:

1. Design the physical layout of the screens and determine data editing rules.

2. Use the Form Editor to create the form.

3. Test the form.

4. Invoke the form from an application.

The ScreenMan Form Editor provides sophisticated tools for creating new forms and editing existing

ones. The Form Editor facilitates the composition process from the initial design through editing and

completion. It allows you to place blocks and fields wherever you wish on the screen and later to select

and drag them to new positions. In addition to allowing you to experiment with the “look” of the screen,

the Form Editor eases the process of positioning popup pages, blocks, captions, and edit windows.

 REF: See also:

 “ScreenMan Form Editor” section.

 “ScreenMan API” section, which describes the ScreenMan APIs you can use to load a

form and to use within a form.

 ScreenMan Tutorial for Developers Manual, located on the VDL at:

http://www4.va.gov/vdl/application.asp?appid=5.

4.2 Form Layout: Forms and Pages

4.2.1 Form Structure

A form is a series of screens that are presented to the user. A form contains one or more pages, a page

contains one or more blocks, and a block contains one or more fields.

Structurally, the form is an entry in the FORM file (#.403). The FORM file (#.403) contains a PAGE

Multiple, and the PAGE Multiple contains a BLOCK Multiple. The .01 field of the BLOCK Multiple is a

pointer to the BLOCK file (#.404). The BLOCK file (#.404) contains a Multiple for fields.

Because of this structure, blocks in the BLOCK file (#.404) are reusable (i.e., the same block can be

placed on more than one page and on more than one form).

Each block in the BLOCK file (#.404) that contains VA FileMan fields has a DD (data dictionary)

Number. Each block can contain fields from only one file or subfile, as determined by this DD Number.

http://www4.va.gov/vdl/application.asp?appid=5

VA FileMan 22.2

Developer’s Guide 271 January 2017

4.2.2 Linking Pages of a Form

When a form is first invoked and the user is presented with the first page, conceptually, the user is at the

top-level of the form. When the user goes to the next or previous pages, the user remains at the top-level.

Only at this level can the user exit or quit the form or save changes made during the editing session.

When the user opens up a subpage, however, the user has descended a level. At this level and at lower

levels, the user can only close the current page, or issue the Refresh command to repaint the screen; the

user cannot exit or quit the form or save any changes.

Pages on a form can be linked together in a variety of ways. The following lists the places where links can

be defined:

 Pages at the same level:

o The Next Page property of a page.

o The Previous Page property of a page.

o The DDSBR variable in the Branching Logic of a field or in Pre and Post Actions.

 Pages at different levels:

o The Parent Field property of a page.

o The Subpage Link property of a field.

o The DDSSTACK variable in the Branching Logic of a field.

Both the Next Page and Previous Page properties link pages at the same level. The user can go to the next

and previous pages by pressing <PF1><ARROW DOWN> and <PF1><ARROW UP>, respectively.

Pages linked via the Next and Previous page links must be regular pages; they cannot be “popup” pages.

The DDSBR variable, discussed in the Field Properties section below, can be used to take the user to

another page under conditions you specify.

Both the Parent Field and Subpage Link properties allow you to take the user to a subpage at a lower level

when the user presses the Enter key at a field on the parent page. The subpage can be either a regular or a

“popup” page. A “popup” page is usually preferable since it gives users a better indication that they have

descended a level and must close the subpage to return to the previous level. After the user closes the

subpage, ScreenMan automatically returns to the previous level (i.e., to the parent page from where the

branch occurred).

The difference between the Parent Field property and the Subpage Link property is where the link is

defined. The Parent Field property is defined with the subpage and indicates the field from which the

branch should occur. The Subpage Link property, on the other hand, is defined with the field and

indicates the subpage to which the branch should occur. In a sense, then, the difference between these two

properties is the direction of the “pointer.” Parent Field points from the subpage to the field, and Subpage

Link points from the field to the subpage. Where you choose to define the link is a matter of personal

preference. However, the disadvantage of defining the link in the Subpage Link property is that the block

on which the field is defined may not be reusable on other forms, since the link points to a specific page

on the form.

You must use either the Parent Field or the Subpage Link property to link a Multiple field on a form to a

subpage that contains the fields within the Multiple.

The DDSSTACK variable (Section 4.3.7) can also be used to link a field to a subpage. It behaves just like

the Parent Field and Subpage Link properties, but because it is set in M code in the Branching Logic

property of a field, DDSSTACK lets you branch conditionally.

VA FileMan 22.2

Developer’s Guide 272 January 2017

Figure 222 illustrates the various page links:

Figure 222: ScreenMan Forms—DDSSTACK Variable: Sample Page Links

4.3 Features

4.3.1 Displaying Multiples in Repeating Blocks

You can display more than one subrecord in a multiple simultaneously on the screen.

 REF: See the “Multiples” section in the VA FileMan User Manual.

You do this by defining a repeating block, a block that has a Replication value greater 1. The Replication

number defines the number of times the fields on the block appear on the screen. Fields can occupy

multiple lines, and will be repeated together. The DD Number of the block corresponds to the subfile

number of the Multiple.

You should reserve one column to the left of the repeating block for ScreenMan to display the plus sign

(+) indicator before the first and last lines of the list.

Figure 223 shows two subfields of a Multiple displayed in a repeating block:

VA FileMan 22.2

Developer’s Guide 273 January 2017

Figure 223: ScreenMan Forms—Sample of Two Subfields of a Multiple Displayed in a Repeating
Block

 A TEST FORM

 NAME: FMPATIENT,ONE

 DATE: DEC 1, 1994

 NAME MULT 1 SET OF CODES

 ----------- ------------

 +SECOND SUBRECORD FEBRUARY

 THIRD SUBRECORD MARCH

 FOURTH SUBRECORD APRIL

 FIFTH SUBRECORD MAY

 +SIXTH SUBRECORD JUNE

 __

 Exit Save Refresh

 Enter a command or ‘^’ followed by a caption to jump to a specific field.

 COMMAND: Press H for help Insert

The subfields are NAME MULT1 and SET OF CODES. The repeating block has a Replication value of

5; therefore, up to five subrecords can be displayed simultaneously. The coordinate of the repeating block

corresponds to the position of the first line in the list.

The column headings are defined as caption-only fields on another block that is non-repeating.

The last line in the scrolling list is blank. This is where the user can add a subrecord by entering a new

name or jump to a particular entry in the list by entering the name of an existing subrecord. By default,

this blank line is positioned in the same column as the first editable field in the repeating block.

Table 70 lists the variables that are available in the pre- and post-actions of fields on the repeating block,

as well as in the Executable Caption code:

Table 70: ScreenMan Forms—Variables Available in Repeating Blocks

Local Variable Description

DDSSN The sequence number in the list of the current
subrecord.

DDSLN The line number in the repeating block on which the
cursor is currently resting.

VA FileMan 22.2

Developer’s Guide 274 January 2017

The block properties in Table 71 apply only to repeating blocks:

Table 71: ScreenMan Forms—Block Properties that Apply only to Repeating Blocks

Repeating Block Property Description

Replication The number of times the fields defined in this block should be replicated.
This number must be greater than 1.

Index (Optional) The name of the index that should be used to pick up the
subrecords in the multiple. The subrecords will initially be sorted in the
order defined by this index. The default Index is B. If the Multiple has no
B index, or to display the subentries in record number order, enter !IEN.

Initial Position (Optional) This is where the cursor should rest when the user first
navigates to the repeating block. Possible values are:

 FIRST

 LAST

 NEW—Where NEW indicates that the cursor should initially rest on
the blank line at the end of the list.

The default Initial Position is FIRST.

Disallow LAYGO (Optional) If set to YES, this prohibits the user from entering new
subrecords into the multiple.

Field for Selection (Optional) This is the field order of the field that defines the column
position of the blank line at the end of the list. The default is the first
editable field in the block. This is also the field before which ScreenMan
prints the plus sign (+) to indicate there are more entries above or below
the displayed list.

4.3.2 Form-Only Fields

Form-only fields are fields that are defined only on the form. They allow you to request from the user data

that is not linked to a VA FileMan field. You might use a form-only field to control the flow of data input.

For example, when the user presses the Enter key at a form-only field, you might branch to a “popup”

page (window) or branch only if the user enters a certain value. You might also use a form-only field to

request data from the user, store the response in a local or global variable, and process the response after

the user exits the form.

When you define a form-only field, you specify parameters that look like the VA FileMan Reader (^DIR)

parameters. In addition, you can define Save Code, code that is executed when the user issues the Save

command. You might use the Save Code to store the value entered by the user in local or global variables.

Table 72 describes the field properties that pertain only to Form Only fields.

 REF: For more detailed information about the Reader parameters, see the” ^DIR: Reader”

section in the “Classic VA FileMan API” section.

VA FileMan 22.2

Developer’s Guide 275 January 2017

Table 72: ScreenMan Forms—Properties of Form-Only Fields

Form Only Field Property Description

Read Type This property defines the type of the form-only field. Valid values are:

 D = DATE

 F = FREE TEXT

 L = LIST OR RANGE

 N = NUMERIC

 P = POINTER

 S = SET OF CODES

 Y = YES OR NO

 DD = DATA DICTIONARY

Parameters This property corresponds to the parameters that can be used in the first
^-piece of the DIR(0) input variable to ^DIR. The “O” parameter has no
effect, since the Required property can be used to make a field required.

Qualifiers This property corresponds to the second ^- piece of the DIR(0) input
variable to ^DIR.

Help (WP) The lines in this word-processing field correspond to the nodes in the
DIR(“?”,#) input array to ^DIR.

INPUT Transform This property corresponds to the third ^-piece of the DIR(0) input variable
to ^DIR.

Screen This is M code that sets the variable DIR(“S”).

Save Code This is M code that is executed when the user issues a Save command
and ScreenMan has detected a change to the value of the form-only field.

VA FileMan 22.2

Developer’s Guide 276 January 2017

4.3.3 Relational Navigation: Forward Pointers

On a page of a form, you can place a block that contains fields from a file other than the Primary File of

the form. If the file is reached via a forward pointer, you must define a Pointer Link for that block. The

syntax of the Pointer Link property is similar to VA FileMan’s relational syntax. When you define the

Pointer link, your point of reference is the Primary File of the form.

In Figure 224, the Primary File of the form is the (fictitious) ORDER file (#16202). There are two blocks

on the page. Block A contains fields from the (fictitious) ORDER file (#16202), and Block B contains

fields from the (fictitious) CUSTOMER file (#16201). CUSTOMER NAME in the (fictitious) ORDER

file (#16202) points to the (fictitious) CUSTOMER file (#16201).

Figure 224: ScreenMan Forms—Relational Navigation: Forward Pointers

 BLOCK A, CONTAINS FIELDS FROM THE ORDER FILE, #16202

 ORDER ID: A24680

 CUSTOMER NAME: FMPATIENT,ONE

ORDER DATE: SEP 1, 1994

 ORDER AMOUNT: 12.31

 BLOCK B, CONTAINS FIELDS FROM THE ORDER FILE, #16201

 NAME: FMPATIENT,ONE

 STREET: 123 FIRST STREET

 CITY: ANYTOWN

 STATE: CALIFORNIA

 ZIP: 99999

__

Exit Save Refresh

Enter a command or ‘^’ followed by a caption to jump to a specific field.

COMMAND: Press <PF1>H for help Insert

If CUSTOMER NAME is Field #1, the Pointer Link property for Block B can be set to either

“CUSTOMER NAME” or 1. The following sections describe in more detail the syntax for the Pointer

Link property.

This field points to the (fictitious)

CUSTOMER file.

VA FileMan 22.2

Developer’s Guide 277 January 2017

4.3.3.1 Syntax for Pointer Link—Navigating Via DD Fields

In the valid formats listed below, “Pfield” is a pointer-type field. Both “Pfield” and “Field” can be either

field names or field numbers. “Mult_field” is the name or number of a multiple field. “File” is the name

or number of a file. A file or field name can be enclosed in quotation marks.

Table 73: ScreenMan Forms—Valid Formats for DD Fields

Format Explanation

Pfield The Primary file of the form has a field Pfield
that points to the file associated with the block.
That pointer field determines the record to
display in the pointed-to block.

Pfield_1:Pfield_2: ... :Pfield_n The pointed-to block is reached after relational
jumps across many files. Here, Pfield_1 in the
Primary file points to File #2 that contains a
Pfield_2 that points to File #3, etc. Finally,
Pfield_n points to the file associated with the
block being defined.

Field;Opt_spec The value of Field in the Primary file should be
used to do a lookup into the file associated with
the block.

You can control how the lookup is done by
using any of the following optional specifiers
(Opt_spec):

 ;I—Use the Internal form of the field value
for the lookup.

 ;L—Allow LAYGO.

 ;IX(xref list) —Use specific IndeXes in the
lookup. (e.g., ;IX(B^C) specifies that the B
and C index should be used.) If the specifier
is not used, all indexes starting with the B
index are used in the lookup.

Field;Opt_spec:File:Pfield_1: Pfield_2: ... :Pfield_n The pointed-to block is reached after relational
jumps across many files. The first jump is
accomplished with a lookup into File.

 REF: For an explanation of Opt_spec, see
above.

Mult_field_1:Mult_field_2: ... :Mult_field_n:Pfield The pointed-to block is reached after
descending into subfiles of the Primary file and
finally a relational jump via a pointer field within
a subfile.

VA FileMan 22.2

Developer’s Guide 278 January 2017

4.3.3.2 Syntax for Pointer Link—Navigating Via Form Only Fields

Form-only fields can also be used to relationally link blocks.

In the formats in Table 74, the characters “FO” indicate that a form-only field is being identified.

“Pform_only” is a pointer-type form-only field and “Form_only” is a form-only field that is not a pointer.

Form_only and Pform_only are three-piece comma-delimited strings that uniquely identify form-only

fields on the form. They have the following format:

Field_id,Block_id,Page_id

Where:

 Field_id = Field Order number; or Caption of the field; or Unique Name of the field

 Block_id = Block Order number; or Block Name

 Page_id = Page Number; or Page Name (required only if Block Order number is used to identify

the block.)

Table 74: ScreenMan Forms—Valid Formats for Form Only Fields

Format Explanation

FO(Pform_only) The pointer-type form-only field is a pointer to
the file associated with the block being defined.
The contents of the form-only field determines
the record to display in the pointed-to file.

FO(Pform_only):Pfield_1: ... Pfield_n The pointed-to file is reached after relational
jumps across many files. Here, the pointer-type
form-only field points to File #1 that contains a
Pfield_1 that points to File #2, etc. Finally,
Pfield_n points to the file associated with the
block being defined.

FO(Form_only);Opt_spec The value of the form-only field is used to do a
lookup into the file associated with the block.

You can control how the lookup is done by
using any of the following optional specifiers
(Opt_spec):

 ;I—Use the Internal form of the field value
for the lookup.

 ;L—Allow LAYGO.

 ;IX(xref list)—Use specific IndeXes in the
lookup. (e.g., ;IX(B^C) specifies that the B
and C index should be used.) If this
specifier is not used, all indexes starting
with the B index are used in the lookup.

FO(Form_only);Opt_spec:File: Pfield_1: ... Pfield_n The pointed-to file is reached after relational
jumps across many files. The first jump is
accomplished with a lookup.

 REF: For an explanation of Opt_spec, see
above.

VA FileMan 22.2

Developer’s Guide 279 January 2017

4.3.4 Relational Navigation: Backward Pointers

Records reached via backward pointers appear to the user much like subrecords within a Multiple. To

display the records in the pointing file, you can define a repeating block that has a DD Number equal to

the file number of the pointing file and an Index property equal to the name of the whole file cross-

reference of the pointer field.

 REF: For more information on how to define repeating blocks, see the “Displaying Multiples in

Repeating Blocks” section.

4.3.5 Computed Fields

ScreenMan computed fields, like form-only fields, are fields that are defined only on the form. You

cannot place computed fields from VA FileMan files on a form because the M code for those fields often

directly references data in files, which is outside the context of ScreenMan’s transaction.

When you define a ScreenMan computed field, you enter a Computed Expression. The computed

expression has the following format:

M code that sets the local variable Y.

For example:

Figure 225: ScreenMan Forms—Computed Fields: Example of Format

>S:$D(FLAG) Y=$P(MYVAR,”,”,2)_” “_$P(MYVAR,”,”)

The computed expression can reference data dictionary fields, form-only fields, and computed fields used

elsewhere on the form. If the user changes the value of a field used in a computed expression, ScreenMan

automatically recalculates and repaints the computed field.

The expression atom that identifies other form elements has a syntax that uses curly braces ({}) as

described in Table 75.

4.3.5.1 Referencing Data Dictionary Fields

In the formats in Table 75, “Field” is the name or number of a data dictionary field. “Pfield” is the name

or number of a pointer-type data dictionary field. “File” is the name or number of a file.

Table 75: ScreenMan Forms—Syntax for Computed Expression Atom that References a DD Field

Format Explanation

{Field;Opt_spec} The value of Field is retrieved.

An Opt_spec (optional specifier) can be used to retrieve
the internal, rather than the external form:

 ;I—Retrieve the Internal form of the Field value.

{Pfield:Field;Opt_spec} Pfield is a pointer to a file. The value of Field in that file
is retrieved. The Opt_spec value of ;I can be used as
described immediately above to retrieve the internal,
rather than the external form.

{Field_1;Opt_spec1: File:Field_2;Opt_spec} Field_1 is not a pointer field. The value of Field_1 is
used to do a lookup into File. Field_2 from that file is
retrieved.

VA FileMan 22.2

Developer’s Guide 280 January 2017

Format Explanation

An Opt_spec value of ;I can be used to retrieve the
internal rather than the external form.

In addition, you can control how the lookup is done by
using any of the following optional specifiers for
Opt_spec1:

 ;I—Use the Internal form of the field value for the
lookup.

 ;IX(xref list)—Use specific IndeXes in the lookup.
(e.g., ;IX(B^C) specifies that the B and C index
should be used.) If this specifier is not used, all
indexes starting with the B index are used in the
lookup.

4.3.5.2 Referencing Form-Only and Computed Fields

A computed expression atom can also reference form-only fields and computed fields used on the form.

In the formats listed in Table 76, the syntax is similar to that for referencing data dictionary fields, except

that “FO(Form_only)” is used instead of “Field.” “Form_only” is a three-piece comma-delimited string

that identifies a form-only or computed field.

 REF: For a description of the format of “Form_only,” see the description of “Syntax for Pointer

Link—Navigating Via Form Only Fields.”

Table 76: ScreenMan Forms—Syntax for Computed Expression Atom that References a Form Only
Field

Format Explanation

{FO(Form_only);Opt_spec} The value of Form_only is retrieved.

An Opt_spec (optional specifier) can be used to
retrieve the internal, rather than the external
form.

 ;I—Retrieve the Internal form of the
Form_only field.

{FO(Pform_only: Field;Opt_spec} Pfield_order is a pointer-type form-only field that
points to a file. The value of Field in that file is
retrieved.

The Opt_spec value of ;I can be used as
described above to retrieve the internal, rather
than the external form.

{FO(Form_only);Opt_spec1 :File:Field_2;Opt_spec} Form_only is a form-only field that is not a
pointer-type form-only field. The value of
Field_order is used to do a lookup into File.
Field_2 from that file is retrieved.

An Opt_spec value of ;I can be used to retrieve
the internal, rather than the external form.

VA FileMan 22.2

Developer’s Guide 281 January 2017

Format Explanation

In addition, you can control how the lookup is
done by using any of the following optional
specifiers for Opt_spec1:

 ;I—Use the Internal form of the field value
for the lookup.

 ;IX(xref list)—Use specific IndeXes in the
lookup. (e.g., ;IX(B^C) specifies that the B
and C index should be used.) If this
specifier is not used, all indexes starting
with the B index are used in the lookup.

4.3.5.2.1 Example

Figure 226: ScreenMan Forms—Referencing Form-Only and Computed Fields: Example

S Y=“The value is: “_{NUMERIC}

S:$D(var)#2 Y=“The value is: “_{NUMERIC}

S Y={LAST NAME}_”,”_{FIRST NAME}

S Y={NAME}_” “_{NAME:SSN}

S Y={FO(PRICE)}*1.085

S Y={FO(NAME):NEW PERSON:SSN}

4.3.6 The DDSBR Variable

ScreenMan allows you to branch the user to a field under conditions you specify. You can do this by

defining M code in the:

 Branching Logic

 Pre Action

 Post Action

 Post Action on Change properties at the field level

 Data Validation property at the form level

The M code can set the local variable DDSBR to a value that defines the location of the field to which

you wish to take the user.

DDSBR has the following format:

DDSBR=Field id^Block id^Page id

Where:

 Field id = Field Order number; or Caption of the field; or Unique Name of the field

 Block id = Block Order number; or Block Name

 Page id = Page Number; or Page Name

For example:

Figure 227: ScreenMan Forms—DDSBR Variable: Example

S:X=“Y” DDSBR=“FIELD 1^BLOCK 1^PAGE 2”

VA FileMan 22.2

Developer’s Guide 282 January 2017

This would take the user to the field with unique name or caption “FIELD 1” on the block named

“BLOCK 1” on the page named “PAGE 2”, if the internal value of the field equals “Y”.

ScreenMan assumes values for any of the ^-pieces of DDSBR that are empty, as listed in Table 77:

Table 77: ScreenMan Forms—Assumptions when Pieces of DDSBR are Null

If DDSBR is Set to: ScreenMan Assumes:

Field id Current block and current page.

Field id^Block id Current page.

Field id^^Page id Current block.

^Block id Field with lowest Field Order, current page.

^Block id^Page id Field with lowest Field Order.

^^Page id Field with lowest Field Order, Block with lowest Block Order.

To branch the user to the Command Line, DDSBR takes the following format:

Figure 228: ScreenMan Forms—DDSBR Variable: Example of Format to Branch the User to the
Command Line

>S DDSBR=“COM”

4.3.7 DDSSTACK Variable

The DDSSTACK variable can be set only in the Branching Logic property of a field. It can be used to

branch users to another page when they press Enter at the field. After the user closes the page defined in

DDSSTACK, ScreenMan takes the user to the parent page, to the field immediately following the field

from which the branch occurred.

Set DDSSTACK equal to a Page Number or Page Name. For example:

Figure 229: ScreenMan Forms—DDSSTACK Variable: Example of Setting Variable to a Page
Number

S:X=“Y” DDSSTACK=“Page 1.1”

This would take the user to Page 1.1 if the internal value of the field is “Y” and the user presses Enter at

the field. When Page 1.1 is closed, the user returns to the parent page, to the field immediately following

the field that contained the Branching Logic.

 NOTE: ScreenMan provides another way to achieve this kind of “branch and return” behavior.

You can link a field to a subpage by defining a Subpage Link for the field or by defining a Parent

Field for the subpage. The Subpage Link and Parent Field methods, however, do not allow

branching conditionally.

VA FileMan 22.2

Developer’s Guide 283 January 2017

4.3.8 Data Filing (When Is It Performed?)

With some important exceptions, the database is unaffected during a ScreenMan editing session. Changes

are filed only at the user’s request.

However, there are two situations in which changes to the database are made immediately:

 When an entry is deleted from a file or subfile.

 When an entry is added to a file or subfile.

When the user attempts to delete an entry, ScreenMan issues a warning that deletions are immediate and

permanent. Even if the user quits the form without saving the changes, the entry is not restored to the

database.

Similarly, when the user adds an entry to a file or subfile, that entry is immediately added to the database.

The entry is added with values for the .01 field and all required identifiers. After the entry is added,

however, changes made to the data for that entry are part of ScreenMan’s transaction and are filed only at

the user’s request. Also, in contrast to deletions of entries, if the user subsequently quits the form without

saving changes, entries added during the editing session are deleted.

Because of this, you should consider cross-references that can cause an overall state change when the user

adds an entry and when ScreenMan subsequently deletes the entry. Triggers, bulletins, and MUMPS-type

cross-references can cause irreversible events to occur. Therefore, when you design cross-references for

the .01 field and the required identifiers for entries the user can add or delete during an editing session, it

is best to ensure that the KILL logic can undo the effects of the SET logic.

4.3.9 Word Processing Field Data Indication

Word processing fields display a plus sign (+) in the data section when there is existing data.

4.4 Form Property Reference

4.4.1 Form Properties

Table 78: ScreenMan Forms—Form Properties

Property Description

Form Name (Required) This is the .01 field of the FORM file (#.403). Form Names
should be namespaced.

Title The Title property can be used by the form designer to help identify a
form. It is cross-referenced and need not be unique. ScreenMan does
not automatically display the Title to the user, but the form designer can
choose to create a caption-only field that displays the Title to the user.

Pre Action and Post Action The Pre Action property is M code that is executed when the form is first
invoked, before any of the pages are loaded and displayed.

The Post Action property is M code that is executed before ScreenMan
returns to the calling application.

Data Validation This is M code that is executed when the user attempts to save changes
to the form. If the code sets DDSERROR, the user is unable to save
changes. If the code sets DDSBR, the user is taken to the specified field.

VA FileMan 22.2

Developer’s Guide 284 January 2017

Property Description

In addition to the $$GET^DDSVAL, PUT^DDSVAL, $$GET^DDSVALF,
PUT^DDSVALF, and HLP^DDSUTL APIs, you can use the
MSG^DDSUTL API to print on a separate screen messages to the user
about the validity of the data.

Post Save This is M code that is executed when the user saves changes. It is
executed only if all data is valid, and after all data has been filed.

Record Selection Page If you define a Record Selection Page, the user can select another entry
in the file, and, if LAYGO is allowed, add another entry into the file
without exiting the form. The Record Selection Page should be a popup
page, and the first field on that page is a pointer-type form-only field. The
file specified in the Qualifiers property of the form-only field should be
the Primary File of the form. The Record Selection Page property should
be set equal to the Page Number of the Record Selection Page.

The user can open the Record Selection Page by pressing <PF1>L.
After the user selects a record and closes the Record Selection Page,
the data for the selected record is displayed.

The Screenman Record Selection page can now be a full Screenman
page using a computed multiple pointer, so that the user can select an
entry by scrolling up or down. This new feature lets forms contain
embedded lookups.

You can set this up automatically, at the time you are creating a form,
answering “Yes” at the following prompt:

“Do you want your form to begin with a display of all

entries, for selection?”

The initial position can be set to be the user’s last selection, rather than
first, last, or new.

4.4.2 Page Properties

Table 79: ScreenMan Forms—Page Properties

Property Description

Page Number (Required) The Page Number uniquely identifies a page on a form. You
can use this number to refer to the page in ScreenMan functions and
utilities. ScreenMan does not display Page Numbers to the user.

Page Name (Required) Like the Page Number, you can use the Page Name to refer
to a page in ScreenMan functions and utilities. ScreenMan displays the
Page Name to the user if, during an attempt to file data, ScreenMan
finds required fields with null values. ScreenMan uses the Caption of the
field and the Page Name to inform the user of the location of the
required field.

Page Coordinate and Lower
Right Coordinate

(Required) The Page Coordinate property defines the location of the top
left corner of the page on the screen. The format of a coordinate is:
Row,Column. Regular pages normally have a Page Coordinate of “1,1”.
They do not have a Lower Right Coordinate.

The Page Coordinate of “popup” pages defines the position of the top
left corner of the border of the “popup” page. “Popup” pages must have

VA FileMan 22.2

Developer’s Guide 285 January 2017

Property Description

a Lower Right Coordinate, which defines the position of the bottom right
corner of the border of the “popup” page.

All blocks on the page are positioned relative to the page on which they
are defined. If a page is moved (i.e., if the Page Coordinate is changed)
all blocks and all fields on that page move with it.

The Form Editor described below greatly simplifies the process of
assigning coordinates to “popup” pages. It allows you to drag and drop
an entire “popup” page and to drag and drop the lower right corner to
resize the “popup” page. It therefore eliminates the need for you to
manually enter Page Coordinate values.

Header Block A page can have one Header Block that contains uneditable information.
ScreenMan always positions the Header Block at coordinate “1,1”
relative to the page.

There is no need to place Header Blocks on a page. Display blocks with
a coordinate of “1,1” provide the same functionality as Header Blocks.

Is This a “Pop-Up” Page? If this page is a “popup” page, rather than a regular page, set this
property to YES.

Next Page and Previous
Page

The Next Page and Previous Page properties are set to Page Numbers.
The user can go to the next and previous pages by pressing
<PF1><ARROW DOWN> and <PF1><ARROW UP>, respectively. The
user can also ^-jump to fields on other pages that are linked to the
current page via the next and previous page links.

 REF: For more information about using these properties to link
pages, see the section Linking Pages of a Form above.

ScreenMan also uses the Next Page property during filing. Starting with
the first page displayed to the user, ScreenMan follows the Next Page
links, loads those pages not already loaded, and checks that all required
fields on those pages have values. If any of the required fields have null
values, no filing occurs; otherwise, ScreenMan files the data along with
any defaults.

Parent Field This property can be used to link a subpage to a field on the parent
page. Parent Field has the following format:

Field id,Block id,Page id

Where:

 Field id = Field Order number; or Caption of the field; or Unique
Name of the field

 Block id = Block Order number; or Block Name

 Page id = Page Number; or Page Name

For example:

ZZFIELD 1,ZZBLOCK 1,ZZPAGE 1

Identifies the field with Caption or Unique Name “ZZFIELD 1,” on the
block named “ZZBLOCK 1,” on the page named “ZZPAGE 1”.

Pre Action and Post Action ScreenMan executes the M code in the Pre Action property when the
user reaches the page and the M code in the Post Action property when
the user leaves the page.

VA FileMan 22.2

Developer’s Guide 286 January 2017

4.4.3 Block Properties

Block properties are stored in two locations:

 Block Properties Stored in the FORM File

 Block Properties Stored in the BLOCK File

4.4.3.1 Block Properties Stored in the FORM File

Since these properties are stored in the FORM file (#.403), they apply only as it is used on a particular

form.

Table 80: ScreenMan Forms—Block Properties: FORM File

Property Description

Block Name (Required) This is the .01 field of the block Multiple of the page multiple
of the FORM file (#.403). This field is a pointer to BLOCK file (#.404).

Block Order (Required) The Block Order determines the order in which users
traverse fields on a page when they press <PF1><PF4> to go to the
next block or press the Enter key to move from the last field on one
block to the first field on the next. When the user first reaches a page,
ScreenMan places the user on the block with the lowest Block Order
number.

Type of Block (Required) The Type of Block property can be either “DISPLAY” or
“EDIT.”

EDIT blocks allow fields to be changed by the user and DISPLAY blocks
allow fields to be displayed but not changed by the user. Adding an EDIT
block to a form enables the editing of any data dictionary fields placed
on the EDIT-type block. Fields in a DISPLAY block are read-only.

When you first add a block to a form, you enter the properties for the
block, including the type of block it is. You can also edit the properties of
the block later.

 REF: For more information, see the ScreenMan Tutorial for
Developers Manual, particularly Lessons 1-2 (DISPLAY blocks)
and 1-7 (EDIT blocks). This manual is available on the VDL at:
http://www4.va.gov/vdl/application.asp?appid=5

Block Coordinate (Required) This property defines the location of the block. The format of
a coordinate is: Row,Column.

A Block Coordinate is defined relative to the page on which the block is
defined. A Block Coordinate of “1,1”, for example, corresponds to the top
left corner of the page. If a page is moved to a new position (i.e., if it is
given a new coordinate), all blocks on the page move with it.

Pointer Link This property is used if the fields displayed in this block are reached
through a relational jump from the primary file of the form. The Pointer
Link is a relational expression that describes this jump.

 REF: For more information, see the “Relational Navigation”
section in the VA FileMan Advanced User Manual.

http://www4.va.gov/vdl/application.asp?appid=5

VA FileMan 22.2

Developer’s Guide 287 January 2017

Property Description

Pre Action and Post Action The Pre Action property is M code that is executed whenever the user
reaches this block. The Post Action property is M code that is executed
whenever the user navigates away from this block. Since these two
properties are stored in the FORM file (#.403), they apply to the block
only as it is used on this form.

Replication, Index, Initial
Position, Disallow LAYGO,
Field for Selection

These properties pertain only to repeating blocks. See the section
Displaying Multiples in Repeating Blocks above for more information
about these properties.

4.4.3.2 Block Properties Stored in the BLOCK File

Since these properties are stored in the BLOCK file (#.404), they are part of the definition of the block

itself. These properties apply to the block wherever it is used.

Table 81: ScreenMan Forms—Block Properties: BLOCK File

Property Description

Name (Required) This is the .01 field of the BLOCK file (#.404). Block Names
should be namespaced.

DD Number This is the data dictionary number of the file or subfile that contains the
fields that are placed on this block. A block can contain fields from only
one file or subfile.

Disable Navigation If you set this property to “YES,” navigation within the block is disabled.
When navigation is disabled, users cannot ^-jump to other fields, they
cannot ^-jump to the Command Line, and the <ARROW UP>, <ARROW
DOWN>, Tab, and PF4 keys traverse the fields in the same order when
pressing the Enter key (i.e., in the order established by the Field Order
property of the fields). The <PF1>S, <PF1>E, <PF1>Q, and <PF1>C
key sequences cannot be used if this property is set to YES.

If you set this property to OUTOK, navigation is disabled, but the user
can ^-jump to the Command Line and use <PF1>S, <PF1>E, <PF1>Q,
and <PF1>C.

Pre Action and Post Action The Pre Action property is M code that is executed whenever the user
reaches this block. The Post Action property is M code that is executed
whenever the user navigates away from this block. Since these two
properties are stored in the BLOCK file (#.404), they apply to the block
as it is used on any page of any form.

VA FileMan 22.2

Developer’s Guide 288 January 2017

4.4.4 Field Properties

Table 82: ScreenMan Forms—Field Properties

Property Description

Field Type (Required) Four different types of fields can be defined on a block:

 Caption only—Used to display text on the screen. They have no
data portion associated with them.

 Data Dictionary—Correspond to fields in a file. They have a data
portion, which is the value of the field, and an optional caption
portion, which serves to identify the data on the screen for the user.

 Form-only—Defined only on the form and are not tied to a field in a
VA FileMan file.

 REF: For more information about this field type, see the “Form-Only
Fields” section.

 Computed—Like form-only fields, computed fields are fields that are
defined only on the form. You cannot place computed fields from VA
FileMan files on a form. The computed expression is defined on the
form and can be based on other fields on the form. Users cannot
navigate to computed fields.

Field Order (Required) The Field Order number determines the order in which users
traverse the fields in the block as they press the Enter key. Field Order
is the .01 field of the Field Multiple of the BLOCK file (#.404).

Field (Required for Data Dictionary type fields.) The Field property applies
only to data dictionary type fields. It identifies a field in a VA FileMan file
or subfile. The DD Number of the block identifies the file or subfile that
contains the field.

Unique Name You can optionally give fields on a block a Unique Name. Unique Names
are never seen by the user. They can be used to identify fields in some
of the ScreenMan utilities, such as PUT^DDSVAL and $$GET^DDSVAL,
and in the computed expressions of computed fields. No two fields on a
block can have the same Unique Name.

Caption, Executable
Caption, and Suppress
Colon After Caption

A Caption is uneditable text that appears on the screen. Captions of data
dictionary, form-only, and computed fields serve to identify for the user
the data portion of the fields. Captions of these types of fields are
automatically followed by a colon, unless the Suppress Colon After
Caption property is set to YES. Captions of caption-only fields have no
associated data element and are not automatically followed by a colon.

If you want the text of a caption to be determined whenever the page is
painted, you can enter M code as an Executable Caption. The code
should set the local variable Y equal to the text you want displayed. A
field with an Executable Caption must have “!M” as a Caption.

VA FileMan 22.2

Developer’s Guide 289 January 2017

Property Description

Default and Executable
Default

You can assign a Default to a Data Dictionary or form-only type field on
a form. ScreenMan presents the Default value to the user if the value of
the field is null when the page on which the field is located is first
displayed. Since ScreenMan validates the Default, it must be valid,
unambiguous, and in external form; otherwise, it is not used.

If the field is a Multiple field, you can assign one of the defaults listed in
Table 83:

Table 83: ScreenMan Forms—Valid Default Values for Multiple
Fields

Default Subrecord Displayed

FIRST The subrecord with the lowest IEN

LAST The subrecord with the highest IEN

Subrecord number The subrecord with the specified IEN

Here, the characters “FIRST” and “LAST” are keywords that ScreenMan
interprets as the subrecords with the lowest and highest IENs,
respectively.

If the value of the default should be determined at the time the page is
first presented to the user, you can enter M code as an Executable
Default. The code should set the local variable Y equal to a valid,
unambiguous value in external form. If the default in Y is invalid, it is not
used. A field with an Executable Default must have “!M” as a Default.

Data Length (Required for all field types, except caption-only.) Data Length defines
the length of the edit window for the data portion of fields. Ideally, the
Data Length should equal the maximum length of the external form of
the data (i.e., the form displayed to the user).

The Data Length of a word-processing field need only be 1, since the
contents of the field are not displayed in the edit window. A Data Length
of 1 gives the cursor a place to rest when the user navigates to the field.
When the user presses the Enter key at the field, control is passed to
the user’s Preferred Editor, where the text can be displayed and, if
allowed, edited.

If you define a Data Length smaller than a field’s maximum size,
ScreenMan still provides two ways for the user to see the entire value of
the field:

 Since the edit window is a “scrolling window,” text outside the
confines of the edit window can scroll in, as text in the window
scrolls out.

 When the cursor is within an edit window, the user can press <PF1>
Z to invoke the “zoom editor.” An area opens in the Command Area
where up to 245 characters can be seen and edited at once.

 NOTE: You cannot define an edit window that wraps around to a
second line. In addition, the edit window must not extend into the
rightmost column of the screen. This space must be left blank so that
the cursor has a place to rest beyond the last character of the data
value. You must, therefore, never define a data length that causes

VA FileMan 22.2

Developer’s Guide 290 January 2017

Property Description

the edit window to extend beyond the next to last column of the
screen (i.e., column 79 on an 80-column display).

Caption and Data
Coordinates

(Required if a field has a caption or data portion.) Caption and Data
Coordinates define the location of fields on the screen and are relative to
the coordinate of the block on which they are defined. The format of
coordinate is: Row,Column. The coordinate “1,1” for example,
corresponds to the block’s top left corner (i.e., the first column on the
first row of the block).

The Form Editor described below greatly simplifies the process of
assigning coordinates to captions and data. It allows you to drag and
drop fields on the screen, and thus, eliminates the need to explicitly
assign values to the coordinate properties.

Right Justify Set the Right Justify property to YES to display the data for the field to
be right-justified.

Required You can make any non-Multiple field on a form required. Making a field
required on a form does not affect the definition of the field in the data
dictionary. You need not make a field required that is already required by
its data definition. The captions of required fields are underlined for easy
identification.

 REF: For more information on how ScreenMan checks required
fields before filing, see the section Data Filing.

Before filing, ScreenMan checks that:

 Required fields on all pages that can be accessed via the next and
previous page links have values, even if you have not accessed
those pages during the editing session.

 If you have accessed any subpages, required fields in those
subpages must also have values.

If any required field is empty, the user cannot file any data changes.
When they attempt to file, ScreenMan displays a list of those fields that
require values.

 NOTE: “Popup” pages not accessed during the editing session are
not checked for Required fields.

You can change the Required property on-the-fly while a form is running
by making a call to REQ^DDSUTL. See that section for more information
on this call.

Display Group Display group helps users resolve ambiguity when they attempt to ^-
jump to a field that has a caption that is not unique. If more than one
field has the same caption, when users try to ^-jump to a field with that
caption, they are presented with a list of fields to choose from. The text
in the Display Group property is displayed in parentheses after the
caption to help the user identify the correct field.

For example, if two fields have the caption “NAME:”, but one of those
fields has a Display Group “Next of Kin,” when users enter ^NAME, they
are asked to choose between “NAME” and “NAME (Next of Kin)”.

Disable Editing and Disallow
LAYGO

If you set the Disable Editing property to “YES,” users cannot navigate to
the field, unless the field is a word-processing field. If the field is defined

VA FileMan 22.2

Developer’s Guide 291 January 2017

Property Description

as uneditable in the Data Dictionary, users cannot navigate to it—even if
the field’s value is null.

 REF: For information about uneditable word-processing fields, see
the “Word-processing Fields” section in the VA FileMan User
Manual.

If you set the Disable Editing property to “REACHABLE,” users can
navigate to the field, but they cannot change the value. You might want
to make an uneditable field reachable if, for example, you want to attach
branching logic to that field, to take the user to another page when they
press the Enter key. You might also want to make an uneditable field
reachable if the data value cannot fit in an edit window. Then the user
can navigate to the field and see the entire contents of the field, either by
scrolling the data in the edit window or by invoking the “zoom editor.”

You can change Disable Editing property on-the-fly while a form is
running by making a call to UNED^DDSUTL. See this section for more
information on this call.

 NOTE: Fields on display blocks are always uneditable. On display
blocks, users can navigate only to Multiple and word-processing
fields.

Disabling editing for multiple fields has no meaning. However, you can
prevent users from adding new entries into a Multiple by setting the
Disallow LAYGO property to YES. Multiple fields on display blocks
automatically prohibit LAYGO.

Data Validation ScreenMan uses the definition of a field to automatically validate values
input by the user. You can use the Data Validation property to validate
the value even further. Data Validation is M code that is executed after
the user enters a new value for a field and after the automatic validation
that ScreenMan normally performs. If the code sets the variable
DDSERROR, ScreenMan rejects the value. You might also want to ring
the bell and make a call to HLP^DDSUTL to display a message to the
user that indicates the reason the value was rejected.

Subpage Link A subpage can be linked to a parent page by the Subpage Link property.
The Subpage Link must be equal to the Page Number of the subpage.

VA FileMan 22.2

Developer’s Guide 292 January 2017

Property Description

Branching Logic, Pre Action,
Post Action, and Post Action
on Change

These properties contain M code that is executed at the times listed in
Table 84:

Table 84: ScreenMan Forms—Descriptions of Field-level Pre and
Post Actions

Property Executed

Branching Logic When the user presses the Enter at
the field.

Pre Action Right before the user lands on the
field.

Post Action When the user leaves the field.

Post Action on
Change

When the user leaves the field, and
only if the user changed the value of
the field.

The code in the Branching Logic, Pre Action, Post Action, Post Action on
Change, and Data Validation at the field level can rely on the variables
listed in Table 85:

Table 85: ScreenMan Forms—Variables Available in Field-level Pre
and Post Actions

Local Variable Description

X The current internal value of the field.

DDSEXT The current external value of the field.

DDSOLD The previous internal value of the field.

The Post Action and Post Action on Change are not executed when the
user times out at a field, enters a caret (“^”) to go to the Command Area,
or ^-jumps to another field.

VA FileMan 22.2

Developer’s Guide 293 January 2017

4.5 ScreenMan Menu Options

The ScreenMan menu [DDS SCREEN MENU] options are found on a submenu of the Other Options

menu [DIOTHER]:

Figure 230: ScreenMan Forms—ScreenMan Menu Options

Select OPTION: OTHER <Enter> OPTIONS

Select OTHER OPTION: SC <Enter> REENMAN

Select SCREENMAN OPTION: ?

 Answer with SCREENMAN OPTION NUMBER, or NAME

Choose from:

 1 EDIT/CREATE A FORM

 2 RUN A FORM

 3 DELETE A FORM

 4 PURGE UNUSED BLOCKS

Select SCREENMAN OPTION:

4.5.1 Edit/Create a Form

Use the Edit/Create a Form option [DDS EDIT/CREATE A FORM] on the ScreenMan menu [DDS

SCREEN MENU] to invoke the Form Editor, the screen-oriented utility for editing and building

ScreenMan forms.

 REF: The Form Editor is described in detail in the “ScreenMan Form Editor” section.

4.5.2 Run a Form

Instead of setting up input variables and making a call to ^DDS, you can use the Run A Form option

[DDS RUN A FORM] on the ScreenMan menu [DDS SCREEN MENU] to run a form, as shown below:

Figure 231: ScreenMan Forms—Run a Form Option

Select SCREENMAN OPTION: RUN A FORM

MODIFY SCREEN TEMPLATE FOR WHAT FILE: ZZEZ SCREENDOC

Select FORM: ZZEZ DOC <Enter> ZZEZ DOC

Enter number of first page: 1// <Enter>

Select ZZEZ SCREENDOC NAME: FMUSER,ONE <Enter> M. FM

You are asked to select a file, a form, an initial page, and a record. The Run A Form option [DDS RUN A

FORM] cannot run a form used to edit a subfile directly.

VA FileMan 22.2

Developer’s Guide 294 January 2017

4.5.3 Delete a Form

You can use the Delete a Form option [DDS DELETE A FORM] on the ScreenMan menu [DDS

SCREEN MENU] to delete a form from the FORM file (#.403), and any or all of the blocks used on that

form from the BLOCK file (#.404).

Figure 232: ScreenMan Forms—Delete a Form Option

Select SCREENMAN OPTION: DELETE A FORM

MODIFY SCREEN TEMPLATE FOR WHAT FILE: ZZEZ SCREENDOC

Select FORM to delete: ZZTEST DOC <Enter> ZZTEST DOC

 #55 02/16/91 User #14 File #16500

Once you have selected a file and form to delete, a short report is printed that lists all blocks used on the

form, as illustrated in Figure 233:

Figure 233: ScreenMan Forms—Delete a Form Option: Report of All Blocks Used on the Form

BLOCKS USED ON FORM “ZZTEST DOC” (IEN #55)

Internal Used on

Entry Number Block Name Other Forms? Deletable?

------------ ---------- ------------ ----------

178 ZZTEST DOC HDR1 NO YES

179 ZZTEST DOC1 NO YES

180 ZZTEST DOC2 NO YES

181 ZZTEST DOC3 NO YES

182 ZZTEST DOC HDR3 NO YES

The first column lists the internal entry numbers of the blocks used on the form, and the second column

lists the names of the blocks. The last two columns indicate whether the blocks are used on other forms

and whether you can delete those blocks from the BLOCK file (#.404). Only those blocks that are not

used on other forms can be deleted.

You are then asked whether you want to delete the blocks used on the form from the BLOCK file (#.404).

Figure 234: ScreenMan Forms—Delete a Form Option: Delete Blocks

Delete all deletable blocks used on form ZZTEST DOC

from the BLOCK file (Y/N)? YES// ?

 Enter ‘Y’ to delete blocks used on form

 ZZTEST DOC from the BLOCK file.

 (Only blocks not used on other forms can be deleted.)

 Enter ‘N’ to delete the form but not the blocks.

Delete all deletable blocks used on form ZZTEST DOC

from the BLOCK file (Y/N)? YES// <Enter>

If you answer “NO,” the form is deleted from the FORM file (#.403), but none of the blocks used on the

form are deleted. Note that if you choose not to delete a block, and that block is not used on any form, the

only way to delete the block is to run the Purge Unused Blocks option described below.

If you answer “YES,” you are asked whether you want to delete those blocks without confirmation.

VA FileMan 22.2

Developer’s Guide 295 January 2017

Figure 235: ScreenMan Forms—Delete a Form Option: Delete Blocks with or without Confirmation

Delete blocks without prompting (Y/N)? NO// ?

 Enter ‘Y’ to delete blocks from the BLOCK file

 without confirmation.

 Enter ‘N’ to confirm each delete.

Delete blocks without prompting (Y/N)? NO//

If you answer “YES”, all blocks used on the form that are not used on any form are deleted. If you answer

“NO,” you are prompted before any block is deleted. This gives you a chance to delete only specific

blocks.

Figure 236: ScreenMan Forms—Delete a Form Option: Deleting Blocks without Confirmation

Continue (Y/N)? NO// YES

Deleting form ZZTEST DOC (IEN #55) ...

ZZTEST DOC HDR1 Delete (Y/N)? NO// YES

ZZTEST DOC1 Delete (Y/N)? NO// YES

ZZTEST DOC2 Delete (Y/N)? NO// YES

ZZTEST DOC3 Delete (Y/N)? NO// YES

ZZTEST DOC HDR3 Delete (Y/N)? NO// YES

DONE!

4.5.4 Purge Unused Blocks

You can use the Purge Unused Blocks option [DDS PURGE UNUSED BLOCKS] on the ScreenMan

menu [DDS SCREEN MENU] to delete any or all of the unused blocks from the BLOCK file (#.404) that

are associated with a specific file.

Figure 237: ScreenMan Forms—Purge Unused Blocks Option

Select OPTION: OTHER OPTIONS

Select OTHER OPTION: SCREENMAN

Select SCREENMAN OPTION: PURGE UNUSED BLOCKS

PURGE UNUSED BLOCKS FROM WHAT FILE: ZZEZ SCREENDOC

Once you have selected a file, a short report is printed that lists the blocks that are not used on any forms:

Figure 238: ScreenMan Forms—Purge Unused Blocks Option: Report of Unused Blocks on any
Forms

UNUSED BLOCKS ASSOCIATED WITH FILE ZZEZ SCREENDOC (#16500)

Internal

Entry Number Block Name

------------ ----------

72 ZZZEE EDIT3

178 ZZTEST DOC1

179 ZZTEST DOC2

180 ZZTEST DOC3

181 ZZTEST DOC HDR3

VA FileMan 22.2

Developer’s Guide 296 January 2017

You are then asked whether to delete the blocks without confirmation:

Figure 239: ScreenMan Forms—Purge Unused Blocks Option: Delete Blocks with or without
Confirmation

 Delete all unused blocks without prompting (Y/N)? NO// <Enter>

If you answer “YES,” all unused block are deleted. If you answer “NO,” you are prompted before any

block is deleted. This gives you a chance to delete only specific blocks.

Figure 240: ScreenMan Forms—Purge Unused Blocks Option: Delete Blocks without Confirmation

Continue (Y/N)? NO// YES

ZZZEE EDIT3 Delete (Y/N)? NO// YES

ZZTEST DOC1 Delete (Y/N)? NO// YES

ZZTEST DOC2 Delete (Y/N)? NO// YES

ZZTEST DOC3 Delete (Y/N)? NO// YES

ZZTEST DOC HDR3 Delete (Y/N)? NO// YES

DONE!

4.6 Callable Routines

ScreenMan provides a number of callable routines. Many of these routines can be called from the various

form properties that execute M code. These callable routines are described in the “ScreenMan API”

section.

4.7 Programmer Mode Utilities

4.7.1 ^DDGF

You can use this routine to invoke the Form Editor from programmer mode.

 NOTE: You can also reach the Form Editor through the VA FileMan menu options [DIUSER].

On the VA FileMan menu [DIUSER], select Other Options [DIOTHER], ScreenMan [DDS

SCREEN MENU], and Edit/Create a Form [DDS EDIT/CREATE A FORM].

 REF: The Form Editor is described in detail in the “ScreenMan Form Editor” section.

VA FileMan 22.2

Developer’s Guide 297 January 2017

4.7.2 CLONE^DDS

You can use this entry point to make a copy of a form. All blocks used on the form are copied and a new

form that uses the new blocks is created.

In Figure 241, CLONE^DDS is used to make a copy of the XUEDIT CHARACTERISTICS form of the

NEW PERSON file (#200):

Figure 241: ScreenMan Forms—CLONE^DDS: Sample Dialogue to Copy a Form

>D CLONE^DDS

CLONE FORM FROM WHAT FILE: NEW PERSON

Select FORM to clone: ??

Choose from:

 XUEDIT CHARACTERISTICS #1 12/06/90 File #200

 XUEXISTING USER #2 12/12/90 File #200

Select FORM to clone: XUEDIT CHARACTERISTICS <Enter> XUEDIT CHARACTERISTICS

 #1 12/06/90 File #200

Once you have selected a form to clone, a report that lists the blocks used on the form is printed:

Figure 242: ScreenMan Forms—CLONE^DDS: Report Showing Blocks Used on a Form

 BLOCKS USED ON FORM “XUEDIT CHARACTERISTICS” (IEN #1)

 Internal

 Entry Number Block Name

 ------------ ----------

 1 XUEDIT CHARACTERISTICS HDR

 2 XUEDIT CHARACTERISTICS

Enter RETURN to continue or ‘^’ to exit: <Enter>

VA FileMan 22.2

Developer’s Guide 298 January 2017

You must assign names to the new form and blocks you are creating. If the original form and blocks are

namespaced (i.e., start with the same set of characters), you can choose to give the new form and blocks

the same name, but with the namespace replaced with another set of characters. Then, when you are asked

to enter new names, names that have the namespace replaced with the set of characters are displayed as

defaults:

Figure 243: ScreenMan Forms—CLONE^DD: Assigning New Form and Block Names

The new form and blocks must be given unique names.

Give the new form and blocks the same names as the original,

but a different namespace? YES// <Enter>

Original namespace: XU

 New namespace: ZZ

Enter names for the new form and blocks.

Original form name: XUEDIT CHARACTERISTICS

 New form name: ZZEDIT CHARACTERISTICS

Original block name: XUEDIT CHARACTERISTICS HDR

 New block name: ZZEDIT CHARACTERISTICS HDR

Original block name: XUEDIT CHARACTERISTICS

 New block name: ZZEDIT CHARACTERISTICS

After you have given names to the new form and blocks, you are ready to clone the form as follows:

Figure 244: ScreenMan Forms—CLONE^DDS: Cloning a Form

Ready to clone form? YES

Creating new blocks ...

 ZZEDIT CHARACTERISTICS HDR #71

 ZZEDIT CHARACTERISTICS #72

Creating new form ...

 ZZEDIT CHARACTERISTICS #36

Repointing to new blocks ...

Reindexing new form ...

DONE!

>

 NOTE: Be sure to check the properties of the cloned form and blocks for namespaced variables,

block references, etc., that need to be modified manually.

VA FileMan 22.2

Developer’s Guide 299 January 2017

4.7.3 PRINT^DDS

You can use this entry point to print a form. PRINT^DDS prints the properties of the form and the

properties of all the blocks used on that form.

Figure 245: ScreenMan Forms—PRINT^DDS: Printing a Form

>D PRINT^DDS

Select FORM: ZZSAMPLE <Enter> (Nov 16, 1994) User #3 File 16201

Start each page of the form on a new page? Yes// NO

DEVICE: HOME// ;;9999 <Enter> DECSERVER

FORM LISTING - ZZSAMPLE (#38)

FILE: ZZTEST (#16201) NOV 16, 1994 13:29 PAGE 1

--

 PRIMARY FILE: 16201 READ ACCESS: @

 DATE CREATED: NOV 16, 1994@08:24 WRITE ACCESS: @

 DATE LAST USED: NOV 16, 1994@08:25 CREATOR: 3

Page Page

Number Properties

------ ----------

1 Page 1

PAGE COORDINATE: 1,1

Block Block

Order Properties (Form File)

----- ----------------------

1 ZZSAMPLE (#104)

TYPE OF BLOCK: EDIT

BLOCK COORDINATE: 1,1

Block Properties (Block File)

DATA DICTIONARY NUMBER: 16201

Field Field

Order Properties

----- ----------

1 FIELD TYPE: DATA DICTIONARY FIELD

 CAPTION: NAME

 FIELD: .01

 CAPTION COORDINATE: 1,1

 DATA COORDINATE: 1,7

 DATA LENGTH: 30

2 FIELD TYPE: DATA DICTIONARY FIELD

 CAPTION: SET

 FIELD: 1

 CAPTION COORDINATE: 2,2

 DATA COORDINATE: 2,7

 DATA LENGTH: 10

VA FileMan 22.2

Developer’s Guide 300 January 2017

4.7.4 RESET^DDS

If during a call to ^DDS you get a hard error, you can DO RESET^DDS to:

 Reset the terminal characteristics.

 Unlock any locked records.

 Clean up some variables in the local symbol table.

 Remove the temporary data ScreenMan stores in ^TMP.

Since RESET^DDS does not clean up all local variables, you should do P^DI afterwards to clean up any

variables that RESET^DDS missed.

You can also use RESET^DDS if you get a hard error while using the Form Editor.

VA FileMan 22.2

Developer’s Guide 301 January 2017

5 ScreenMan Form Editor

5.1 Introduction

The ScreenMan Form Editor is a screen-oriented tool for creating and editing ScreenMan forms. It allows

you to select and drag form elements and edit their properties through a ScreenMan interface. It can run

on character-based terminals (e.g., DEC VT-100 and Qume QVT-102), if properly defined through the

Device Handler.

As you use the Form Editor, it is helpful to have printouts of the data dictionaries of the files containing

the fields you are placing on ScreenMan forms. You need to know such things as the data dictionary

numbers of files and subfiles and the maximum length of the external form of data.

 REF: See also:

 The “ScreenMan Form Editor” section.

 The “ScreenMan API” section, which describes the ScreenMan APIs you can use to load

a form and to use from within a form.

 The ScreenMan Tutorial for Developers Manual, located on the VDL at:

http://www4.va.gov/vdl/application.asp?appid=5.

5.2 Invoking the Form Editor

To invoke the Form Editor, perform the following steps from the VA FileMan menu:

Figure 246: ScreenMan Form Editor—EDIT/CREATE A FORM Option: Invoking the Form Editor

Select OPTION: OTHER OPTIONS

Select OTHER OPTION: SCREENMAN

Select SCREENMAN OPTION: ?

 Answer with SCREENMAN OPTION NUMBER, or NAME

Choose from:

 1 EDIT/CREATE A FORM

 2 RUN A FORM

 3 DELETE A FORM

 4 PURGE UNUSED BLOCKS

Select SCREENMAN OPTION: EDIT/CREATE A FORM

You are asked to select a file:

Figure 247: ScreenMan Form Editor—EDIT/CREATE A FORM Option: Selecting a File

 EDIT/CREATE FORM FOR WHAT FILE:

And a form:

Figure 248: ScreenMan Form Editor—EDIT/CREATE A FORM Option: Selecting a Form

 Select FORM:

At the “Select FORM:” prompt, you can either select an existing form to edit or create a new form by

entering a new form name.

http://www4.va.gov/vdl/application.asp?appid=5

VA FileMan 22.2

Developer’s Guide 302 January 2017

If you create a new form, the Form Editor automatically creates one page on that form. The new page is

given a Page Number of 1, a Page Name of “Page 1”, and a Page Coordinate of “1,1”.

 NOTE: You can also use the programmer mode utility ^DDGF to invoke the Form Editor.

5.3 Command Summary

5.3.1 Navigating on the Main Screen and Block Viewer Screen

Table 86: ScreenMan Form Editor—Navigating: Cursor Navigation to the Main Screen and the
Block Viewer Screen

To Move the Cursor Press

Up one line <ARROWUP>

Down one line <ARROWDOWN>

Right one column <ARROWRIGHT>

Left one column <ARROWLEFT>

One field to the right <Tab>

One field to the left Q

Five columns to the right S

Five columns to the left A

Top of screen <PF1><ARROWUP>

Bottom of screen <PF1><ARROWDOWN>

Right edge of screen <PF1><ARROWRIGHT>

Left edge of screen <PF1><ARROWLEFT>

To switch between the Main screen and the Block Viewer screen:

Press <PF1>V.

5.3.2 Quick Page Navigation

Table 87: ScreenMan Form Editor—Navigating: Key Sequences for Quick Page Navigation

To Press

Go to the next page <PF1><PF1><ARROWDOWN>

Go to the previous page <PF1><PF1><ARROWUP>

Go into a subpage associated with a field Select the field with Spacebar or Enter keys and press
<PF1>D

VA FileMan 22.2

Developer’s Guide 303 January 2017

To select a screen element (field caption, field data, or block name):

1. Position the cursor over the element and press Spacebar or Enter.

2. Press Spacebar or Enter again to deselect the element.

To reorder all fields on a block:

1. Select the block on the Block Viewer Screen.

2. Press <PF1>O.

5.3.3 Moving Screen Elements

Table 88: ScreenMan Form Editor—Key Sequences to Move Screen Elements

To Drag a Selected Element Press

Up one line. <ARROWUP>

Down one line. <ARROWDOWN>

Right one column. <ARROWRIGHT>

Left one column. <ARROWLEFT>

Five columns to the right. <Tab> or S

Five columns to the left. Q or A

Top of screen. <PF1><ARROWUP>

Bottom of screen. <PF1><ARROWDOWN>

Right edge of screen. <PF1><ARROWRIGHT>

Left edge of screen. <PF1><ARROWLEFT>

5.3.4 Adding, Selecting, and Editing

Table 89: ScreenMan Form Editor—Key Sequences to Add, Select, and Edit

To Press

Select or create a new form. <PF1>M or <PF2>M

Select another page. <PF1>P

Add a new page. <PF2>P

Add a new block. <PF2>B

Add a new field. <PF2>F

Edit properties of current form. <PF4>M

Edit properties of current page. <PF4>P

To invoke the ScreenMan form to edit field or block properties:

Select the field or block and press PF4.

VA FileMan 22.2

Developer’s Guide 304 January 2017

To edit the caption of a field on the Main Screen:

1. Position the cursor over the caption and press PF3.

2. Press the Enter key when finished editing.

To edit the data length of a field on the Main Screen:

1. Position the cursor over the underline that represents the data and press PF3.

2. Press <ARROWRIGHT> and <ARROWLEFT> to change the length.

3. Press the Enter key when finished.

5.4 The Main Screen

Figure 249 is an example of the Form Editor’s Main Screen.

The top portion of the Main Screen is the Work Area. Here you see field captions, as well as underscores

representing data fields, for fields that are defined on the blocks of the current page. Each of these items is

called a screen element. This area of the screen is the one that you control when you display information

to the user on a form.

Figure 249: ScreenMan Form Editor—Main Screen

 NAME: ____________________________

 STREET ADDRESS: ____________________________

 CITY: ____________________________

 STATE: __

 ZIP CODE: _____________

File: ZZFILE NAME (# nnnn) Rn,Cn

Form: ZZFORM NAME

Page: n (ZZName of Page)

<PF1>Q=Quit <PF1>E=Exit <PF1>S=Save <PF1>V=Block Viewer <PF1>H=Help

The bottom portion of the screen contains status information, such as:

 Name and number of the file to which the form is attached

 Name of the form

 Number and name of the page you are currently editing

 “Rn,Cn” at the lower right of the screen indicates the current row and column position of the

cursor.

When a user runs a form, this portion of the screen is occupied by ScreenMan’s command area.

5.4.1 Exiting, Quitting, Saving, and Obtaining Help

You can exit from the Form Editor’s Main Screen in one of two ways:

 Press <PF1>E to exit and save any changes you made to field captions, data lengths of fields,

block names, and page, block, and field coordinates. These are the properties that are visible on

the Form Editor screens.

 Press <PF1>Q to quit and discard the changes you made to those properties.

VA FileMan 22.2

Developer’s Guide 305 January 2017

You can also save changes without leaving the Form Editor by pressing <PF1>S.

Pressing <PF1>H accesses the Form Editor’s online help screens.

Table 90: ScreenMan Form Editor—General Key Sequences to: Exit, Quit, Save, and Obtain Help

To Press

Exit and save changes. <PF1>E

Quit without saving changes. <PF1>Q

Save without exiting. <PF1>S

Bring up help screens. <PF1>H

Move to Block Viewer screen. <PF1>V

5.5 Block Viewer Screen

To view the blocks on the current page, press <PF1>V to go to the Block Viewer Screen. The Block

Viewer Screen displays the names of the blocks defined on the current page. For example, if the current

page contains blocks called ZZBLOCK NAME 1 and ZZBLOCK NAME 2, the Block Viewer Screen

looks like this:

Figure 250: ScreenMan Form Editor—Block Viewer Screen

ZZBLOCK NAME 1

ZZBLOCK NAME 2

File: ZZFILE NAME (# nnnn) BLOCK VIEWER R1,C1

Form: ZZFORM NAME

Page: n (ZZPage Name)

<PF1>V=Main Screen <PF1>H=Help

Like the captions and data fields displayed on the Main Screen, the block names on the Block Viewer are

screen elements.

 NOTE: The words “BLOCK VIEWER” appear in the bottom portion of the Block Viewer

Screen.

To return to the Main Screen:

Press <PF1>V.

VA FileMan 22.2

Developer’s Guide 306 January 2017

5.6 Navigating on the Form Editor Screens

To move the cursor on the Main Screen and the Block Viewer Screen, you can use the key sequences

listed in Table 91.

 NOTE: You can move the cursor only within the boundaries of the current page, as determined

by the page coordinate.

Table 91: ScreenMan Form Editor—Navigating: Cursor Movement and Keyboard Combination

To Move the Cursor Press

Up one line. <ARROWUP>

Down one line. <ARROWDOWN>

Right one column. <ARROWRIGHT>

Left one column. <ARROWLEFT>

One field to the right. <Tab> or S

One field to the left. Q or A

Five columns to the right. S

Five columns to the left. A

Top of screen. <PF1><ARROWUP>

Bottom of screen. <PF1><ARROWDOWN>

Right edge of screen. <PF1><ARROWRIGHT>

Left edge of screen. <PF1><ARROWLEFT>

5.7 Going to Another Page

In the Form Editor, you work with one page at a time. The page with which you are currently working is

indicated in the status area at the bottom portion of the screen. To go to another page, press <PF1>P. The

Form Editor asks you to select another page on the form:

Figure 251: ScreenMan Form Editor—Going to Another Page

Select PAGE: n

Here you can enter ? (a single question mark) to get a list of the pages defined on the form. The page you

select becomes the current page and the Form Editor displays the fields on that page in the Work Area of

the Main Screen.

VA FileMan 22.2

Developer’s Guide 307 January 2017

Shortcut keys also allow you to quickly change the current page:

Table 92: ScreenMan Form Editor—Changing Current Page: Shortcut Keys

Shortcut Key Sequence Description

<PF1><PF1><ARROWDOWN> If the current page has a Next Page defined, you can press this

key sequenced to go to the next page.

<PF1><PF1><ARROWUP> If the current page has a Previous Page defined, you can press

this key sequence to go to the previous page.

<PF1>D If one of the fields on the current page has a subpage

associated with it, you can go to that subpage by first selecting

the field (press Spacebar or Enter over the caption of that field)

and then press this key sequence.

<PF1>C To close a subpage and return to the page underneath, press

this key sequence.

5.8 Adding Pages, Blocks, and Fields

 Adding Pages

 Adding Blocks

 Adding Fields

5.8.1 Adding Pages

To add a new page to the form, press <PF2>P. The Form Editor asks you to enter the page number of the

new page:

Figure 252: ScreenMan Form Editor—Adding a Page

NEW PAGE NUMBER:

Here you must enter a page number that has not yet been used on the form. Press <PF1>Q to close this

“popup” page and abort adding a new page. Once you have selected a new page number, the Form Editor

asks:

Figure 253: ScreenMan Form Editor—Adding a Page Confirmation

Are you adding Page n

as a new page on this form?

If you answer YES, the Form Editor invokes a ScreenMan form in which you can edit the properties of

the new page.

 REF: See the “Editing Page Properties” section.

VA FileMan 22.2

Developer’s Guide 308 January 2017

5.8.2 Adding Blocks

To add a new block to the current page, move the cursor to the location on the page where you want the

upper left corner of the block positioned, and press <PF2>B. The Form Editor asks you for the name of

the block you want to add to the current page:

Figure 254: ScreenMan Form Editor—Adding a Block

 Select NEW BLOCK NAME:

Here, you can either select an existing block from the BLOCK file (#.404), or enter the name of a new

block. If you enter the name of a new block (e.g., ZZTEST BLOCK 1), the Form Editor asks you whether

you wish to add the block to the BLOCK file (#.404):

Figure 255: ScreenMan Form Editor—Adding a Block Confirmation

 ARE YOU ADDING ‘ZZTEST BLOCK 1’ AS A NEW BLOCK (THE 36TH)?

And, whether you want to add the block to the current page of the form:

Figure 256: ScreenMan Form Editor—Adding a Block to a Page

 Are you adding ZZTEST BLOCK 1 as a new block on this page?

If you answer YES to these questions, the Form Editor invokes a ScreenMan form where you can edit the

properties of the new block.

 REF: See the “Editing Block Properties” section.

5.8.2.1 Header Blocks

For backward compatibility, the Form Editor displays and allows you to edit the properties of header

blocks already defined on the form. It does not, however, provide a way to add header blocks to a form,

since display-type blocks provide the same functionality as header blocks. Instead of creating a header

block on a page, you can create a display-type block with a coordinate of “1,1” relative to the page.

5.8.3 Adding Fields

To add fields to a block on the current page of the form, you must be on the Form Editor’s Main screen. If

you are currently on the Block Viewer screen, press <PF1>V to return to the Form Editor Main screen.

Before you can add fields, at least one block must be defined on the current page.

To add a field, move the cursor to the desired location of the new field and press <PF2>F. The Form

Editor presents the dialogue in Figure 257:

Figure 257: ScreenMan Form Editor—Adding Fields

Select BLOCK:

 FIELD ORDER:

 FIELD TYPE:

To close this “popup” page and abort adding a new field, press <PF1>Q.

VA FileMan 22.2

Developer’s Guide 309 January 2017

You can change any of the default answers the Form Editor provides. The Form Editor asks you to select

a block on which to add the new field. You can select only those blocks that are defined on the current

page. The Form Editor also asks you for the Field Order number and the Field Type of the new field.

Once you have filled in all the information in this “popup” page, press <PF1>E. The Form Editor adds

the new field to the block, and invokes a form where you can edit the properties of the field just created.

 REF: See the “Editing Field Properties” section.

5.9 Selecting and Moving Screen Elements

5.9.1 Selecting Screen Elements

The items you see on the Form Editor’s Main Screen and Block Viewer Screen are called screen

elements. They include field captions and data fields shown on the Main Screen, and block names shown

on the Block Viewer Screen. To select a screen element, press Spacebar or Enter over the element. To

deselect an element, press Spacebar or Enter again.

5.9.2 Moving Screen Elements

To move a screen element such as a field or block to a new location, position the cursor over the element,

select it with Spacebar or Enter keys, and then use the key sequences in Table 93 to move the element:

Table 93: ScreenMan Form Editor—General Key Sequences to: Move Screen Elements

To Drag an Element Press this Key Sequence

Up one line <ARROWUP>

Down one line <ARROWDOWN>

Right one column <ARROWRIGHT>

Left one column <ARROWLEFT>

Five columns to the right <Tab> or S

Five columns to the left Q or A

Top of screen <PF1><ARROWUP>

Bottom of screen <PF1><ARROWDOWN>

Right edge of screen <PF1><ARROWRIGHT>

Left edge of screen <PF1><ARROWLEFT>

You can drag a field only within the boundaries of the block on which it is defined, and you can drag a

block only within the boundaries of the page on which it is defined.

 NOTE: No matter where you move a field, it remains associated with the block on which it was

originally defined.

If you select the caption of a field, both the caption and data portion of the field, if one exists, are selected

and can be dragged as a single unit. If you select the data portion of a field, only the data portion is

selected and can be dragged independently of the caption.

VA FileMan 22.2

Developer’s Guide 310 January 2017

If you drag a block name to a new location on the Block Viewer Screen, all fields on that block move to a

new location.

The Block Coordinate of a block defines the upper left boundary of the block. The block boundary

extends from that coordinate to the lower right edge of the Display/Edit Area.

Similarly, the Page Coordinate of a page defines the upper left boundary of the page. If the page is a

regular page, the page boundary extends from that coordinate to the lower right edge of the Display/Edit

Area. If the page is a “popup” page, the Lower Right Coordinate of the page defines the lower right

boundary of the page.

5.10 Editing Properties

5.10.1 Editing Field Properties

To edit the properties of a field, select the field with Spacebar or Enter keys, and press PF4. The Form

Editor invokes a ScreenMan form where the properties of the field can be edited.

The specific form that is invoked depends on the type of the selected field. For example, the form for

editing data dictionary fields looks like Figure 258:

Figure 258: ScreenMan Form Editor—Editing Field Properties

 ----------------------- Data Dictionary Field Properties -----------------------

| |

| FIELD ORDER: FIELD: |

| ORDER PARAMETERS... SUPPRESS COLON AFTER CAPTION? |

| UNIQUE NAME: |

| |

| CAPTION: |

| DEFAULT: |

| EXECUTABLE CAPTION: |

| EXECUTABLE DEFAULT: |

| |

| BRANCHING LOGIC: |

| PRE ACTION: |

| POST ACTION: |

| POST ACTION ON CHANGE: |

 --

When you enter a value at the “FIELD:” prompt for data dictionary fields, the Form Editor automatically

defines the Caption as the field’s label:

 Multiple field—If the field is a Multiple field, the Form Editor adds the word “Select” before the

field’s label.

 Word-processing field—If the field is a word-processing field, the Form Editor adds the

characters “(WP)” after the field’s label.

VA FileMan 22.2

Developer’s Guide 311 January 2017

At the “CAPTION:” prompt, you can:

 Accept the Form Editor’s default.

 Enter a new caption.

 Enter one of the captions listed in Table 94:

Table 94: ScreenMan Form Editor—Shortcuts at the CAPTION Prompt

To Define the Caption as Enter at the CAPTION Prompt

Field label !L

Field title !T

Unique name of field !U

Duplicated string !DUP(string,number of occurrences) For example, !DUP(“-”,79)

The “OTHER PARAMETERS:” prompt is followed by an ellipsis (...) to indicate that this field leads to a

new page. To view that page, navigate to the Other Parameters field and press the Enter key. A “popup”

window appears where you can edit additional properties of the field.

Figure 259: ScreenMan Form Editor—Other Parameters

----------------------- Data Dictionary Field Properties -----------------------

| |

| ---------------------------- Other Parameters ----------------------------- |

| | | |

| | REQUIRED: ___ DISPLAY GROUP: ______________ | |

| | DISABLE EDITING: ___________ RIGHT JUSTIFY: ____ | |

| | SUB PAGE LINK: ______ | |

| | | |

| | DATA LENGTH: ___ | |

| | CAPTION COORDINATE: ________ | |

| | DATA COORDINATE: ________ | |

| | | |

| | DATA VALIDATION: ___ | |

| | | |

| --- |

 --

To close the Other Parameters “popup” window, press <PF1>C. To return to the Form Editor’s Main

Screen, press <PF1>E to exit and save your changes, or press <PF1>Q to quit the form without saving

your changes.

5.10.1.1 Editing Field Captions and Data Length

As described above, you can press PF4 to invoke a ScreenMan form to edit the caption and data length of

fields. You can also edit these properties directly from the Form Editor’s Main Screen.

To change the caption of a field, position the cursor over the caption, and press PF3. You can then edit

the caption with the same editing keys available in ScreenMan’s Field Editor. Press Enter when you are

finished editing the caption.

To change the data length of a field, position the cursor over the data portion of the field, and press PF3.

You can then increase and decrease the data length by pressing <ARROWRIGHT> and

<ARROWLEFT>. An indicator (L=n) at the lower right portion of the Main Screen indicates the current

data length. Press the Enter key when you are finished editing the data length.

VA FileMan 22.2

Developer’s Guide 312 January 2017

5.10.1.2 Reordering All Fields on a Block

After creating and arranging all the fields on a block, you can quickly make the Field Orders of all the

fields equivalent to the tab order by doing the following:

1. Go to the Block Viewer Screen (<PF1>V).

2. Select the block (Spacebar or Enter over the block name).

3. Press <PF1>O.

Remember that the Field Order is the order in which the elements on the block are traversed when the

user presses Enter. The <PF1>O key sequence reassigns Field Order numbers to all the elements on the

block, so that the Enter key takes the user from field to field in the same order as the Tab key (left to

right, top to bottom).

 NOTE: If you refer to fields by Field Order in places such as Branching logic and Pre and Post

Actions, reordering the fields on the block could cause that code to refer to the wrong fields. You

must then modify the code to either reflect the new Field Order numbers, or refer to those fields

by Caption or Unique Name instead.

5.10.2 Editing Block Properties

To edit the properties of a block on the current page, press <PF1>V to go to the Block Viewer Screen,

select the block name with Spacebar or Enter keys, and press PF4. The Form Editor invokes a

ScreenMan form where the properties of the block can be edited.

The form for editing block properties looks like Figure 260:

Figure 260: ScreenMan Form Editor—Editing Block Properties

--------------------- Block Properties Stored in FORM File ---------------------

| |

| BLOCK NAME: BLOCK ORDER: |

| TYPE OF BLOCK: OTHER PARAMETERS... |

| POINTER LINK: |

| |

| PRE ACTION: |

| POST ACTION: |

| |

|--------------------- Block Properties Stored in BLOCK File --------------------|

| |

| NAME: DESCRIPTION (WP): |

| DD NUMBER: DISABLE NAVIGATION: |

| |

| PRE ACTION: |

| POST ACTION: |

 --

The fields on the top portion of the preceding screen are fields from the FORM file (#.403). Changes to

the values of the fields in this area affect the block only as it is used on this particular form.

The fields on the bottom portion of the screen are fields from the BLOCK file (#.404). Changes to the

values of the fields in this area affect the properties of the block itself, and thus, affect any form that uses

this block.

When you create a new block, make sure that the DD Number is correct. The Form Editor provides a

default DD Number equal to the Primary file of the form. If you are creating a block that contains fields

from a subfile, or from a file to which you are navigating, you must change the DD Number.

VA FileMan 22.2

Developer’s Guide 313 January 2017

5.10.3 Editing Page Properties

 REF: For information on how to move from page to page when editing a form, see the “Going to

Another Page” section.

To edit the properties of the current page, press <PF4>P from the Form Editor’s Main Screen. The form

for editing page properties looks like Figure 261:

Figure 261: ScreenMan Form Editor—Editing Page Properties

 ------------------------------- Page Properties --------------------------------

| |

| PAGE NUMBER: |

| PAGE NAME: |

| HEADER BLOCK: |

| |

| PAGE COORDINATE: IS THIS A POP UP PAGE? |

| LOWER RIGHT COORDINATE: |

| NEXT PAGE: |

| PREVIOUS PAGE: |

| PARENT FIELD: |

| |

| DESCRIPTION (WP): |

| PRE ACTION: |

| POST ACTION: |

| |

 --

If you want the page to be a “popup” page (window), enter YES at the “IS THIS A POP UP PAGE?”

prompt, and enter a value for “LOWER RIGHT COORDINATE”.

 NOTE: VA FileMan 22.2 supports screens longer than 24 lines.

VA FileMan 22.2

Developer’s Guide 314 January 2017

5.10.3.1 Editing “Popup” Page Coordinates

As described above, you can press <PF4>P to invoke a ScreenMan form to edit the properties of the

current page. You can also change the coordinate of a “popup” page directly from the Form Editor’s Main

Screen, by selecting and dragging the border of the “popup” page.

Figure 262 is an example of the Main Screen of the Form Editor where the current page is a “popup”

page.

Figure 262: ScreenMan Form Editor—Editing “Popup” Page Coordinates

 THIS IS A CAPTION ONLY FIELD

 NAME: ____ ___| |

 SSN: ________| This is the pop-up page |

 SELECT PHONE: ________| |

 | |

 | |

File: ZZFILE NAME (# nnnn) R1,C1

Form: ZZFORM NAME

Page: n (ZZName of Pop-Up Page)

<PF1>Q=Quit <PF1>E=Exit <PF1>S=Save <PF1>V=Block Viewer <PF1>H=Help

To move the entire “popup” page around on the Main Screen, position the cursor anywhere on the top

boundary of the “popup” page and press Spacebar or Enter to select it. You can then use the

navigational keys described in the “Moving Screen Elements“ topic to drag the entire “popup” page to a

new location. Press Spacebar or Enter again to lock the page in its new position.

To resize the “popup” page (i.e., to change the lower right coordinate of the page) position the cursor over

the lower right corner of the page boundary and press Spacebar or Enter to select it. You can then use

the navigational keys to move the corner to a new location. Press Spacebar or Enter again when the page

is the correct size.

VA FileMan 22.2

Developer’s Guide 315 January 2017

5.10.4 Editing Form Properties

To edit the properties of the form, press <PF4>M from the Form Editor’s Main Screen. The form for

editing form properties looks like this:

Figure 263: ScreenMan Form Editor—Editing form Properties

 ------------------------------- Form Properties --------------------------------

| |

| NAME: |

| TITLE: |

| |

| PRE ACTION: |

| POST ACTION: |

| DATA VALIDATION: |

| POST SAVE: |

| |

| DESCRIPTION: RECORD SELECTION PAGE: |

| |

| |

| READ ACCESS: |

| WRITE ACCESS: |

| |

| |

 --

5.11 Choosing another Form

You can select another form to edit or create a new form without leaving the Form Editor. Press <PF1>M

or <PF2>M to select another file and form. You see the same prompts described in the section “Invoking

the Form Editor”:

Figure 264: ScreenMan Form Editor—Choosing Another Form

EDIT/CREATE FORM FOR WHAT FILE:

And:

Figure 265: ScreenMan Form Editor—Select Form

Select FORM:

If you select a different form or create a new form, and changes to the previous form (e.g., ZZTEST) have

not yet been saved, the Form Editor asks:

Figure 266: ScreenMan Form Editor—Save Changes

Save changes to form ZZTEST? YES//

This gives you the opportunity to save or discard your changes before moving on to the next form.

VA FileMan 22.2

Developer’s Guide 316 January 2017

5.12 Deleting Screen Elements (Fields, Blocks, Pages, and
Forms)

In general, to delete a screen element, select and edit the properties of the element, then enter an at-sign

(“@”) at the first field of the ScreenMan form.

5.12.1 Deleting Fields

To delete a field, select the field by pressing Spacebar or Enter over the caption of the field, press PF4

to invoke the form to edit the properties of the field, and then enter an at-sign (“@”) at the “FIELD

ORDER:” prompt.

5.12.2 Deleting Blocks

Similarly, to delete a block, select the block on the Block Viewer Screen, press PF4 to invoke the form to

edit block properties, and enter an at-sign (“@”) at the “BLOCK NAME:” prompt. Answer YES to the

warning that deletions are done immediately. If the block is not used on any other forms, the Form Editor

also asks whether you want to delete the block from the BLOCK file (#.404). If you choose not to delete

the block from the BLOCK file (#.404), you can subsequently delete the block only by running the

ScreenMan Purge Unused Blocks option [DDS PURGE UNUSED BLOCKS].

5.12.3 Deleting Pages

To delete a page, make that page the current page, press <PF4>P to invoke the form to edit page

properties, and enter an at-sign (“@”) at the “PAGE NUMBER:” prompt.

 REF: For information on how to move from page to page when editing a form, see the “Going to

Another Page” section.

5.12.4 Deleting Forms

You cannot delete a form from the Form Editor. To delete a form, exit the Form Editor and perform the

steps in Figure 267 from the VA FileMan menu [DIUSER]:

Figure 267: ScreenMan Form Editor—Choosing Another Form

Select OPTION: OTHER <Enter> OPTIONS

Select OTHER OPTION: SCREENMAN

Select SCREENMAN OPTION: ?

Answer with SCREENMAN OPTION NUMBER, or NAME

Choose from:

 1 EDIT/CREATE A FORM

 2 RUN A FORM

 3 DELETE A FORM

 4 PURGE UNUSED BLOCKS

Select SCREENMAN OPTION: D <Enter> ELETE A FORM

 REF: For more information on this menu option, see the “ScreenMan Menu Options” section in

the “ScreenMan Forms” section.

VA FileMan 22.2

Developer’s Guide 317 January 2017

6 ScreenMan API

6.1 Introduction

VA FileMan’s ScreenMan utility provides a screen-oriented interface for editing and displaying data. The

API described in this section provides entry points for loading a ScreenMan form and entry points you

can use at various places within a ScreenMan form.

 REF: See also:

 The “ScreenMan Forms” section.

 The “ScreenMan Form Editor” section.

 The ScreenMan Tutorial for Developers Manual, located on the VDL at:

http://www4.va.gov/vdl/application.asp?appid=5.

6.2 Invoke ScreenMan

6.2.1 ^DDS

You can call this entry point directly from an M routine to invoke the specified form.

This routine invokes a ScreenMan form attached to the specified file. ScreenMan automatically uses

incremental locks to lock all records accessed during an editing session.

Input Variables

DDSFILE: (Required) The number or global root of the Primary file of the form.

DR: (Required) The name of the form (an entry in the FORM file [#.403]) enclosed in

square brackets.

DA: (Optional) The record number of the file entry to display or edit. If DA is null or

undefined, the form must either contain no data dictionary fields or have a

Record Selection page, which is the first page ScreenMan presents to the user

and is where the user can select a record from the file.

 REF: See Example 2 below when a subfile is being accessed directly.

DDSPAGE: (Optional) The Page Number of the first page to display to the user. If

‘$G(DDSPAGE), a page with a Page Number equal to 1 must exist on the form

and that is the first page ScreenMan presents to the user.

DDSPARM: (Optional) A string of alphabetic characters that control ScreenMan’s behavior

are listed below:

 C Return the variable DDSCHANG=1 if ScreenMan detects that the user

saved a Change to the database.

 E Return Error messages in ^TMP(“DIERR”,$J) and return DIERR if

ScreenMan encounters problems when initially trying to load the form. If

DDSPARM does not contain an E, ScreenMan prints messages directly

on the screen, and returns the variable DIMSG equal to null.

http://www4.va.gov/vdl/application.asp?appid=5

VA FileMan 22.2

Developer’s Guide 318 January 2017

 S Return the variable DDSSAVE=1 if the user pressed <PF1>S or

<PF1>E, or entered an “Exit” or “Save” command from the Command

Line, whether or not any changes were actually made on the form.

If ^DDS is used to display or edit data in a subfile directly, the following variables must be set in addition

to the variables listed above:

DDSFILE(1): (Required) Contains the subfile number or the global root of the subfile.

DA(1) ... DA(n): The DA array, where DA is the subrecord number at the deepest level and DA(n)

is the record number at the top-level.

All the input variables are returned unchanged by the ^DDS call. DDSFILE(1) should be KILLed when

the call is complete to avoid conflict with subsequent ^DDS calls.

Output Variables

DDSCHANG: $G(DDSCHANG)=1, if the DDSPARM input variable to ^DDS contains a C and

ScreenMan detects that the user saved a change to the database.

DDSSAVE: $G(DDSSAVE)=1, if the DDSPARM input variable to ^DDS contains an S and

the user pressed <PF1>E or <PF1>S, or issued the “Save” or “Exit” command

from the Command Line.

DIMSG: $D(DIMSG)>0, if the form could not be loaded, and the DDSPARM input

variable to ^DDS does not contain an E.

 REF: See the description of the DDSPARM input variable above.

DTOUT: $D(DTOUT)>0, if the user times out during the editing session.

6.2.1.1 DDS Variable

$D(DDS) can be checked within programming hooks, such as Executable Help and Input Transforms to

determine whether the hook is being executed from within a ScreenMan form. In that case, $D(DDS)

evaluates to true.

6.2.1.2 Examples

6.2.1.2.1 Example 1

Invoke the form EE FORM1 to edit the 15th entry in (fictitious) File #16500, as shown in Figure 268:

Figure 268: ^DDS API—Example 1: Input

>S DDSFILE=16500,DA=15,DR=“[EE FORM1]” D ^DDS

VA FileMan 22.2

Developer’s Guide 319 January 2017

6.2.1.2.2 Example 2

As shown Figure 269, invoke the form EE FORM2 to edit the 31st subentry in Subfile #16100.01, for the

9th entry in (fictitious) File #16100; Page Number 11 is the first page to present to the user; and have

ScreenMan return DDSCHANG if it detects a change to the database when the user exits:

Figure 269: ^DDS API—Example 2: Input

>S DDSFILE=16100,DDSFILE(1)=16100.01

>S DA=31,DA(1)=9,DR=“[EE FORM2]”

>S DDSPAGE=11,DDSPARM=“C”

>D ^DDS

6.2.1.3 Error Codes Returned

 NOTE: Error codes are returned only if the DDSPARM input variable to ^DDS contains an E.

Table 95: ^DDS API—Error Codes Returned

Code Description

201 The specified input variable is missing or invalid.

202 One of the input variables is not properly specified.

405 Entries in the file cannot be edited.

810 At least one of the required ^%ZOSF nodes is missing.

840 The Terminal Type file does not have an entry that matches IOST(0).

842 At least one required piece of data in the Terminal Type file is null for the terminal type

identified by IOST(0).

845 A call to HOME^%ZIS returns $G(POP)>0.

3021 The specified form does not exist in the Form file, or DDSFILE is not the Primary File of the

form.

3022 The specified form contains no pages.

3023 The form does not contain the specified page.

VA FileMan 22.2

Developer’s Guide 320 January 2017

6.3 Retrieve/Stuff Fields

6.3.1 $$GET^DDSVAL()

You can use this entry point only within a ScreenMan form, in all places where M code can be placed on

the form.

This extrinsic function retrieves data from a data dictionary field. If the user has edited the field on the

ScreenMan form, or if the form designer has modified the field with a PUT^DDSVAL call, the function

returns the new value, even if the user has not yet saved the change to the database. If the field has not

been edited on the ScreenMan form, the function retrieves the data from the VA FileMan file/global.

Text for a word-processing field is moved into a global array and $$GET^DDSVAL returns the closed

root of that array. The array has the same format as a VA FileMan word-processing field.

Computed fields in VA FileMan files cannot be retrieved. To retrieve the value of a computed field

defined on the form, use the $$GET^DDSVALF function described below.

If, while a form is running, a call to $$GET^DDSVAL fails, ScreenMan prints an error message in the

Command Area.

Format

$$GET^DDSVAL(file,[.]record,field,.error,flags)

Input Parameters

file: (Required) The global root or number of the file or subfile. At the field level, the

local variable DIE contains the current global root.

[.]record: (Required) The internal entry number or an array of internal entry numbers. This

parameter has the same form as the DA array. At the field level, the local array

DA contains the current array of internal entry numbers.

field: (Required) The field name or number or a relational expression that follows a

forward pointer (e.g., POINTER:FIELD).

 REF: The “Relational Navigation: Forward Pointers” section in the

“ScreenMan Forms” section describes in detail the syntax accepted by

ScreenMan to describe a relational jump via a DD field.

.error: (Optional) $D(ERROR)>1, if the function call fails.

flags: (Optional) Controls whether the internal or external form is returned, as shown

below (the I and E flags have no effect if FIELD is a word-processing field):

 I—Return the Internal form of the data. (Default)

 E—Return the External form of the data.

6.3.1.1 Examples

6.3.1.1.1 Example 1

Retrieve the internal form of the .01 field of the record currently being edited:

Figure 270: $$GET^DDSVAL() API—Example 1: Input

S nmspNAME=$$GET^DDSVAL(DIE,.DA,.01)

VA FileMan 22.2

Developer’s Guide 321 January 2017

6.3.1.1.2 Example 2

Retrieve the external form of Field #20, record #362, in (fictitious) File #16000:

Figure 271: $$GET^DDSVAL() API—Example 2: Input

S nmspDATE=$$GET^DDSVAL(“^DIZ(16000,”,362,20,”“,”E”)

6.3.1.1.3 Example 3

Retrieve the text contained in a word-processing field named DESCRIPTION:

Figure 272: $$GET^DDSVAL() API—Example 3: Input

S nmspWP=$$GET^DDSVAL(DIE,.DA,”DESCRIPTION”)

The text of the DESCRIPTION field is moved to the array as follows:

Figure 273: $$GET^DDSVAL() API—Example 3: Output Array

@nmspWP@(0)=Header node of word processing field

@nmspWP@(1,0)=Line 1

@nsmpWP@(2,0)=Line 2

 ...etc.

6.3.2 PUT^DDSVAL()

You can use this entry point only within a ScreenMan form, in all places where M code can be placed on

the form.

This procedure stuffs data into a data dictionary field as part of ScreenMan’s transaction. The data passed

to this procedure is filed in the database only when the user explicitly saves changes. Until then, it is

stored in a temporary location.

If the specified field is a word-processing field, the value passed to the procedure is the closed root of the

array that contains the text.

If the specified field is a multiple field, the value passed is the subrecord first displayed to the user as a

default at the multiple field. This value is a default for selection and is not actually filed.

Values cannot be stuffed into computed fields.

If, while a form is running, a call to PUT^DDSVAL fails, ScreenMan prints an error message in the

Command Area.

Format

PUT^DDSVAL(file,[.]record,field,value,.error,flags)

Input Parameters

file: (Required) The global root or number of the file or subfile. At the field level, the

local variable DIE contains the current global root.

[.]record: (Required) The internal entry number or an array of internal entry numbers. This

parameter has the same form as the DA array. At the field level, the local array

DA contains the current array of record numbers.

field: (Required) The field name or number.

VA FileMan 22.2

Developer’s Guide 322 January 2017

value: (Required) The value to stuff into the data dictionary field. If FLAGS (described

below) does not contain an I, the value must be in the form of a valid,

unambiguous user response.

If FIELD is a word-processing field, VALUE must be the closed root of the array

that contains the text. The subscripts of the nodes below the root must be positive

numbers, although they need not be integers, and there can be gaps in the

sequence. The text must be in these nodes or in the 0 node descendent from these

nodes.

If FIELD is a Multiple field, VALUE determines the subrecord to display to the

user as a default for selection. It is not a value that is ever filed. VALUE can be

“FIRST”, “LAST”, or the specific internal entry number of the subrecord to

display. “FIRST” indicates that the subrecord with the lowest internal entry

number should be displayed and “LAST” indicates that the subrecord with the

highest internal entry number should be displayed.

.error: (Optional) $D(ERROR)>1, if the procedure call fails.

flags: (Optional) Indicates whether VALUE is in internal or external form, as shown

below:

 A—Append new word-processing text to the current text. This flag can

be used only when stuffing text into a word-processing field. If the A

flag is not sent, the current word-processing text is completely erased

before the new text is added.

 I—VALUE is in Internal form; it is not validated.

 E—VALUE is in External form. (Default)

The I and E flags have no effect when FIELD is a word-processing field.

6.3.2.1 Examples

6.3.2.1.1 Example 1

Stuff the value 2940801 into a date Field #20. The value passed is in internal form:

Figure 274: PUT^DDSVAL() API—Example 1: Input

D PUT^DDSVAL(DIE,.DA,20,2940801,”“,”I”)

No data validation is performed.

VA FileMan 22.2

Developer’s Guide 323 January 2017

6.3.2.1.2 Example 2

Stuff word-processing text from an array into a word-processing field named DESCRIPTION as shown

below:

Figure 275: PUT^DDSVAL() API—Example 2: Input

D PUT^DDSVAL(DIE,.DA,”DESCRIPTION”,”^nmspWP(““TEXT”“)”)

The array that contains the text looks like Figure 276:

Figure 276: PUT^DDSVAL() API—Example 2: Output Array (1 of 2)

^nmspWP(“TEXT”,1,0)=Line 1

^nmspWP(“TEXT”,2,0)=Line 2

 ...etc.

Or:

Figure 277: PUT^DDSVAL() API—Example 2: Output Array (2 of 2)

^nmspWP(“TEXT”,1)=Line 1

^nmspWP(“TEXT”,2)=Line 2

 ...etc.

6.3.3 $$GET^DDSVALF()

You can use this entry point only within a ScreenMan form, in all places where M code can be placed on

the form.

If, while a form is running, a call to $$GET^DDSVALF fails, ScreenMan prints an error message in the

Command Area.

Format

$$GET^DDSVALF(field,block,page,flags,iens)

Input Parameters

field: (Required) The Field Order number, Caption, or Unique Name of the form-only

field.

block: (Required at the page and form levels) The Block Order or Block Name. The

default is the current block.

page: (Required at the form level) The Page Number or Page Name. The default is the

current page.

flags: (Optional) Controls whether the internal or external form is returned, as shown

below:

 I—Return the Internal form of the data. (Default)

 E—Return the External form of the data.

iens: (Required at the page and form levels) The standard IENS that identifies the

entry or subentry associated with the form-only field. The default is the current

entry or subentry.

VA FileMan 22.2

Developer’s Guide 324 January 2017

 REF: For a detailed description of IENS, see the “IENS: Identify Entries

and Subentries” section in the “Database Server (DBS) API” section.

6.3.3.1 Examples

6.3.3.1.1 Example 1

Retrieve the value of a computed field called TOTAL on the current block:

Figure 278: $$GET^DDSVALF() API—Example 1: Input

>S nmspTOT=$$GET^DDSVALF(TOTAL)

6.3.3.1.2 Example 2

Retrieve the external form of a form-only date field with caption “DATE OF BIRTH” on a block named

“ZZBLOCK 1”:

Figure 279: $$GET^DDSVALF() API—Example 2: Input

>S nmspDATE=$$GET^DDSVALF(“DATE OF BIRTH”,”ZZBLOCK 1”,”“,”E”)

6.3.4 PUT^DDSVALF()

You can use this entry point only within a ScreenMan form, in all places where M code can be placed on

the form.

This procedure stuffs data into a form-only field.

If, while a form is running, a call to PUT^DDSVALF fails, ScreenMan prints an error message in the

Command Area.

Format

PUT^DDSVALF(field,block,page,value,flags,iens)

Input Parameters

field: (Required) The Field Order number, Caption, or Unique Name of the form-only

field.

block: (Required at the page and form levels) The Block Order or Block Name. The

default is the current block.

page: (Required at the form level) The Page Number or Page Name. The default is the

current page.

value: (Required) The value to stuff into the form-only field. If FLAGS (described

below) does not contain an I, the value must be in the form of a valid,

unambiguous user response.

flags: (Optional) Indicates whether VALUE is in internal or external form, as shown

below:

 I—VALUE is in Internal form; it is not validated.

 E—VALUE is in External form. (Default).

VA FileMan 22.2

Developer’s Guide 325 January 2017

iens: (Required at the page and form levels) The standard IENS that identifies the

entry or subentry associated with the form-only field. The default is the current

entry or subentry.

 REF: For a detailed description of IENS, see the “IENS: Identify Entries

and Subentries” section in the “Database Server (DBS) API” section.

6.3.4.1 Example

Stuff the value 2940801 into a form-only date field with the caption “DATE”, as shown in Figure 280:

Figure 280: PUT^DDSVALF() API—Example: Input

>D PUT^DDSVALF(DATE”,”“,”“,”AUG

The value passed is in external form (the default).

6.4 Help Messages

6.4.1 HLP^DDSUTL()

You can use this entry point only within a ScreenMan form, at all places where M code can be placed on

the form.

This procedure prints messages in the Command Area.

If you pass the string “$$EOP”, then ScreenMan issues the prompt “Press RETURN to continue” in the

Command Area. This is useful if, for example, you want to print messages as part of the post action of a

page, and need to pause to give the user a chance to read the messages before ScreenMan leaves that

page.

Formats

1. HLP^DDSUTL(STRING)

2. HLP^DDSUTL(.STRING)

Input Variables

STRING: (Required) The message to print in the Command Area.

.STRING: (Required) An array of messages to print in the Command Area.

STRING(1), STRING(2), ..., STRING(n) each contain a line of text.

VA FileMan 22.2

Developer’s Guide 326 January 2017

6.4.2 MSG^DDSUTL()

You can call this entry point only within a ScreenMan form and only in the Form level Data Validation.

This procedure prints Data Validation messages on a separate screen. These messages are printed after the

user issues the Save command or attempts to save the form on Exit, but before ScreenMan actually

updates the database.

Formats

1. MSG^DDSUTL(STRING)

2. MSG^DDSUTL(.STRING)

Input Variables

STRING: (Required) The message to print in the Command Area.

.STRING: (Required) An array of messages to print in the Command Area.

STRING(1), STRING(2), ..., STRING(n) each contain a line of text.

6.5 Refresh Screen

6.5.1 REFRESH^DDSUTL()

This entry point repaints all pages on the screen.

You can use this entry point only within a ScreenMan form, and only in:

 Field level Pre Action

 Field level Post Action

 Field level Branching Logic

 Field level Data Validation

Format

REFRESH^DDSUTL

6.6 Run-Time Field Status

6.6.1 REQ^DDSUTL()

You can use this entry point only within a ScreenMan form, in all places where M code can be placed on

the form.

This procedure changes the REQUIRED property of a field on the form.

Format

REQ^DDSUTL(FIELD,BLOCK,PAGE,VALUE,IENS)

Input Variables

FIELD: (Required) The Field Order number, Caption, or Unique Name of the field.

BLOCK: (Required at the page and form levels) The Block Order or Block Name. The

default is the current block.

PAGE: (Required at the form level) The Page Number or Page Name. The default is the

current page.

VA FileMan 22.2

Developer’s Guide 327 January 2017

VALUE: (Required) The value to give the REQUIRED property, listed as follows:

 “”—Restore the REQUIRED property to the value defined in the

BLOCK file (#.404).

 0—Make the field not required.

 1—Make the field required.

IENS: (Required at the page and form levels) The standard IENS that identifies the

entry or subentry associated with the form-only field. The default is the current

entry or subentry.

 REF: For a detailed description of IENS, see the “IENS: Identify Entries

and Subentries” section in the “Database” section.

6.6.2 UNED^DDSUTL()

You can use this entry point only within a ScreenMan form, in all places where M code can be placed on

the form.

This procedure changes the DISABLE EDITING property of a field on the form.

Format

UNED^DDSUTL(field,block,page,value,iens)

Input Parameters

field: (Required) The Field Order number, Caption, or Unique Name of the field.

block: (Required at the page and form levels) The Block Order or Block Name. The

default is the current block.

page: (Required at the form level) The Page Number or Page Name. The default is the

current page.

value: (Required) The value to give the DISABLE EDITING property, shown below:

 “”—Restore the DISABLE EDITING property to the value as defined in

the BLOCK file (#.404).

 0—Enable editing, and allow the user to navigate to the field.

 1—Disable editing, and prevent the user from navigating to the field.

 2—Disable editing, but allow the user to navigate to the field.

iens: (Required at the page and form levels) The standard IENS that identifies the

entry or subentry associated with the form-only field. The default is the current

entry or subentry.

 REF: For a detailed description of IENS, see the “IENS: Identify Entries

and Subentries” section in the “Database Server (DBS) API” section.

VA FileMan 22.2

Developer’s Guide 328 January 2017

III. Other APIs

7 Auditing API

7.1 Introduction

Auditing allows VA FileMan users and developers to look back through the dimension of time at prior

values in any file. Auditing is not just a tool that enhances quality control and system security. It also

allows the easy retrieval of “old” values (e.g., ”address”, “maiden name,” and so on). Also, for the

purpose of synchronizing databases remote from one another, it is particularly valuable to be able to

determine, via the audit trail, which entries in which files have been changed within a range of time.

VA FileMan provides a set of entry points so that you can include auditing functionality in your

applications.

 REF: For more information about Auditing, see the “Auditing” section in the VA FileMan

Advanced User Manual.

7.1.1 TURNON^DIAUTL(): Utility to Enable/Disable Auditing

This procedure turns on (or off) auditing for specified fields in a file (except for Computed and Word-

Processing fields). These changes are recorded in the Data Dictionary audit if the file has Data-Dictionary

auditing turned on. Also, input templates containing the changed fields are recompiled.

Format

TURNON^DIAUTL(file,field,mode)

Input Parameters

File: (Required) File number of a file that is being audited.

Field: (Required) Specifies which fields from the file are forced on (“ALWAYS”) for

auditing. Can be one of the following:

 A single field number.

 A list of field numbers separated by semicolons.

 A range of field numbers in the form M:N, where M and N are the end

points of the inclusive range. All field numbers within this range are

audited.

 An asterisk (*) meaning “audit all fields.”

Mode: (Optional) This is an optional parameter. It defaults to “y,” which means to turn

on auditing.

 y—Yes, always audit (default). Turn auditing on.

 e—Audit only when edited or deleted.

 n—No, do not audit. Turn auditing off.

VA FileMan 22.2

Developer’s Guide 329 January 2017

7.1.1.1 Examples

To turn on auditing for the STOP CODE NUMBER field (#8) in the HOSPITAL LOCATION file (#44):

Figure 281: TURNON^DIAUTL() API—Example: Input to Turn On Auditing for a Field in a File (1 of
2)

>D TURNON^DIAUTL(44,8)

Or:

Figure 282: TURNON^DIAUTL() API—Example: Input to Turn On Auditing for a Field in a File (2 of
2)

>D TURNON^DIAUTL(44,8,”y”)

To turn off auditing for that field:

Figure 283: TURNON^DIAUTL() API—Example: Input to Turn Off Auditing for a Field in a File

>D TURNON^DIAUTL(44,8,”n”)

7.1.2 LAST^DIAUT): Who Last Changed Data

This extrinsic function uses the audit trail to retrieve the last user who touched a particular field value,

and the date/time when this editing occurred.

Format

$$LAST^DIAUTL(file,entry,field)

Input Parameters

file: (Required) File number of a file that is being audited.

entry: (Required) Entry number in the audited file.

field: (Required) Specifies which fields in the audited file are to be examined for audit

history. Can be one of the following:

 A single field number.

 A list of field numbers, separated by semicolons.

 A range of field numbers, in the form M:N, where M and N are the end

points of the inclusive range. All field numbers within this range are

retrieved.

 * For all fields.

Output

Returns a string, delimited by a caret (“^”):

String is null if there is no audit history on file for the given fields in the given entry. If there is a history,

the first caret piece of the returned string is the (VA FileMan-format) date/time of the most recent audited

event, and the second caret piece is the user number (DUZ) of the user who made that most recent

change.

VA FileMan 22.2

Developer’s Guide 330 January 2017

7.1.2.1 Example

Find who last changed demographics of entry number 666 in File #2.

Figure 284: LAST^DIAUTL() API—Example: Input and Output

>W $$LAST^DIAUTL(2,666,”0:1”)

3000708.103432^78

In this example, user number 78 was the user who most recently changed any of the audited fields

numbered between 0 and 1 in this Entry. This user did so on 8 July, 2000 at 10:34 AM.

7.1.3 CHANGED^DIAUTL(): Historical Data Retriever

This procedure returns a list of IENs of entries that have had audit events within a specified time period.

Optionally, the oldest value of each audited field within that time period is returned with each entry.

Format

CHANGED^DIAUTL(file,fields,flag,target_root,start_date,end_date)

Input Parameters

file: (Required) File number of a file that is being audited.

entry: (Required) Entry number in the audited file.

field: (Required) Specifies which fields from the audited file are to be examined for

audit history. Can be one of the following:

 A single field number.

 A list of field numbers, separated by semicolons.

 A range of field numbers, in the form M:N, where M and N are the end

points of the inclusive range. All field numbers within this range are

retrieved.

 * Meaning, “examine all audited fields.”

flag: (Optional) “O” if the “oldest” values within the specified time period are to be

returned. Without the “O” parameter, the API returns only the entry numbers.

target_root: (Required) The name of a closed root reference.

start_date: (Optional) Beginning date/time (VA FileMan format) of the auditing period. If

no START_DATE is specified, the file’s audit history is scanned from its earliest

date/time.

end_date: (Optional) Ending date/time (VA FileMan format) of the auditing period. If no

END_DATE specified, the file’s audit history is scanned through its most recent

date/time.

Output

target_root: The output array is found in TARGET_ROOT(IEN)=“” oldest values, if

requested by the “O” parameter, are in TARGET_ROOT(IEN,field#).

VA FileMan 22.2

Developer’s Guide 331 January 2017

 NOTE: CHANGED^DIAUTL can only retrieve what is recorded in the VA FileMan AUDIT file

(#1.1), and does not look at subfiles (Multiple fields). Data entry events that happen before

auditing is turned on for a particular field are not recorded.

Also, if the Purge Data Audits option [DIAUDIT PURGE DATA] is run, information from the audit trail

is removed.

7.1.3.1 Examples

7.1.3.1.1 Example 1

Find which entries in (fictitious) File #999000 have been changed since yesterday.

Figure 285: CHANGED^DIAUTL() API—Example 1: Input and Output

>S %DT=““,X=“T-1” D ^%DT,CHANGED^DIAUTL(999000,”*”,”“,”^TMP($J)”,Y)

^TMP($J,7)=““

^TMP($J,4878)=““

^TMP($J,9899)=““

Three records have had audited events since yesterday at 12:01 AM.

7.1.3.1.2 Example 2

Find which NAMEs in (fictitious) File #999000 have ever been changed, and retrieve the original

NAMEs.

Figure 286: CHANGED^DIAUTL() API—Example 2: Input and Output

>D CHANGED^DIAUTL(999000,.01,”O”,”ARRAY”) ZW ARRAY

ARRAY(344)=““

ARRAY(344,.01)=“DELETED,DAVID”

ARRAY(477)=““

ARRAY(477,.01)=“UNMARRIED,UNA”

Two records are found, because the audit status of the .01 field of this file is “EDITED OR DELETED”.

Entry 344 no longer exists. Entry 477 has a new married name. It is the EXTERNAL version of the old

value that is returned. If the name was changed twice in the time period, the oldest value would be

returned.

VA FileMan 22.2

Developer’s Guide 332 January 2017

8 Browser API

8.1 Browser (DDBR)

The Browser displays ASCII text on a terminal that supports a scroll region. It enables a user to view text

but not to edit it. The text can be in the form of a VA FileMan word-processing field or sequential local or

global array. The call allows the user to navigate within the document, displaying desired parts of the text.

It enables the user to scroll:

 Up

 Down

 Right

 Left

 Top

 Bottom

It also allows the user to go to various locations in a document:

 line

 Column

 Screen

The user can:

 Switch to another document instantaneously

 Find a string and select the search direction

 Split the screen to view separate parts of two documents simultaneously

VA FileMan provides a set of entry points so you can include Browser functionality in your applications.

 REF: For more information about the Browser interface, see the “Browser” section in the VA

FileMan User Manual.

8.1.1 EN^DDBR

This interactive procedure asks the user for file, word-processing field, and entry, then displays the text

using VA FileMan’s Browser facility. The call allows the user to navigate within the document,

displaying parts of the text.

The title bar contains the filename, entry or subentry name, and the fieldname.

The status bar at the bottom displays the leftmost column number, line, and screen number of the cursor

location, as well as how to exit and to get help. Users can only access word-processing fields in VA

FileMan files to which they have Read access.

Format

EN^DDBR

Output

After selecting the desired file, field, and record, the word-processing text is loaded into the Browser and

the Browser screen is displayed on the monitor. The user can then view and navigate through the text.

VA FileMan 22.2

Developer’s Guide 333 January 2017

Details and Features

8.1.1.1 Switch Function

Switch allows the user to view more than one document. When using the Switch (<PF1>S) function in

the Browser to select other VA FileMan word-processing fields, it is important to note that browsing is

done directly on the actual record text.

8.1.2 BROWSE^DDBR ()

This procedure enables the user to use VA FileMan’s Browser to view and navigate through a document

stored in a sequential local or global array.

Format

BROWSE^DDBR(source_array,flags,title,line,tabs,top,bottom)

Input Parameters

source_array: (Required) Source array in a closed root format, passed by value that is the

location of a sequential local or global array containing text. This array can

optionally include the “,0)” subscript nodes that are contained in VA FileMan

word-processing structures.

flags: (Optional) Flags to control processing:

 N—No copy of the document is made. The Browser uses the source

document. Useful for long static documents.

 CAUTION: When the N flag is used, the Browser does not
make a copy of the text; instead it uses the actual record
array to browse through. Thus, it is best used when
documents stored in word-processing fields are static and
are not likely to be edited by another user during the
browse session. This can be preferable if the source array
is a scratch global and is very large. Time and resources
are saved by not having to copy such a structure into
^TMP(“DDB”,$J).

 R—Restrict switching.

 REF: See the Switch function in the “Details and Features”

section.

title: (Optional) Text centered in screen title.

line: (Optional) The line in the document that would be at the bottom margin of the

opening screen.

tabs: (Optional) Closed array root, passed by value; used to scroll horizontally. If not

set, the Browser provides default tab stops.

 REF: Also see “Setting Tab Stops” under the “Details and Features”

section.

VA FileMan 22.2

Developer’s Guide 334 January 2017

top: (Optional) A number representing the location of the title bar of the Browser

screen.

bottom: (Optional) A number representing the location of the status bar of the Browser

screen.

Output

A successful call enables the user to use the Browser to view and navigate throughout a document stored

in a sequential local or global array.

8.1.2.1 Example

Figure 287: BROWSE^DDBR () API—Example: Input

>K ^TMP(“EXAMPLE”,$J)

>N I F I=1:1:300 S ^TMP(“EXAMPLE”,$J,I)=“THIS IS LINE “_I

>D BROWSE^DDBR(“^TMP(““EXAMPLE”“,$J)”,”N”,”Example”)

The Browser screen displays as shown in Figure 288:

Figure 288: BROWSE^DDBR () API—Example: Output

 Example

THIS IS LINE 1

THIS IS LINE 2

THIS IS LINE 3

THIS IS LINE 4

THIS IS LINE 5

THIS IS LINE 6

THIS IS LINE 7

THIS IS LINE 8

THIS IS LINE 9

THIS IS LINE 10

THIS IS LINE 11

THIS IS LINE 12

THIS IS LINE 13

THIS IS LINE 14

THIS IS LINE 15

THIS IS LINE 16

THIS IS LINE 17

THIS IS LINE 18

THIS IS LINE 19

THIS IS LINE 20

THIS IS LINE 21

THIS IS LINE 22

Col> 1 |<PF1>H=help <PF1>E=Exit| Line> 22 of 300 Screen> 1 of 14

 NOTE: Since the version 22.0 of FileMan, the user is able to change the lines per page lengh to

be more than 25 lines, through the property PAGE LENGH in the TERMINAL TYPE file.

Making this change to the Terminal Type C-VT100 it is possible to see the changes while using the

BROWSER and SCREENMAN.

VA FileMan 22.2

Developer’s Guide 335 January 2017

8.1.2.2 Error Codes Returned

Table 96: BROWSE^DDBR () API—Error Codes Returned

Code Description

200 Invalid field.

202 Invalid parameter.

309 Multiple field. Invalid file and IENS.

401 Data Dictionary reference for file and field not valid.

501 Extended reference invalid.

510 Invalid type in data dictionary.

601 Record entry does not exist.

602 Record unavailable.

842 Device/Terminal type setup issues.

 REF: For additional information about Browser error messages, see the “How Information Is

Returned” and “Contents of Arrays” sections in the “Database Server (DBS) API” section.

8.1.2.3 Details and Features

8.1.2.3.1 Switch Function

Switch allows the user to view more than one document. When using the Switch (<PF1>S) function in

the Browser to select other VA FileMan word-processing fields, it is important to note that browsing is

done directly on the actual record text. Users can only access word-processing fields in VA FileMan files

for which they have Read access.

8.1.2.3.2 Setting Tab Stops

This sets up the TAB with stops at every tenth column.

 F I=10:10:100 S TAB(I)=“”

 TAB(10)=“”

 TAB(20)=“”

 TAB(30)=“”

 .

 .

 .

 TAB(90)=“”

 TAB(100)=“”

 NOTE: Browser always begins at Column 1.

VA FileMan 22.2

Developer’s Guide 336 January 2017

8.1.3 WP^DDBR ()

This procedure displays word-processing fields, as well as allowing navigation throughout the text, in a

VA FileMan -compatible database using VA FileMan’s Browser facility.

Format

WP^DDBR(file,iens,field,flags,title,line,tabs,top,bottom)

Input Parameters

file: (Required) File or subfile number.

iens: (Required) Standard IENS indicating internal entry number string.

field: (Required) Word-processing field name or number.

flags: (Optional) Flags to control processing:

 N—No copy of the document is made. The Browser will use the source

document. Useful for long static documents.

 CAUTION: When the N flag is used, the Browser does not
make a copy of the text; instead it uses the actual record
array to browse through. Thus, it is best used when
documents stored in word-processing fields are static and
are not likely to be edited by another user during the
browse session. This can be preferable if the source text
is very large. Time and resources are saved by not having
to copy such a structure into ^TMP(“DDB”,$J).

 R—Restrict switching.

 REF: See the Switch function in the “

Details and Features” section.

title: (Optional) Text that is centered in header. Document title.

line: (Optional) The line in the document that would be at the bottom margin of the

opening screen.

tabs: (Optional) Closed array root, passed by value, which is used to scroll

horizontally. If not set, the Browser provides default tab stops.

 REF: Also see “Setting Tab Stops” under the “

Details and Features” section.

top: (Optional) A number representing the location of the title bar of the Browser

screen.

bottom: (Optional) A number representing the location of the status bar of the Browser

screen.

 NOTE: The TOP and BOTTOM parameters define the boundaries of the scroll region.

VA FileMan 22.2

Developer’s Guide 337 January 2017

Output

A successful call results in the Browser screens being displayed and enables the user to use the Browser

to view and navigate through word-processing fields in a VA FileMan-compatible database.

8.1.3.1 Example

Figure 289: WP^DDBR () API—Example: Input

>D WP^DDBR(999088,”12,”,”TEXT”,”N”,”Programming SAC”)

8.1.3.2 Error Codes Returned

Table 97: WP^DDBR () API—Error Codes Returned

Code Description

200 Invalid field.

202 Invalid parameter.

309 Multiple field. Invalid file and IENS.

401 Data Dictionary reference for file and field not valid.

501 Extended reference invalid.

510 Invalid type in data dictionary.

601 Record entry does not exist.

602 Record unavailable.

842 Device/Terminal type set up issues.

8.1.3.3 Details and Features

8.1.3.3.1 Switch Function

Switch allows the user to view more than one document. When using the Switch (<PF1>S) function in

the Browser to select other VA FileMan word-processing fields, it is important to note that browsing is

done directly on the actual record text. Users can only access word-processing fields in VA FileMan files

for which they have Read access.

8.1.3.3.2 Setting Tab Stops

This sets up the TAB with stops at every tenth column.

 F I=10:10:100 S TAB(I)=“”

 TAB(10)=“”

 TAB(20)=“”

 TAB(30)=“”

 .

 .

 .

 TAB(90)=“”

 TAB(100)=“”

VA FileMan 22.2

Developer’s Guide 338 January 2017

8.1.3.3.3 Margin Note

Browser always begins at column 1.

 REF: For additional information about Browser error messages, see the “How Information Is

Returned” and “Contents of Arrays” sections.

8.1.4 DOCLIST^DDBR ()

This procedure call allows passing more than one document to the Browser facility. It enables the user to

use the Browser to navigate through multiple documents stored in sequential local or global arrays.

A list of documents is passed by value as an array root. The array is subscripted by the document title and

must be set equal to the document’s location, in a closed root format. The Browser automatically builds

the “Current List” and displays the first document to the screen. When you select the “S”witch function to

switch to another document, the rest of the documents are presented as a “Current List.” A flag is also

available to “R”estrict selection to the “Current List” and prevent selecting VA FileMan word-processing

fields in other files.

Format

DOCLIST^DDBR(source_array,flags,top,bottom)

Input Parameters

source_array: (Required) Source array in a closed root format, passed by value that is

subscripted by document titles and set to the source array of the document in a

closed root format.

flags: (Optional) Flags to control processing:

R—Restrict Switching to other documents not in current list. Otherwise,

Switch (<PF1>S) function is active and users can look at other VA FileMan

word-processing field entries.

 REF: See the “Switch function” in the “Details and Features” section.

top: (Optional) A number representing the location of the title bar of the Browser

screen.

bottom: (Optional) A number representing the location of the status bar of the Browser

screen.

Output

A successful call enables the user to employ VA FileMan’s Browser to view and navigate through

multiple documents stored in a sequential local or global array.

VA FileMan 22.2

Developer’s Guide 339 January 2017

8.1.4.1 Example

In this example there are three documents.

Document 1, in ^TMP($J,”DOC”,1), looks like:

Figure 290: DOCLIST^DDBR () API—Example: Sample document in ^TMP

^TMP($J,”DOC”,1,1)=Line 1 Document 1

^TMP($J,”DOC”,1,2)=Line 2 Document 1

 .

 .

 .

^TMP($J,”DOC”,2,1)=Line 1 Document 2

^TMP($J,”DOC”,2,2)=Line 2 Document 2

 .

 .

 .

^TMP($J,”DOC”,3,1)=Line 1 Document 3

^TMP($J,”DOC”,3,2)=Line 2 Document 3

.

.

.

Building the document list array looks like:

Figure 291: DOCLIST^DDBR () API—Example: Input to Build the Document List Array

>S ^TMP($J,”LIST”,”DOCUMENT 1”)=“^TMP($J,”“DOC”“,1)”

>S ^TMP($J,”LIST”,”DOCUMENT 2”)=“^TMP($J,”“DOC”“,2)”

>S ^TMP($J,”LIST”,”DOCUMENT 3”)=“^TMP($J,”“DOC”“,3)”

Making a procedure call with Switching restricted to only this list looks like:

Figure 292: DOCLIST^DDBR () API—Example: Input Making a Procedure Call with Switching
Restricted to Only this List

>D DOCLIST^DDBR(“^TMP($J,”“LIST”“)”,”R”)

8.1.4.2 Error Codes Returned

Table 98: DOCLIST^DDBR () API—Error Codes Returned

Code Description

200 Invalid field.

202 Invalid parameter.

309 Multiple field. Invalid file and IENS.

401 Data Dictionary reference for file and field not valid.

501 Extended reference invalid.

510 Invalid type in data dictionary.

601 Record entry does not exist.

602 Record unavailable.

VA FileMan 22.2

Developer’s Guide 340 January 2017

Code Description

842 Device/Terminal type set up issues.

 REF: For additional information about Browser error messages, see the “How Information Is

Returned” and “Contents of Arrays” sections.

8.1.4.3 Details and Features

8.1.4.3.1 Switch Function

Switch allows the user to view more than one document. When using the Switch (<PF1>S) function in

the Browser to select other VA FileMan word-processing fields, it is important to note that browsing is

done directly on the actual record text. Users can only access word-processing fields in VA FileMan files

to which they have Read access.

8.1.5 $$TEST^DDBRT

This function call returns a 1 or 0 (true or false) to determine if the CRT being used can support a scroll

region and reverse index. The device must have scroll region and reverse index capabilities in order to use

the Browser. If 1 is returned, the CRT supports the needed functionality to use the Browser.

Format

$$TEST^DDBRT

Input Parameters

None.

Output

Returns:

 1—If true

 0—If false.

8.1.5.1 Example

Figure 293: $$TEST^DDBRT API—Example: Input and Output

>W $$TEST^DDBRT

1

8.1.5.2 Error Codes Returned

None.

VA FileMan 22.2

Developer’s Guide 341 January 2017

8.1.6 CLOSE^DDBRZIS

This procedure executes $$REWIND^%ZISC(), to rewind the file and copies the text from the host file

into a scratch global. It is used when setting up the Browser as a device on a system running Kernel 8.0.

The call is set up in the CLOSE EXECUTE field of the TERMINAL TYPE file (#3.2).

 REF: For operating system information, if any, to be included with this call or the

$$REWIND^%ZISC() API, see the Kernel Developer’s Guide.

Format

CLOSE^DDBRZIS

Input Parameters

None.

Output

None.

8.1.6.1 Error Codes Returned

A message is displayed if the rewinding of the file fails.

 NOTE: Kernel 8.0 or greater is required.

 REF: See also the OPEN^DDBRZIS and POST^DDBRZIS APIs.

8.1.7 OPEN^DDBRZIS

This procedure captures the text used in the Browser’s title. It is used when setting up the Browser as a

device on a system running Kernel 8.0. The call is set up in the OPEN EXECUTE field of the

TERMINAL TYPE file (#3.2).

 REF: For operating system information, if any, to be included with this call, see the Kernel

Developer’s Guide.

Format

OPEN^DDBRZIS

Input Parameters

None.

Output

None.

8.1.7.1 Error Codes Returned

None.

 NOTE: Kernel 8.0 or greater is required.

 REF: See also the CLOSE^DDBRZIS and POST^DDBRZIS APIs.

VA FileMan 22.2

Developer’s Guide 342 January 2017

8.1.8 POST^DDBRZIS

This procedure initializes the Browser to display the text sent to the device. It is used when setting up the

Browser as a device on a system running Kernel 8.0. The call is set up in the POST-CLOSE EXECUTE

field of the DEVICE file (#3.5).

 REF: For operating system information, if any, to be included with this call, see the Kernel

Developer’s Guide.

Format

POST^DDBRZIS

Input Parameters

None.

Output

None.

8.1.8.1 Error Codes Returned

None.

 NOTE: Kernel 8.0 or greater is required.

 REF: See also the OPEN^DDBRZIS and CLOSE^DDBRZIS APIs.

VA FileMan 22.2

Developer’s Guide 343 January 2017

9 Import and Export Tools

9.1 Introduction

If you want to use non-M applications (e.g., a PC-based application like Microsoft® Excel) to manipulate

data stored in a VA FileMan file, then you need a way to exchange VA FileMan data with your

application. VA FileMan 22.0 provides the interactive Import and Export Tools for these purposes. These

tools are made available to users through interactive options.

VA FileMan 22.0 provides entry points for both the Import Tool (FILE^DDMP) and the Export Tool

(EXPORT^DDXP), so that you can incorporate their functionality into your applications.

 REF: For more information about the Import and Export Tools, see the “Import and Export

Tools” section in the VA FileMan Advanced User Manual.

9.1.1 FILE^DDMP: Data Import

This procedure imports data from ASCII host files into VA FileMan file entries. Each record (line of data)

in the host file is stored as a new entry in a specified VA FileMan file.

 REF: For additional information about the Import Tool, see the “Import and Export Tools”

section in the VA FileMan Advanced User Manual.

Format

FILE^DDMP([file],[[.]fields],[.control],.source,[.]format)

Input Parameters

file: (Optional) File number into which imported data is filed. Do not pass this

parameter if the import file specifies the destination VA FileMan file and fields.

The file must already exist.

[.]fields: (Optional) Array specifying the fields into which imported data is filed. The

array can either:

 Name an IMPORT template.

Or:

 Directly specify the fields for import.

Do not pass this parameter if the import file specifies the destination VA FileMan

file and fields.

If you have the import fields stored in an IMPORT template, simply set the top-

level, unsubscripted node to the name of the template, surrounded by [brackets].

If you are directly specifying fields in this array, set the top-level, unsubscripted

node in the FIELDS array to the list of destination field numbers at the top-level

of the file. Separate each field number with a semicolon. The list of field

numbers should match the order of the corresponding data pieces in each import

file record.

For any field number that identifies a Multiple, include the top-level field

number of the Multiple in the top-level node of the FIELDS array. Then, set an

additional node in the FIELDS array for the Multiple, subscripted by the data

VA FileMan 22.2

Developer’s Guide 344 January 2017

dictionary subfile number of the Multiple. Set this additional node to the list of

subfield numbers in the Multiple into which to have data filed, separated by

semicolons. The order of subfield numbers in this node should match the order of

the corresponding data pieces for the Multiple in the import file record.

For subfiles within subfiles, repeat this process of identifying the top-level field

number of the Multiple in the appropriate FIELDS node (one data dictionary

level above that of the Multiple). Then add an additional node subscripted by

data dictionary number identifying the fields in the subfile into which data is to

be filed.

You can add more than one subentry for the same subfile.

 REF: For more information, see “Importing into Subfiles” in the

“Details and Features” section.

If the import is based on fixed length (rather than character-delimited) data,

follow each field’s number with the length of the data for that field enclosed in

square brackets. For example:

“.01[30];.02[30];.03[10]”

.control: (Optional) Pass this array by reference. You can control the behavior of

FILE^DDMP by setting the following nodes in the CONTROL array:

 CONTROL(“FLAGS”)—(Optional) Concatenated string of character

flags to control processing of the import.

o E—External values are contained in the import file. Convert the

values to VA FileMan internal format and verify during import. If

the E flag is not present, data is assumed to be in VA FileMan

internal format and is not verified.

o F—Import File contains identity of destination VA FileMan file and

fields. If F flag is not present, the FILE and FIELDS parameters are

required and must contain file and field information.

 CONTROL(“MSGS”)—(Optional) Set to the root of an array (local or

global) into which error messages should be returned. If a value is not

passed, messages are returned in nodes descendent from

^TMP(“DIERR”,$J).

 CONTROL(“MAXERR”)—(Optional) Set to the number of errors that

may be encountered before aborting the import.

Default is not to abort.

 CONTROL(“IOP”)—(Optional) Set to the name of the device (as stored

in the DEVICE file [#3.5]) on which to print the Import Report. This pre-

selects the output device. You can also set CONTROL(“IOP”) to match

any of the additional formats for the IOP input variable recognized by

^%ZIS entry point.

 REF: For more information on ^%ZIS and IOP, see the Kernel

Systems Management Guide.

VA FileMan 22.2

Developer’s Guide 345 January 2017

Default is to ask the user for output device.

 CONTROL(“QTIME”)—(Optional) Set to the time for queuing the data

filing and subsequent printing of the Import Results report. This pre-

selects the time for queuing. The time can be in any format that ^%DT

recognizes.

Default is to ask the user whether or not to queue and for the queuing

time.

.source: (Required) An array that identifies the import file. Pass this array by reference.

 SOURCE(“FILE”)—(Required) Set this node to the import file name.

 SOURCE(“PATH”)—(Optional) Path or directory where the file can be

found. If this node is not defined, the default path is used to locate the

file.

[.]format: (Required) Specifies the format of the incoming data. You can either:

 Pass the name of a FOREIGN FORMAT file entry in the top-level,

unsubscripted node of this array.

Or:

 Set individual nodes in this array to define the import format (pass by

reference).

If you set individual nodes in the array to define the format, you can set:

o FORMAT(“FDELIM”)—Set this node to the field delimiter used for

the imported data, if a field delimiter is used.

o FORMAT(“FIXED”)—Set this node to “YES” if the incoming data

is in fixed-length format. If not set to “YES”, the default format is

field-delimited.

o FORMAT(“QUOTED”)—Set this node to “YES”, if you would like

VA FileMan to ignore the field delimiter in any quoted strings in the

incoming data.

Output

Error messages and information supplied via EN^DDIOL are returned in ^TMP or in the array specified

by MSG_ROOT. DIERR is defined if there was an error. Error messages are not returned for individual

records whose import fails, however.

VA FileMan 22.2

Developer’s Guide 346 January 2017

9.1.1.1 Example

In Figure 294, the import file is PEOPLE2.CSV. The import file is in Microsoft® Excel (Comma) format,

which means the data is comma-delimited. There is a corresponding entry in the FOREIGN FORMAT

file (#.44) called “Excel (Comma)” describing the Excel (Comma) format.

The code in Figure 294 calls FILE^DDMP to import data from PEOPLE2.CSV:

Figure 294: FILE^DDMP () API—Example: Input code to Import Data

S FILE=16100

S CONTROL(“MSGS”)=“MYMSGS”

S CONTROL(“FLAGS”)=“E”

S FIELDS=“.01;14;14”

S FIELDS(16100.014)=“.01;1”

S SOURCE(“FILE”)=“PEOPLE2.CSV”

S SOURCE(“PATH”)=“VA6$:[FMPERSON]”

D FILE^DDMP(FILE,.FIELDS,.CONTROL,.SOURCE,”EXCEL(COMMA)”)

The import data is in external format, so the call to FILE^DDMP uses the E flag. The data in the import

file contains records of five comma-delimited values that are to be imported into (fictitious) File #16100,

as specified in the FIELDS parameter:

 Data piece 1: File as the .01 field of File #16100.

 Data pieces 2 and 3: File as first entry in Subfile #16100.014 (field #s .01 and 1).

 Data pieces 4 and 5: File as second entry in Subfile #16100.014 (field #s .01 and 1).

If the data for this import were in fixed length format, the code to set the FIELDS array might look like

this:

Figure 295: FILE^DDMP () API—Example: Input Code to Set the Array

S FIELDS=“.01[30];14;14”

S FIELDS(16100.014)=“.01[30];1[25]”

 NOTE: The field numbers that specify a Multiple at the top-level have no length associated with

them.

9.1.1.2 Error Codes Returned

Table 99: FILE^DDMP () API—Error Codes Returned

Code Description

202 Incorrect parameter was passed.

312 Required identifier is missing.

409 File does not exist.

501 Field does not exist.

520 A word-processing field was specified.

525 Multiple specified, but no fields in subfile chosen.

1810 Data could not be moved into M environment.

VA FileMan 22.2

Developer’s Guide 347 January 2017

Code Description

1812 No data found in host file.

1820 Format could not be found in the Foreign Format file.

1821 Inconsistencies in the format chosen.

1822 Incorrect data length for a fixed length format.

1833 Inconsistency involving the “F” flag.

1850 Error in device selection or queuing setup.

1870 The IMPORT template does not exist for the file.

9.1.1.3 Details and Features

9.1.1.3.1 Data Formats

Data fields in the import file can be either character-delimited or fixed length. The method used should

match the method described in the FOREIGN FORMAT file (#.44) entry whose name is passed to

FILE^DDMP (alternatively, you can specify these values directly in the FORMAT parameter and not

reference a FOREIGN FORMAT File entry.) The only fields from the FOREIGN FORMAT file (#.44)

entry used during import are:

 FIELD DELIMITER

 RECORD LENGTH FIXED?

 QUOTE NON-NUMERIC FIELDS

9.1.1.3.2 Required fields

All required VA FileMan identifier fields for the destination file must have data filed into them from the

import record:

 If a field defined as a required identifier is not a destination field, the import is not performed.

 If a record being filed has a null value for a required identifier, that record is not filed.

9.1.1.3.3 Identifying Destination File and Fields in Import File

You can store the destination VA FileMan file and fields in the import file, rather than passing them to

FILE^DDMP in the FILE and FIELDS parameters. Use the “F” flag to indicate that file and field

information is being sent in the import file.

To specify the file and fields in the import file, the first line of data in the import file must be:

FILE=filename

Do not leave any spaces between the literal tag “FILE=“ and the name of the file involved. You can

identify the file by file number rather than name, also.

The second line in the import file must contain a list of destination field names, in the order of the data

pieces in each import file record. You can use field numbers rather than field names to identify the fields.

For example, you might want to specify a field by number if its name contains punctuation characters.

If the import is delimited, the names should be separated by whatever the specified delimiter is:

NAME,ADDRESS

VA FileMan 22.2

Developer’s Guide 348 January 2017

If the import is fixed length, the field names should be followed by the field length in [brackets], and then

separated by a comma:

NAME[25],ADDRESS 1[20]

To specify a field in a subfile, show the complete path to the field using the format:

Multiple fieldname:fieldname

Specify as many Multiple field names as necessary (separated by colons) to indicate a complete path to

the field being imported.

The third and subsequent lines of the import file should contain the data records to be filed.

Figure 296 is a listing of an example import file containing destination field information:

Figure 296: Sample Listing of an Import File

FILE=DA RETURN CODES

DA RETURN STRING,TERMINAL TYPE STRING

[=7c,C-QVT103

[?1;0c,C-WYSE 75

[?1;2c,C-VT100

[?1;6c,C-VT100

9.1.1.3.4 Importing into Subfiles

Each record (line of data) from an import file is always stored as a new record at the top-level of the

destination VA FileMan file. However, you can populate more than one entry in a subfile descendent

from the new entry, from a single import record.

To file more than one entry in a subfile, repeat the subfile’s Multiple field number in the field string of the

higher level file or subfile. Each import record must add the same set of fields to the subfile in question;

however, as specified by the set of fields you list in the subfile’s FIELDS(subfile#) node.

Also, new subentries need to be added to every subfile on a path to the lowest level subfile. Because of

this, you must include fields for the .01 field and all the required identifiers for every subfile as well as at

the top-level of the file.

VA FileMan 22.2

Developer’s Guide 349 January 2017

9.1.2 EXPORT^DDXP (): Data Export

This procedure exports data from VA FileMan files into ASCII host files. Each entry in a specified VA

FileMan file is stored as a line of data in the host file.

 REF: For additional information about the Export Tool, see the “Import and Export Tools”

section in the VA FileMan Advanced User Manual.

Format

EXPORT^DDXP(file,export_template,delete_flag,sort_template,[.]fr,[.]to,.dis,[.]dist

op,iop,dqtime)

Input Parameters

file: (Required) File number from the file where the data to be exported is located.

 NOTE: A special case occurs when exporting data from the AUDIT file

(#1.1). In this case, FILE then becomes “1.1^<file number of the audited

file>“. For example, if the audited data is associated with the PATIENT

file (#2), then the string would look like: “1.1^2”.

export_template: (Required) The name of the export template, without the surrounding brackets

“[]”, that was created when the developer used the Create Export Template

option [DDXP CREATE EXPORT TEMPLATE].

delete_flag: (Optional) Indicates whether or not the export template should be deleted when

exporting of the data is finished.

It has two possible values:

 0 (zero)—Do not delete the export template when the export has

finished. Default.

 1—DELETE the export template when the export has finished.

sort_template: (Optional) The name of the sort template, without the surrounding brackets “[]”,

that are used for file sorting. If this parameter is null, then the user sees the

standard VA FileMan sort dialogue.

[.]fr: (Optional) The START WITH: values of the sort by fields. If FR is undefined,

the user is asked the START WITH: question for each sort by field. If FR is

defined, it consists of one or more comma pieces, where the piece position

corresponds to the order of the sort field in the by variable.

Passed by reference.

The details of this parameter are identical to those of the FR input variable of the

Classic VA FileMan print routine EN1^DIP. For additional information, see that

description.

[.]to: (Optional) The GO TO: values of the sort by fields. Its characteristics correspond

to the FR variable. If undefined, the user is asked the GO TO: questions for each

SORT BY field. If TO is defined, it consists of one or more comma pieces.

Passed by reference.

VA FileMan 22.2

Developer’s Guide 350 January 2017

The details of this parameter are identical to those of the TO input variable of the

Classic VA FileMan print routine EN1^DIP. For additional information, see that

description.

.dis: (Optional) You can screen out certain entries so that they do not appear on the

output by setting the optional array DIS. the first subscript in this array can be 0

(zero). This variable (as well as all the others) contains an executable line of m

code that includes an IF-statement.

Passed by reference.

The details of this parameter are identical to those of the DIS (0) and dis(n) input

variables of the Classic VA FileMan print routine EN1^DIP. For additional

information, see that description.

[.]distop: (Optional) If Kernel is present, by default prints queued through the EN1^DIP

call can be stopped by the user with a TaskMan option. However, if this variable

is set to 0, users are not able to stop their queued prints.

Passed by reference.

The details of this parameter are identical to those of the DISTOP input variable

of the Classic VA FileMan print routine EN1^DIP. For additional information,

see those descriptions.

iop: (Optional) EXPORT^DDXP calls the ^%ZIS entry point to determine to which

device output should go. This requires user interaction unless you pre-answer the

device prompt. You can do this by setting IOP equal to the name of the device

(as it is stored in the DEVICE file [#3.5]) to which the output should be directed.

Passed by reference.

The details of this parameter are identical to those of the IOP input variable of

the Classic VA FileMan print routine EN1^DIP. For additional information, see

that description.

dqtime: (Optional) If output is queued, this variable contains the time for printing. You

can set it equal to any value that %DT recognizes.

Passed by reference.

The details of this parameter are identical to those of the DQTIME input variable

of the Classic VA FileMan print routine EN1^DIP. For additional information,

see that description.

Output Parameters

None.

9.1.2.1 Examples

See examples below for ways to use EXPORT^DDMP.

 NOTE: In all of these examples, the DELETE_FLAG is null (i.e., 0 [zero]).

VA FileMan 22.2

Developer’s Guide 351 January 2017

9.1.2.1.1 Example 1

In this example, no sort template is provided and the user is asked sort dialogue:

Figure 297: EXPORT^DDXP () API—Example 1: Input and Output

>D EXPORT^DDXP(2,”ZZS0 SKIP TEST”)

SORT BY: NAME// <Enter>

START WITH NAME: FIRST// <Enter>

DEVICE:

9.1.2.1.2 Example 2

In this example, a sort template is provided:

Figure 298: EXPORT^DDXP () API—Example 2: Input and Output

>D EXPORT^DDXP(2,”ZZS0 SKIP TEST”,,”ZZS0 TEXPORT #1”)

*Previous selection: DATE ENTERED INTO FILE from Jan 1,1997 to Jun 4,1999

START WITH DATE ENTERED INTO FILE: FIRST// 1/1/97 <Enter> (JAN 01, 1997)

GO TO DATE ENTERED INTO FILE: LAST// T <Enter> (JUN 07, 1999)

DEVICE:

9.1.2.1.3 Example 3

In this example, a sort template is provided and the FROM and TO values are supplied:

Figure 299: EXPORT^DDXP () API—Example 3: Input and Output

S FR=“1/1/97”

S TO=DT

D EXPORT^DDXP(2,”ZZS0 SKIP TEST”,,”ZZS0 TEXPORT #1”,FR,TO)

DEVICE:

9.1.2.1.4 Example 4

This example shows the special case of the AUDIT file (#1.1).

Because users can export information from the AUDIT file (#1.1), a special case has been created. All

parameters that are to be passed remain the same as above, except for the FILE parameter. In this special

case, the format is as follows:

Figure 300: EXPORT^DDXP () API—Example 4: Input for Special Case with the AUDIT File (#1.1)

FILE “1.1^<file number of audited file>“

Figure 301 is an example:

Figure 301: EXPORT^DDXP () API—Example 1: Input and Output

>D EXPORT^DDXP(“1.1^16200”,”ZZSO”,,”ZZS0 AUDIT”)

Previous selection: DATE/TIME RECORDED from Jan 1,1997 to Dec 31,1997@24:00 START

WITH DATE/TIME RECORDED: FIRST// 1/1/97 <Enter> (JAN 01, 1997)

GO TO DATE/TIME RECORDED: LAST// 12/31/97 <Enter> (DEC 31, 1997@24:00)

DEVICE:

mailto:1997@24:00

VA FileMan 22.2

Developer’s Guide 352 January 2017

9.1.2.1.5 Example 5

This example shows a sample sort template, export template, and routine.

In Figure 302, you want to use Microsoft Word Mail Merge to send a brochure to the new patients who

visited the Medical Center in the previous month. For purposes of illustration, you are going to assume

the month in question was March of 2000.

Figure 302: EXPORT^DDXP () API—Example 5: Sample Sort Template Used

NAME: ZZSO NEW PATIENTS// <Enter>

READ ACCESS: @// <Enter>

WRITE ACCESS: @// <Enter>

SORT BY:]NAME// <Enter>

 * Previous selection: NAME not null

 START WITH NAME: FIRST// <Enter>

 WITHIN NAME, SORT BY: DATE ENTERED INTO FILE Replace <Enter>

 * Previous selection: DATE ENTERED INTO FILE from Feb 1, 2000 to Feb 29,

 2000

 START WITH DATE ENTERED INTO FILE: FIRST// 3/1/00 <Enter> (MAR 01, 2000)

 GO TO DATE ENTERED INTO FILE: LAST// 3/31/00 <Enter> (MAR 31, 2000)

 WITHIN DATE ENTERED INTO FILE, SORT BY: <Enter>

 STORE IN ‘SORT’ TEMPLATE: ZZSO NEW PATIENTS <Enter> (Jun 17, 1999@05:14)

User #9152 File #2 SORT

DATA ALREADY STORED THERE....OK TO PURGE? NO// YES

 DESCRIPTION:

 1>Get previous month’s New Patients for mass marketing mailing.

 EDIT Option: <Enter>

 SHOULD TEMPLATE USER BE ASKED ‘FROM’-’TO’ RANGE FOR ‘DATE ENTERED INTO FILE’?

 NO// YES

VA FileMan 22.2

Developer’s Guide 353 January 2017

Figure 303: EXPORT^DDXP () API—Example 5: Export Template Used

NAME: ZZSO PATIENT ADDRESS X

 DATE CREATED: JUN 17, 1999@08:26

 READ ACCESS: @ FILE: PATIENT

 USER #: 9152 WRITE ACCESS: @

 DATE LAST USED: MAR 01, 2000 TEMPLATE TYPE: EXPORT

FIELD ORDER: 1 DATA TYPE: FREE TEXT

FIELD ORDER: 2 DATA TYPE: FREE TEXT

FIELD ORDER: 3 DATA TYPE: FREE TEXT

FIELD ORDER: 4 DATA TYPE: FREE TEXT

FIELD ORDER: 5 DATA TYPE: FREE TEXT

 EXPORT FORMAT: EXCEL (COMMA) SUB-HEADER SUPPRESSED: YES

HEADER (c): @@

FIRST PRINT FIELD: W $C(34)//

THEN PRINT FIELD: NAME;X//

THEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: W $C(44);X//

THEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: STREET ADDRESS [LINE 1];X//

THEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: W $C(44);X//

THEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: CITY;X//

THEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: W $C(44);X//

THEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: STATE;X//

THEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: W $C(44);X//

HEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: ZIP CODE;X//

THEN PRINT FIELD: W $C(34);X//

THEN PRINT FIELD: W $C(44);X//

COMPILED (c): NO

VA FileMan 22.2

Developer’s Guide 354 January 2017

Figure 304: EXPORT^DDXP () API—Example 5: Routine and Output

ZZSONPAD --

 ;SFISC/SO-Sample Export API Usage ;7:18 AM 1 APR 2000

 ;;1.0

 N %DT

 S %DT=“AEPX”

 S %DT(“A”)=“Enter Beginning of previous Month: “

 D ^%DT

 I Y<1 Q

 S FR=“,”_$P(Y,”.”)

 S %DT=“AEPX”

 S %DT(“A”)=“Enter End of previous Month: “

 D ^%DT

 I Y<1 Q

 S TO=“,”_$P(Y,”.”)

 K %DT

 D EXPORT^DDXP(2,”ZZSO PATIENT ADDRESS X”,,”ZZSO NEW PATIENTS”,FR,T

 O)

 Q FM22 >D ^ZZSONPAD

Enter Beginning of previous Month: 3/1/00 <Enter> (MAR 01, 2000) Enter End of

previous Month: 3/31/00 <Enter> (MAR 31, 2000) DEVICE: <Enter> Telnet terminal

“FMPATIENT,FIVE”,”111 FIVE BLVD.”,”LAS VEGAS”,”NEVADA”,”89101”,

“FMPATIENT,FOUR”,”301 FOUR St.”,”San Francisco”,”CALIFORNIA”,”99999”,

“FMPATIENT,ONE”,”123 ONE ST.”,”SAN FRANCISCO”,”CALIFORNIA”,”99999”,

“FMPATIENT,SEVEN”,”234 SEVEN”,”SAN DIEGO”,”CALIFORNIA”,”99999”,

“FMPATIENT,SIX”,”234 SIX ST.”,”SAN FRANCISCO”,”CALIFORNIA”,”99999”,

“FMPATIENT,THREE”,”132 THREE ST”,”SAN FRANCISCO”,”CALIFORNIA”,”99999”,

“FMPATIENT,TWO”,”123 TWO ST”,”SAN FRANCISCO”,”CALIFORNIA”,”99999”,

VA FileMan 22.2

Developer’s Guide 355 January 2017

10 Extract Tool

10.1 Introduction

The Extract Tool lets you move or copy records from one VA FileMan file to another; a typical use is to

archive records. Two entry points are provided, with the EXTRACT^DIAXU (): Extract Data API being

the preferred entry point to use for extracting data records.

 REF: The extract tool can also be used interactively from a set of options; this is described in the

“Extract Tool” section in the VA FileMan Advanced User Manual.

10.1.1 EN^DIAXU: Extract Data

The extract tool has been enhanced and this has resulted in a number of changes to the output variables of

the EN^DIAXU entry point.

This entry point extracts data specified in the EXTRACT template for a single entry and moves that data

to a destination file. The source entry can be deleted after the extract process is completed.

If you need to extract in batches (more than one entry), you should use the EXTRACT^DIAXU entry

point instead.

Input Variables

DIAXF: (Required) The number of the file that contains the source entry.

DIAXT: (Required) The EXTRACT template name enclosed in brackets in the source file

that contains specifications of data to be extracted.

DIAXFE: (Required) Internal entry number of the source entry from which data is

extracted.

DIAXDEL: (Optional) This variable, if defined, tells the program to delete the source entry.

If not defined, the source entry is unchanged.

Output Variables (Successful Extracts)

If the extract process was completed and the data was successfully moved to the destination file, the

variables are returned as follows:

DIAXDA: Internal entry number of entry created in the destination file.

In addition to DIAXDA, the following is returned:

^TMP(“DIAXU”,$J,”RESULT”,DIAXF,DIAXFE)=DIAXDA

DIAXNTC: No longer returned. For batch processing of extracts, you should use the

EXTRACT^DIAXU entry point instead of this one.

DIAXFE: No longer KILLed upon exit.

DIAXF: Not KILLed.

DIAXT: Not KILLed.

DIAXDEL: Not KILLed.

VA FileMan 22.2

Developer’s Guide 356 January 2017

10.1.1.1 Output Variables (If an Error Occurs)

If an error occurs during the extract process, the following variable and global array are returned instead:

DIERR: Contains the following two ^-pieces of information:

 Number of errors generated during the call.

 Total number of lines of the error messages.

In addition, the following “RESULT”,”ERR” node is returned:

^TMP(“DIAXU”,$J,”RESULT”,”ERR”,file#,ien)

For example:

^TMP(“DIAXU”,$J,”RESULT”,”ERR”,662001,5)

No longer indicates the total number of errors encountered during the extract

process.

(array in ^TMP): Error information is returned in ^TMP(“DIERR”,$J), in the same format that

error information is returned for DBS calls.

See the How to Use the Database Server section for a complete description of

this array.

DIAXDA: Not defined.

All input variables: Left defined.

10.1.1.2 Error Codes Returned

This entry point calls $$FIND1^DIC, LIST^DIC, UPDATE^DIE, $$GET1^DIQ, and GETS^DIQ; any

errors returned by these entry points can also be returned by EN^DIAXU.

In addition, Table 100 lists the errors that can be returned:

Table 100: EN^DIAXU—Error Codes Returned

Code Description

201 An input variable is missing or invalid.

601 The entry does not exist.

VA FileMan 22.2

Developer’s Guide 357 January 2017

10.1.2 EXTRACT^DIAXU (): Extract Data

EXTRACT^DIAXU is a new entry point. It is the preferred entry point for extracting data records. The

principal features introduced with this entry point for extracting data are:

 More than one record can be extracted in a call.

 Subrecords can be extracted as individual transactions. Previously, an entire record including all

subrecords had to be extracted as a single entity.

 DBS-style error reporting is used.

Like EN^DIAXU, this entry point extracts data from the fields specified in the EXTRACT template and

places that data in an entry in a destination file. You can optionally delete the source entry after the

extract process is completed.

Format

EXTRACT^DIAXU(file,source,extract_template,flags,.screens,.filing_level,target_root

,msg_root)

Input Parameters

file: (Required) File number of source file.

source: (Required) Can be 1 of 2 formats:

 IEN: The record number of a single record, at the top-level of the file, to

extract.

 SEARCH template name: The name of a SEARCH template, in brackets,

that contains SEARCH results (a list of record numbers). For example:

S SOURCE=“[TEMPLATE_NAME]”

extract_template: (Required) The name of the EXTRACT template, in brackets, containing what

fields to move.

flags: (Optional) A string of characters to modify the behavior of the Extract tool.

Permissible characters in the string are:

D—Tells the extract tool to Delete source records if they were moved

successfully. Note that deletion is only done for entire (top-level) records.

Subrecords are not individually deleted, even if they are individually

extracted.

 NOTE: If the SOURCE parameter is set to a SEARCH template, and

you include a D in the FLAGS parameter, the record numbers of any

successfully extracted records are removed from the list of record

numbers in the SEARCH template. But if an error is encountered, the

source record is not deleted and the record number is not removed from

the list of record numbers in the SEARCH template.

.screens: (Optional) Local array containing screens to apply to subrecords at various

subrecord levels. The screens determine whether to move individual subrecords

at a given level or not. The screens can be any valid M code that sets $TEST to 1

if the subrecord at a given level should be moved, or 0 if not.

VA FileMan 22.2

Developer’s Guide 358 January 2017

Set up nodes in this array subscripted by subfile# for each subrecord level you

want to screen.

 REF: For a list of the variables you can reference and change in the

screen, see the SCREEN parameter description in the LIST^DIC DBS

call.

Example:

 S MYARRAY(999.01)=“I $P(^(0),U,2)=““Y”““

.filing_level: (Optional) Local array you can use to tell the Extract Tool to file subrecords as

individual transactions, at one or more subfile levels. The default filing mode is

to file an entire record, including all subrecords, as a single transaction.

You should consider using the FILING_LEVEL feature when extracting records

with many subrecords at a given subfile level. This lets you restrict the scope of

an extract transaction (every part of the transaction must succeed or the entire

transaction fails) to individual subrecords rather than to a record and all of its

subrecords.

For example, suppose the records you are extracting have one multiple field in

particular in which there can be a thousand or more subrecords for every record.

The subfile level of this multiple is a very good candidate to be filed individually:

 Without filing individually, failure to successfully extract any one of a

record’s thousand subrecords aborts the extract for the top-level record

and all of its subrecords (no changes are filed).

 With filing individually, if any data in the subrecord causes an error, the

subrecord is not extracted, but the extract for the top-level record and its

other subrecords continue.

Another drawback of filing a record and a large number of subrecords as a single

transaction is that a very large FDA array can be created; this can be resource

intensive and could exhaust scratch storage space in ^TEMP.

To file subrecords at any given subfile level individually, set up an array with a

node subscripted by subfile# and pass the array by reference as this parameter.

You can set more than one subfile level to file individually, by passing one node

for each subfile level in the array.

Example:

 S F_ARRAY(999.01)=““

target_root: (Optional) Array that should receive the results generated during the extract tool

process. This must be a closed array reference and can be either local or global. If

you specify your own array for results, make sure it is empty before calling

EXTRACT^DIAXU.

If you do not pass this parameter, the results are returned in ^TMP(“DIAXU”,$J).

msg_root: (Optional) Array that should receive error messages generated during the extract

tool process. This must be a closed array reference and can be either local or

global. If you specify your own array for error messages, be sure it is empty

before calling EXTRACT^DIAXU.

VA FileMan 22.2

Developer’s Guide 359 January 2017

If you do not pass this parameter, error messages are returned in

^TMP(“DIERR”,$J).

Output

DIERR: This variable is returned if an error condition occurred. It contains two ^-pieces

of information:

 Number of errors generated during the call

 Total number of lines of the error messages

Associated error messages are stored, DBS-style, in MSG_ROOT.

target_root: One “RESULT” node is returned for each record extracted (or attempted to be

extracted).

The format of the “RESULT” nodes for a successful extract is:

 TARGET_ROOT parameter passed:

TARGET_ROOT(“RESULT”, source_file, source_ien) =

destination_file_ien

 No TARGET_ROOT parameter passed:

^TMP(“DIAXU”, $J, “RESULT”, source_file, source_ien) =

destination_file_ien

The format of the “RESULT” nodes for an unsuccessful extract is:

 TARGET_ROOT parameter passed:

TARGET_ROOT(“RESULT”, “ERR”, source_file, source_ien) =

error_list

 No TARGET_ROOT parameter passed:

^TMP(“DIAXU”, $J, “RESULT”, “ERR”, source_file,

source_ien) = error_list

The error list for an unsuccessful extract contains the error numbers, each

followed by a semicolon. For example, if a “RESULT” node is:

TARGET_ROOT(“RESULT”, “ERR”, 16151, 6)=1;2;

This means that errors 1 and 2 are caused by the extract of record 6. Errors one

and two are returned in the MSG_ROOT array.

VA FileMan 22.2

Developer’s Guide 360 January 2017

If the FILING_LEVEL parameter is being used such that subrecords are being

filed individually at some subfile levels, results (successful or unsuccessful) are

returned for each individual subrecord extracted, in the same format as above,

except that:

 “source_file” is the subfile number

 “source_ien” is the IENS string for the subfile entry

 “destination_file_ien” is the IENS string for the destination subfile entry

If one or more subrecords extracted unsuccessfully using the FILING_LEVEL

parameter, a single error (1300) is returned for the top-level record in a

“RESULT”,”ERR” node, but this does not abort the extract. So, in this case a

top-level extracted record can have both a “RESULT” node (indicating success at

the top-level and the destination file IEN) and a “RESULT”,”ERR” node

(indicating errors during subfile filing).

If the extract fails for any subrecord at some subfile level not filed individually

via the FILING_LEVEL parameter, a “RESULT”,”ERR” node is returned for the

top-level record, and the extract for the top-level record aborts.

msg_root: Error messages are returned in MSG_ROOT(“DIERR”) (if the MSG_ROOT

input parameter is passed) or ^TMP(“DIERR”,$J) (if no array is specified).

Errors are returned in DBS-style format.

 REF: For more information on the format of DBS-style error arrays, see

the “DIERR Array” section in the “Contents of Arrays” section in the

“How the Database Server (DBS) Communicates” section.

10.1.2.1 Examples

10.1.2.1.1 Example 1

In this example, EXTRACT^DIAXU is called with a SEARCH template containing a list of three record

numbers to extract. Two records (#7 and #32) are moved successfully and one record (#34) fails to be

moved. As a result of the error, the variable DIERR would be returned (set to “1^1”). The call might look

like:

Figure 305: EXTRACT^DIAXU () API—Example 1: Input

>D EXTRACT^DIAXU(16151,”[EXTRACT SEARCH]”,”[EXTRACT TEMPLATE]”)

The results messages would be returned as shown in Figure 306:

Figure 306: EXTRACT^DIAXU () API—Example 1: Output Results Messages

^TMP(“DIAXU”,627068728,”RESULT”,16151,7) = 1

^TMP(“DIAXU”,627068728,”RESULT”,16151,32) = 13

^TMP(“DIAXU”,627068728,”RESULT”,”ERR”,16151,34) = 1;

VA FileMan 22.2

Developer’s Guide 361 January 2017

The error messages would be returned as shown in Figure 307:

Figure 307: EXTRACT^DIAXU () API—Example 1: Output Error Messages

^TMP(“DIERR”,627068728,1) = 701

^TMP(“DIERR”,627068728,1,”PARAM”,0) = 3

^TMP(“DIERR”,627068728,1,”PARAM”,3) = NEWONE

^TMP(“DIERR”,627068728,1,”PARAM”,”FIELD”) = .01

^TMP(“DIERR”,627068728,1,”PARAM”,”FILE”) = 16299

^TMP(“DIERR”,627068728,1,”TEXT”,1) = The value ‘NEWONE’ for field NAME in file

 FTEXT EXTRACT is not valid.

^TMP(“DIERR”,627068728,”E”,701,1) =

10.1.2.1.2 Example 2

Suppose that the call to EXTRACT^DIAXU is made using the FILING_LEVEL array. This means that

subrecords at some subfile levels are extracted individually. Suppose only one record is being extracted

(IEN #5), and two subrecords are extracted individually with the FILING_LEVEL array. Subrecord #1

extracts successfully, and subrecord #2 fails. The results and error messages would be returned as shown

in Figure 308:

Figure 308: EXTRACT^DIAXU () API—Example 2: Output Results and Error Messages

^TMP(“DIAXU”,541074770,”RESULT”,662001,5) = 75 (record #5,

 success)

^TMP(“DIAXU”,541074770,”RESULT”,662001.1,”1,5,”) = 1,75, (subrecord #1,

 success)

^TMP(“DIAXU”,541074770,”RESULT”,”ERR”,662001,5) = 2 (record #5,

 error 2 from

 subrecord

 failure)

^TMP(“DIAXU”,541074770,”RESULT”,”ERR”,662001.1,”2,5,”) = 1; (subrecord #2,

 error 1)

^TMP(“DIERR”,541074770,1) = 330 (error 1)

^TMP(“DIERR”,541074770,1,”PARAM”,0) = 2

^TMP(“DIERR”,541074770,1,”PARAM”,1) = 99

^TMP(“DIERR”,541074770,1,”PARAM”,2) = pointer to File #200

^TMP(“DIERR”,541074770,1,”TEXT”,1) = The value ‘99’ is not

 a valid pointer to File #200.

^TMP(“DIERR”,541074770,2) = 1300 (error 2)

^TMP(“DIERR”,541074770,2,”PARAM”,0) = 1

^TMP(“DIERR”,541074770,2,”PARAM”,”IEN”) = 5

^TMP(“DIERR”,541074770,2,”TEXT”,1) = “The entry encountered an err

 or during subfile filing.

^TMP(“DIERR”,541074770,”E”,330,1) =

^TMP(“DIERR”,541074770,”E”,1300,2) =

VA FileMan 22.2

Developer’s Guide 362 January 2017

10.1.2.2 Error Codes Returned

This entry point calls $$FIND1^DIC, LIST^DIC, UPDATE^DIE, $$GET1^DIQ, and GETS^DIQ; any

errors returned by these entry points can also be returned by EXTRACT^DIAXU.

In addition, Table 101 lists the errors that can be returned:

Table 101: EXTRACT^DIAXU () API—Error Codes Returned

Code Description

202 An input parameter is missing or not valid.

601 The entry does not exist.

1300 The entry encountered an error during subfile filing.

VA FileMan 22.2

Developer’s Guide 363 January 2017

11 Filegrams API

11.1 Introduction

Filegrams are a feature in VA FileMan intended for use by system managers and application developers.

A Filegram is a process that moves a record (also called an entry) from a file on one computer system to a

duplicate file on another independent computer system. An independent computer system is defined as a

system having its own database. Sending data from the “live” account at a medical center to the “test”

account at the same medical center is an example of moving a Filegram locally. Sending data from a

computer in the San Francisco Medical Center to a computer in the Salt Lake City Medical Center is an

example of moving a Filegram remotely.

The Filegram process consists of the following three components:

1. Filegram generator (the DIFGG routines)

2. Filegram installer (the DIFG routines)

3. FILEGRAM template (stored in the PRINT TEMPLATE file [#.4])

Although there is a set of options to work with Filegrams, developers find that the only routines necessary

to process a Filegram are the installer and the generator routines that are described in this section as

^DIFG and EN^DIFGG, respectively.

 REF: For more information about Filegrams, see the “Filegrams” section in the VA FileMan

Advanced User Manual.

11.1.1 ^DIFG: Installer

The Filegram process consists of the following three components:

 Filegram generator (the DIFGG routines)

 Filegram installer (the DIFG routines)

 FILEGRAM template (stored in the P PRINT TEMPLATE file [#.4])

Developers can find that the only routines necessary to process a Filegram are the installer and the

generator routines.

The key variables DUZ, DUZ(0), and DT must be present in addition to the required variables described

below.

Use the ^DIFG entry point to install Filegrams. The installer part of the Filegram requires the DIFGLO

variable in addition to the VA FileMan key variables mentioned just above. The other input variables are

optional.

D ^DIFG installs the Filegram.

Input Variables

DIFGLO: (Required) This variable must be the global root of the Filegram to be installed.

DIADD: (Optional) If this variable is defined, a new entry is created in the base file.

DINUM: (Optional) Entry number in base file at which new file entry, if added, is created.

VA FileMan 22.2

Developer’s Guide 364 January 2017

Output Variables

DIFGER: This output variable is defined if an error has occurred.

 NOTE: It is defined even if the install fails after the base file has been

processed. Thus, it could exist even if DIFGY is not equal -1.

 REF: For a list of error codes that can be found in DIFGER, see the

“Error Codes Returned” section.

DIFGY: ^DIFG always returns DIFGY. DIFGY can have one of the following values:

 DIFGY=-1—Indicates that the lookup on the initial file processed (the

base file) was unsuccessful.

 DIFGY=N^F—Where N is the internal number of the entry in the base

file and F is the base file’s number.

 DIFGY=N^F^1—Where N and F are defined as above and 1 indicates

that a new entry has been added to the base file.

11.1.1.1 Error Codes Returned

If a soft error occurs, the variable DIFGER is defined when the Filegram routines are exited. This variable

contains information about the problem encountered. It consists of two ^-pieces:

 First piece indicates the error number.

 Second piece usually contains a line number in the Filegram that indicates where the Filegram

process failed.

Table 102 lists the codes found in DIFGER along with their specific meanings:

Table 102: ^DIFG: Installer—Error Codes Returned

Code Description

1^0 The Filegram global root was not passed in DIFGLO.

1.25^0 The Filegram global root format is invalid.

1.5^0 The Filegram global root is passed but the global does not exist.

2^1 The first line of the Filegram does not contain a $DAT.

3^# A line other than the first line has a $DAT as its first colon-piece.

4^# The field does not exist within this file.

5^# ^%DT was called and Y was returned equal to -1.

6^# Line after a context switch, subfile; and any field that required a lookup was not a BEGIN

condition.

7^# DINUM variable exists, the mode is A or L, and the INPUT transform contains the word

DINUM (files or subfiles only).

8^# DINUM or DIADD variables exist and the mode is neither A nor L (files or subfiles only).

VA FileMan 22.2

Developer’s Guide 365 January 2017

Code Description

9^# File or subfile lookup failed and mode type does not permit addition of an entry to this

file. In other words, the mode type was either D or M.

10^# Lookup failed during a context or subfile shift, the .01 field of the file or subfile is a

pointer, and LAYGO to the pointed-to file is not allowed. This code is also generated if

lookup failed and LAYGO is not allowed for a pointer that is an identifier or specifier.

11^# A lookup for a single valued pointer field fails and LAYGO is not allowed.

12^# A lookup failed for a file or subfile and the mode is M.

13^# There is a key for a given entry and the internal entry number was not found in the

cross-reference or the cross-reference did not exist.

14^# ^DIE called for a MODIFY or DELETE Filegram and Y was returned defined.

15^# ^DIE called for an entry that was an ADD and Y was returned as defined.

16^# Call to ^DIC or FILE^DICN and Y was returned equal to -1. Error occurred during

installation.

17^# Entry of a word-processing field failed.

18^# Lookup failed when a “B” index lookup was specified and the B cross-reference did not

exist.

19^# DINUM was passed to DIFG, the mode of the baseline file was M or D, and the entry did

not exist in the baseline file.

20^# File does not exist.

21^# A field has a “@link” value that is unresolved and is not LAYGOed to the pointed-to file

during installation.

11.1.2 EN^DIFGG: Generator

The Filegram process consists of the following three components:

1. Filegram generator (the DIFGG routines)

2. Filegram installer (the DIFG routines)

3. FILEGRAM template (stored in the PRINT TEMPLATE file [#.4])

Developers can find that the only routines necessary to process a Filegram are the installer and the

generator routines.

The key variables DUZ, DUZ(0), and DT must be present in addition to the required variables described

below.

In order to create (or generate) a Filegram, D EN^DIFGG with the key variables just above and the

required input variables listed below. DUZ should refer to a valid user. The optional input variables can

be used to customize the Filegram.

VA FileMan 22.2

Developer’s Guide 366 January 2017

Input Variables

DIFGT: (Required) This variable must equal the internal entry number in the PRINT

TEMPLATE file (#.4) of the FILEGRAM template that defines the data to be

sent.

DIFG(“FE”): (Required) This variable must equal the internal number in the base file of the

entry to be sent.

DIFG(“FUNC”): (Required) This variable must equal A, M, L, or D. The meanings of these codes,

which indicate the mode of the Filegram, are:

 A—ADD (force an add)

 M—MODIFY

 L—LAYGO

 D—DELETE

DIFG(“FGR”): (Optional) Set this variable equal to the root of the global or local array in which

the Filegram is built. The default is ^UTILITY(“DIFG”,$J, if this variable is not

defined.

DILC: (Optional) One fewer than the first subscript to generate. Default=0.

DITAB: (Optional) Initial indentation level for Filegram text.

Output Variables

DIFGER: This output variable is defined if an error has occurred. The possible values are:

 A required variable was not passed.

 A variable’s format is invalid.

 A variable’s content is invalid.

VA FileMan 22.2

Developer’s Guide 367 January 2017

12 Create Sort Templates Silently API

12.1 BUILDNEW^DIBTED(): Sort Template Builder

This procedure creates an entry in the Sort Template file (#.401). The templates can be used for any

purpose. However, you will primarily use this procedure with LIST^DIC(). The templates created “on-

the-fly” by BUILDNEW^DIBTED(), can be used in LIST^DIC() in conjunction with the “X” flag to

control the output of that procedure.

Format

BUILDNEW^DIBTED(.return,file,sort_criteria,template_name)

Input Parameters

.return: A variable, passed by reference, which will contain the result of the procedure

call.

Possible returned values are:

 -1—Indicating that the call failed, with no returned error message.

 -1^error—Indicating the call failed, with a returned error message.

 Template_IEN^Template_Name^1—Indicating that the call succeeded

with a new entry in the Sort Template file at Template_IEN and with the

name indicated. The name should be the Template Name passed into the

procedure in the fourth parameter.

 Template_IEN^Template_Name—Indicating the call succeeded with

an existing entry in the Sort Template file being overwritten with the new

sort criteria. The Template Name passed into the procedure already

existed in the Sort Template file.

file: Number of the file on which the sort template is created.

sort_criteria: The name of the array containing the sort criteria. The array should be

subscripted with positive numbers. The contents of the array must match exactly

the format expected by the sort template engine. The best way for the developer

to create the array is to make a sort template using the Print File Entries option

and copy the array produced. The properly formatted elements of the array can be

found using the Template Edit option on the second page of the screen mode

form.

template_name: The name you want to give the template. Do not include brackets. If a sort

template with that name already exists, it will be over-written with the new sort

criteria.

Output

The primary output of this procedure is the creation of a new Sort Template. A description of the result of

the call is returned in the .RESULT parameter as described above in the Input section.

Example

The following example illustrates the creation of a Sort Template using BUILDNEW^DIBTED(). Note

the specific spacing in the nodes of SORT(). The RET variable returns the IEN of the entry in the Sort

Template file (922) as well as the name of the new template, which is the same name passed into the

procedure. The “1” in the third piece of RET indicates that a new template was created. The LIST^DIC()

VA FileMan 22.2

Developer’s Guide 368 January 2017

call makes us of the newly created template. Note: brackets are added to the Template Name for the Lister

call.

Figure 309: BUILDNEW^DIBTED()—Example

>S SORT(1)="SORT BY: -COUNT(COUNTY)"

>S SORT(2)="From:"

>S SORT(3)="To:"

>S SORT(4)=" WITHIN COUNT(COUNTY), SORT BY: $E(NAME,1,3)=""NEW"""

>S FILE=5

>N RET

>S TNAME="ZZD STATE SORT 1"

>D BUILDNEW^DIBTED(.RET,FILE,$NA(SORT),TNAME)

>W RET

922^ZZD STATE SORT 1^1

>D LIST^DIC(FILE,,".01;COUNT(COUNTY)","X",,,,"[ZZD STATE SORT 1]")

VA FileMan 22.2

Developer’s Guide 369 January 2017

IV. Developer Tools

13 ^DI: Programmer Access
Often, VA FileMan’s options are accessed through a menu system that calls up the main VA FileMan

menu. For example, if Kernel is installed, VA FileMan can be entered from Kernel’s menu system if a

user has been granted access.

However, the main menu can also be displayed directly from the M command prompt. When you call VA

FileMan directly, you are using “programmer mode.”

There are four entry points in the DI routine that you can use to enter VA FileMan. Each way of calling

up the main menu has a different effect upon the local M variables that are defined when you begin your

VA FileMan session. They are described below:

Table 103: ^DI API—Entry Points

Entry Point Description

P^DI This entry point cleans the symbol table; it KILLs all local variables except those that
are required for VA FileMan’s operation. (The variables DUZ and DTIME are
unchanged.) In addition, the variable DUZ(0) is set equal to the at-sign (“@”). The at-
sign gives you complete programmer access to all of VA FileMan’s files and
functionality.

 NOTE: Included in the variables KILLed are the IO variables.

Q^DI Like P^DI, this entry point sets DUZ(0)=“@”. However, the remaining variables in the
local symbol table are unchanged.

C^DI Like P^DI, this entry point cleans the symbol table. However, it leaves DUZ(0)
unchanged; whatever Access Code string was in DUZ(0) before the call remains to
control access within VA FileMan.

D^DI This entry point leaves all local variables alone. It neither cleans the symbol table nor
resets DUZ(0).

In addition, other necessary variables are set to default values if they are undefined when you start VA

FileMan from programmer mode.

 CAUTION: Programmer access in VistA is defined as DUZ(0)=“@”. It grants the privilege
to become a developer in VistA. Programmer access allows you to work outside many of
the security controls enforced by VA FileMan, enables access to all VA FileMan files,
access to modify data dictionaries, etc. It is important to proceed with caution when
having access to the system in this way.

VA FileMan 22.2

Developer’s Guide 370 January 2017

14 ^DIKCBLD: Build an M Routine that Makes a Call
to CREIXN^DDMOD

This programmer mode utility creates a routine that makes a call to CREIXN^DDMOD to create a New-

Style cross-reference.

14.1 Details

If you use KIDS to transport a field that is a value in a New-Style cross-reference, that cross-reference is

automatically transported and installed at the installing site. In some situations, however, you can create a

New-Style cross-reference definition on a target system without sending fields, or create a New-Style

cross-reference on-the-fly on a running system. To do this, you can write an M routine that makes a call

to CREIXN^DDMOD.

The input parameters to the CREIXN^DDMOD API are fairly extensive. ^DIKCBLD can be used to

facilitate the development of the code that calls CREIXN^DDMOD. It automatically builds an M routine

that sets up the input parameters and makes the call to CREIXN^DDMOD.

When ^DIKCBLD is run, it asks for name of a routine and the namespace to use for local variables within

that routine. It also asks you to select a New-Style cross-reference that exists in the development account.

The input parameters to the CREIXN^DDMOD call in the generated routine are set based on the selected

cross-reference.

 NOTE: The routine generated by ^DIKCBLD is a skeleton. You must still edit the routine to fill

in the missing details on the first and second lines, as well as customize the parameters routine to

the CREIXN^DDMOD call.

VA FileMan 22.2

Developer’s Guide 371 January 2017

Figure 310: ^DIKCBLD API—Sample User Dialogue

>D ^DIKCBLD

Routine name: ZZTEST

 Routine ZZTEST already exists.

 Do you wish to replace routine ZZTEST? NO// YES

Programmer initials: WAM

Namespace to use for local variables: MY

CROSS-REFERENCE FROM WHAT FILE: 16012 <Enter> ZZMYTESTFILE (1 entry)

Current Indexes on file #16012:

 220 ‘AD’ index

Which Index do you wish to build a routine for? 220 <Enter> AD

‘ZZTEST’ ROUTINE FILED.

 Done!

 Be sure to edit the routine to fill in the missing details,

 and to customize the call to CREIXN^DDMOD.

>ZL ZZTEST ZP

ZZTEST ;xxxx/WAM-CREATE NEW-STYLE XREF ;11:06 AM 9 Jul 2002

 ;;1.0

 ;

 N myXR,myRES,myOUT

 S myXR(“FILE”)=16012

 S myXR(“NAME”)=“AD”

 S myXR(“TYPE”)=“MU”

 S myXR(“USE”)=“A”

 S myXR(“EXECUTION”)=“F”

 S myXR(“SHORT DESCR”)=“This MUMPS cross-reference updates

 field #2 when field #1 is deleted.”

 S myXR(“DESCR”,1)=“The kill logic of this cross-reference

 calls the Filer to stuff today’s”

 S myXR(“DESCR”,2)=“date into field #2 whenever the value

 of field #1 is deleted.”

 S myXR(“DESCR”,3)=“ “

 S myXR(“DESCR”,4)=“The set logic calls the Filer to

 delete the contents of field #2”

 S myXR(“DESCR”,5)=“when a value is placed into field #1.”

 S myXR(“SET”)=“N ZZFDA,ZZMSG,DIERR

 S ZZFDA(16012,DA_”“,”“,2)=““““

 D FILE^DIE(““““,”“ZZFDA”“,”“ZZMSG”“)”

 S myXR(“KILL”)=“N ZZFDA,ZZMSG,DIERR

 S ZZFDA(16012,DA_”“,”“,2)=DT

 D FILE^DIE(““““,”“ZZFDA”“,”“ZZMSG”“)”

 S myXR(“SET CONDITION”)=“S X=X1(1)=“““““

 S myXR(“KILL CONDITION”)=“S X=X2(1)=“““““

 S myXR(“VAL”,1)=1

 D CREIXN^DDMOD(.myXR,”SW”,.myRES,”myOUT”)

 Q

VA FileMan 22.2

Developer’s Guide 372 January 2017

15 LANG^DIALOGZ: File Modification for Multiple
Languages

This entry point is invoked from the Programmer Prompt to modify the user dialogue to show file

components in a language different than the one used to define the file. It is part of the ongoing initiative

to internationalize FileMan.

Among the items that you can translate are:

 File name

 Field name

 Help text for a field

 External value of Set of Codes fields.

You can see the translated values using the Standard output of the List File Attributes option.

Format

LANG^DIALOZ(LangNum)

Input Parameters

LangNum: (Required) The ID NUMBER (.001) from the Language file of the Language you

want to translate.

The sample dialogue in Figure 311 illustrates the addition of French language translations to some items

in a file. The examples below do not include possible translations of any of the VA FileMan prompts.

During this session, the following fields are translated:

 Name of the file

 Name of two fields

 Help text for one field

 External values of a set of codes for the other field.

Note the syntax for entering the translated set of codes: the external values in order, separated by a

semicolon.

VA FileMan 22.2

Developer’s Guide 373 January 2017

Figure 311: LANG^DIALOGZ API—Sample User Dialogue

dev>D LANG^DIALOGZ(4) <Enter> ;4 is ID NUMBER of French in Language File (#.85)

Modify what File: ZZD TEST FILE1 <Enter> (3 entries)

FRENCH translation of ZZD TEST FILE1: ZZD FICHIER DE TEST

Select FIELD: NAME

FRENCH translation of NAME: NOM

Current NAME Field Help Prompt:

 NAME MUST BE 3-30 CHARACTERS, NOT NUMERIC OR STARTING WITH PUNCTUATION

FRENCH translation of Prompt: NOM EST 3-30 CARACTERES, PAS NUMERIC NI COMMENCEMENT

AVEC DES SIGNES DE PONCTUATION.

Select FIELD: YES/NO

FRENCH translation of YES/NO: OUI/NON

Current SET values: Y:Yes;N:No;U:Unknown

FRENCH translation of SET values: ?

YOU MUST ENTER 3 EXTERNAL VALUES, SEPARATED BY SEMICOLONS(;).

FRENCH translation of SET values: Oui;Non;Inconnu

Select FIELD: <Enter>

VA FileMan 22.2

Developer’s Guide 374 January 2017

The user sees the translated values when the value of DUZ(“LANG”) is set and the ID NUMBER of a

language for which the translations are performed. In the examples in Figure 312, DUZ(“LANG”)=4.

The complete integration of the translated values is a work in progress. The sample in Figure 312 is an

editing dialogue showing how the translated values are used. Comments are added in callouts to illustrate

interesting aspects of the current state of the translation program.

Figure 312: LANG^DIALOGZ API—Sample Translated Editing Dialogue

Select OPTION: ENTER OR EDIT FILE ENTRIES

Input to what File: ZZD TEST FILE1

EDIT WHICH FIELD: ALL// .01 <Enter> NAME NOM

THEN EDIT FIELD: YES/NO <Enter> OUI/NON

THEN EDIT FIELD: <Enter>

Select ZZD FICHIER DE TEST NOM: EN FRANCAIS

 Are you adding 'EN FRANCAIS' as a new ZZD FICHIER DE TEST (the 4TH)? No// Y

 (Yes)

OUI/NON: ?

 Choose from:

 1 Oui

 2 Non

 3 Inconnu

OUI/NON: 2 <Enter> Non

Select ZZD FICHIER DE TEST NOM: EN FRANCAIS NUMERO DEUX

 Are you adding 'EN FRANCAIS NUMERO DEUX' as

 a new ZZD FICHIER DE TEST (the 5TH)? No// Y <Enter> (Yes)

Translated file name cannot be used here.

Translated field name is echoed.

Original field name must be used, translated is echoed.

In editing dialogue, translated file and field names used.

Translated external values for sets of codes are displayed.

Translated external value is echoed.

VA FileMan 22.2

Developer’s Guide 375 January 2017

OUI/NON: Yes??

 Choose from:

 1 Oui

 2 Non

 3 Inconnu

OUI/NON: O <Enter> Oui

Select ZZD FICHIER DE TEST NOM: EN FRANCAIS NUMERO DEUX

NOM: EN FRANCAIS NUMERO DEUX Replace ?

 NOM EST 3-30 CARACTERE, PAS NUMERIC NI COMMENCEMENT AVEC DES SIGNES DE

 PONCTUATION.

NOM: EN FRANCAIS NUMERO DEUX Replace DEUX With TROIS

 Replace <Enter>

 EN FRANCAIS NUMERO TROIS

OUI/NON: Oui// In <Enter> Inconnu

During the Print File Entries dialogue, you must use the untranslated values for the File and Field names.

However, the output shows translated File and Field names as well as translated External values for sets

of codes.

 NOTE: The internal values of the set of codes field remain as originally defined.

Untranslated external value is not accepted.

Help text is translated.

VA FileMan 22.2

Developer’s Guide 376 January 2017

Figure 313: LANG^DIALOGZ API—Sample translated Print File Entries dialogue

Select OPTION: PRINT FILE ENTRIES

Output from what File: ZZD TEST FILE1 <Enter> (5 entries)

Sort by: NAME// <Enter>

Start with NAME: FIRST// <Enter>

First Print FIELD: .01 <Enter> NAME NOM

Then Print FIELD: YES/NO <Enter> OUI/NON

Then Print FIELD: INTERNAL(YES/NO)

By 'YES', do you mean ZZD TEST FILE1 'YES/NO'? Yes// <Enter> (Yes)

Then Print FIELD: <Enter>

Heading (S/C): ZZD FICHIER DE TEST List Replace <Enter>

STORE PRINT LOGIC IN TEMPLATE: <Enter>

DEVICE: HOME// <Enter> TELNET

ZZD FICHIER DE TEST List MAR 11,2013@10:19 PAGE 1

NOM OUI/NON INTERNAL(YES/NO)

EN FRANCAIS Non N

EN FRANCAIS NUMERO DEUX Oui Y

FIRST ENTRY

SECOND ENTRY

THIRD ENTRY

DIALOGZ places the translations as shown in Figure 314.

Figure 314: LANG^DIALOGZ API—Translations

^DIC(filenumber,”ALANG”,LangNum, -- Contains the Translation of the file name

caption for the indicated language.

^DD(filenumber,FieldNum,.008,LangNum -- Contains the Translation of the field

name caption for the indicated language.

Translated field names are echoed.

Heading is translated.

VA FileMan 22.2

Developer’s Guide 377 January 2017

16 Global File Structure

16.1 Introduction

This section describes the storage of VA FileMan files, including the file structure and the actual file data.

Throughout this section, these basic components of a VA FileMan file are described by way of an

example: how the rudiments of a (fictitious) EMPLOYEE file would be mapped into a (fictitious) global

called ^EMP using VA FileMan. File number 3 is assigned to this (fictitious) file in the examples.

Global File Structure includes the following sections:

 Data Storage Conventions

 File’s Entry in the Dictionary of Files

 File Header

 File Entries (Data Storage)

 Cross-References

 INDEX File

 KEY File

 Attribute Dictionary:

o File Characteristics Nodes

o Field Definition 0-Node

o Other Field Definition Nodes

o Reading the Attribute Dictionary—An Example

16.2 Data Storage Conventions

VA FileMan stores the data of every file descendent from a single M global array (or from a node of a

global array). When the routines, internally and externally, make reference to a file in a global notation,

VA FileMan expects the following format:

 ^GLOBAL(for an entire global

 ^GLOBAL(X,Y, for a subtree of a global

 NOTE: A global notation must terminate with an open parenthesis (“(“) or a comma (“,”).

Indirection (“@”) is always used by VA FileMan routines when referring to data files.

For the most part, VA FileMan packs data into subscripts using the caret (“^”) character as the $PIECE

delimiter. You refer to a data element as being stored in the nth ^-piece of a global node.

VA FileMan 22.2

Developer’s Guide 378 January 2017

16.3 File’s Entry in the Dictionary of Files

All VA FileMan files, regardless of the global used for data storage, have an entry in the Dictionary of

Files (i.e., the ^DIC global descendent from the file’s DD number).

The zero subscript contains the file name and file number.

The global location (GL) node descendent from subscript zero is set to the root of the global used to store

data for this file. So, the (fictitious) EMPLOYEE file example could have the following:

Figure 315: ^DIC Global—Sample File Entry in the Dictionary of Files

^DIC(3,0) = “EMPLOYEE^3”

^DIC(3,0,”GL”) = “^EMP(“

The ^DIC global also contains the file’s security protection codes, if any, descendent from the zero

subscript in the following nodes:

Figure 316: ^DIC Global—Sample File Security Protection Codes

^DIC(filenumber,0,”AUDIT”) -- Audit Access

^DIC(filenumber,0,”DD”) -- Data Dictionary Access

^DIC(filenumber,0,”DEL”) -- Delete Access

^DIC(filenumber,0,”LAYGO”) -- LAYGO Access

^DIC(filenumber,0,”RD”) -- Read Access

^DIC(filenumber,0,”WR”) -- Write Access

The rest of the ^DIC global descriptors for a file are:

Figure 317: ^DIC Global—Sample File Descriptors

^DIC(filenumber,”%”, -- At lower subscript levels, contains the application

 groups.

^DIC(filenumber,”%A”) -- Creator’s DUZ^file creation date. DIFROM does not send

 this node.

^DIC(filenumber,”%D”, -- At lower subscript levels, contains the text of the

 file’s DESCRIPTION.

^DIC(filenumber,”ALANG”,LangNum, -- Contains the Translation of the filename

caption for the indicated language. (Built by DIALOGZ)

16.4 File Header

A descriptor string is stored in the zero subscript of the file’s (fictitious) global root-^EMP(in the

example. This is simply a ^-piece-delimited string containing the following:

Table 104: File Header—Descriptor string

^-piece Contains

piece 1 File name.

piece 2 File number with file characteristics codes.

piece 3 Most recently assigned internal entry number.

piece 4 Current total number of entries.

VA FileMan 22.2

Developer’s Guide 379 January 2017

 NOTE: The most recently assigned number is not necessarily the largest entry number. The file

number is the record number of the file in the attribute (or data) dictionary that describes the data

fields for this file. Thus, if a file has three employees and if the file’s most recently added

employee was assigned entry number 9, you have:

^EMP(0)=“EMPLOYEE^3I^9^3”

The data dictionary number (second ^-piece) can also be followed by a string of alphabetic characters that

are used by VA FileMan as flags to indicate various characteristics of the file. Table 105 list the values

this string can contain:

Table 105: File Header—Descriptor string: second ^-piece

second ^-piece Contains

D .01 field of the file is a Date/Time.

P .01 field of the file is a Pointer to another file.

S .01 field of the file is a Set of Codes.

V .01 field of the file is a Variable Pointer.

A Automatically adds entries without asking: “ARE YOU ADDING A NEW ENTRY?”

I File has Identifiers.

O The user is asked “...OK?” whenever a matching entry is found during lookup.

s (lowercase s) File has a screen defined in ^DD(filenumber,0, “SCR”).

16.5 File Entries (Data Storage)

Each entry in a file corresponds to a positive-valued key subscript, the internal entry number, of the file

global. All data pertaining to an entry is stored in global nodes descendent from that subscript. The value

of the .01 field of an entry is always stored in the first ^-piece of subscript zero, descendent from the

internal entry number subscript. Thus, for entry #1, an employee named THREE FMEMPLOYEE, you

would have:

Figure 318: File Entries (Data Storage)—Sample File Entry

^EMP(1,0)=“FMEMPLOYEE,THREE^”

Suppose you want to store the employee’s sex in the second ^-piece of subscript zero, and date of birth in

the third ^-piece, and department in the fourth ^-piece. You would have:

Figure 319: File Entries (Data Storage)—Sample File Entry with Additional Data Fields

^EMP(1,0)=“FMEMPLOYEE,THREE^M^2341225^3”

VA FileMan 22.2

Developer’s Guide 380 January 2017

Notice that the entry for the employee’s department in this file is a number. This means that the

employee’s department is internal entry number 3 in the (fictitious) DEPARTMENT file; and to find the

employee’s department, you would have to consult that file. The 7-digit number representing the

employee’s date of birth is VA FileMan’s way of internally representing 12/25/1934.

How is Multiple-valued data (e.g., skill stored? There can be one or five or ten skills on file for a given

employee and they obviously cannot all be stored (in the general case) in a single subscript. VA

FileMan’s answer is to make the skills list a subfile within the employee entry. This requires adding

subscripts beyond the first internal key subscript that are different in value from the zero subscript that

stores each employee’s name, sex, and birth date. For example, if THREE FMEMPLOYEE currently has

two (free-text) skills on file, you can consider those to be entries #1 and #2 in a two-entry file, which can

extend at a lower level from any unused subscript, say from SX as shown below:

Figure 320: File Entries (Data Storage)—Sample File Entry with Multiple Data Fields

^EMP(0)=“EMPLOYEE^3I^9^3”

^EMP(1,0)=“FMEMPLOYEE,THREE^M^2341225^3”

^EMP(1,”SX”,0)=“^3.01A^2^2”

^EMP(1,”SX”,1,0)=“TYPING”

^EMP(1,”SX”,2,0)=“STENOGRAPHY”

Notice that the (fictitious) data global ^EMP has ^EMP(1,”SX”,0) for the SKILL Multiple. The zero

node, except for the first ^-piece, has the same structure as ^EMP(0). The second ^-piece is the subfile

^DD number. This tells VA FileMan which subsidiary dictionary to use for the data stored in this node.

The actual data (the employee’s skills in the example) are stored in the next lower level of subscripting. In

the same manner that entries in the (fictitious) EMPLOYEE file have internal entry numbers, entries in

the Multiple field also have internal entry numbers in the subfile. In the example above, TYPING is the

first entry and STENOGRAPHY the second.

16.6 Cross-References

The M capabilities of string-valued array subscripting offer a simple, general way to cross-reference VA

FileMan files. To minimize the number of global names used by the system, VA FileMan stores each

cross-reference set as a descendent of an alphanumeric subscript of the file’s global. A file, such as a

(fictitious) EMPLOYEE file, that should be accessible by name, is set up by the system so that there is a

subscript “B”, which in turn is subscripted by strings corresponding to the first 30 characters from the .01

field for every entry in the file. For each such string-valued subscript, the next level of subscripting

contains the internal entry numbers of the entries that contain the name.

Adding to the previous example (Section 16.5) a second employee, internal entry number 9, also named

THREE FMEMPLOYEE, and a third employee, internal number 7, whose name is ONE

FMEMPLOYEE. Then you would have:

Figure 321: Cross-References—Sample File Entry with Multiple Records

^EMP(1,0)=“FMEMPLOYEE,THREE^M^2341225^3”

^EMP(7,0)=“FMEMPLOYEE,ONE^M^2231109^2”

^EMP(9,0)=“FMEMPLOYEE,THREE^M^2500803^18”

^EMP(“B”,”FMEMPLOYEE,THREE”,1)=““

^EMP(“B”,”FMEMPLOYEE,THREE”,9)=““

^EMP(“B”,”FMEMPLOYEE,ONE”,7)=““

Notice that all the data is in the subscripting and the (fictitious) global nodes under ^EMP(“B”) are simply

null strings. VA FileMan allows for these strings to be non-null in the case where a mnemonic cross-

reference is set up for the name. Multiple cross-references (C, D, etc.) are also allowed.

VA FileMan 22.2

Developer’s Guide 381 January 2017

In VA FileMan 22.0, cross-references (indexes) can be defined that have more than one data field

subscript before the record number. These cross-references can then be used for a lookup and the user is

prompted for more than one lookup value, one for each data subscript on the index. Such compound

indexes must be defined as a New-Style index on the INDEX file (#.11).

Figure 322 is a sample cross-reference entry with the name and the date-of-birth on the data above:

Figure 322: Cross-References—Sample Entry with Additional Data Fields

^EMP(“C”,”FMEMPLOYEE,THREE”,2341225,1)=““

16.7 INDEX File

VA FileMan 22.0 introduced a new way to define an index (cross-reference) on a file. The Cross-

Reference A Field option [DIXREF] on the Utility Functions menu [DIUTILITY] asks if the developer

wants to add/edit a Traditional index or a New-Style index. Use of the INDEX file (#.11) allows for

design of more sophisticated indexes, including:

 Compound indexes (i.e., with more than one data field subscript).

 Indexes where transforms are done on fields.

 Indexes with computed subscripts.

 Indexes whose normal collation sequence is backward.

 Indexes whose SET/KILL logic is executed once per record rather than once per field.

These indexes can then be used by the VA FileMan code for such things as looking up a record on the

file. The INDEX file (#.11) stores all information describing the new indexes. Data is stored descendent

from ^DD(“IX”). The INDEX file (#.11) is stored in the ^DD(“IX”,) global.

 REF: See also the “KEY File” section.

16.8 KEY File

VA FileMan 22.0 introduced a way to uniquely identify a record on a file. The developer defines a field

or fields as belonging to a KEY. The developer must also build an index for those fields. Fields in the

Primary KEY are displayed during a Classic VA FileMan lookup ^DIC. KEY fields are used to decide

whether a record already exists on the target file during transfer or during data Installation using the

Kernel Installation and Distribution System (KIDS). The KEY file (#.31) is stored in the ^DD(“KEY”,)

global.

 REF: See also the “INDEX File” section.

VA FileMan 22.2

Developer’s Guide 382 January 2017

16.9 Attribute Dictionary: ^DD(Filenumber

The attribute dictionary describes the data fields that a file contains within the global ^DD (the data

dictionary). Each attribute dictionary is stored descendent from a positive-valued, first-level subscript of

this global. Each attribute dictionary, in itself, is also in the form of a file, and thus, consists of:

 Entries

 Cross-references

 Descriptor

 Reference to the data dictionary of the attribute of attributes [^DD(0)].

This section is broken down further into the following subsections:

 File Characteristics Nodes

 Field Definition 0-Node

 Other Field Definition Nodes

 Reading the Attribute Dictionary—An Example

16.9.1 File Characteristics Nodes

Certain file characteristics are kept in the subtree descendent from ^DD(filenumber,0,. These

characteristics with their subscripted location and brief explanation are:

Table 106: Attribute Dictionary—Characteristics, Subscripted Location, and Brief Explanation

Global Node Meaning

^DD(filenumber,0,”ACT”) Post-Action

^DD(filenumber,0,”DDA”) Data Dictionary Audit

^DD(filenumber,0,”DIC”) Special Lookup

^DD(filenumber,0,”ID”,field) Field identifiers

^DD(filenumber,0,”ID”,”WRITE”) Write identifiers

^DD(filenumber,0,”IX”,cross-reference name,(sub)filenumber,field) Cross-references

^DD(filenumber,0,”SCR”) File Screen

^DD(filenumber,0,”VR”) Version Number

^DD(filenumber,0,”VRPK”) Distribution Package

^DD(filenumber,0,”VRRV”) Package Revision Data

16.9.1.1 Post-Action

Figure 323: Attribute Dictionary—File Characteristics Nodes: Post-Action

^DD(filenumber,0,”ACT”)

VA FileMan 22.2

Developer’s Guide 383 January 2017

After an entry has been selected, some action can be taken to examine or verify the selection. This

executable code is stored at this global location. If you decide that the entry should not be selected, set

Y=-1.

 REF: See the “Advanced File Definition” section.

16.9.1.2 Data Dictionary Audit

Figure 324: Attribute Dictionary—File Characteristics Nodes: Data Dictionary Audit

^DD(filenumber,0,”DDA”)

This node is set to “Y” if auditing is turned on for the data dictionary. The node is nonexistent, null, or set

to “N” if data dictionary auditing is not on.

16.9.1.3 Special Lookup

Figure 325: Attribute Dictionary—File Characteristics Nodes: Special Lookup

^DD(filenumber,0,”DIC”)

A special lookup program can be written to facilitate selection from a particular file. If such a program is

to be used, its name is stored at this location.

 NOTE: The lookup program reference cannot be a labeled entry point to a routine. The routine’s

name is stored without the caret (“^”); it cannot begin with DI.

 REF: See the “Advanced File Definition” section.

16.9.1.4 Field Identifiers

Figure 326: Attribute Dictionary—File Characteristics Nodes: Field Identifiers

^DD(filenumber,0,”ID”,field)

Field Identifiers are defined using the VA FileMan Identifier option [DIIDENT]. The value at the node is

a WRITE statement. If the identifier is to be used only to ask fields when a new entry is added, then the

statement only writes null; otherwise, it contains the code to write the external value of the field. An “I” is

added to the second piece of the File Header when you add a field identifier, (as described in the “File

Header” section).

 NOTE: WRITE statements in the VA FileMan -generated field identifier nodes are not executed

when VA FileMan is in silent mode. Since FileMan generates the Field Identifier nodes, it knows

their format. So, in silent mode, VA FileMan places what would have been written into an array

instead for use by DBS calls. So, Field Identifier nodes, although they contain WRITE

statements, are compatible with GUI applications (in contrast to Write Identifier Nodes).

VA FileMan 22.2

Developer’s Guide 384 January 2017

16.9.1.5 Write Identifier Nodes

Figure 327: Attribute Dictionary—File Characteristics Nodes: Write Identifiers

^DD(filenumber,0,”ID”,”ASTRING”)

^DD(filenumber,0,”ID”,”W1”)

^DD(filenumber,0,”ID”,”W2”)

^DD(filenumber,0,”ID”,”WRITE1”)

You can use M code to define additional custom identifier text to be displayed along with field identifiers.

To do this, add “write identifier” nodes one level descendent from ^DD(filenumber,0,”ID”). The write

identifier nodes you add must be subscripted with strings that begin with an uppercase alphabetic

character.

Set the value of each write identifier node to the M code that produces the desired output. Write out your

output using either the EN^DDIOL entry point (preferred) or the M WRITE command (not compatible

with access to your file by GUI applications). In your M code for each write identifier node, you can refer

to the values in Table 107 that are defined at the time the node is executed:

Table 107: Attribute Dictionary—Write Identifier Nodes: M code to Produce Desired Output

Write Identifier Node M Code

Y Current record number

Naked Reference Set to the 0-node of the entry

Write identifiers are displayed after any field identifiers are displayed. If there is more than one write

identifier, they are displayed in the collating order of the write identifier subscripts.

Since you must hard-set any “WRITE” nodes, you must also add an “I” (if one is not already there) to the

second piece of the File Header.

16.9.1.6 Cross-references

Figure 328: Attribute Dictionary—File Characteristics Nodes: Cross-references

^DD(filenumber,0,”IX”,cross-reference name,(sub)filenumber,field)

For cross-references, this node is set equal to null.

As of VA FileMan 22.0, the INDEX file (#.11) is an alternate way to define indexes on a file. The

information is descendent from ^DD(“IX”.

 REF: See a description in the “INDEX File” section.

16.9.1.7 Screens

Figure 329: Attribute Dictionary—File Characteristics Nodes: Screens

^DD(filenumber,0,”SCR”)

VA FileMan 22.2

Developer’s Guide 385 January 2017

If you want to screen access to entries in a file, set the screen code into this node. The screen should be

written like a screen put into the local variable DIC(“S”) for an ^DIC call. The code in this node is

executed for each entry in the screened file. If $T=0 is returned when the node is executed, the entry

being screened is unavailable for lookups, prints, inquiries, searches, or other actions.

In order for the screen in this global to be used, you must put a lowercase “s” into the second piece of the

file’s header following the file number (as described in the “File Header” section).

16.9.1.8 Version Number

Figure 330: Attribute Dictionary—File Characteristics Nodes: Version Number

^DD(filenumber,0,”VR”)

This node is created during an INIT built by the VA FileMan package distribution routine (DIFROM) or

an installation using the Kernel Installation and Distribution System (KIDS). It contains the current

version number for the package that distributes this file. This node and the Distribution Package node are

updated for any file sent by a KIDS installation. The only time these nodes are not updated is when a

partial DD is sent.

 REF: For additional information on KIDS, see the “KIDS” section in the Kernel Systems

Management Guide and Kernel Developer’s Guide.

16.9.1.9 Distribution Package

Figure 331: Attribute Dictionary—File Characteristics Nodes: Distribution Package

^DD(filenumber,0,”VRPK”)

This node is created during an installation using the Kernel Installation and Distribution System (KIDS).

It contains the name of the package that distributes this file. The only time this is not updated is when a

partial DD is sent.

 REF: For additional information on KIDS, see the “KIDS” section in the Kernel Systems

Management Guide and Kernel Developer’s Guide.

16.9.1.10 Package Revision Data

Figure 332: Attribute Dictionary—File Characteristics Nodes: Package Revision Data

^DD(filenumber,0,”VRRV”)

This optional node, if present, is created during an installation using the Kernel Installation and

Distribution System (KIDS). The node is defined by the developer who distributes the package. It can

contain patch or other package revision information used to designate the version of the file that is

installed at the site. Updating this node is done in the KIDS Post Install Routine (formerly the POST-INIT

with DIFROM/INITS) using PRD^DILFD().

 REF: For additional information on KIDS, see the “KIDS” section in the Kernel Systems

Management Guide and Kernel Developer’s Guide.

VA FileMan 22.2

Developer’s Guide 386 January 2017

16.9.2 Field Definition 0-Node

Each entry in the attribute dictionary is a descriptor of one of the data fields in the file. VA FileMan

always assigns the internal number .01 to the NAME field and lets you assign numbers to the other fields.

The attribute dictionary stores the definition of each field descendent from the node

^DD(filenumber,fieldnumber). Crucial information about the field is stored in:

Figure 333: Attribute Dictionary—Field Definition 0-Node: ^DD(filenumber,fieldnumber Node

^DD(filenumber,fieldnumber,0)

Every field has this 0-node defined in the attribute dictionary.

In the example, the (fictitious) EMPLOYEE file has four fields in addition to the NAME field:

 SEX

 BIRTHDATE

 DEPARTMENT

 SKILL

SKILL is Multiple-valued. Suppose that the attribute dictionary for this file is stored in:

Figure 334: Attribute Dictionary—Field Definition 0-Node: Sample Attribute Dictionary File Storage

^DD(3)

Piece 1: The field’s label is always found as the first ^-piece in subscript zero. Thus, for the example, you

would have:

Figure 335: Attribute Dictionary—Field Definition 0-Node: Piece 1 Sample Labels

^DD(3,.01,0)=“NAME^”

^DD(3,1,0)=“SEX^”

^DD(3,2,0)=“DOB^”

^DD(3,3,0)=“DEPARTMENT^”

^DD(3,4,0)=“SKILL^”

VA FileMan 22.2

Developer’s Guide 387 January 2017

Piece 2: A string containing any of the letters and symbols in Table 108:

Table 108: Attribute Dictionary—Field Definition 0-Node: Piece 2 Sample Strings

Character Meaning

a The field has been marked for auditing all the time.

e The auditing is only on edit or delete.

A For multiples, a user entering a new subentry is not Asked for verification.

BC The data is Boolean Computed (true or false).

C The data is Computed.

Cm The data is multiline Computed.

D The data is Date-valued.

DC The data is Date-valued, Computed.

F The data is Free text.

I The data is uneditable.

Jn To specify a print length of n characters.

Jn,d To specify printing n characters with decimals.

K The data is M code.

M For Multiples, after selecting or adding a subentry, the user is asked for another subentry.

N The data is Numeric-valued.

O The field has an OUTPUT transform.

Pn The data is a Pointer reference to file “n”.

Pn’ LAYGO to the Pointed-to file is not (`) allowed.

R Entry of data is Required.

S The data is from a discrete Set of codes.

V The data is a Variable pointer.

W The data is Word-processing.

WL The Word-processing data is normally printed in Line mode (i.e., without word wrap).

X Editing is not allowed under the Modify File Attributes option [DIMODIFY] because the

INPUT transform has been modified by the Input Transform (Syntax) option [DIITRAN]
on the Utility Functions menu [DIUTILITY].

To make a field uneditable, you need the “X” (uppercase) flag in the 2nd piece of the Zero
node. For example:

^DD(200,501.2,0) = SUBJECT ALTERNATIVE

NAME^FaX^^501;2^K:$L(X)>50!($L(X)<3

 =)!’(X[“@”) X I $D(X) N XUSSAN S XUSSAN=$O(^VA(200,”ASAN

 = “,X,”“)) K:(XUSSAN>0)&(XUSSAN’=DA) X

x Word-processing text that contains the vertical bar “|” is displayed exactly as they are
stored, (i.e., no window processing takes place).

VA FileMan 22.2

Developer’s Guide 388 January 2017

Character Meaning

* If there is a screen associated with a DATA TYPE field with values of POINTER or SET
OF CODES.

 NOTE: The second ^-piece begins with the subfile number if the field is a Multiple.

Piece 3: Only contains data for DATA TYPE fields with values of POINTER and SET OF CODES. In

those cases, the data is:

Table 109: Attribute Dictionary—Field Definition 0-Node: Piece 3 Data Types

Data Type Description

POINTER The global root of the pointed-to file.

SET OF
CODES

The set of codes of allowed responses and their meanings.

Piece 4: One of the following, based on the kind of data storage:

 Subscript location and ^-piece, separated by a semicolon (;).

 Subscript location and character-positions, also separated by a semicolon (;), where Em,n

designates character-positions m through n.

 Subscript location, followed by a semicolon (;) followed by 0 (zero), to designate multiple-valued

data.

 Semicolon preceded and followed by a space (“ ; “) to indicate no data storage (i.e., computed

fields)

Piece 5: M code to check an input in the variable X. If the input is invalid, the variable X is KILLed by

the code. This is the field’s INPUT transform. In the case of a computed field, the code creating the

variable X is stored here. (Pieces following the fifth piece are part of this M code.)

VA FileMan 22.2

Developer’s Guide 389 January 2017

16.9.3 Other Field Definition Nodes

Every field must have a zero node. All other nodes describing a field are presented in Table 110, but none

are mandatory. Each subscript listed is at least the third level. The global reference appears in the

following format:

^DD(File#,Field#,Subscript)

Table 110: Attribute Dictionary—Other Field Definition Nodes

Subscript Definition

.1 Contains the full-length title of the field.

1 Contains, at lower subscript levels, executable M code to SET and KILL cross-references
based on the value of the field (in the variable X).

2 Contains the OUTPUT transform: M code to display the field value in a format that differs
from the format in which it is stored.

 REF: See the “Advanced File Definition” section.

3 Contains the help prompt message that is displayed when the user types a question mark.

4 Contains M code that is executed when the user types one or two question marks. (Other
help messages are also displayed.)

5 Contains, at lower subscript levels, pointers to trigger cross-references to this field.

7.5 Is valid only on .01 fields. It contains M code that is executed to check the user input (in
the variable X). This code is executed at the start of the ^DIC routine before the lookup on
X has begun. If X is KILLed, the lookup terminates. Special lookup programs naturally
have a way to look at X.

8 Read access for the field.

8.5 Delete access for the field.

9 Write access for the field.

9.01 The fields used if the field is a computed field.

9.1 The expression entered by the user to create the computed field.

9.2 to 9.9 The overflow executable M code that can be part of the specification of a field definition,
INPUT transform, or cross-reference.

10 Contains the source of the data.

11 Contains the destination of the data.

12 Contains the explanation of the screen on node 12.1.

12.1 Contains the code that sets DIC(“S”) if a screen has been written for a pointer or a set of
codes.

20 A multiple that lists the fields that belong to certain groups.

21 A word-processing field that holds the field description.

22 The name of a help frame presented to a user who entered two question marks.

 NOTE: This subscript is being phased out.

VA FileMan 22.2

Developer’s Guide 390 January 2017

Subscript Definition

23 A word-processing field that holds the technical description of the field.

AUDIT Contains a code defining the status of an audit trail for changes to the data in the field.
Possible codes are:

 y—Always audited

 e—Changes and deletions only audited

 n—No audit recorded

AX Contains the executable code that determines if a field should be audited.

DEL In this example, a string of executable M code that determines if the field can be deleted.
This code must contain an M IF statement to set the value of $T. If $T is set to 1, the field
cannot be deleted. Normally, the ^DD format is:

^DD(File#,Field#,”DEL”,#,0)=“executable MUMPS code”

Where # is an arbitrary number to distinguish each condition. If the condition was based
on a particular field, then the field number was traditionally used. If “DEL” nodes are on
the .01 field of a file, deletion of the entire entry can be blocked.

If an entry is being deleted by a direct call to ^DIK, the “DEL” nodes are not checked.

DT Contains the date the field was last edited.

LAYGO A string of executable M code that determines if an entry can be added. This code must
contain an M IF statement to set the value of $T. If $T is set to 0, the entry cannot be
added. Normally, the ^DD format is:

^DD(File#,.01,”LAYGO”,#,0)=“executable MUMPS code”

Where # is an arbitrary number to distinguish each condition. LAYGO nodes only apply to
.01 fields.

V Descendent from these nodes is information regarding variable pointers including pointed-
to file, message, order, prefix, screen, and LAYGO status.

^DD(File#,Field#,”V”,n,0)

Where “n” is a sequential number representing a different pointed-to file. The pieces within
this 0 node are:

^-Piece Contents

Piece 1 File number of the pointed-to file.

Piece 2 Message defined for the pointed-to file.

Piece 3 Order defined for the pointed-to file.

Piece 4 Prefix defined for the pointed-to file.

Piece 5 y/n indicating if a screen is set up for the pointed-to file.

Piece 6 y/n indicating if the user can add new entries to the pointed to file.

 ^DD(File#,Field#,”V”,n,1)

Contains the M code defined as a screen on the pointer to the file defined in the 0
node above.

VA FileMan 22.2

Developer’s Guide 391 January 2017

Subscript Definition

 ^DD(File#,Field#,”V”,n,2)

Contains a description of the screen.

16.9.4 Reading the Attribute Dictionary—An Example

Figure 336 shows the ^DD nodes associated with the sample (fictitious) EMPLOYEE file:

Figure 336: Attribute Dictionary—Reading the Attribute Dictionary: Sample ^DD Nodes

^DD(3,.01,0)=“NAME^FR^^0;1^I X’?1A.AP1”,”.AP K X”

^DD(3,.01,.1)=“EMPLOYEE NAME”

^DD(3,.01,1,0)=“^.1^1^1”

^DD(3,.01,1,1,0)=“3^B”

^DD(3,.01,1,1,1)=“S ^EMP(“B”,$E(X,1,30),DA)=“““

^DD(3,.01,1,1,2)=“K ^EMP(“B”,$E(X,1,30),DA)”

^DD(3,.01,3)=“NAME MUST BE 3-30 CHARACTERS, IN THE FORMAT LAST,FIRST”

^DD(3,1,0)=“SEX^RS^M:MALE;F:FEMALE^0;2^Q”

^DD(3,2,0)=“DOB^D^^0;3^S %DT=“EX” D ^%DT S X=Y I X<1400000 K X”

^DD(3,2,.1)=“DATE OF BIRTH”

^DD(3,3,0)=“DEPARTMENT^P13’^DIZ(13,^0;4^Q”

Their meaning can be translated to:

The first field is NAME (full title: EMPLOYEE NAME). It is free text data that must start with at least

one alpha character followed by other alpha and punctuation characters and contains a comma. It is

always required from the user and is stored in subscript 0, ^-piece 1 of each employee’s entry. If the user

types a question (?) when asked for the NAME, the user sees:

Figure 337: Attribute Dictionary—Reading the Attribute Dictionary: Sample Translated Meaning

NAME MUST BE 3-30 CHARACTERS, IN THE FORMAT LAST,FIRST

The (fictitious) EMPLOYEE file is cross-referenced by NAME so every time a name is changed, the

corresponding subscript under (fictitious) ^EMP(“B”) is also changed. DA is always the internal number

of the employee when the cross-referencing code is executed. If a second cross-reference for NAME

existed (for example, a trigger), it would be descendent from:

Figure 338: Attribute Dictionary—Reading the Attribute Dictionary: Sample DD Descendent Cross-
references

^DD(3,.01,1,2

The second field is SEX. It is stored as either M or F in the second ^-piece position of subscript 0 of each

(fictitious) EMPLOYEE file entry. The user is required to respond and can type MALE instead of M, and

FEMALE instead of F. The user sees the two choices displayed if a ? is typed when asked for SEX.

The third field is DOB (full title: DATE OF BIRTH). It is not required. If entered, it must be in the format

of a date after 1840. It is stored in the third ^- piece of subscript 0 of the (fictitious) EMPLOYEE file

entry.

The fourth field is DEPARTMENT; it is not required. It is a pointer to file number 13 and adding new

entries (LAYGO) to the (fictitious) DEPARTMENT file from the (fictitious) EMPLOYEE file is not

VA FileMan 22.2

Developer’s Guide 392 January 2017

allowed as indicated by the apostrophe (‘) after the number 13. It is stored in the fourth ^-piece of

subscript zero of the (fictitious) EMPLOYEE file entry. The internal value of the Employee’s department

in the (fictitious) DEPARTMENT file is stored in this location. The data of the (fictitious)

DEPARTMENT file can be found in ^DIZ(13,.

Suppose there is also a Multiple-valued field, SKILL. A Multiple-valued field is described by a separate

data dictionary. VA FileMan creates this new data dictionary descendent from a non-integer subscript of

^DD. In the case of the (fictitious) EMPLOYEE file described by ^DD(3), it would store subsidiary data

dictionaries in ^DD(3.01), ^DD(3.02), etc. The subsidiary data dictionary for the Multiple-valued SKILL

field could look like this:

Figure 339: Attribute Dictionary—Reading the Attribute Dictionary: Sample Subsidiary Data
Dictionary

^DD(3.01,0)=“SKILL subfield^^1^2”

^DD(3.01,.01,0)=“SKILL^MF^^0;1^K:$L(X)>30!($L(X)<3) X”

^DD(3.01,.01,3)=“ANSWER MUST BE FROM 3 TO 30 CHARACTERS IN LENGTH”

The only new element here is the M in the second ^-piece of ^DD(3.01,.01,0). This is the flag

corresponding to the “YES” answer to the question:

Figure 340: Attribute Dictionary—Reading the Attribute Dictionary: Sample Auxiliary User Prompts

HAVING ENTERED OR EDITED ONE SKILL, SHOULD USER BE ASKED ANOTHER?

If you answer “YES” to this question, each time the user enters data, the “Select SKILL:” prompt is

repeated until the user enters a null response. There is also an entry corresponding to SKILL in the

principal (fictitious) EMPLOYEE file’s data dictionary as follows:

Figure 341: Attribute Dictionary—Reading the Attribute Dictionary: Updated Data Dictionary for
New Data

^DD(3,4,0)=“SKILL^3.01A^^SX;0”

The 3.01 points to the subsidiary data dictionary of that number; it says that, to find the data descriptors of

SKILL (and all fields pertaining to SKILL), you must look in ^DD(3.01). The A indicates that every time

the user enters a new SKILL, it is automatically added to the file and the user is not asked:

Figure 342: Attribute Dictionary—Reading the Attribute Dictionary: Sample User Prompt
Confirming Data Entry

ARE YOU ADDING A NEW SKILL?

The SX;0 in the fourth ^-piece tells us the entire SKILL Subfile is stored descendent from the SX

subscript in each employee’s record.

VA FileMan 22.2

Developer’s Guide 393 January 2017

17 Advanced File Definition

17.1 Introduction

When VA FileMan routines are invoked with the local variable DUZ(0) set to the at-sign (“@”), the user

is understood by VA FileMan to be an M-proficient developer who has “programmer access.” Those

working with programmer access can control certain file-definition options that are otherwise handled

invisibly by VA FileMan. These features are described in this section.

 CAUTION: Programmer access in VistA is defined as DUZ(0)=“@”. It grants the privilege
to become a developer in VistA. Programmer access allows you to work outside many of
the security controls enforced by VA FileMan, enables access to all VA FileMan files,
access to modify data dictionaries, etc. It is important to proceed with caution when
having access to the system in this way.

 REF: For a description of the file and field definition options available to everyone, see the

“Creating Files and Fields” section in the VA FileMan Advanced User Manual.

17.2 File Global Storage

17.2.1 Storing Data in a Global other than ^DIZ

When setting up a new file, (Modify File Attributes option [DIMODIFY]), you can instruct VA FileMan

to do either of the following:

 Store the new file’s data in the default ^DIZ global array, descendent from the file number just

assigned.

 Store the new file in another global array.

The dialogue looks like this:

Figure 343: File Global Storage—Storing Data in a Global other than ^DIZ—Sample User Prompts

MODIFY WHAT FILE: TEST

ARE YOU ADDING ‘TEST’ AS A NEW FILE? Y <Enter> (YES)

FILE NUMBER: 24000// <Enter>

INTERNAL GLOBAL REFERENCE: ^DIZ(24000,//

At this prompt, you either press the Enter key to choose the default or you type an explicit global

reference. This reference is in the following format:

Figure 344: File Global Storage—Storing Data in a Global other than ^DIZ—Global Reference
Format

^GLOBAL(or ^GLOBAL(subscript1,subscript2,…

The caret (“^”) preceding GLOBAL(need not be entered. Extended global reference ([UCI]) can be

entered ahead of the global name. If the subscripted global already exists with data in it, a warning

message is displayed.

VA FileMan 22.2

Developer’s Guide 394 January 2017

If the subscripted global is a descendent of a global that stores the data for another file, an error message

is displayed. For example, if a file’s data is stored at:

Figure 345: File Global Storage—Storing Data in a Global other than ^DIZ: Sample Global Storage
Location of a Subscripted Descendent Global

^GLOBAL(662001,

You cannot define another file that stores its data at:

Figure 346: File Global Storage—Storing Data in a Global other than ^DIZ: Incorrect Global
Storage Location of a Subscripted Descendent Global

^GLOBAL(662001,”A”,

17.3 Field Global Storage

17.3.1 Assigning a Location for Fields Stored within a Global

When creating a new field, (Modify File Attributes option [DIMODIFY]), press the Enter key at the “IS

THIS FIELD MULTIPLE” window. If you are a developer, you are asked in a “popup” window for the

global subscript and ^-piece position to specify where in each file entry to store the data element being

defined. If, for example, you were creating a field that you wanted to be stored in the first ^-piece

position of the global subscript DEMOG for every entry, you would enter the following:

Figure 347: Field Global Storage—Assigning a Location for Fields Stored within a Global

 Field #77 in File #100

FIELD LABEL: EMAIL ADDRESS DATA TYPE... FREE TEXT

 --

 | SUBSCRIPT: DEMOG_ |

AUDIT C| PIECE POSITION: 1 |

 REA --

 DELETE ACCESS:

 WRITE ACCESS:

 SOURCE:

 DESCRIPTION... TECHNICAL DESCRIPTION...

 IS THIS FIELD MULTIPLE... NO

 MANDATORY: NO

 HELP-PROMPT: Answer must be 1-11 characters in length

EXECUTABLE HELP:

Enter name of MUMPS Global subscript where this Field’s data will be stored.

Already assigned:

 0 1 2 3 4 4.5 5 6

 8 9

COMMAND: Press <PF1>H for help Insert

To aid in the process, VA FileMan prompts you with the highest subscript previously used for the file,

and then, when the subscript has been entered, it prompts the ^-piece position one past the highest

previously assigned for that subscript. VA FileMan allows up to 4094 characters of data and Data

Dictionary construction storage capacity in any single global node and that no two fields are assigned to

the same subscript and ^-piece position.

VA FileMan 22.2

Developer’s Guide 395 January 2017

 NOTE: At the bottom of the screen, a list of the Global subscripts already in use is displayed.

17.3.2 Storing Data by Position within a Node

If you want to store a field’s data by character position within the global node, rather than by ^-piece

position. This is called extract storage instead of ^-piece storage. To accomplish this, after specifying a

subscript, respond to the ^-piece prompt with Em,n where m is the first character position for data storage

and n is the last. For example, to store data in character positions 1 to 3 of subscript 20, do the following:

Figure 348: Field Global Storage—Storing Data by Position within a Node

SUBSCRIPT: 20

^-PIECE POSITION: E1,3

One advantage of specifying your field data location using the Em,n format is that caret (“^”) can be part

of the stored data. It is recommended that you do not mix extract and ^-piece storage on the same global

node.

17.4 Assigning Sub-Dictionary Numbers

The “LANG^DIALOGZ: File Modification for Multiple Languages” section points out that data

specifications for subfields of a Multiple are kept in a subsidiary data dictionary. Such a sub-dictionary is

stored in the global ^DD(sub-dictionary_number), where sub-dictionary_number is a number with a

fractional portion. For example, the specifications for the RESPONSES Multiple in the (fictitious)

ORDER file (#100), are stored in ^DD(100.045). Normally, when a new Multiple-valued field is created,

VA FileMan automatically assigns the fractional sub-dictionary number. The developer, however, is

allowed to choose the desired number.

When creating a new Multiple field, (Modify File Attributes option [DIMODIFY]), if you are a

developer, you are asked in a “popup” window for the global subscript at which to store the data element

being defined. Under this question is the SUB-DICTIONARY question. The RESPONSES Multiple in

the (fictitious) ORDER file (#100) would have been defined like Figure 349.

VA FileMan 22.2

Developer’s Guide 396 January 2017

Figure 349: Assigning Sub-Dictionary Numbers—Sample Dialogue Assigning Sub-dictionary
Numbers

 Field #4.5 in File #100

FIELD LABEL: RESPONSES DATA TYPE... NUMERIC

 TITLE:

 AUDIT:

AUDIT CONDITION:

 READ ACCESS:

 DELETE ACCESS:

 W ---

 | SUBSCRIPT: 4.5 |

 DES| SUB-DICTIONARY NUMBER: 100.045 |

 IS THIS FIELD MULTIPLE... NO

 MANDATORY: NO

 HELP-PROMPT: Type a number between 1 and 9999999, 0 Decimal Digits

EXECUTABLE HELP:

Enter name of MUMPS Global subscript where this Field’s data will be stored.

Already assigned:

 0

^DD number must be between 100 and 101 an d not already used

COMMAND: Press <PF1>H for help Insert

17.5 Computed Expressions

A developer can enter an executable line of M code at any point where one would normally be allowed to

use the computed expression syntax.

 REF: For more information on computed expression syntax, see the “Computed Expressions”

section in the VA FileMan Advanced User Manual.

The Computed-Expression M code must create a variable X, which is understood to be the value of its

computation.

 NOTE: Because of concatenation, IF, FOR, and QUIT statements are not recommended in M

computed expressions.

17.5.1 Computed Dates

A Computed Date has “CD” in the Field Specifier. The X value created by the code should look like the

numerical internal form of a Date, or a null string if the computation results in no legal date.

17.5.2 Computed Pointers

A Computed Pointer has “Cp” in the Field Specifier, followed immediately by the file number of the

pointed-to. The X value created by the code should look like the numerical internal entry number of an

entry in that file, or a null string if the computation results in no legal pointer value.

http://vista.med.va.gov/fileman/docs/pm/cl_dt.shtml

VA FileMan 22.2

Developer’s Guide 397 January 2017

17.5.3 Computed Multiples

A Computed Multiple has “Cm” in the Field Specifier. The code should create a value X several times,

once for each Multiple. Then, in the same loop, it should EXECUTE DICMX. DICMX exists at the time

the code is used. The code should also create a variable D each time. Executing DICMX can result in D

being KILLed, in which case the code should quit its loop.

 NOTE: A M Computed Expression should be written so that more code can be concatenated to

the end of it. IF statements, QUIT commands, and FOR loops should not appear. For an

expression of any complexity, the best form to use is:

 SET X=$$ROUTINE(D0)

Or:

 DO ^ROUTINE

Figure 350: Computed Expressions—Computed Multiples: Sample Dialogue Creating a Computed
Pointer from File #2 to File #200; Pointing at Last User Who Edited Patient

 Field #10000 in File #2

 FIELD LABEL: LAST USER WHO EDITED DATA TYPE... COMPUTED

 | COMPUTED-FIELD EXPRESSION: |

 | S X=$P($$LAST^DIAUTL(2,DO,”*”),U,2) |

 A| TYPE of RESULT: POINTER |

 | NUMBER OF FRACTIONAL DIGITS TO OUTPUT: |

 | SHOULD VALUE ALWAYS BE ROUNDED: |

 | WHEN TOTALLING, SHOULD SUMS BE SUMS OF COMPONENT FIELDS: |

 | LENGTH OF FIELD: POINT TO FILE: NEW PERSON |

 IS THIS FIELD MULTIPLE... NO

 MANDATORY:

 HELP-PROMPT:

EXECUTABLE HELP:

COMMAND: Press <PF1>H for help Insert

VA FileMan 22.2

Developer’s Guide 398 January 2017

Figure 351: Computed Expressions—Computed Multiples: Sample Dialogue Creating a Computed
Date that gives the Patient’s Next Birthday

 Field #662000 in File #2

 FIELD LABEL: NEXT BIRTHDAY DATA TYPE... COMPUTED

 --

 | COMPUTED-FIELD EXPRESSION: |

 | S X=$E($P(^DPT(DO,0),U,3),4,7) S X=$S(X:$E(DT,1,3)+($E(DT,4,7)>X)_X,1:”“)|

 A| TYPE of RESULT: DATE |

 | NUMBER OF FRACTIONAL DIGITS TO OUTPUT: |

 | SHOULD VALUE ALWAYS BE ROUNDED: |

 | WHEN TOTALLING, SHOULD SUMS BE SUMS OF COMPONENT FIELDS: |

 | LENGTH OF FIELD: POINT TO FILE: |

 --

 IS THIS FIELD MULTIPLE... NO

 MANDATORY:

 HELP-PROMPT:

EXECUTABLE HELP:

COMMAND: Press <PF1>H for help Insert

17.6 MUMPS Data Type

A DATA TYPE field with a value of MUMPS is available to those with programmer access. The input to

this field is executable M code. Each field of this type is stored on its own global node using the extract

format (Em,n).

When a MUMPS field type is created, it is automatically given a WRITE protection of “@”. Unless this

is modified, only those with programmer access can enter data into an MUMPS field type.

Developers are allowed to change the MUMPS field type to, for example, FREE TEXT. However, the

values are still stored in extract format on the subscripted node.

17.7 Screened Pointers and Set of Codes

A developer modifying a DATA TYPE field of POINTER is asked:

Figure 352: Screened Pointers and Set of Codes—Sample User Prompt

SHOULD POINTER ENTRIES BE SCREENED? NO// Y <Enter> (YES)

Answering YES allows entry of a line of M code. The variable DIC(“S”) is set equal to this code. The

code is used in the DIC lookup routine to screen out certain entries in the pointed-to file.

 REF: For details about the use of DIC(“S”), especially in regard to the naked indicator, see the

description of the ^DIC: Lookup/Add API in the “Classic VA FileMan API” section.

For example, the trick in Figure 353 could be used to make sure that all providers being pointed to from a

SURGERY file had an S code in some auxiliary field:

Figure 353: Screened Pointers and Set of Codes—Sample Screening Code

SCREEN: S DIC(“S”)=“I $D(^(1)),$P(^(1),U,5)[““S”““

VA FileMan 22.2

Developer’s Guide 399 January 2017

Each pointed-to file defined for a variable pointer field can be screened in a similar way.

Also, the developer can put a screen on a DATA TYPE field of SET OF CODES. After the set values

have been described, the user is asked:

Figure 354: Screened Pointers and Set of Codes—Sample User Prompt on Screened Data

SHOULD SET ENTRIES BE SCREENED? NO//

Again, answering YES allows entry of a line of M code. This code should set the variable DIC(“S”),

which is applied to the selection of the member of the set. When this DIC(“S”) is executed, the variable Y

contains the internal value of the member of the set.

17.8 INPUT Transform

An INPUT transform is M code for a particular field that is executed to determine if the data for that field

is valid.

The M code for some field types’ INPUT transforms is automatically generated when you create the field.

This is the case for:

 Free Text

 Numeric

 Date/Time

 Computed

 MUMPS

 Screened Pointer field types

The Input Transform (Syntax) option [DIITRAN] of the Utility Functions menu [DIUTILITY] allows

those with programmer access to customize the M code in automatically generated INPUT transforms. It

also lets you create input transforms for other field types. In the Input Transform (Syntax) option

[DIITRAN], when you select the field, you see an M statement that validates the variable X and KILLs it

if it is invalid. Here, X usually contains the user’s response that is being validated. If the DATA TYPE

field value is VARIABLE POINTER, X contains the value in internally stored format

(i.e., ”record_number;storage_root”).

You can rewrite this line of code to meet individual requirements. If desired, the code can transform X by

resetting it to another value to be filed. An example would be a name transform that deletes an extraneous

space character following a comma as shown in Figure 355:

Figure 355: INPUT Transform—Sample Code

INPUT TRANSFORM: K:$L(X)>30!($L(X)<3) X Replace K

With S:X[“, “ X=$P(X,”, “)_”,”_$P(X,”,”,2) K

Replace <Enter>

S:X[“, “ X=$P(X,”, “)_”,”_$P(X,”, “,2) K:$L(X)>30!($L(X)<3) X

Unlike the M code for OUTPUT transforms, you can use the IF, FOR, and QUIT commands in the M

code for INPUT transforms.

Once an INPUT transform has been created for a field, the syntax checking that the field performs can no

longer be modified using the Modify File Attributes option [DIMODIFY]. A data dictionary listing shows

XXXX for such a field.

VA FileMan 22.2

Developer’s Guide 400 January 2017

For a computed field, the INPUT transform is simply the M code that is executed whenever the field is

computed. Hence, a computed field calculation can be edited by a developer using this option.

For Free Text fields, you can also indicate the maximum output length in the Input Transform option. The

value you enter will not affect the length of data that can be entered and stored for the field; that length

remains under the control of the input transform code. Only the length output in FileMan generated

reports is affected. The example below shows a field defined with a maximum (input) length of 30, but an

output length of only 10. The Print example shows the truncation of the 20 entered characters to 10.

VA FileMan 22.2

Developer’s Guide 401 January 2017

Figure 356: INPUT Transform—Maximum (Output) Length

Select OPTION: UTILITY FUNCTIONS

Select UTILITY OPTION: INPUT TRANSFORM (SYNTAX)

Modify what File: ZZD TEST1// <Enter> (7 entries)

Select FIELD: SHORTENED TEXT

SHORTENED TEXT INPUT TRANSFORM: K:$L(X)>30!($L(X)<1) X

 Replace <Enter>

'HELP'-PROMPT: Answer must be 1-30 characters in length.

 Replace <Enter>

XECUTABLE 'HELP': <Enter>

MAXIMUM LENGTH OF 'SHORTENED TEXT': (1-250): 30// ?

THIS MAXIMUM WILL BE USED FOR OUTPUT PURPOSES, BUT WILL NOT BE PART OF THE INPUT

CHECK FOR THE FIELD.

MAXIMUM LENGTH OF 'SHORTENED TEXT': (1-250): 30// 10

Select OPTION: ENTER OR EDIT FILE ENTRIES

Input to what File: ZZD TEST1// <Enter> (7 entries)

EDIT WHICH FIELD: SHORTENED TEXT

THEN EDIT FIELD: <Enter>

Select ZZD TEST1 NAME: `5 <Enter> Second Entry from ScreenMan

SHORTENED TEXT: 12345678901234567890 <<- Data is 20 characters

Select OPTION: pRINT FILE ENTRIES

Output from what File: ZZD TEST1// <Enter> (7 entries)

Sort by: <Enter>

First Print FIELD: .01 <Enter> NAME

Then Print FIELD: SHORTENED TEXT

Then Print FIELD: <Enter>

Heading (S/C): ZZD TEST1 List// <Enter>

DEVICE: TELNET Right Margin: 80// <Enter>

ZZD TEST1 List MAR 29,2016@08:58 PAGE 1

 SHORTENED

NAME TEXT

--

Another ScreenMan

Entry from ScreenMan

First entry

ScreenMan #3

Second Entry from ScreenMan 1234567890 <<- Output 10 chars.

Second entry (2)

Third entry MORE THAN

VA FileMan 22.2

Developer’s Guide 402 January 2017

17.8.1 INPUT Transforms and the Verify Fields Option

INPUT transforms are ordinarily executed before data is filed (in which case the INPUT transform

expects data in external form, not yet filed). But the INPUT transform is also executed by VA FileMan’s

Verify Fields option [DIVERIFY] (in which case the data being checked is in internal form, and already

filed). Some parts of your INPUT transform may not be compatible with data in its internal form or when

the data is already filed. For example, you can check to make sure a field’s value is not stored in a cross-

reference before you file it; once you file the entry, however, the field value does exist in the cross-

reference and Verify Fields would report the entry as invalid.

To help the Verify Fields option [DIVERIFY] report fewer invalid values in this situation, the Verify

Fields option sets the variable DIUTIL to “VERIFY FIELDS” when it is running. You can then check for

this variable in your custom INPUT transform and skip any checks that would not be compatible with

data that is in its internal form or already filed.

For example:

Figure 357: INPUT Transform—Checking for Variables

I $G(DIUTIL)’=“VERIFY FIELDS”

The Verify Fields option [DIVERIFY] does not execute the INPUT transform for the following field

types:

 Screened Pointers

 Screened Set of Codes

17.9 OUTPUT Transform

The developer can write an M OUTPUT transform to convert internal data values to a different external

form. Use the variable Y (not X, as used with INPUT transforms).

 NOTE: Due to concatenation, do not use IF, FOR, or QUIT statements when defining OUTPUT

transforms. Also, any variables you introduce within an OUTPUT transform (but not Y) should

be NEWed.

To reverse the above example, suppose you wanted always to display the name field with a space

character following the comma, even though the space is not stored. You could do something like this:

Figure 358: OUTPUT Transform—Sample Code

S Y=$P(Y,”,”)_”, “_$P(Y,”,”,2,9)

In addition to containing M code setting Y, OUTPUT transforms can consist of a computed expression.

For example, if you wanted always to display the month and year from a date/time field called FOLLOW-

UP, you could write:

Figure 359: OUTPUT Transform—Sample Code with Computed Expression

MONTH(FOLLOW-UP)

VA FileMan 22.2

Developer’s Guide 403 January 2017

17.10 Special Lookup Programs

At times you can write a lookup program to respond to unique characteristics of a file. The Edit File

option [DIEDFILE] on the Utility Functions menu [DIUTILITY] allows you to tell VA FileMan what this

program is. The information is stored at ^DD(filenumber,0,”DIC”). The routine’s name cannot begin with

DI. These programs must respond to all the variables that ^DIC does.

 REF: For additional information, see the description of ^DIC.

The calls to DO^DIC1, DQ^DICQ, and FILE^DICN can be quite useful to maintain VA FileMan

compatibility. You can tell VA FileMan to ignore these special programs by including an I in DIC(0).

 NOTE: Only the ^DIC call honors the special lookup routines. Those calls that allow the user to

specify the indexes (IX^DIC and MIX^DIC1), and the Database Server calls (FIND^DIC,

$$FIND1^DIC, and UPDATE^DIE) all ignore the Special Lookup Program.

 REF: For assistance with special lookups, contact the VA FileMan developers.

17.11 Post-Selection Action

When it is necessary to examine an entry after it has been selected by DIC, the post-selection action can

be invoked. The Edit File option [DIEDFILE] on the Utility Functions menu [DIUTILITY] allows you to

tell VA FileMan what code to execute upon selection. This is stored at ^DD(filenumber,0,”ACT”) and

can be any standard line of M code. If you decide that the entry should not be selected, the variable Y

should be set to -1.

 NOTE: The Database Server calls (FIND^DIC, $$FIND1^DIC, UPDATE^DIE) all ignore the

Post-Selection Action node.

VA FileMan 22.2

Developer’s Guide 404 January 2017

17.12 Audit Condition

You can make a data audit conditional when you define a field as being audited. An audit condition is a

line of M code with the characteristics that follow:

 Condition must contain an IF statement or in some way set $T.

 Audit takes place only if $T=1.

 Variables available to a developer are as follows:

Table 111: Audit Condition—Variables

Variable Description

DA Internal number of the entry being audited. The DA-array exists if the audit is in a subfile.

DIE The global root of the file or subfile being audited.

DIIX A two-piece variable described below:

 piece 1:

o 3 if this audit is taking place during a SET.

o 2 if this audit is taking place during a KILL.

 piece 2—Field number being edited.

X The internal representation of a field’s value (i.e., the actual stored value). X is always
present, but its value varies based on the first piece of DIIX:

 If $P(DIIX,U,1)=3, then X equals the new value in the field.

 If $P(DIIX,U,1)=2, then X equals the old value in the field.

If the DATA TYPE field value of the field being audited is a POINTER, VARIABLE POINTER, or SET

OF CODES, then the internal value of the field and its data type is stored. The old value is stored on node

2.1 of the entry in the AUDIT file (#1.1) and the new value is stored on node 3.1.

17.13 Editing a Cross-Reference

A developer can edit the SET and KILL statements in a MUMPS cross-reference. The logic for other

types of cross-reference cannot be edited. After selecting a cross-referenced field in the Cross-Reference

A Field option [DIXREF] on the Utility Functions menu [DIUTILITY], choose the Edit File option

[DIEDFILE] and you are prompted with the MUMPS cross-reference’s current SET and KILL statements

for editing. After you have edited the MUMPS cross-reference, you are given the option of running the

old KILL logic and of cross-referencing existing data (i.e., of running the SET logic).

For all types of cross-references, you can describe the cross-reference in the DESCRIPTION field and

enter a free text message in the NO-DELETION field. To make a cross-reference uneditable, enter a

message in the NO-DELETION field; it should be a “do not-delete-me” type of warning, since the

message entered is displayed under the type of cross-reference prompt presented to someone inquiring

about deleting or attempting to delete the cross-reference. For example, possible messages could be:

 “PLEASE DO NOT DELETE THIS”

 “This field should not be deleted.”

The NO-DELETION field must be null before the cross-reference can be deleted.

VA FileMan 22.2

Developer’s Guide 405 January 2017

17.14 Executable Help

In addition to placing online help in a field’s HELP PROMPT and DESCRIPTION attributes, you can

enter EXECUTABLE HELP if you have programmer access. When defining a field’s attributes using the

Modify File Attributes option [DIMODIFY], you receive the “EXECUTABLE ‘HELP’:” prompt. Here,

you can enter M code that is executed when the user requests help while editing data in the field. If the

user enters one question mark, the code is executed after the help prompt is displayed. With two question

marks, it is executed before the field’s description is displayed.

VA FileMan 22.2

Developer’s Guide 407 January 2017

18 Trigger Cross-References

18.1 Introduction

A trigger causes something else to happen. In VA FileMan, you can set up a trigger so that the entry of

data in one field automatically updates a second field value. Since a trigger is considered a type of cross-

reference on the field for which data is entered, a trigger is logically created under the Cross-Reference A

Field option [DIXREF] located on the Utility Functions menu [DIUTILITY].

To understand how a trigger is set up, you must first understand that every cross-reference specification

describes both:

 What happens when a new value is entered, either initially or when an existing value is changed

(SET logic).

 What happens when an old value is changed or deleted (KILL logic).

In other words, when patient FMPATIENT,ONE is first entered into a file of patients, a

FMPATIENT,ONE regular cross-reference on the name is built (and nothing is deleted). Then, when this

name is edited (changed) to be FMPATIENT,TWO Q, the following two things happen:

 The FMPATIENT,ONE regular cross-reference is deleted.

 An FMPATIENT,TWO Q regular cross-reference is created.

Finally, when this patient is deleted from the file, the FMPATIENT,TWO Q cross-reference is deleted

(and none is created).

When you are using the Cross-Reference A Field option [DIXREF] and you specify a trigger, you must

identify both what happens when a new field value is entered (either initially or through an edit on an

existing value) and when an old value is changed or deleted.

You must be careful in setting up any trigger cross-reference since unexpected effects can sometimes

result. At the moment when the trigger actually occurs:

 No validity check is made on the value being forced into the field (in other words, the value does

not go through the triggered field’s INPUT transform).

 Cross-references (if any) do occur on the triggered field (e.g., a triggered field can in turn trigger

other fields in a chain reaction!).

VA FileMan 22.2

Developer’s Guide 408 January 2017

18.2 Trigger on the Same File

Adding a time and date stamp to the file whenever a particular field is updated is a simple example of a

trigger. Suppose the PATIENT file (#2) has a date-valued field called DATE NAME CHANGED. Here is

how you could put the current date and time into this field whenever the patient’s NAME is entered or

changed:

Figure 360: Trigger Cross-references—Creating Trigger

Select OPTION: UTILITY FUNCTIONS

Select UTILITY OPTION: CROSS-REFERENCE A FIELD

MODIFY WHAT FILE: PATIENT <Enter> (1890 entries)

Select FIELD: NAME

CURRENT CROSS-REFERENCE IS REGULAR ‘B’ INDEX OF FILE

Choose E (Edit)/D (Delete)/C (Create): CREATE

WANT TO CREATE A NEW CROSS-REFERENCE FOR THIS FIELD? NO// Y <Enter> (YES)

CROSS-REFERENCE NUMBER: 2// <Enter>

Select TYPE OF INDEXING: REGULAR// TRIGGER

WHEN THE NAME field (#.01) of the PATIENT File (#2) IS CHANGED, WHAT FIELD SHOULD

BE ‘TRIGGERED’: DATE NAME CHANGED <Enter> ..OK

The field to be triggered must already exist.

Figure 361: Trigger Cross-references—SET Logic

---- SET LOGIC ----

IN ANSWERING THE FOLLOWING QUESTION, ‘DATE NAME CHANGED’

 CAN BE USED TO REFER TO THE EXISTING TRIGGERED FIELD VALUE.

PLEASE ENTER AN EXPRESSION WHICH WILL BECOME THE VALUE OF THE DATE

NAME CHANGED field (#2) OF THE ‘PATIENT’ File (#2)

 WHENEVER ‘NAME’ FIELD IS ENTERED OR CHANGED: NOW

DO YOU WANT TO MAKE THE SETTING OF ‘DATE NAME CHANGED’ CONDITIONAL?

 NO// <Enter> (NO)

If you answered YES, you can set conditions for the trigger. You get the following prompt:

Figure 362: Trigger Cross-references—KILL Logic

ENTER AN EXPRESSION FOR THE CONDITION: <Enter>

--- KILL LOGIC ---

IN ANSWERING THE FOLLOWING QUESTION, ‘DATE NAME CHANGED’

 CAN BE USED TO REFER TO THE EXISTING TRIGGERED

 FIELD VALUE. NOTE: ‘OLD NAME’ CAN BE USED TO REFER TO THE VALUE

 OF THE NAME FIELD BEFORE ITS CHANGE OR DELETION.

PLEASE ENTER AN EXPRESSION WHICH WILL BECOME THE VALUE OF

THE ‘DATE NAME CHANGED’ field (#2) OF THE ‘PATIENT’ File (#2)

 WHENEVER ‘NAME’ IS CHANGED OR DELETED: <Enter> NO EFFECT

You have specified that the NAME field triggers the DATE NAME CHANGED field (noting that the

NAME field is already cross-referenced in the usual way). You have requested that the current date/time

(NOW) be stuffed into the triggered field.

VA FileMan 22.2

Developer’s Guide 409 January 2017

Since this triggering occurs whenever NAME is changed, you do not have to specify anything else that

depends on the pre-existing value of NAME. When the entire patient entry is deleted, the DATE NAME

CHANGED is deleted along with the name. Thus, no KILL LOGIC is needed. The response to pressing

the Enter key at that prompt is “NO EFFECT”.

Since you always want the trigger to take place when NAME is changed, no condition is placed on the

trigger. A trigger can be set up that only occurs under specified circumstances.

Figure 363: Trigger Cross-references—Conditions

WANT TO PROTECT THE ‘DATE NAME CHANGED’ FIELD, SO THAT

IT CAN’T BE CHANGED BY THE ‘ENTER & EDIT’ ROUTINE? NO// YES

You specify that the only way you want the DATE NAME CHANGED field to be updated is via this

trigger. No Enter or Edit File Entries option [DIEDIT] user (not even one with an at-sign [“@”]) is able to

change a patient’s DATE NAME CHANGED field directly.

Figure 364: Trigger Cross-references—Deletion Restrictions

NO-DELETION MESSAGE: <Enter>

If you enter a free text message at this prompt, this cross-reference cannot be deleted.

Figure 365: Trigger Cross-references—Description

DESCRIPTION:

1>The DATE NAME CHANGED field is triggered whenever the

2>NAME field is entered or updated. The triggered value is

3>NOW. This field cannot be edited.

4><Enter>

The description appears in a standard DD listing.

Figure 366: Trigger Cross-references—Confirmation

...CROSS-REFERENCE IS SET

DO YOU WANT TO RUN THE CROSS-REFERENCE FOR EXISTING

ENTRIES NOW? NO// <Enter>

Finally, you have the option of using the new trigger to update the file. In this case, it would not be useful

to put the current date and time into the DATE NAME CHANGED field for every existing entry. Thus,

the NO default is accepted.

VA FileMan 22.2

Developer’s Guide 410 January 2017

18.3 Triggers for Different Files

A trigger can also update a field in a file different than the one in which the edited field exists. To

illustrate this, the previous example is extended to show how a separate (fictitious) MONITOR file could

be updated whenever a patient name is added or changed.

First of all, define this (fictitious) MONITOR file using the Modify File Attributes option [DIMODIFY].

The (fictitious) MONITOR file’s NAME field contains the same value as the NAME field in the

PATIENT file (#2). A TIME field should be defined as a DATA TYPE field of DATE/TIME; this field

contains the time the NAME field in the PATIENT file (#2) was added or changed. Use the Cross-

Reference A Field option [DIXREF] on the Utility Functions menu [DIUTILITY] to set up the trigger

index type:

Figure 367: Trigger Cross-references—Sample Dialogue to Create a Trigger Cross-reference on a
Field

Select UTILITY OPTION: CROSS-REFERENCE A FIELD

MODIFY WHAT FILE: PATIENT

Select FIELD: NAME

CURRENT CROSS-REFERENCES:

 1 REGULAR ‘B’ INDEX OF FILE

 2 TRIGGER OF THE ‘DATE NAME CHANGED’ FIELD OF THE PATIENT

 FILE

Choose E (Edit)/D (Delete)/C (Create): CREATE

WANT TO CREATE A NEW CROSS-REFERENCE FOR THIS FIELD? NO// YES <Enter>

CROSS-REFERENCE NUMBER: 3// <Enter>

Select TYPE OF INDEXING: REGULAR// TRIGGER

WHEN THE ‘NAME’ field (#.01) OF THE ‘PATIENT’ File (#2) IS CHANGED,

WHAT FIELD SHOULD BE ‘TRIGGERED: NAME:MONITOR:TIME

DO YOU WANT TO PERMIT ADDING A NEW ‘MONITOR’ ENTRY? NO// Y <Enter> (YES)

WELL THEN, DO YOU WANT TO **FORCE** ADDING A NEW ENTRY

 EVERY TIME? NO// Y <Enter> (YES)

 ...OK

--- SET LOGIC ---

IN ANSWERING THE FOLLOWING QUESTION, ‘TIME’

 CAN BE USED TO REFER TO THE EXISTING TRIGGERED FIELD VALUE.

PLEASE ENTER AN EXPRESSION WHICH WILL BECOME THE

 VALUE OF THE ‘TIME’ field (#1) OF THE ‘MONITOR’ File (#16001)

 WHENEVER ‘NAME’ IS ENTERED OR CHANGED: NOW

DO YOU WANT TO MAKE THE SETTING OF ‘TIME’ CONDITIONAL? NO// <Enter> (NO)

--- KILL LOGIC ---

IN ANSWERING THE FOLLOWING QUESTION, ‘TIME’

 CAN BE USED TO REFER TO THE EXISTING TRIGGERED FIELD VALUE.

 NOTE: ‘OLD NAME’ CAN BE USED TO REFER TO THE VALUE OF

 THE NAME FIELD BEFORE ITS CHANGE OR DELETION.

PLEASE ENTER AN EXPRESSION WHICH WILL BECOME THE VALUE OF

 THE ‘TIME’ field (#1) OF THE ‘MONITOR’ File (#16001)

 WHENEVER ‘NAME’ IS CHANGED OR DELETED: @

ARE YOU SURE YOU WANT TO ‘ADD A NEW ENTRY’ WHEN THIS

 KILL LOGIC OCCURS? NO// Y <Enter> (YES)

DO YOU WANT TO MAKE THE DELETING OF ‘TIME’ CONDITIONAL? NO// <Enter> (NO)

VA FileMan 22.2

Developer’s Guide 411 January 2017

WANT TO PROTECT THE ‘TIME’ FIELD, SO THAT

IT CAN’T BE CHANGED BY THE ‘ENTER & EDIT’ ROUTINE? NO// <Enter> (NO)

NO-DELETION MESSAGE: <Enter>

DESCRIPTION:

1>The TIME field of the Monitor file is triggered whenever

2>the NAME field of the Patient file is entered or changed. The

3>new value=NOW. A new entry in the Monitor file is created

4>at the same time. If the NAME field in the Patient file is

5>deleted, TIME is deleted.

6><Enter>

...CROSS-REFERENCE IS SET

DO YOU WANT TO RUN THE CROSS-REFERENCE FOR EXISTING ENTRIES NOW? NO// <Enter> (NO)

This example shows the extended pointer syntax used to specify a field in another file. The patient’s

NAME is used as a lookup value in the (fictitious) MONITOR file. A new (fictitious) MONITOR file

entry is created by the trigger. In a sense, this trigger really updates two fields in the (fictitious)

MONITOR file, NAME and TIME.

An alternative extended pointer syntax is NAME IN MONITOR FILE:TIME. This syntax is exactly

equivalent to NAME:MONITOR:TIME, and can better express the meaning of the extended syntax if you

are a new user.

 NOTE: The at-sign (“@”) indicates that a field is to be deleted by the trigger.

VA FileMan 22.2

Developer’s Guide 412 January 2017

19 DIALOG File

19.1 DIALOG File: User Messages

19.1.1 Introduction

The VA FileMan DIALOG file (#.84) is used to store dialogue that would normally appear on a screen

during interaction with a user. This dialogue can include error messages, user help, and other types of

prompts. VA FileMan distributes a set of entries in the DIALOG file (#.84).

The VA FileMan BLD^DIALOG or $$EZBLD^DIALOG APIs are used to move text from the DIALOG

file (#.84) into arrays. The text can then be displayed using the display mode of choice.

Developers can add entries to the DIALOG file (#.84). Entries such as error messages, help messages, and

other general prompts can be placed in the file. The DIALOG file (#.84) should not be used for storing

alternate synonyms either for data or for fields in the data dictionary, such as field labels or descriptions.

 NOTE: To add entries to the DIALOG file (#.84), you must use a numberspace assigned by the

Database Administrator.

Advantages of the DIALOG file (#.84) for user interaction are:

 User interaction can be easily separated from the other program functionality, a necessary step in

creating alternate interfaces to roll-and-scroll, such as GUI.

 Text stored in the DIALOG file (#.84) can be re-used.

 Package error lists can be identified and listed by error number in documentation.

 Text can be returned in multiple languages without changes to developers’ code.

 REF: For details, see the “Internationalization and the DIALOG File” section.

19.1.2 Use of the DIALOG File

VA FileMan controls and distributes entries in the DIALOG file (#.84) in the number range 0 through

10000. These entries should not be edited by other package developers, with the exception of adding

foreign language equivalents for text.

 REF: For details, see the “Internationalization and the DIALOG File” section.

Some of the VA FileMan error messages are available for retrieval by other package developers, using the

VA FileMan program calls. These messages are listed in “Appendix A—VA FileMan Error Codes.”

Entries within the VA FileMan number range that are not in the Error Codes listing should not be used, as

they are subject to change.

Other packages can make entries in the DIALOG file (#.84) for their own use. The VHA Database

Administrator assigns number ranges to a subscribing package.

If your package or site already has a file numberspace assigned by the DBA, you can use that number (or

numbers) multiplied by 10000 (plus any decimal value between .001 and .999) for adding entries to the

DIALOG file (#.84), such as Kernel owns File #200, so it can use numbers 2000000 through

2000000.999. If you are at site 665, the site owns numberspace 665000 for files, so you can use

6,650,000,000 through 6,650,000,000.999 in the DIALOG file (#.84).

VA FileMan 22.2

Developer’s Guide 413 January 2017

If developers do not follow these guidelines, their DIALOG file (#.84) entries can be overwritten when

new packages are installed.

 NOTE: An entry number does not have to be an integer; up to 3 decimal places can be used to

identify an entry.

19.1.3 Creating DIALOG File Entries

Developers can enter or edit entries to the DIALOG file (#.84) using the VA FileMan Enter or Edit File

Entries option [DIEDIT]. The only required fields are:

 DIALOG NUMBER, which uniquely identifies the entry

 TYPE (Error, Help or General Message)

 TEXT

The dialogue text can contain parameter windows delimited by vertical bars. Within a pair of vertical

bars, the developer puts a value that corresponds to a subscript in a parameter list. This subscript does not

need to be numeric, but can be meaningful alpha characters, such as “FIELD”. When the dialogue text

with windows is retrieved using a call to either the BLD^DIALOG or $$EZBLD^DIALOG APIs, a

subscripted parameter list is input to the call. The parameters are matched by subscript to the windows in

the text, and the values from the parameter list are inserted into the corresponding windows in the text. If

parameters are included in the text, the INTERNAL PARAMETERS NEEDED field should be set to

YES. The PARAMETER Multiple field is used in documenting these parameters.

For error messages only, a list of output parameters can also be passed to the BLD^DIALOG or

$$EZBLD^DIALOG APIs. This list is returned by the routine in a standard format. Output parameters

might be, for example, file or field numbers that the calling routine can then use to make a decision.

Output parameters should also be documented in the PARAMETER Multiple.

Another important optional field is the POST-MESSAGE ACTION field. If the developer wishes to

perform some special action whenever a message is retrieved, M code is simply inserted into this field.

The code is then executed whenever the associated message is retrieved with a call to the BLD^DIALOG

or $$EZBLD^DIALOG APIs.

The TRANSLATION (LANGUAGE) Multiple in the DIALOG file (#.84) allows a developer to enter

text in a language other than English.

 REF: For additional information on this feature, see the “Internationalization and the DIALOG

File” section.

Finally, there is a place to enter documentation for the ROUTINE names and LINE TAGs that use the

dialogue entries. This is optional internal documentation for use by developers only.

VA FileMan 22.2

Developer’s Guide 414 January 2017

Figure 368: DIALOG File—Sample Dialogue Creating a New Entry in the DIALOG File (#.84)

Select DIALOG: 10001

 Are you adding ‘10001’ as a new DIALOG (the 239TH)? Y <Enter> (YES)

TYPE: ?

 Enter code that reflects how this dialogue is used when talking to the users.

 Choose from:

 1 ERROR

 2 GENERAL MESSAGE

 3 HELP

TYPE: 3 <Enter> HELP

PACKAGE: VA FILEMAN <Enter> DI

DESCRIPTION:

 1>Here we enter a description of the help message itself. This

 2>description is for our own documentation.

 3><Enter>

EDIT Option: <Enter>

INTERNAL PARAMETERS NEEDED: Y <Enter> YES

TEXT:

 1>Here we enter the actual text of the help messages, with

 2>parameters designated by vertical bars |1| as shown.

 3><Enter>

EDIT Option: <Enter>

Select PARAMETER SUBSCRIPT: 1

 Are you adding ‘1’ as a new PARAMETER SUBSCRIPT (the 1ST for this DIALOG)? Y

<Enter> (YES)

 PARAMETER DESCRIPTION: Brief description of parameter 1 goes here. For

 documentation only.

Select PARAMETER SUBSCRIPT: <Enter>

POST MESSAGE ACTION: ? <Enter> This is Standard MUMPS code. This code will be

executed whenever this message is retrieved through a call to BLD^DIALOG or

$$EZBLD^DIALOG

POST MESSAGE ACTION: S MYVAR=“HELP #10001 WAS REQUESTED”

Select LANGUAGE: <Enter>

Select ROUTINE NAME: DIKZ// <Enter>

ROUTINE NAME: DIKZ// <Enter>

LINE TAG: // <Enter>

19.2 Internationalization and the DIALOG File

19.2.1 Role of the VA FileMan DIALOG File in Internationalization

The VA FileMan DIALOG file (#.84) is used to store dialogue that would normally appear on a screen

during interaction with a user. The DIALOG file (#.84) becomes especially important in assisting

developer support for non-English speaking users, because it allows easy entry and retrieval of non-

English dialogue without making any changes to code that is already using the DIALOG file (#.84).

19.2.2 Use of the DIALOG File in Internationalization

A system variable, DUZ(LANG), identifies to VA FileMan the language currently in use. This system

variable is set equal to a number that corresponds to the ID NUMBER of an entry in the LANGUAGE

file (#.85).

 REF: For more information, see the “VA FileMan LANGUAGE File” section.

VA FileMan 22.2

Developer’s Guide 415 January 2017

This number is also used as a subscript for the TRANSLATION (LANGUAGE) Multiple in which non-

English text can be stored.

 NOTE: For users running Kernel 8.0 or later, this variable is set automatically during signon.

For every entry needing translation in the DIALOG file (#.84), the developer should populate the

FOREIGN TEXT field for the desired language. When either of the text retrieval routines,

BLD^DIALOG or $$EZBLD^DIALOG, is called, if DUZ(“LANG”) is greater than one (1), VA FileMan

looks at the language location specified by DUZ(“LANG”) to find the text. If text cannot be found at that

location, VA FileMan defaults to use the English equivalent from the TEXT field. As with English text,

parameters to be inserted into the text can be passed to the call.

 REF: See also the BLD^DIALOG(): DIALOG Extractor and $$EZBLD^DIALOG(): DIALOG

Extractor (Single Line) APIs.

19.2.3 Creating Non-English Text in the DIALOG File

Once an entry exists in the DIALOG file (#.84), developers can enter or edit non-English equivalents for

the TEXT field, using VA FileMan’s Enter or Edit File Entries option [DIEDIT].

Figure 369: DIALOG File—Sample Dialogue to Create Non-English Text in the DIALOG File (#.84)

Select DIALOG: 10001 <Enter> This is English text for a test message.

.

.

.

Select LANGUAGE: ?

 Answer with TRANSLATION LANGUAGE

 You may enter a new TRANSLATION, if you wish

 Enter the number or name for a non-English language.

 English language cannot be selected.

 Answer with LANGUAGE ID NUMBER, or NAME

Choose from:

 2 GERMAN

 3 SPANISH

 4 FRENCH

 5 FINNISH

 6 ITALIAN

 10 ARABIC

 11 RUSSIAN

Select LANGUAGE: 2 <Enter> GERMAN

 Are you adding ‘2’ as a new TRANSLATION (the 1ST for this DIALOG)? Y <Enter>

(Yes)

FOREIGN TEXT:

 1>Here is where we enter the non-English text.

VA FileMan 22.2

Developer’s Guide 416 January 2017

19.3 VA FileMan LANGUAGE File

19.3.1 Introduction

Certain types of data (e.g., dates and numbers) should be formatted differently for display depending on

the language of the end user. The VA FileMan LANGUAGE file (#.85) is designed to help solve this

problem for users of interactive VA FileMan. The LANGUAGE file (#.85) stores M code used to perform

language-specific conversions on such data. A system variable identifies to VA FileMan the language

currently in use. The LANGUAGE File (#.85) can store 2,3, and 4 character abbreviations for the

language.

At this time, VA FileMan distributes in the LANGUAGE file (#.85) only the English equivalent of

language-specific data conversions specified below.

19.3.2 Use of the LANGUAGE File

A system variable, DUZ(“LANG”), identifies to VA FileMan the language currently in use. This system

variable is set equal to a number that corresponds to the ID NUMBER of an entry in the LANGUAGE

file (#.85). It tells VA FileMan where to find the appropriate data conversion code from the LANGUAGE

file (#.85) at the time the code needs to be executed (e.g., when printing a date).

 NOTE: For users running Kernel 8.0 or later, this variable is set automatically during signon.

Developers may enter or create their own entries in the LANGUAGE file (#.85). The VHA Database

Administrator will assign an ID NUMBER for each unique language entry in the LANGUAGE file

(#.85). If developers do not follow these guidelines, their language entry may be overwritten when VA

FileMan is installed.

Table 112 lists the LANGUAGE file (#.85) entries that have been assigned and are distributed with VA

FileMan prior to VA Fileman 22.0:

Table 112: LANGUAGE file (#.85)—Language Entries

Entry # Value

1 English

2 German

3 Spanish

4 French

5 Finnish

6 Italian

10 Arabic

11 Russian

When installing VA FileMan 22.0 via KIDS build, the LANGUAGE file (#.85) is updated to include

entries for all ISO 639-2:1998 (as revised 11/21/2012) languages.

VA FileMan 22.2

Developer’s Guide 417 January 2017

19.3.3 Creating LANGUAGE File Entries

Developers can enter or edit entries in the LANGUAGE file (#.85) using VA FileMan’s Enter or Edit File

Entries option [DIEDIT]. The only required fields are the ID NUMBER that uniquely identifies a

language and the language NAME. If M code is not found within the current language for a specific

conversion, VA FileMan defaults to use the English equivalent.

The other fields that can be entered for any LANGUAGE file (#.85) entry are described below. At the

time the code in any of these fields is executed, the data to be converted is in the local variable Y. The M

code in the field should put the transformed output back into Y, without altering any other local variables.

More detail can be found in the field description for each field. Looking at the English equivalent in entry

#1 can also be helpful.

Table 113: LANGUAGE file (#.85)—Other Fields

Field Description

ORDINAL NUMBER FORMAT Changes 1 to 1ST, 2 to 2ND, etc.

CARDINAL NUMBER
FORMAT

Changes 1234567 to 1,234,567.

UPPERCASE CONVERSION Converts text to uppercase.

LOWERCASE CONVERSION Converts text to lowercase.

DATE/TIME FORMAT Converts date in internal VA FileMan format to
MMM,DD,YYYY@HH:MM:SS

DATE/TIME FORMAT (FMTE) Does other date conversions from date in internal VA FileMan
format. This call has an additional input flag that indicates the
conversion to be done (see below).

The Date/Time flags are:

Table 114: LANGUAGE file (#.85)—Date/Time Flags

Flag Format Description

1 MMM DD, YYYY@HH:MM:SS Space before year.

2 MM/DD/YY@HH:MM:SS No leading zeroes on month, day.

3 DD/MM/YY@HH:MM:SS No leading zeroes on month, day.

4 YY/MM/DD@HH:MM:SS --

5 MMM DD,YYYY@HH:MM:SS No space before year.

6 MM-DD-YYYY @ HH:MM:SS Special spacing for time.

7 MM-DD-YYYY@HH:MM:SS --

S -- Always return seconds.

U -- Return uppercase month (use only with 1 or 5).

P -- Return time with am,pm.

D -- Return only date without time.

VA FileMan 22.2

Developer’s Guide 418 January 2017

VA FileMan 22.2

Developer’s Guide 419 January 2017

20 VA FileMan Functions (Creating)

20.1 Introduction

As mentioned in the “VA FileMan Functions” section in the VA FileMan Advanced User Manual, as a

developer in VA FileMan you can create your own computed-expression functions. In some ways, a

function can be thought of as an OUTPUT transform that can work on any field. For example, you may

have a preference for seeing many dates displayed as 20-7-69, rather than the JUL 20,1969 format that

VA FileMan typically produces. Since this date is internally stored in the form 2690720 (see the

description of %DT), you could write a line of code that took the internally stored format in the variable

X and transformed it using:

Figure 370: VA FileMan Functions—Sample Code that Takes an Internally Stored Format in a
Variable and Transforms It

+$E(X,6,7)_”-”_+$E(X,4,5)_”-”_$E(X,2,3)

20.2 Function File Entries

This is exactly what you are allowed to do when you edit the FUNCTION file (#.5) using the Enter or

Edit File Entries option [DIEDIT].

To continue the above example, you could create a DASHDATE function, which could then be used by

any user to display date-valued fields and expressions in the DAY-MONTH-YEAR format as follows:

Figure 371: VA FileMan Functions—Sample Displaying Date-valued Fields and Expressions in the
DAY-MONTH-YEAR Format

Select OPTION: ENTER AND EDIT FILES

INPUT TO WHAT FILE: FUNCTION

EDIT WHICH ATTRIBUTE: ALL// <Enter>

Select COMPUTED-FIELD FUNCTION: DASHDATE

 ARE YOU ADDING ‘DASHDATE’ AS A NEW COMPUTED-FIELD FUNCTION? Y <Enter> (YES)

MUMPS CODE: S X=+$E(X,6,7)_”-”_+$E(X,4,5)_”-”_$E(X,2,3)

EXPLANATION: PRINTS DATE IN “DD-MM-YY” FORMAT

DATE-VALUED: NO

NUMBER OF ARGUMENTS: 1

WORD-PROCESSING: <Enter>

Notice that the MUMPS CODE field contains code to transform the variable X (the argument of the

function) into a different X. If two arguments were required for the function, the first would be found in

the variable X1 and the second in X. Although the new function being created here takes a date-valued

argument, it is not itself considered to be date-valued since it does not produce values that look like the

standard VA FileMan internal representation of a date. If this function was only meaningful in a word-

processing context, you would put a W at the “WORD-PROCESSING:” prompt.

 NOTE: If there is an output transform on a field, the function code is applied to the field after it

has been transformed. In most cases, if a field has an output transform, you should therefore use

the following syntax:

FUNCTION_NAME(INTERNAL(FIELD_NAME))

Rather than:

VA FileMan 22.2

Developer’s Guide 420 January 2017

FUNCTION_NAME(FIELD_NAME).

A function can also be defined as taking no arguments. This is very similar to the special variables in M

like $I and $H. For example, you could define a function like BELL as follows:

Figure 372: VA FileMan Functions—Sample Function without Arguments

Select COMPUTED-FIELD FUNCTION: BELL

 ARE YOU ADDING A NEW COMPUTED-FIELD FUNCTION? Y <Enter> (YES)

MUMPS CODE: SET X=$C(7) <Enter>

EXPLANATION: CAUSES A ‘BEEP’ TO OCCUR ON OUTPUT <Enter>

DATE-VALUED: NO

NUMBER OF ARGUMENTS: 0

WORD-PROCESSING: <Enter>

Users could then embed “beeps” in output templates by entering:

FIRST PRINT FIELD: BELL

 NOTE: No parentheses are shown for a function that has no arguments.

You can delete a function in the usual way by deleting the NAME of the function. Such deletions do not

harm any computed fields that already have been created using the function. However, you cannot edit

the computed field unless you remove reference to the deleted function.

 CAUTION: Due to concatenation, do not use IF, FOR or QUIT statements when defining
functions. Also, any variables you introduce within a function’s code (but not X, X1, etc.)
should be NEWed.

The FUNCTION file (#.5) already contains several functions.

 REF: For a description of the functions exported with VA FileMan, see the “VA FileMan

Functions” section in the VA FileMan Advanced User Manual.

VA FileMan 22.2

Developer’s Guide 421 January 2017

21 DIFROM

21.1 Introduction

DIFROM is the mechanism that was used in the past to transfer software packages from one VA FileMan

environment to another.

 NOTE: DIFROM has been superseded by the Kernel Installation and Distribution System

(KIDS) for this function, starting with Kernel 8.0. DIFROM can still be used, for the time being,

for the purpose of package export between VA FileMan systems where Kernel has not been

installed. DIFROM is not supported for use within the VA.

Package transfer is a two-stage process:

1. DIFROM is run on the source system. It is a nondestructive process that uses the ^UTILITY

global to build data structures and store information about the package.

2. DIFROM creates init routines. Later, on the target system, the init routines are run to recreate

each component of the package and put them into place according to the installer’s instructions.

Another component of the package export process is the PACKAGE file (#9.4). (NOTE: The Package file

inits, DIKPI*, are not included in the FileMan 22.2 KIDS distribution.). A PACKAGE file (#9.4) entry

contains information about the components of a package. It also indicates how the installation will

proceed on the target system. The PACKAGE file (#9.4) also has fields that document the package

production and installation process. PACKAGE file (#9.4) entries can be created using the standard VA

FileMan editing options.

21.2 Exporting Data

21.2.1 Preparing To Run DIFROM

DIFROM simply creates routines, “init routines.” DIFROM names routines by appending INI* or I### to

the package namespace (e.g., nmspI005 or nmspINI1). It overwrites any like-named routines. Except for

replacing routines with the same name, DIFROM is nondestructive and, unlike the init installation

process, neither changes nor destroys data. The DIFROM user should ensure that there is sufficient disk

space to hold the init routines DIFROM creates.

 CAUTION: As of Kernel 8.0, DIFROM has been superseded by the Kernel Installation and
Distribution System (KIDS) for the function of transferring software packages from one
VA FileMan environment to another. DIFROM can still be used for the time being for the
purpose of package export between VA FileMan systems where Kernel has not been
installed.

VA FileMan 22.2

Developer’s Guide 422 January 2017

21.2.2 PACKAGE File and DIFROM

The PACKAGE file (#9.4) is used both to document a software package and to aid in exporting the

package. A PACKAGE file (#9.4) entry is not required to build inits; inits can be built on-the-fly. Some

of the fields are used for documentation only and some for both the export process and documentation.

Whenever you build an init using an entry in the PACKAGE file (#9.4), that entry is also put into the

PACKAGE file of the target system when the init is run. Thus, a copy of the documentation for the

package is on both the source and target systems.

The fields that DIFROM uses during the package export process are described in Table 115. All fields not

noted below are used for documentation only:

 NAME

 PREFIX

 Template Multiples

 EXCLUDED NAME SPACE

 ENVIRONMENT CHECK ROUTINE

 PRE-INIT AFTER USER COMMIT

 POST-INITIALIZATION ROUTINE

 FILE

 Other PACKAGE File Fields

Table 115: DIFROM—Fields Used during the Package Export Process

Field Description

NAME This is a brief (4-30 characters) name describing the package.
It is used to identify the package and does not affect the init
directly. However, it is the key field used when installing the
PACKAGE file (#9.4) entry on the target system. If you
change the name and install a package on a system where it
already exists under a different name, a new entry is created
in the PACKAGE file (#9.4) on the target system. The
unchanged old entry remains, too.

PREFIX This is the 2-4 character namespace of the package. It is the
unique identifier for the package. The PREFIX controls which
templates, options, bulletins, etc., are included in the init
routines for export. Those components with names beginning
with the package’s PREFIX are automatically exported, except
for those beginning with the letters in the EXCLUDED NAME
SPACE Multiple.

Template Multiples There is a Multiple field for each of the following template
types:

 INPUT

 SORT

 PRINT

 SCREEN (FORM)

The developer uses these Multiples to have the init include
templates in addition to those within the PREFIX namespace.

VA FileMan 22.2

Developer’s Guide 423 January 2017

Field Description

Each of these Multiples contains the free-text name of a
template and the number of the file associated with that
template (a pointer to the FILE of Files).

 NOTE: For SCREEN (FORM) templates, all blocks
pointed-to by exported forms are automatically included
in the init regardless of their namespace. The blocks
need not be specified by the developer.

EXCLUDED NAME SPACE The developer can use the EXCLUDED NAME SPACE
Multiple to exclude templates, options, bulletins, etc., that are
a subset of the package’s namespace. For example, if the
namespace of a package were PRC and the EXCLUDED
NAME SPACE Multiple contained the entry PRCZ, then any of
the components of the package with names beginning with
“PRCZ” would not be exported.

ENVIRONMENT CHECK ROUTINE When the installer starts the init, the routine identified in the
ENVIRONMENT CHECK ROUTINE field is run before any of
the init routines DIFROM created and before any questions
are asked. The installer cannot interrupt the init process until
this routine has completed. Thus, this pre-init should be used
to simply examine the environment; it should not change any
data.

PRE-INIT AFTER USER COMMIT The routine named in the PRE-INIT AFTER USER COMMIT
field runs after the installer has committed to proceeding with
the install but before any data is updated. This routine can edit
or delete data. The developer uses this routine to make any
data conversions, etc., that need to be performed before the
init brings in new data.

POST-INITIALIZATION ROUTINE The routine named in the POST-INITIALIZATION ROUTINE
field runs after the inits put everything in place. Here, the
developer makes any data conversions, etc., that need to be
performed after the new data is installed.

FILE This is a Multiple field used to describe how the data
dictionaries (DDs) and data from the exported files are to be
handled in the inits. The following fields are included within the
FILE Multiple:

 FILE

This field contains the number of the file to be exported. It
is a pointer to the FILE (#1) of files.

 FIELD

This optional Multiple within the FILE Multiple allows the
developer to send a subset of the fields from a file. If only
some of the fields are being exported, a “partial” file is
being sent. If no entries are made in the FIELD Multiple,
all of the fields from the file are exported. Only the names
of fields at the top-level of a file can be entered. Thus,
single fields at the top-level and entire Multiples with all

VA FileMan 22.2

Developer’s Guide 424 January 2017

Field Description

the subfields and subfiles descendent from those
Multiples can be sent.

The .01 field is automatically sent, whether or not it
appears in this Multiple, unless the file being exported is
File #200. If a partial of File #200 is being sent, the .01 is
sent only if it is included in this Multiple or if the PREFIX is
XU (Kernel’s namespace).

 NOTE: This list only applies to the information about
fields found in the data dictionary. It is not possible
at this time to send a subset of the actual data.

 ASSIGN A VERSION NUMBER

If this set of codes field is YES, the version number
entered by the developer while running DIFROM to build
the init is used to create the following node when the init is
run on the target system:

^DD(File#,0,”VR”)=Version Number

The version number is that of the package being installed,
not the VA FileMan version number.

If this field is NO or left null, a “VR” node is not built by the
init. Thus, whatever was present in this node on the target
system remains. Once a “VR” node has been set, the
developer should continue to update it with each version.
Otherwise, the node contains the wrong version.

 UPDATE THE DATA DICTIONARY

This set of codes field controls whether or not a pre-
existing DD on the target system is updated during the
init. The DD is included in the init routines regardless of
how this question is answered. If a DD for the file does not
exist on the target system, it is always installed.

If this field is YES or left null, the DD in the init overlays an
existing DD on the target system.

 NOTE: The existing DD on the target system is not
deleted first. For example, if a field is changed from
one type to another, it is possible that the DD
information from the previous definition of the field is
left behind. This situation can cause problems for
VA FileMan. If this might happen, the developer is
urged to clean up the field from the DD in a pre-init,
using a call to ^DIK.

If this field is NO, the DD currently on the target system is
not changed. The developer can still send data for the file.

 MAY USER OVERRIDE DD UPDATE

VA FileMan 22.2

Developer’s Guide 425 January 2017

Field Description

If this set of codes field is YES, the installer decides if a
pre-existing DD is overwritten. When the init routine runs,
the question, “Shall I write over the existing Data
Definition?” is asked if there is a pre-existing DD on the
target system.

If the installer answers this question NO, the existing DD
is not changed. This feature is useful when a package
contains some DDs that are unchanged from the previous
version. If the DD is not found on the target system, it is
brought in by the init regardless of this field’s contents.

If answered NO or left null, the installer cannot choose
whether or not to not bring in the DD.

 NOTE: If there is a screen on the DD, the question
is not asked regardless of the contents of this field.
The result of the screen’s test determines if the new
DD is installed or not.

 SCREEN TO DETERMINE DD UPDATE

The developer can enter M code in this field to examine
the target environment to determine whether or not to
bring in a DD. The code should set the value of $T. If $T
is true, the new DD is installed; if $T=0, it is not. If the
developer enters a screen, the installer is not given the
option of installing the DD. The screen alone determines
whether or not the DD is installed.

 NOTE: If the DD does not exist on the target
system, the screen is ignored and the incoming DD
is installed.

 DATA COMES WITH FILE

If this set of codes field is YES, DIFROM picks up all of
the data for the file from the system on which the
developer builds the init. This data is included in the init
routines. Data from all fields is sent even if the developer
is only sending selected fields from the DD. Pointers are
not resolved to their external values. Thus, data with
pointers should not be sent if the pointed-to entries can be
in different locations on the target system.

If this field is NO or left null, the init does not pick up data.
The contents of the following two fields are ignored.

 MERGE OR OVERWRITE SITE’S DATA

This set of codes field controls how exported entries are
combined with existing ones on the target site. The
possible values are “m” (MERGE) and “o” (OVERWRITE).
The default is MERGE.

VA FileMan 22.2

Developer’s Guide 426 January 2017

Field Description

When an init is installed, incoming entries and subentries
are checked to see if they match ones on the target
system.

 REF: A detailed description of this process is given
in the “Running an Init” section.

If a match is not found, the entry or subentry is added. The
contents of this field determine what happens to entries
that do match.

If incoming entries are to be merged with existing ones,
fields with non-null values are left unchanged on the target
system. Data from the init is placed into fields with null
values.

If incoming entries are to overwrite existing ones, fields
with non-null values in the init overwrite values currently
on the target system. If the field is null in the init and the
field on the target system contains data, the current value
is not overwritten with a null value

 MAY USER OVERRIDE DATA UPDATE

If this set of codes field is YES, the installer can decide
whether or not to install the data from the init. The installer
can choose to bring in the data or not to bring it in.
However, the merge/overwrite flag cannot be changed;
merge cannot be switched to overwrite, and vice versa.

If the field is NO or left null, the installer cannot choose if
the target system’s data is updated or not.

Other PACKAGE File Fields Other PACKAGE file (#9.4) fields are used only for
documentation and do not affect the DIFROM procedure. One
of the documentation fields, SHORT DESCRIPTION, is
required. It is a free text field of up to 60 characters. Other
documentation fields include: ROUTINE, GLOBAL, VERSION,
DEVELOPMENT ISC, and KEY VARIABLE. There are fields
to document the development, verification, site installation,
and patch history. This data describing the package is
bundled and exported with the rest of the package. It is put
into the recipient’s PACKAGE file (#9.4).

Some of the documentation fields are updated on the target
system when the init is run. For example, the date/time that
the pre- and post-inits are run is automatically recorded in the
PACKAGE file (#9.4) entry as is the version number.

VA FileMan 22.2

Developer’s Guide 427 January 2017

21.3 Order Entry and DIFROM

DIFROM for VA FileMan 18.0 and later has been customized to support Order Entry. Order Entry inits

must export records from the PROTOCOL file (#101). This file contains pointers back to itself, similar to

the OPTION file (#19). Since DIFROM does not currently resolve these pointers, a joint effort was made

by Order Entry and VA FileMan developers to support Order Entry inits that correctly install the

protocols.

 REF: For details, see Order Entry documentation.

Basically, the process involves the creation of a second set of routines, similar to init routines, to export

the Order Entry protocols and to resolve the pointers in the PROTOCOL file (#101). An Order Entry

routine, ORVOM, is run to create these routines. The resulting routines are named nmspONI*, the ONIT

routines. These routine are run at the target site after the init routines to install the protocols.

The following considerations pertain to the creation of Order Entry inits:

 Like regular inits, Order Entry inits can be created either based on an entry in the PACKAGE file

(#9.4) or on-the-fly.

 Order Entry’s file Order Parameters contains the PACKAGE PARAMETERS Multiple. This

Multiple controls the export and installation of entries from the PROTOCOL file (#101). Thus, it

is used like the PACKAGE file (#9.4). To export entries from the PROTOCOL file (#101) in a

sophisticated way, use the PACKAGE PARAMETERS instead of building the export on-the-fly.

If the developer is going to use the PACKAGE PARAMETERS, there must be a PACKAGE file

(#9.4) entry. Then, create an entry in the PACKAGE PARAMETERS Multiple within the

ORDER PARAMETERS file (#100.99). The .01 field of this Multiple is a DINUMed pointer to

the PACKAGE file (#9.4) entry. This implies that the namespace must be the same as that used

for the init.

 Whether the Order Entry init is built from the PACKAGE PARAMETERS or on-the-fly, next run

the ORVOM routine. The ORVOM routines look at the PACKAGE PARAMETERS (if they

exist) or prompt the developer for the names of protocols to be sent. They build ONIT routines

that are similar to inits but contain only PROTOCOL file (#101) entries. The code generated in

these routines installs and resolves pointers on the P ROTOCOL file (#101) entries. (The

ORVOM routines are part of the Order Entry package and are maintained by the Order Entry

developers. They were reviewed by the VA FileMan developers.)

 If the init is being built from an entry in the PACKAGE file (#9.4), enter the namespaced ONIT

routine into the POST-INITIALIZATION ROUTINE field in the PACKAGE file (#9.4) entry. It

is run automatically as a post-init.

If the init is not being built from the PACKAGE file (#9.4), the developer must tell the installers

to run the ONIT routines manually after they run the init routines.

 Now, build the actual init using DIFROM in a normal way as described above.

DIFROM has been modified for Order Entry to automatically pick up the entry from the PACKAGE

PARAMETERS Multiple of the ORDER PARAMETERS file (#100.99). When the init is run any

pointers back to the PROTOCOL file (#101) that are contained in this entry are resolved.

 REF: For more information about resolving pointers during package installation, see the

documentation on running the init.

VA FileMan 22.2

Developer’s Guide 428 January 2017

21.4 Running DIFROM (Steps 1-17)

Running DIFROM is an interactive process. Prompts are presented to which the developer responds. The

dialogue is described below. In addition, the internal workings of the DIFROM process are detailed. The

different parts of running DIFROM are shown in the order in which they occur.

1. Starting DIFROM

2. Preliminary Validations

3. Package Identification

4. Identifying the Init Routines

5. Specifications for Exported Files

6. Entering Current Version Information

7. Including Templates (No Package File Entry)

8. Including Other Package Components

9. Exporting File Security

10. Specifying Routine Size

11. DIFROM Gathers Miscellaneous Package Components

12. DIFROM Builds Routines Containing Data Dictionaries

13. DIFROM Builds Routines Containing Data Values

14. DIFROM Builds Routines Containing Security Access Codes

15. DIFROM Gathers Templates and Forms

16. DIFROM Completes Building Routines of Package Components

17. DIFROM Completes the Code that Runs the Init

 CAUTION: DIFROM is not to be used by VA developers. DIFROM has been replaced by
the Kernel Installation and Distribution system (KIDS).

21.4.1 Starting DIFROM

In order to run DIFROM, the developer must have programmer access [i.e., DUZ(0) contains @]. There is

no menu option for running DIFROM. It must be run by using the M command D ^DIFROM from

programmer mode.

21.4.2 Preliminary Validations

DIFROM compares the version number from the second line of the DIFROM routine with the VA

FileMan version node from the MUMPS OPERATING SYSTEM file (#.7). This node is

^DD(“VERSION”). If the version numbers do not match, an error message is displayed and the program

exits.

DIFROM then makes sure DUZ(0)[“@”. If not, the developer sees an error message and the program

exits.

VA FileMan 22.2

Developer’s Guide 429 January 2017

21.4.3 Package Identification

Next, DIFROM prompts the developer for the 2-4 character package name. DIFROM uses these

characters to do a lookup for a matching PREFIX on the PACKAGE file (#9.4). If a match is found,

DIFROM uses information from the PACKAGE file (#9.4) entry when building the init.

Even if no matching entry is found, the process continues. In that situation, DIFROM prompts the

developer for the necessary information that is otherwise stored in the PACKAGE file (#9.4). In this way,

an init can be built on-the-fly.

21.4.4 Identifying the Init Routines

DIFROM creates a routine name by appending the suffix INIT to the package’s namespace. The

developer is informed of the name. DIFROM determines whether a routine called nmspINIT is already on

the system. If one exists, DIFROM prints a warning. The developer decides whether or not to continue.

 NOTE: DIFROM has been superseded by the Kernel Installation and Distribution System

(KIDS) for this function, starting with Kernel 8.0. DIFROM can still be used, for the time being,

for the purpose of package export between VA FileMan systems where Kernel has not been

installed.

 NOTE: The INI* routines that DIFROM creates overlay any INI* routines with the same name

that exists on the system. This situation does not cause problems when running inits. However, to

avoid confusion for the user, it is suggested that previous init routines under the same namespace

be deleted before rebuilding the init.

21.4.5 Specifications for Exported Files

DIFROM next asks the developer whether any data dictionaries (DDs) are included with the init. The

developer must answer YES in order to include either DDs or file data.

If the init is being built from a PACKAGE file (#9.4) entry, the developer is given the option to display

online the information in the FILE Multiple from the relevant PACKAGE file (#9.4) entry. If the FILE

Multiple has no entries or if the developer is building an init without the PACKAGE file (#9.4), the

developer is prompted for a list of files to be included in the init.

If the developer does not want to accept the PACKAGE file (#9.4) information as shown or if the init is

being built on-the-fly, DIFROM allows the developer to enter or edit the FILE Multiple’s data. This data

specifies how to include the files in the init and what installation options the installer has at the time the

init is run on the target system. The documentation describing the FILE Multiple of the PACKAGE file

(#9.4) details the questions the developer sees and the significance of the answers.

A developer can send only some of the fields from a file (i.e., send a partial file). The FIELDS Multiple

contains a list of exported fields when a partial file is being exported. Normally, the .01 field of a file is

automatically exported even if it is not specified in the FIELDS Multiple. However, the developer has the

option of sending or not sending the .01 field of File #200 (NEW PERSON file). If a partial of File #200

is being sent and the package does not have Kernel’s namespace (XU), the .01 field is sent only if it is

specified for export.

If the init is being built from a PACKAGE file (#9.4) entry, DIFROM next loops through each of the

template Multiples. It builds a list of the templates to be included in the init. There are Multiples for

INPUT, PRINT, SORT and SCREEN (FORM) templates. The developer uses these Multiples to send

templates that are not within the package’s namespace.

VA FileMan 22.2

Developer’s Guide 430 January 2017

21.4.6 Entering Current Version Information

DIFROM next prompts for information that is required by the VA Programming Standards and

Conventions (SAC) to appear on the second line of all routines. The developer must enter the package

name (if it cannot be picked up from the PACKAGE file [#9.4]), the version number, and the date

distributed. The existing PACKAGE file (#9.4) entry is updated with this information. The version

number entered at this step is used to build target system nodes that look like the following line of code:

Figure 373: DIFROM—Entering Current Version Information: Sample Code

^DD(File#,0,”VR”)=Version Number

21.4.7 Including Templates (No Package File Entry)

Next, if the init is not being built from a PACKAGE file (#9.4) entry, the developer is asked “Do you

want to include all the templates?”

 If the question is answered YES, the init includes all templates associated with the files being

sent, regardless of their namespace.

 If the question is answered NO, only namespaced templates are included.

 NOTE: If there is a PACKAGE file (#9.4) entry, namespaced templates and templates in the

template Multiples are automatically sent.

 REF: For details, see the “DIFROM Gathers Templates and Forms” section.

21.4.8 Including Other Package Components

DIFROM asks the developer if the following should be included in the init:

 OPTIONS

 BULLETINS

 SECURITY KEYS

 FUNCTIONS

 HELP FRAMES

Whereas templates are always sent with the init, the developer must specifically ask that these other

components be included. The developer’s choices are saved in a list. Only components in the package’s

namespace are included. There is currently no way to send ones that are not namespaced. Also, if their

namespace appears in the EXCLUDED NAME SPACE Multiple in the PACKAGE file (#9.4), they are

not sent.

21.4.9 Exporting File Security

DIFROM next asks the developer whether security codes (e.g., READ, WRITE, and LAYGO access)

should be sent with the DDs.

21.4.10 Specifying Routine Size

Then, DIFROM prompts the developer for maximum routine size. This size determines how large the init

routines that contain the data is going to be. The routines that contain the code that is executed to install

the data are of fixed size. DIFROM obtains the default value for maximum routine size from

VA FileMan 22.2

Developer’s Guide 431 January 2017

^DD(“ROU”). The size of the init routines cannot be less than 2000 characters. The upper limit should be

set in accordance with current portability standards.

21.4.11 DIFROM Gathers Miscellaneous Package Components

At this point, the interactive part of building the init is complete. DIFROM now uses the information

provided by the developer along with data stored in the PACKAGE file (#9.4) entry (if one exists) to

build the init routines.

DIFROM first checks the developer’s answers to the questions about sending OPTIONS, BULLETINS,

SECURITY KEYS, FUNCTIONS, and HELP FRAMES. For each one that the developer elected to send,

DIFROM reads through entries in the associated file and picks up those entries in the package’s

namespace. For each one, DIFROM makes sure that the name is not included in one of the entries from

the EXCLUDED NAME SPACE Multiple. For example, if an OPTION’s name is PRCZ TEST OPTION

and the namespace of the init is PRC, the OPTION is a candidate for export. However, if PRCZ is entered

in the EXCLUDED NAME SPACE Multiple of the PACKAGE file (#9.4) entry, the OPTION is not sent.

The data for each component to be included in the init routines is loaded into the ^UTILITY global.

Namespaced bulletins can be sent. However, data in the MAIL GROUP Multiple, a pointer to the MAIL

GROUP file (#3.8), is not sent. On the target system, the installer is reminded that mail groups can be

added to bulletins.

21.4.12 DIFROM Builds Routines Containing Data Dictionaries

Next, DIFROM builds the routines containing the DDs, data, and file security. To save space in the init

routines, cross-references are not sent. They are rebuilt when the inits are run on the target system. DDs

are turned into routines that hold parts of each data dictionary node on separate lines. The global reference

is listed on one line; its value is recorded on the next line. Thus, for each node in the data dictionary there

are two corresponding lines in the init routine.

The routine lines that hold data dictionary information begin with two semicolons. This format conforms

to the VA programming standard for using $TEXT to reference routine lines. When the data dictionaries

are put into place during the init process, the lines are referenced using indirection as follows:

Figure 374: DIFROM—Using Indirection to Reference DDs Put into Place during the Init Process:
Sample Code

^DD(442,0)=“value” becomes ;;^DD(442,0)

 ;;=“value”

If the “value” is too long to fit on a single line, it is divided between two lines. The first “value” line starts

with a tilde (~) and the second with an equal sign (=).

If the installer chooses to update the data dictionaries, data dictionary nodes on the target system are

overwritten. This brings in newly-defined fields, including specifications for cross-references or triggers.

It also replaces existing field definitions (data dictionary nodes) with incoming definitions. Thus,

revisions of existing fields can occur. However, the process does not alter nodes that exist on the target

system but that are not in the incoming data dictionary. For example, if a field has been deleted from the

source system’s data dictionary, that field is not deleted on the recipient’s system. Instead, a pre-init

program can be used to delete obsolete fields and obsolete data dictionary nodes.

If auditing is turned on at the sending site, the DD node indicating that auditing should occur is sent. In

this situation, auditing is turned on at the installing site if the data dictionaries are updated.

VA FileMan 22.2

Developer’s Guide 432 January 2017

21.4.13 DIFROM Builds Routines Containing Data Values

DIFROM stores data values differently than it stores data dictionary information. The recipient’s data

dictionaries can be updated directly, node by node, but data must first be evaluated for a match of entries.

As described in the “DIFROM: Running an INIT (Steps 1-16)” section, updating of the target system’s

data is done only after checking for matches. For this reason, the init routines first store data values in a

^UTILITY global structure that is rebuilt on disk on the target system. This allows the existing and

incoming values to be compared.

The routines that DIFROM creates to transport data are similar in structure to the ones created to transport

data dictionaries. The nodal address and associated values are maintained on separate program lines. The

structure as it appears on the target system and as it is contained in the init routines is:

Figure 375: DIFROM—Routines Data Transport Structure: Sample Code

^UTILITY(U,$J,file#,entry#,node)=“value”

 transported as ;;^UTILITY(U,$J,file#,entry#,node)

 ;;=“value”

21.4.14 DIFROM Builds Routines Containing Security Access Codes

DIFROM creates a separate global array for storage of security Access codes if the developer indicates

that they should be sent with the package. Security codes are extracted from the data dictionaries and

saved in another routine. The nodes containing security information, such as write protection on a field,

are not in the same routine as the data definition of the field.

When the package is installed, the recipient is asked whether security codes should be updated. A positive

response invokes a special program that puts the nodes containing security information back in the DD

structures. For example:

Figure 376: DIFROM—Nodes Containing Security Information in the DD Structures—Sample Code

^DIC(442,0) is always installed

^DIC(442,0,”DD”)=“@” is only installed upon user request

DIFROM sends most file security codes only if the developer has answered YES to the question about

sending security. However, the following two kinds of field level security codes are always sent:

 Write Access—If set to the “^” (a write-protected field) or the “@” (programmer access

required), or if the field is a MUMPS-type field.

 Delete Access—If set to the “@” (programmer access required) or if the field is a MUMPS-type

field.

VA FileMan 22.2

Developer’s Guide 433 January 2017

21.4.15 DIFROM Gathers Templates and Forms

Next, DIFROM puts INPUT, PRINT and SORT templates into ^UTILITY. It then puts FORMS

(SCREEN TEMPLATES) into ^UTILITY along with any BLOCKS that are pointed-to by the FORMS

being included. DIFROM uses the list compiled during the interactive dialogue with the developer to

select templates. Namespaced templates, with the exception of any in the EXCLUDED NAME SPACE

Multiple of the PACKAGE file (#9.4) entry, are always included. In addition, any templates in the

template Multiples are also included. If the init being built does not have a corresponding PACKAGE file

(#9.4) entry and the developer asked to send all templates, all templates associated with the files being

sent in the init are selected regardless of their namespace.

FILEGRAM and EXTRACT templates are sent along with the other entries in the PRINT TEMPLATE

file (#.4). However, the templates used by the Export Tool (Selected Fields for Export and Export) are

never included by DIFROM when a package’s components are assembled. These templates must be

created at the local site.

21.4.16 DIFROM Completes Building Routines of Package
Components

DIFROM reads through everything it stored in the ^UTILITY global and builds init routines containing

the information. This information includes the TEMPLATES, OPTIONS, BULLETINS, SECURITY

KEYS, FUNCTIONS, and HELP FRAMES.

 NOTE: Except for TEMPLATES, only those components in the package’s namespace can be

sent.

The PACKAGE file (#9.4) entry, if any, is automatically included with the init. This entry is added to the

target system when the init is run. It completely replaces an entry with the same name at the target site.

This entry is a record of what was included with the init.

21.4.17 DIFROM Completes the Code that Runs the Init

DIFROM’s final step is to build those routines that contain the code that is executed when the init is run.

The code retrieves and installs all of the data components that are being sent. The code that goes into the

nmspINI0, nmspINI1, nmspINI2, nmspINI3, nmspINI4 and nmspINIT routines is nearly identical for all

regular inits. (If the package’s namespace is less than 4 characters, the routines are named nmsINIT0 to

nmspINIT4.)

21.5 Importing Data

21.6 DIFROM: Running an INIT (Steps 1-16)

A package is installed on the target system by “running the init” for the package. Here, the process for

installing a package from inits is described in the order in which it occurs.

1. Preliminary Steps

2. Check of Version Number

3. Running Environment Check Routine (DIFROM and DIFQ Variables)

4. Determining Install Status of DDs and Data

5. Determining Install Status of Security Codes

6. Determining Install Status of other Package Components

VA FileMan 22.2

Developer’s Guide 434 January 2017

7. Starting the Update

8. Running the Pre-init after User Commit Routine

9. Installing Data Dictionaries

10. Installing Data

11. Reindexing the Files

12. Installing Other Package Components

13. General Processing

14. Special Processing

15. Running the Post-Initialization Routine

16. Recording the Install on the Target System

21.6.1 Preliminary Steps

As a safeguard, the target system should always be backed up before running an init. This allows the

system to be restored should an error, possibly corrupting the database, occur when the init is run.

To ensure that the installer has complete access to all files being installed during an init, the installer

should have programmer access when running the init.

Init routines must be run from programmer mode after the routines have been loaded onto the target

system. For example, to run an init with the package namespace of ZZTK, do the following:

Figure 377: DIFROM—Running an Init: Sample Code

>D ^ZZTKINIT

21.6.2 Check of Version Number

When an init is built, the VA FileMan version number of the source system is put into the init routine.

When the init is run, that version number is compared to the version number of the target system that is

stored in the MUMPS OPERATING SYSTEM file (#.7) node, ^DD(“VERSION”). If the init was built

using a version of VA FileMan later than the one on the target system, an error message is displayed and

the installer is not allowed to continue running the init.

This precaution is necessary because a newer version of VA FileMan may contain features and DD

structures that are not recognized by previous versions. Trying to use the new features or to install the

new structures on an older system could cause the installation to fail or to produce undesirable results.

VA FileMan 22.2

Developer’s Guide 435 January 2017

21.6.3 Running Environment Check Routine (DIFROM and DIFQ
Variables)

The ENVIRONMENT CHECK ROUTINE is a field in the PACKAGE file (#9.4) that can indicate a

routine to run as part of the init process. If the developer has included a routine name in the

ENVIRONMENT CHECK ROUTINE field, this routine is run next. The routine is written by package

developers to provide capabilities not possible from the init routines alone.

The developer’s Environment Check routine can be used to explore the current system and halt the init

process under certain conditions. For example, if a prior version of the package must be initialized before

this one, a warning message might be displayed and the process halted.

The DIFQ variable is used to stop the init process. Within the Environment Check routine, the developer

may KILL DIFQ if conditions warrant the stopping of the init process.

The DIFROM variable is defined throughout the init process. It contains the version number of the

incoming package. The developer can use it for checking in any pre- or post-init routines.

21.6.4 Determining Install Status of DDs and Data

Next, the init determines which file’s data dictionaries and data values are installed on the target system.

Based on the parameters the developer included in the init in combination with the environment

encountered at the target site, the installer is asked a series of questions for each file.

 NOTE: With the one exception mentioned below, no changes are made on the target system at

this time. The answers obtained are saved to be used later in the installation process when the

target system is updated.

The exported files are checked one-by-one. What happens to each file is described in the list that follows:

 The name of the file is displayed to the installer whether or not a partial DD is being sent and

whether or not data is coming with the file. If there is not a file with the same file number on the

target system, the DD is installed and the installer is next presented with the questions concerning

the installation of the data.

 If there is already a file under that number and the names are the same, the init tells the installer.

 NOTE: You already have the “file name” File.

VA FileMan 22.2

Developer’s Guide 436 January 2017

 If there is a file with that number, but the file names do not match, the installer is asked if the

name should be replaced. The default response is NO. In the event of miss matched file names,

the following instructions are provided:

o If the installer is sure that the files are really the same and that just the name has been

changed, this question should be answered YES. In this case, the init does a DIE call to

change the name of the file on the target system. (This is the only situation in which the target

system is altered during this phase of the install.) The init then continues with the dialogue as

if the file names had matched in the first place.

o If the installer determines that the files are not the same and answers NO, then the init asks if

the incoming file should replace the file currently on the system. If the installer answers NO

to this question, the current file is left unchanged. However, this choice results in the

installation of an incomplete package. Therefore, if this happens, the installation should

probably be stopped and the package developer consulted.

o If the installer chooses to replace the file on the target system, the init asks if the current file’s

data and templates should be kept. Based on the answers to these questions, the current DD

(and optionally the data and templates) is deleted, before the new DD is brought in. A call to

DIU is set up to do the DD deletion and also to delete the data and templates if the installer so

instructs.

 REF: For additional information, see the description of EN^DIU2.

 If to this point the DD is installed, the init checks if the developer defined a screen to determine

whether or not to install the DD. The existence of a developer-defined screen overrides the

installer’s ability to decide if the DD should be installed. If the screen exists and its conditions are

not met, the DD is not installed but the init continues. The package developer should indicate

what to do when the screen stops the DD from installing.

 If the developer decided to let the installer determine if the DD is installed, the init asks if an

existing DD should be overwritten. If the installer answers NO, the existing DD is unchanged.

Package developers should indicate when it is okay to answer this question NO.

 If data is being brought with the DD and the package developer decided to ask the question, the

installer is asked whether to overwrite the target system data or merge it with the incoming data.

The package developer determines whether data merges or overwrites; the installer can decide if

the data is installed, not how it is installed. The developer should advise the installer on how to

answer this question.

 If the developer did not give the installer the option of installing the data or not, the init just

indicates whether the data merges with or overwrite the current data.

21.6.5 Determining Install Status of Security Codes

Next, if the developer sent file security access codes with the file, the init asks if security codes present on

the target system should be overwritten. In most cases, file security is built into files by the developer.

However, if there are local security codes that need to be preserved, the installer should answer this

question NO.

 NOTE: Even if the installer says not to bring in security codes, the init installs the following field

security:

VA FileMan 22.2

Developer’s Guide 437 January 2017

 Write Access—If set to the “^” (a write-protected field) or the “@” (programmer access

required), or the field is a MUMPS-type field, Write Access security is installed.

 Delete Access—If set to an “@” (programmer access required) or the field is a MUMPS-

type field, Delete Access security is installed.

21.6.6 Determining Install Status of other Package Components

Next, the installer is notified of the kinds of components included in the init. The init asks whether or not

to overwrite existing components with the same name. The possible components are:

 INPUT TEMPLATES

 SORT TEMPLATES

 PRINT TEMPLATES, SCREEN TEMPLATES (FORMS)

 OPTIONS

 FUNCTIONS

 BULLETINS

 SECURITY KEYS

 HELP FRAMES

The developer should instruct the installer if it is all right not to install any of the components included in

the init.

21.6.7 Starting the Update

Finally, the init asks “ARE YOU SURE EVERYTHING’S OK?” To this point, there are many chances to

stop the init with no changes having been made to the target system. However, if the installer answers:

 YES—Init proceeds to install the package.

 NO—Init process is safely halted.

21.6.8 Running the Pre-init after User Commit Routine

First, the init runs the PRE-INIT AFTER USER COMMIT routine if the developer included a routine

name in the PRE-INIT AFTER USER COMMIT field in the PACKAGE file (#9.4).

The developer’s PRE-INIT AFTER USER COMMIT routine does things that are not possible with the

init routines alone. Often, it cleans up DDs or data on the target system before the init routines bring in

any of the new DDs or data. For example, obsolete fields or parts of field definitions can be removed

from data dictionaries.

21.6.9 Installing Data Dictionaries

Next, the init installs the data dictionaries for files sent with the init. The data dictionaries are then

reindexed.

Data dictionaries are set in place node-by-node, integrating with what already exists. In other words, if a

node is brought in by the DD that exists on the target system, the existing node is replaced. However, if a

node that is not included in the init exists on the target system, the init does not delete that node. This

feature allows users to create local fields and cross-references.

However, this does mean that the developer must carefully consider what the target system’s data

dictionary looks like after installation. For example, if the developer in the account used to build the init

VA FileMan 22.2

Developer’s Guide 438 January 2017

changes the definition of a field or removes a cross-reference, the field or cross-reference must be deleted,

or otherwise cleaned up on the target account by the PRE-INIT AFTER USER COMMIT routine. This

cleanup ensures that the data dictionary does not end up with an inconsistent structure after the init.

Further, each line of a word-processing field resides on a separate node. Thus, a change in one of the field

attributes that is a word-processing field (e.g., field description or technical description) cannot

completely overwrite a pre-existing attribute. If the incoming value has fewer lines than the pre-existing

one, the install does not delete the surplus lines automatically.

21.6.10 Installing Data

Next, the init brings in data that was sent with the files.

Depending on the developer’s specifications, incoming data either overwrites or merges with data existing

on the target system. In either case, if an incoming entry or subentry does not exist on the current system,

one is added. If an existing entry or subentry is found and if data is to be overwritten, each field’s value is

replaced with non-null incoming values. Null values do not overwrite existing values. If data is to be

merged, only those fields with null values are updated with incoming values. Hence, when merging, new

values are added without altering any pre-existing ones.

VA FileMan 22.2

Developer’s Guide 439 January 2017

Since the installation of data is dependent on whether or not an incoming entry or subentry already exists

on the target system, the init must determine if they are the same. The process, described as follows, is

repeated for each incoming entry or subentry:

 Checking the B Cross-reference or Zero Node

The B cross-reference holds the entry’s name (.01 field) along with the internal entry number. If a

B cross-reference exists for the file, it is searched for an existing value that matches the incoming

one. (The B cross-reference holds the name as a subscript.) The maximum length of subscripts is

defined for each operating system and is stored in the MUMPS OPERATING SYSTEM file

(#.7). The init uses this length, for example, 63 (default) or 99 as the limit of characters to

compare.

Files occasionally lack a B cross-reference. In this case, the init examines the actual data (first

piece of the entry’s zero node) for a match of values.

If a match (either of the B cross-reference or of the first piece of the zero node) is not found, the

incoming entry is considered new and is added to the file. If a match is found, additional checks

(discussed below) are made to determine whether the entries can be associated.

 Using the Internal Entry Number to Verify a Match

Once a match of the .01 fields of the incoming and existing entries is found, the init determines

whether the internal entry numbers of the two entries are related. If the file has a defined .001

field, internal entry number is a meaningful attribute of an entry. In this situation, when the name

and internal entry numbers match, identifiers are checked to verify the match.

If the INPUT transform of the .01 field contains DINUM, it operates in the same way as a .001

field. In this case, the .01 field and the internal entry number must match for the entries to be

considered the same.

After a match is established based on the .001 field (or DINUMed .01 field), the identifiers are

checked. If the identifiers for the two entries are the same, the entries are considered the same. If

the identifiers do not match, the new entry is not installed at all.

 Using Identifiers to Verify a Match

If the file is not referenced by number (i.e., .001 field does not exist) and there are duplicate B

cross-references or entries in the file with duplicate .01 fields, the init cannot resolve the

ambiguity without identifiers. A well-designed file uses one or more identifiers so that each entry

is unique with respect to name and identifiers. If the file lacks identifiers and a .001 field, the init

associates the incoming entry with the first existing entry with a matching name.

If identifiers exist, the init gets the global location of the identifier (piece position) from the data

dictionary and uses indirection to retrieve the identifier’s value from the ^UTILITY storage

global. This value is then compared with the existing entry’s identifier value for a match. Only

identifiers that have valid field numbers are used in this process.

The init matches identifiers in the same way it matches .01 fields. If the values of all the incoming

identifiers match the existing ones, the two entries are considered to be the same. If the values do

not match, the possibility of identity is rejected and the search continues. If none of the values for

existing entries matches the incoming entry, the incoming entry is considered new and is added to

VA FileMan 22.2

Developer’s Guide 440 January 2017

the file. However, as mentioned above, if a .001 field exists or the .01 field is DINUMed, the

entry is not installed if the identifiers differ.

Once the internal entry number on the target system for matching entries is found, it is used to place the

incoming data, either by merging with or overwriting existing values.

 NOTE: No audit trail is kept of data brought in by an init even if the audit flag is on for a field

receiving data.

21.6.11 Reindexing the Files

Once all the new data has been integrated, the files are reindexed. If any of the files have compiled cross-

references, the compiled cross-reference routines are rebuilt. Then, if any data was sent for a file, the init

reindexes all cross-references for all records in the file. Only the SET logic is executed.

21.6.12 Installing Other Package Components

Next, the init brings in the remaining components built into the init. They are installed in the following

order:

1. Help Frames

2. Bulletins

3. PACKAGE file (#9.4) entry for the package being installed

4. PACKAGE PARAMETER multiple from the ORDER PARAMETERS file (#100.99; an Order

Entry file)

5. Options

6. Security Keys

7. Functions

8. Print Templates

9. Sort Templates

10. Input Templates

11. Blocks associated with Screen Templates (Forms)

12. Screen Templates (Forms) themselves

The init might contain some or all of these components. They consist of entries that are placed into pre-

existing files. Many of them are prefixed with the package namespace.

There is special coding in DIFROM to bundle and install data sent from files, such as:

 HELP FRAME (#9.2)

 BULLETIN (#3.6)

 OPTION (#19)

 INPUT TEMPLATE (#.402)

For example, DIFROM resolves pointers for these files. It does not resolve pointers for data sent for other

files in an init. To resolve pointers, DIFROM replaces, in the init routines, a pointer to another file with

the pointer’s external value. When the data is installed at the target site, the init routines use this external

VA FileMan 22.2

Developer’s Guide 441 January 2017

value for a lookup in the B cross-reference of the pointed-to file. When the corresponding entry number is

found, the external value is replaced with this entry number as the new pointer value. Thus, the values of

pointer fields are correct for the data brought in by the init.

21.6.13 General Processing

The general process used for installing each of the package components is described here. Component-

specific special processing is described following this section.

The init reads the name of the incoming entry from the ^UTILITY global and searches for a matching

name in the relevant file’s B cross-reference. The cross-reference for the HELP FRAME file (#9.2), for

example, looks like this:

Figure 378: DIFROM—Sample HELP FRAME File (#9.2) Cross-reference

^DIC(9.2,”B”,entryname,DA)

If an exact match is not found, the incoming entry is considered new and is added as a new file entry. If

an exact match is found, special processing, described in detail below, is done. Each different type of

entry has its own special processing. Unless noted in the special processing, the entire matching old entry

is deleted from the target system before the new entry is installed.

For either new or replaced entries, other special processing, such as resolving pointers, is done for each

different type of entry. This processing is also described in detail below.

Finally, all cross-references on the new or replaced entry are reindexed (SET logic only).

 NOTE: Not all files are reindexed.

VA FileMan 22.2

Developer’s Guide 442 January 2017

21.6.14 Special Processing

Table 116: DIFROM—Special Processing

Process Description

HELP FRAMES If an exact match is found for a HELP FRAME entry, only the
existing word-processing field TEXT and the Multiple fields
RELATED FRAME and INVOKED BY ROUTINE are deleted from
the existing entry. Then, the new entry is brought in on top of the
old one.

For all entries brought in by the init, the init loops through the
RELATED FRAME Multiple and resolves the pointer field
RELATED FRAME, which is a pointer back to the HELP FRAME
file (#9.2).

BULLETINS If a matching entry is found, the old entry in the BULLETIN file
(#3.6) is deleted. However, entries in the bulletin’s MAIL GROUP
Multiple (which identify recipients of the bulletin) present on the
target system before the install remains associated with the
bulletin after the incoming bulletin is installed.

The init displays each bulletin brought in by the init and reminds
the installer to “Remember to add mail groups for new bulletins.”

PACKAGE FILE ENTRIES The current date/time is stuffed into the field DATE INSTALLED
AT THIS SITE, within the VERSION Multiple for the current version
of the package.

The pointer field PRIMARY HELP FRAME is resolved.

PACKAGE PARAMETERS entry
in the ORDER PARAMETERS
file (#100.99; an Order Entry file)

Pointer fields DISPLAY GROUP DEFAULT, PROTOCOL TO
EXPORT, DEFAULT PROTOCOL, and MENU are resolved. If
pointers to the PROTOCOL file (#101) cannot be resolved
because the pointed-to protocol cannot be found, the init routines
add a new entry to the PROTOCOL file (#101) (with just a .01
field) in order to resolve the pointer. This is done because
PROTOCOLS are exported in a special set of routines (called
ONIT routines) that are normally executed as a post-init.

OPTIONS If a matching entry is found, the entire old entry is not deleted.
Only the DESCRIPTION field (a word-processing field) and the
ITEMS Multiple (containing menu items) are deleted from the old
entry before the new one is brought in.

For example, if the site has a local lock on an OPTION, and no
lock is brought in by the init, the local lock is preserved.

The pointer fields SERVER BULLETIN, SERVER MAIL GROUP,
PACKAGE, HELP FRAME and the .01 field of the ITEMS Multiple
(which points back to the Option file) are all resolved.

SECURITY KEYS No special processing, except that if a matching entry is found in
the target system, it is merged rather than replaced. Note that
pointers in the SUBORDINATE KEY Multiple are not resolved; so,
data should not be exported in that multiple.

FUNCTION No special processing is done for the FUNCTION file (#.5).

VA FileMan 22.2

Developer’s Guide 443 January 2017

Process Description

PRINT, INPUT, and SORT
TEMPLATES

The only special processing done for these templates is that after
they are all installed, compiled PRINT and INPUT templates are
automatically recompiled. The init uses the system’s preferred
routine size from the MUMPS OPERATING SYSTEM file (#.7)
when compiling these templates. It is possible that the recipient of
the init could already have routines with the same names that the
compiling routine uses. Thus, the developer should warn the
installer of the routine names that are used by incoming compiled
templates, especially if the developer is sending templates that are
not namespaced.

SCREEN TEMPLATES
(FORMS)

Any BLOCKS that are pointed-to by FORMS are automatically
included in the init routines. The BLOCKS are installed first, with
no special processing. Then, the FORMS are installed. Finally,
pointers to the BLOCK file (#.404) from the FORM file (#.403) are
resolved.

21.6.15 Running the Post-Initialization Routine

At the developer’s discretion, there can be a routine identified in the POST-INITIALIZATION

ROUTINE field in the PACKAGE file (#9.4). This routine is written by the package developers and

provides added capability that is not possible within the init routines alone.

If the developer has included a POST-INITIALIZATION ROUTINE in the init, it is run now.

The POST-INITIALIZATION ROUTINE can be used to do cleanup after all of the other components

contained in the init have been installed. For example, it might:

 Delete obsolete options and update OPTION file (#19) pointers

 Check the status of such things as file protection

 Issue some additional information to the installer

 Perform some sort of data conversion. For example, the routine might move some old data to a

new location in a file to match a changed data dictionary.

21.6.16 Recording the Install on the Target System

Then, if pre- or post-init routines were included, the PACKAGE file (#9.4) fields that track the date and

time that those routines were run are updated with the current date and time. If any new files were added

to the target system, the record count of the FILE file (#1) is updated to reflect the new files.

Then, the init routines update any VERSION number nodes on the files that have been specified by the

Package developer.

Finally, the VERSION number node is set in the PACKAGE file (#9.4) entry (if any).

The init is now complete.

VA FileMan 22.2

Developer’s Guide 444 January 2017

22 Appendix A—VA FileMan Error Codes

22.1 Introduction

Descriptions of the error codes returned by VA FileMan’s DBS are contained in this section. When an

error condition is recognized, an error code, the text of the error, and (when appropriate) one or more

parameters are returned to the client application.

The “How the Database Server (DBS) Communicates” section describes in detail the array structure in

which this information about the error is returned.

Section 22.2 lists error codes that are ordered by error code number. Each error code includes the

following components:

 Error Number.

 Description—The condition that produced the error.

 Text—The text of the error message. Within the text, information that is inserted into the message

at the time it is created is represented by a parameter name surrounded by vertical bars (“|”). For

example, in the text of Error 201, you see “|1|”. Parameter 1 represents the variable name that is

missing or invalid. When the message is created, the name of the variable causing the error is

substituted into the text for the |1|.

 Parameters—The parameters associated with the error message. Each parameter is followed by a

short description. The names of the parameters identify both the place within the text of a

message into which they are inserted and the subscript in the PARAM array that identifies them.

Some parameter names are constant in all appropriate error messages:

o FILE—Representing file number.

o FIELD—Representing field number.

o IENS—Representing the Internal Entry Number String (IENS).

If you need to identify in your application code the file, field, or entry that caused an error, check

these subscripts of the PARAM array. Of course, if no parameters are listed, this indicates that

there are none associated with the particular error condition.

22.2 Error Codes

Error 101

DESCRIPTION:

The option or function can only be done if DUZ(0)=“@”, designating the user as having programmer

access.

TEXT:

Only those with programmer access can perform this function.

PARAMETERS:

None

VA FileMan 22.2

Developer’s Guide 445 January 2017

Error 110

DESCRIPTION:

An attempt to get a lock timed out. The record is locked and the desired action cannot be taken until the

lock is released.

TEXT:

The record is currently locked.

PARAMETERS:

 “FILE” means file or subfile number.

 “IENS” means Internal Entry Number String (IENS) of entry numbers.

Error 111

DESCRIPTION:

An attempt to get a lock timed out. The File Header Node is locked, and the desired action cannot be

taken until the lock is released.

TEXT:

The File Header Node is currently locked.

PARAMETERS:

“FILE” means file number.

Error 120

DESCRIPTION:

An error occurred during the execution of a VA FileMan hook (e.g., an INPUT transform, DIC screen).

The type of hook in which the error occurred is identified in the text. When relevant, the file, field, and

IENS for which the hook was being executed are identified in the PARAM nodes. The substance of the

error is usually identified by a separate error message generated during the execution of the hook itself.

That error is usually the one preceding this one in the DIERR array.

TEXT:

The previous error occurred when performing an action specified in a |1|.

PARAMETERS:

 “1” means type of VA FileMan executable code.

 “FILE” means file number.

 “FIELD” means field number.

 “IENS” means Internal Entry Number String (IENS).

VA FileMan 22.2

Developer’s Guide 446 January 2017

Error 200

DESCRIPTION:

There is an error in one of the variables passed to a VA FileMan call or in one of the parameters passed in

the actual parameter list.

TEXT:

An input variable or parameter is missing or invalid.

PARAMETERS:

None

Error 201

DESCRIPTION:

The specified input variable is either:

 Required but not defined

 Not valid.

TEXT:

The input variable |1| is missing or invalid.

PARAMETERS:

“1” means variable name.

Error 202

DESCRIPTION:

The specified parameter is either required but missing or invalid.

TEXT:

The input parameter that identifies the |1| is missing or invalid.

PARAMETERS:

“1” means parameter as identified in the VA FileMan documentation.

Error 203

DESCRIPTION:

An incorrect subscript is present in an array that is passed to VA FileMan. For example, one of the

subscripts in the FDA that identifies FILE, IENS, or FIELD is incorrectly formatted.

TEXT:

The subscript that identifies the |1| is missing or invalid.

PARAMETERS:

“1” means the data element incorrectly specified by a subscript.

VA FileMan 22.2

Developer’s Guide 447 January 2017

Error 204

DESCRIPTION:

Control characters are not permitted in the database.

TEXT:

The input value contains control characters.

PARAMETERS:

“1” means input value.

Error 205

DESCRIPTION:

Error message output when a file or subfile number and its associated IEN string are not in sync (i.e., the

number of comma pieces represented by the IEN string do not match the file/subfile level according to the

“UP” nodes).

TEXT:

File# |1| and IEN string |IENS| represent different subfile levels.

PARAMETERS:

 “1” means file or subfile number.

 “IENS” means Internal Entry Number String (IENS).

Error 206

DESCRIPTION:

VA FileMan is trying to pack fields onto a single node for a record, and the data does not fit. The

application has asked for too many fields back for this record.

TEXT:

The data requested for record |1| is too long to pack together.

PARAMETERS:

“1” means record number.

Error 207

DESCRIPTION:

The library function $$HTML^DILF can encode or decode a string to and from HTML, used within VA

FileMan to pack a value containing embedded ^s into a ^-delimited string. Encoding increases the length

of the string. If encoding would cause the length to exceed the portable string length limit,

$$HTML^DILF instead returns this error.

TEXT:

The value |1| is too long to encode into HTML.

PARAMETERS:

“1” means value.

VA FileMan 22.2

Developer’s Guide 448 January 2017

Error 299

DESCRIPTION:

A lookup that was restricted to finding a single entry found more than one.

TEXT:

More than one entry matches the value ‘|1|’.

PARAMETERS:

 “1” means lookup value.

 “FILE” means file number.

 “IENS” means Internal Entry Number String (IENS).

Error 301

DESCRIPTION:

Flags passed in a variable [e.g., DIC(0)] or in a parameter are incorrect.

TEXT:

The passed flag(s) ‘|1|’ are unknown or inconsistent.

PARAMETERS:

“1” means letters from flag.

Error 302

DESCRIPTION:

The calling application has asked us to add a new record, and has supplied a record number, but a record

already exists at that number.

TEXT:

Entry ‘|IENS|’ already exists.

PARAMETERS:

 “FILE” means file number.

 “IENS” means Internal Entry Number String (IENS).

Error 304

DESCRIPTION:

The problem with this IEN string is that it lacks the final ‘,’. This is a common mistake for beginners.

TEXT:

The IENS ‘|IENS|’ lacks a final comma.

PARAMETERS:

“IENS” means Internal Entry Number String (IENS).

VA FileMan 22.2

Developer’s Guide 449 January 2017

Error 305

DESCRIPTION:

A root is used to identify an input array, but the array is empty.

TEXT:

The array with a root of ‘|1|’ has no data associated with it.

PARAMETERS:

“1” means passed root.

Error 306

DESCRIPTION:

When an IENS is used to explicitly identify a subfile, not a subfile entry, then the first comma-piece

should be empty. This one was not.

TEXT:

The first comma-piece of IENS ‘|IENS|’ should be empty.

PARAMETERS:

“IENS” means IENS.

Error 307

DESCRIPTION:

One of the IENs in the IENS has been left out, leaving an empty comma-piece.

TEXT:

The IENS ‘|IENS|’ has an empty comma-piece.

PARAMETERS:

“IENS” means IENS.

Error 308

DESCRIPTION:

The syntax of this IENS is incorrect. For example, a record number may be illegal, or a subfile may be

specified as already existing, but have a parent that is just now being added.

TEXT:

The IENS ‘|IENS|’ is syntactically incorrect.

PARAMETERS:

“IENS” means IENS.

VA FileMan 22.2

Developer’s Guide 450 January 2017

Error 309

DESCRIPTION:

A multiple field is involved. Either the root of the multiple or the necessary entry numbers are missing.

TEXT:

There is insufficient information to identify an entry in a subfile.

PARAMETERS:

None

Error 310

DESCRIPTION:

Some of the IENS subscripts in this FDA conflict with each other. For example, one IENS may use the

sequence number ?1 while another uses +1. This would be illegal, because the sequence number 1 is

being used to represent two different operations.

Consult your documentation for an explanation of the various conflicts possible.

The IENS returned with this error happens to be one of the IENS values in conflict.

TEXT:

The IENS ‘|IENS|’ conflicts with the rest of the FDA.

PARAMETERS:

“IENS” means IENS.

Error 311

DESCRIPTION:

Adding an entry to a file without including all required identifiers violates database integrity. The entry

identified by this IENS lacks some of its required identifiers in the passed-in FDA.

TEXT:

The new record ‘|IENS|’ lacks some required identifiers.

PARAMETERS:

“IENS” means IENS.

Error 312

DESCRIPTION:

All required identifiers must be present for a new entry to be filed. One or more of those fields is missing

for the (sub)file.

TEXT:

The list of fields is missing a required identifier for File #|FILE|.

PARAMETERS:

“FILE” means file or subfile number.

VA FileMan 22.2

Developer’s Guide 451 January 2017

Error 330

DESCRIPTION:

The value passed by the calling application should be a certain data type, but according to the checks it is

not.

TEXT:

The value ‘|1|’ is not a valid |2|.

PARAMETERS:

 “1” means passed value.

 “2” means data type.

Error 348

DESCRIPTION:

The calling application passed us a variable pointer value. That value points to a file that does not exist or

that lacks a Header Node.

TEXT:

The passed value ‘|1|’ points to a file that does not exist or lacks a Header Node.

PARAMETERS:

“1” means passed value.

Error 351

DESCRIPTION:

When passing an FDA to the Updater, any entries intended as Finding or LAYGO Finding nodes must

include a .01 node that has the lookup value. This value need not be a legitimate .01 field value but it must

be a valid and unambiguous lookup value for the file.

TEXT:

FDA nodes for lookup ‘|IENS|’ omit a .01 node with a lookup value.

PARAMETERS:

 “FILE” means file number.

 “IENS” means IENS subscript for Finding or LAYGO Finding node.

VA FileMan 22.2

Developer’s Guide 452 January 2017

Error 352

DESCRIPTION:

When passing an FDA to the Updater, any entries intended as LAYGO or LAYGO Findings nodes must

include .01 node. Every new entry must have a value for the .01 field.

TEXT:

The new record ‘|IENS|’ for file #|FILE| lacks a .01 field.

PARAMETERS:

 “FILE” means file number.

 “IENS” means IENS subscript for Finding or LAYGO Finding node.

Error 401

DESCRIPTION:

The specified file or subfile does not exist; it is not present in the data dictionary.

TEXT:

File #|FILE| does not exist.

PARAMETERS:

“FILE” means file number.

Error 402

DESCRIPTION:

The specified file or subfile lacks a valid global root; the global root is missing or is syntactically not

valid.

TEXT:

The global root of file #|FILE| is missing or not valid.

PARAMETERS:

 “FILE” means file number.

 “ROOT” means file root.

 “IENS” means IEN string.

Error 403

DESCRIPTION:

The File Header Node, the top-level of the data file as described in this manual, must be present for VA

FileMan to determine certain kinds of information about a file.

TEXT:

File #|FILE| lacks a Header Node.

PARAMETERS:

“FILE” means file number.

VA FileMan 22.2

Developer’s Guide 453 January 2017

Error 404

DESCRIPTION:

You have identified a file by the global node of its data file and found its Header Node. You needed to

use the Header Node to identify the number of the file, but that piece of information is missing from the

Header Node.

TEXT:

The File Header node of the file stored at |1| lacks a file number.

PARAMETERS:

“1” means file root.

Error 405

DESCRIPTION:

The NO EDIT flag is set for the file. No instruction to override that flag is present.

TEXT:

Entries in file |1| cannot be edited.

PARAMETERS:

 “1” means file name.

 “FILE” means file number.

Error 406

DESCRIPTION:

The data definition for a .01 field for the specified file is missing. This file is therefore not valid for most

database operations.

TEXT:

File #|FILE| has no .01 field definition.

PARAMETERS:

“FILE” means file number.

Error 407

DESCRIPTION:

The subfile number of a word-processing field has been passed in the place of a file parameter. This is not

acceptable. Although the system implements word-processing fields as independent files, it does not

allow them to be treated as files for purposes of most database activities.

TEXT:

A word-processing field is not a file.

PARAMETERS:

“FILE” means subfile number of word-processing field.

VA FileMan 22.2

Developer’s Guide 454 January 2017

Error 408

DESCRIPTION:

The file lacks a name. For subfiles, $P(^DD(file#,0),U) is null. For root files,

$O(^DD(file#,0,”NM”,”“))=““.

TEXT:

File# |FILE| lacks a name.

PARAMETERS:

“FILE” means file number.

Error 409

DESCRIPTION:

The indicated file does not exist in the VA FileMan database.

TEXT:

File ‘|1|’ could not be found.

PARAMETERS:

“1” means file name or number.

Error 420

DESCRIPTION:

A cross-reference was specified for a lookup, but that cross-reference does not exist on the file. The file

has entries, but the index does not. This error implies nothing about whether the index is defined in the

file’s DD.

TEXT:

There is no |1| index for File #|FILE|.

PARAMETERS:

 “1” means cross-reference name.

 “FILE” means file number.

Error 501

DESCRIPTION:

A search of the data dictionary reveals that the field name or number passed does not exist in the specified

file.

TEXT:

File #|FILE| does not contain a field |1|.

PARAMETERS:

 “1” means field name or number.

 “FILE” means file number.

 “FIELD” means field number.

VA FileMan 22.2

Developer’s Guide 455 January 2017

Error 502

DESCRIPTION:

The field has been identified, but some key part of its definition is missing or corrupted.

^DD(file#,field#,0) may not be defined. Some key piece of that node may be missing.

TEXT:

Field# |FIELD| in file# |FILE| has a corrupted definition.

PARAMETERS:

 “FILE” means file number.

 “FIELD” means field number.

Error 505

DESCRIPTION:

The field name passed is ambiguous. It cannot be determined to which field in the file it refers.

TEXT:

There is more than one field named ‘|1|’ in File #|FILE|.

PARAMETERS:

 “1” means field name.

 “FILE” means file number.

Error 510

DESCRIPTION:

For some reason, the data type for the specified field cannot be determined. This can mean that the data

dictionary is corrupted.

TEXT:

The data type for Field #|FIELD| in File #|FILE| cannot be determined.

PARAMETERS:

 “FIELD” means field number.

 “FILE” means file number.

VA FileMan 22.2

Developer’s Guide 456 January 2017

Error 520

DESCRIPTION:

An incorrect kind of field is being processed. For example, filing is being attempted for a computed field

or validation for a word-processing field.

TEXT:

A |1| field cannot be processed by this utility.

PARAMETERS:

 “1” means data type or other field characteristic (e.g., .001, DINUMed).

 “FILE” means file number.

 “FIELD” means field number.

Error 525

DESCRIPTION:

It is indicated that a subfile is involved (e.g., by choosing a multiple field’s field number), but no fields

from the subfile are chosen.

TEXT:

No fields are specified for subfile #|FILE|.

PARAMETERS:

“FILE” means subfile number.

Error 537

DESCRIPTION:

This error means that a certain field in a certain file has a data type of pointer, but something is wrong

with the rest of the DD information needed to make that pointer work. For example, perhaps the number

of the pointed-to file, which should follow the P in the second ^-piece of the field descriptor node, is

missing.

Another problem would be if the global root of the pointed to file were missing from the field’s

definition; that should be found in the third ^-piece of the field descriptor.

TEXT:

Field #|FIELD| in File #|FILE| has a corrupted pointer definition.

PARAMETERS:

 “FILE” means file number.

 “FIELD” means field number.

VA FileMan 22.2

Developer’s Guide 457 January 2017

Error 601

DESCRIPTION:

The entry identified by FILE and IENS does not exist in the database.

TEXT:

The entry does not exist.

PARAMETERS:

 “FILE” means file or subfile number (external only).

 “IENS” means IEN string (external only).

Error 602

DESCRIPTION:

There is a -9 node for the entry; therefore, the entry cannot be accessed.

TEXT:

The entry is not available for editing.

PARAMETERS:

 “FILE” means file or subfile number (external only).

 “IENS” means IEN string (external only).

Error 603

DESCRIPTION:

A specific entry in a specific file lacks a value for a required field. This error message returns the name of

the field that is missing.

TEXT:

Entry #|1| in File #|FILE| lacks the required Field #|FIELD|.

PARAMETERS:

 “1” means entry number.

 “FILE” means file number.

 “FIELD” means field number.

VA FileMan 22.2

Developer’s Guide 458 January 2017

Error 630

DESCRIPTION:

The database is corrupted. The value for a specific field in one entry should be a certain data type, but it is

not.

TEXT:

In Entry # |1| of File #|FILE|, the value ‘|2|’ for Field #|FIELD| is not a valid ‘|3|’.

PARAMETERS:

 “1” means entry number.

 “2” means field value.

 “3” means data type.

 “FILE” means file number.

 “FIELD” means field number.

Error 648

DESCRIPTION:

The database is corrupted. In a specific variable pointer field of a certain entry, the field’s value points to

a file that either does not exist or that lacks a Header Node.

TEXT:

In Entry #|1| of File #|FILE|, the value ‘|2|’ for Field #|FIELD| points to a file that does not exist or lacks

a Header Node.

PARAMETERS:

 “1” means entry number.

 “2” means field value.

 “FILE” means file number.

 “FIELD” means field number.

VA FileMan 22.2

Developer’s Guide 459 January 2017

Error 701

DESCRIPTION:

The value is invalid. Possible causes include: value did not pass INPUT transform, value for a pointer or

variable pointer field cannot be found in the pointed-to file, a screen was not passed.

TEXT:

The value ‘|3|’ for field |1| in file |2| is not valid.

PARAMETERS:

 “1” means field name.

 “2” means file name.

 “3” means value that was found to be invalid.

 “FIELD” means field number (external only).

 “FILE” means file number (external only).

 “IENS” means IEN string identifying entry with invalid value (external only, sometimes

returned).

Error 703

DESCRIPTION:

The value passed cannot be found in the indicated file using $$FIND1^DIC.

TEXT:

The value ‘|1|’ cannot be found in file #|FILE|.

PARAMETERS:

 “1” means lookup value.

 “FILE” means file number.

 “IENS” means IEN string.

Error 710

DESCRIPTION:

The data dictionary specifies that the field is uneditable. Data already exists in the field. It cannot be

changed.

TEXT:

Data in Field #|FIELD| in File #|FILE| cannot be edited.

PARAMETERS:

 “FIELD” means field number.

 “FILE” means file number.

VA FileMan 22.2

Developer’s Guide 460 January 2017

Error 712

DESCRIPTION:

The value of a field cannot be deleted either for any of the following reasons:

 It is a required field.

 It is the .01 of a file.

 Test in the “DEL” node was not passed.

TEXT:

The value of field |1| in file |2| cannot be deleted.

PARAMETERS:

 “1” means field name.

 “2” means file name.

 “FIELD” means field number (external only).

 “FILE” means file number (external only).

Error 714

DESCRIPTION:

The field uses $Piece storage and the data contains a caret (“^”). The data cannot be filed.

TEXT:

Data for Field |1| in File |2| contains an ‘^’.

PARAMETERS:

 “1” means field name.

 “2” means file name.

 “FILE” means file number (external only).

 “FIELD” means field number (external only).

Error 716

DESCRIPTION:

Data being filed is too long for the field. Specifically, this occurs when data of the wrong length is being

filed in a $Extract (Em,n) field.

TEXT:

Data for field |1| in file |2| is too long.

PARAMETERS:

 “1” means field name.

 “2” means file name.

 “FIELD” means field number (external only).

 “FILE” means file number (external only).

VA FileMan 22.2

Developer’s Guide 461 January 2017

Error 720

DESCRIPTION:

The lookup for a pointer fails. This is an error only when LAYGO is not allowed.

TEXT:

The value cannot be found in the pointed-to file.

PARAMETERS:

 “FILE” means file number; the number of the file in which the pointer field exists.

 “FIELD” means field number of the pointer field.

Error 726

DESCRIPTION:

There is an attempt to take an action with word-processing data, but the specified field is not a word-

processing field.

TEXT:

Field #|FIELD| in File #|FILE| is not a word-processing field.

PARAMETERS:

 “FIELD” means field number.

 “FILE” means file number.

Error 730

DESCRIPTION:

Based on how the data type is defined by a specific field in a specific file, the passed value is not valid.

TEXT:

The value ‘|1|’ is not a valid |2| according to the definition in Field #|FIELD| of File #|FILE|.

PARAMETERS:

 “1” means passed value.

 “2” means data type.

 “FIELD” means field number.

 “FILE” means file number.

VA FileMan 22.2

Developer’s Guide 462 January 2017

Error 740

DESCRIPTION:

When one or more fields are declared as a key for a file, there cannot be duplicate values in those fields

for entries in the file. The values being passed for validation, when combined with values for unchanging

fields in the entry if necessary, create a duplicate key. The changes destroy the integrity of the key;

therefore, they are invalid.

TEXT:

New values are invalid because they create a duplicate Key ‘|1|’ for the |2| file.

PARAMETERS:

 “1” means name of key.

 “2” means name of affected file.

Error 742

DESCRIPTION:

Every field in a key must have a value. The incoming data cannot delete the value for any field in a key.

TEXT:

The value of field |1| in the |2| file cannot be deleted because that field is part of the ‘|3|’ key.

PARAMETERS:

 “1” means field name.

 “2” means file name.

 “3” means key name.

 “FILE” means file number.

 “FIELD” means field number.

Error 744

DESCRIPTION:

Every field that is in a key must have a value. No value for this field exists.

TEXT:

Field |1| is part of Key ‘|2|’, but the field has not been assigned a value.

PARAMETERS:

 “1” means field name.

 “2” means key name.

 “FIELD” means field number.

 “FILE” means file number.

VA FileMan 22.2

Developer’s Guide 463 January 2017

Error 746

DESCRIPTION:

A lookup node is present in the FDA, but no Primary Key fields are provided.

The K flag was used, but no primary key fields were provided in the FDA for Finding and LAYGO

Finding nodes.

TEXT:

No fields in Primary Key ‘|1|’ have been provided in the FDA to look up ‘|IENS|’ in the |2| file.

PARAMETERS:

 “1” means key name.

 “2” means file name.

 ‘‘IENS” means IEN string of lookup node (external only).

 “KEY” means key number (external only).

 “FILE” means file number (external only).

Error 810

DESCRIPTION:

A %ZOSF node required to perform a function does not exist. The Kernel Developer’s Guide contains a

complete list of %ZOSF nodes.

TEXT:

A necessary %ZOSF node does not exist on your system.

PARAMETERS:

None

Error 820

DESCRIPTION:

The ZSAVE CODE field (#2619) in the MUMPS OPERATING SYSTEM file (#.7) is empty for the

operating system being used. It is impossible to perform functions, such as compiling templates or cross-

references.

TEXT:

There is no way to save routines on the system.

PARAMETERS:

None

VA FileMan 22.2

Developer’s Guide 464 January 2017

Error 840

DESCRIPTION:

The TERMINAL TYPE file (#3.2) does not have an entry that matches IOST(0).

TEXT:

Terminal type ‘|1|’ cannot be found in the Terminal Type file.

PARAMETERS:

“1” means terminal type as identified by IOST(0).

Error 842

DESCRIPTION:

The field in the TERMINAL TYPE file (#3.2) that contains the specified characteristic of the terminal is

null.

TEXT:

|1| cannot be found for Terminal Type |2|.

PARAMETERS:

 “1” means terminal type characteristic.

 “2” means terminal type.

Error 845

DESCRIPTION:

A %ZIS call with IOP set to “HOME” returns POP.

TEXT:

The characteristics for the HOME device cannot be obtained.

PARAMETERS:

None

Error 1300

DESCRIPTION:

The entry encountered an error during subfile filing.

TEXT:

The entry encountered an error during subfile filing.

PARAMETERS:

“IEN” means entry number.

VA FileMan 22.2

Developer’s Guide 465 January 2017

Error 1500

DESCRIPTION:

Error given for unsuccessful lookup of SEARCH template in BY(0) input variable.

TEXT:

SEARCH template |1| in BY(0) variable cannot be found, is for the wrong file, or has no list of search

results.

PARAMETERS:

“1” means name of SEARCH template in input variable BY(0).

Error 1501

DESCRIPTION:

Error message shown to user when no code was generated during compilation of SORT TEMPLATES.

TEXT:

There is no code to save for this compiled Sort Template routine.

PARAMETERS:

None

Error 1502

DESCRIPTION:

Error message notifying the user that there are no more available routine numbers for compiled Sort

Template routines. This should never happen, since routine numbers are re-used.

TEXT:

All available routine numbers for compilation are in use.

IRM needs to run ENRLS^DIOZ() to release the routine numbers.

PARAMETERS:

None

Error 1503

DESCRIPTION:

Warn user to shorten compiled cross-reference routine name.

TEXT:

Routine name is too long. Compilation has been aborted.

PARAMETERS:

None

VA FileMan 22.2

Developer’s Guide 466 January 2017

Error 1504

DESCRIPTION:

If doing Transfer/Merge of a single record from one file to another and the .01 field names do not match,

you cannot do the transfer/merge.

TEXT:

No matching .01 field names found. Transfer/Merge cannot be done.

PARAMETERS:

None

Error 1610

DESCRIPTION:

A question mark or, in the case of a variable pointer field, a <something>.? was passed to the Validator.

The Validator does not process help requests.

TEXT:

Help is being requested from the Validator utility.

PARAMETERS:

 “FILE” means file number.

 “FIELD” means field number.

Error 1700

DESCRIPTION:

Generic message for Silent DIFROM.

TEXT:

Error: |1|.

PARAMETERS:

“1” means generic message.

Error 1701

DESCRIPTION:

Transport structure does not contain SPECIFIC ELEMENT.

TEXT:

Transport structure does not contain |1|.

PARAMETERS:

“1” describes missing element in transport structure.

VA FileMan 22.2

Developer’s Guide 467 January 2017

Error 1805

DESCRIPTION:

For some reason a record or a field in a record could not be filed. The cause of the error should be present

in another message.

TEXT:

An error occurred during the actual filing of data into the FileMan database.

PARAMETERS:

None

Error 1810

DESCRIPTION:

The attempt to move data from a host file into the M environment failed. A possible cause is that the host

file does not exist in the path specified.

TEXT:

The data from host file ‘|1|’ could not be moved into a FileMan file.

PARAMETERS:

“1” means Host file name.

Error 1812

DESCRIPTION:

A host file was located; however, no data was present in it. This error also occurs if the only “data” is the

designation of file and fields with no actual data present to file.

TEXT:

The host file, |1|, contains no data to import.

PARAMETERS:

“1” means Host file name.

Error 1820

DESCRIPTION:

The foreign format name that was passed could not be found in the FOREIGN FORMAT file (#.44).

TEXT:

There is no Foreign Format named ‘|1|’.

PARAMETERS:

“1” means foreign format.

VA FileMan 22.2

Developer’s Guide 468 January 2017

Error 1821

DESCRIPTION:

The format of the imported data must either be delimited by a specified character or be fixed length. The

format being specified is neither.

TEXT:

If no record delimiter is specified, the foreign format must be fixed length.

PARAMETERS:

None

Error 1822

DESCRIPTION:

For a fixed length import, the length data for a field is impossible. For example, the length is zero or the

start position is larger than the end position.

TEXT:

The length of a field is incorrectly specified.

PARAMETERS:

None

Error 1833

DESCRIPTION:

The F flag for the Import call means that the file and field information is in the host file. However, the file

and/or fields parameter contained data. This conflicts with the F flag.

TEXT:

The F flag conflicts with the File or Fields parameter.

PARAMETERS:

None

Error 1850

DESCRIPTION:

The device for printing the Import report was not properly specified. This could be caused either by a

user’s response or by the device specifications passed to the FILE^DDMP call. The problem could

involve either device or queuing instructions.

TEXT:

There is an error in device selection or queuing setup.

PARAMETERS:

None

VA FileMan 22.2

Developer’s Guide 469 January 2017

Error 1870

DESCRIPTION:

A requested IMPORT template does not exist in the IMPORT TEMPLATE file (#.46) for the file being

imported into.

TEXT:

IMPORT template |1| does not exist for File #|FILE|.

PARAMETERS:

 “1” means template name.

 “FILE” means file number.

Error 3021

DESCRIPTION:

A lookup in to the FORM file (#.403) for the given form failed.

TEXT:

Form |1| does not exist in the Form file, or DDSFILE is not the Primary File of the form.

PARAMETERS:

“1” means form name.

Error 3022

DESCRIPTION:

There are no pages defined in the Page multiple of the given form.

TEXT:

Form |1| contains no pages.

PARAMETERS:

“1” means form name.

Error 3023

DESCRIPTION:

The given page was not found on the form.

TEXT:

The form does not contain a page |1|.

PARAMETERS:

“1” means page name or number.

VA FileMan 22.2

Developer’s Guide 470 January 2017

Error 8090

DESCRIPTION:

Used in displaying an error message when the lookup value X does not pass the pre-lookup transform

code (^DD(File#,.01,7.5)node) during ^DIC or Finder lookups.

TEXT:

Pre-lookup transform (7.5 node).

PARAMETERS:

None.

Error 8095

DESCRIPTION:

In calls to the Finder, IX^DIC, or MIX^DIC, if either the first index passed or the default index is a

compound index, then only one index can be passed, so neither DIC(0) nor flags can contain “M”.

TEXT:

First lookup index is compound, so “M”ultiple index lookups not allowed.

PARAMETERS:

None.

VA FileMan 22.2

Developer’s Guide 471 January 2017

Glossary

Term Description

.001 Field A field containing the internal entry number of the record.

.01 Field The one field that must be present for every file and file entry. It is also
called the NAME field. At a file’s creation the .01 field is given the label
NAME. This label can be changed.

Access Codes In VA FileMan, a string of codes that determines your security access to
files, fields, and templates. In Kernel, you enter an Access Code to
identify yourself during signon.

Alternate Editor One of the text editors available for use from VA FileMan. Editors
available vary from site to site. They are entries in the ALTERNATE
EDITOR file (#1.2).

At-sign (“@”) A VA FileMan security Access Code that gives the user programmer-
level access to files and to VA FileMan’s developer features. Also, the at-
sign character (“@”) is used at VA FileMan field prompts to delete data.

 REF: See “Programmer Access.”

Audit Trail The record or log of an ongoing audit.

Auditing The monitoring and recording of computer use.

Backward Pointer A pointer to your current file from another file; used in the extended
pointer syntax.

Boolean Expression A logical comparison between values yielding a true or false result. In M,
zero means false and non-zero (often one) means true.

Canonic Number A number with no leading zeroes and no trailing zeroes after a decimal
point.

Caption In ScreenMan, a label displayed on the screen. Captions often identify
fields that are to be edited.

CARET (“^”) The caret character (“^”), also sometimes referred to in VistA legacy
documentation as the “up-arrow” key, is used in VA FileMan for exiting
an option or canceling a response. Also, it is used in combination with a
field name or prompt to jump to the specified field or prompt.

Command Area In ScreenMan, the bottom portion of the screen used to display help
information and to accept user commands.

Cross-reference An attribute of a field or a file that identifies an action that should take
place when the value of a field is changed. Often, the action is the
placement of the field’s value into an index. A Traditional cross-reference
is defined with a specific field. A New-Style cross-reference is a file
attribute and can be composed of one or more fields. New-Style cross-
references are stored in the INDEX file (#.11).

Cursor On your display terminal, the line or rectangle identifying where your next
input is placed on the screen.

Data Dictionary A record of a file’s structure, its elements (fields and their attributes), and
relationships to other files. Often abbreviated as DD.

VA FileMan 22.2

Developer’s Guide 472 January 2017

Term Description

DATA TYPE The kind of data stored in a field. For example:

 NUMERIC

 COMPUTED

 WORD-PROCESSING

Database An organized collection of data spanning many files. Often, all the files
on a system constitute that system’s database.

Default A computer-provided response to a question or prompt. The default
might be a value pre-existing in a file. Often, you can change a default.

Device Prompt A Kernel prompt at which you identify where to send your output.

Edit Window In ScreenMan, the area in which you enter or edit data. It is highlighted
with either reverse video or an underline. In Screen Editor, the area in
which you enter and edit text; the area between the status bar and the
ruler.

Entry A record in a file. “Entry” and “record” are used interchangeably.

Extended Pointers A means to reference fields in files other than your current file.

Field In an entry, a specified area used to hold values. The specifications of
each VA FileMan field are documented in the file’s data dictionary.

Field Number The unique number used to identify a field in a file. A field can be
referenced by “#” followed by the field number.

File A set of related records (or entries) treated as a unit.

Form In ScreenMan, a group of one or more pages that comprise a complete
transaction. Comparable to an INPUT template.

FREE TEXT A DATA TYPE field value that can contain any printable characters.

Full-screen Editing The ability to enter data in various locations on the two-dimensional
computer display. Compare to scrolling mode.

Histogram A type of bar graph that indicates frequency of occurrence of particular
values.

Identifier In VA FileMan, a field that is defined to aid in identifying an entry in
conjunction with the NAME field.

Index An ordered list used to speed retrieval of entries from a file based on a
value in some field or fields. The term “simple index” refers to an index
that stores the data for a single field; the term “compound index” refers to
an index that stores the data for more than one field. Indexes are created
and maintained via cross-references.

INPUT Template A pre-defined list of fields that together comprise an editing session.

Internal Entry Number (IEN) The number used to identify an entry within a file. Every record has a
unique internal entry number. Often abbreviated as IEN.

Kernel A VistA software package that functions as an intermediary between the
host operating system and VistA application packages. Kernel includes
installation, menu, security, and device services.

VA FileMan 22.2

Developer’s Guide 473 January 2017

Term Description

Key A group of fields that, taken collectively, uniquely identifies a record in a
file or subfile. All fields in a key must have values. The term “simple key”
refers to keys that are composed of only one field; the term “compound
key” refers to keys that are composed of more than one field. Keys are
stored in the KEY file (#.31).

LAYGO A user’s authorization to create a new entry when editing a computer file.
An acronym for Learn As You Go.

Line Editor The VA FileMan editor that lets you input and change text on a line-by-
line basis. The Line Editor works in scrolling mode. See Screen Editor.

Lookup To find an entry in a file using a value for one of its fields.

MailMan An electronic mail system (e-mail) that allows you to send messages to
and receive them from other users via the computer. It is part of VistA.

Menu A list that includes the names of options from which you can select an
activity.

Multiple A VA FileMan DATA TYPE field value that allows more than one value
for a single entry. See Subfile.

MUMPS Abbreviated as M. The American National Standards Institute (ANSI)
computer language used by VA FileMan and throughout VistA. The
acronym MUMPS stands for Massachusetts General Hospital Utility Multi
Programming System.

NAME Field The one field that must be present for every file and file entry. It is also
called the .01 field. At a file’s creation the .01 field is given the label
NAME. This label can be changed.

Navigation 1. Navigation can mean switching your reference point from one file to
another.

2. Navigation can also mean moving your cursor around a terminal
display or a document using cursor keys and other commands.

Non-canonic Number A number with either leading zeroes, or trailing zeroes after a decimal
point. M treats non-canonic numbers as text instead of as numbers.

Non-null A value other than null. A space and zero are non-null values.

Null Empty. A field or variable that has no value associated with it is null.

Null Response When replying to a prompt, pressing only the Enter key, abbreviated as
<Enter>, to enter nothing.

Numeric Expression An expression whose value is a number. Compare to string expression.

Operator One of the processes done to the elements in an expression to create a
value.

Option A computing activity that you can select, usually a choice from a menu.

Paste Insert text or other data as input into one computer program that has
been copied into a clipboard by the same or by another computer
program.

Pattern Match In M, an operator that compares the contents of a variable or literal to a
specified pattern of characters or kinds of characters.

VA FileMan 22.2

Developer’s Guide 474 January 2017

Term Description

PF keys Keys on a terminal keyboard labeled PF1, PF2, etc. that are used to
perform special functions instead of displaying visible characters.

POINTER TO A FILE A DATA TYPE field value that contains an explicit reference to an entry
in a file. POINTER TO A FILE-type fields are used to relate files to each
other.

Popup Page In ScreenMan, a page that overlays the regular ScreenMan screen in
order to present the contents of a selected Multiple.

Preferred Editor The editor always entered when you access a WORD-PROCESSING-
type field; your default editor. Kernel must be present to establish a
Preferred Editor.

PRINT Template The stored specifications of a printed report, including fields to be printed
and formatting instructions.

Programmer Access The ability to use VA FileMan features that are reserved for application
developers. Referred to as “having the at-sign (‘@’)” because the at-sign
is the DUZ(0) value that grants programmer access.

Prompt A question or message from the computer requiring your response.

Record A set of data pertaining to a single entity in a file; an entry in a file.

Record Number See Internal Entry Number.

Relational Navigation Changing your current (or primary) file reference to another file.
Relational navigation is accomplished by using the extended pointer
syntax without specifying a field in the referenced file.

Required Field A field that cannot be left null for an entry.

Scattergram A graph in which occurrences of two fields are displayed on an X-Y
coordinate grid to aid in data analysis.

Screen Editor VA FileMan’s Screen-oriented text editor. It can be used to enter data
into any WORD-PROCESSING field using full-screen editing instead of
line-by-line editing. See Line Editor.

Screen-oriented A computer interface in which you see many lines of data at a time and
in which you can move your cursor around the display screen using
screen navigation commands. Compare to Scrolling Mode.

ScreenMan The set of routines that supports Screen-oriented data editing and data
display.

Scrolling Mode The presentation of the interactive dialogue one line at a time. Compare
to Screen-oriented.

SDP An area on disk set aside for temporary, sequential storage of data; an
abbreviation for Sequential Disk Processor. It is available on some M
implementations (e.g., DSM-11).

SEARCH Template The saved results of a search operation. Usually, the actual entries
found are stored in addition to the criteria used to select those entries.

Security The strategies and procedures used to ensure that user access to data
and data structures is controlled and appropriate.

VA FileMan 22.2

Developer’s Guide 475 January 2017

Term Description

SET OF CODES A DATA TYPE field value where a short character string is defined to
represent a longer value.

Simple Extended Pointers An extended pointer that uses a pre-existing pointer relationship to
access entries in another file.

Sort To place items in order, often in alphabetical or numeric sequence.

SORT Template The stored record of sort specifications. It contains sorting order as well
as restrictions on the selection of entries. Used to prepare entries for
printing.

Stuff To place values directly into a field, usually with no user interaction.

Subentry An entry in a Multiple; also called a Subrecord.

Subfield A field in a Multiple.

Subfile The data structure of a Multiple. In many respects, a Subfile has the
same characteristics as a File.

Terminal Emulation Using one kind of terminal or computer display to mimic another kind.
Often used with PC remote communication applications.

Terminal Type The designation of the kind of computer peripheral being used (e.g., the
kind of video display or printer). Full terminal type functionality is
supplied by Kernel.

Truth Test An evaluation of an expression yielding a true or false result. In M,
usually a 1 (true) or a 0 (false) is returned from a truth test.

Up-Arrow The caret character (“^”), also sometimes referred to in VistA legacy
documentation as the “up-arrow” key, is used in VA FileMan for exiting
an option or canceling a response. Also, it is used in combination with a
field name or prompt to jump to the specified field or prompt.

Upload Send a file from one computer system to another (usually using
communications software).

VistA The Veterans Health Information Systems and Technology Architecture
(VistA), within the Department of Veterans Affairs, is the component of
the Veterans Health Administration that develops software and installs,
maintains, and updates compatible computer systems in VA medical
facilities. (Previously known as the Decentralized Hospital Computer
Program [DHCP].)

 REF: For a list of commonly used terms and definitions, see the OI&T Master Glossary VA

Intranet website.

For a list of commonly used acronyms, see the VA Acronym Lookup Intranet website.

VA FileMan 22.2

Developer’s Guide 476 January 2017

Index

$

$$CREF^DILF(): Root Converter (Open to

Closed Format), 243

$$EXTERNAL^DILFD(): Converter to

External, 252

$$EZBLD^DIALOG(): DIALOG Extractor

(Single Line), 153

$$FIND1^DIC(): Finder (Single Record), 178

$$FLDNUM^DILFD(): Field Number Retriever,

257

$$GET^DDSVAL(), 320

$$GET^DDSVALF(), 323

$$GET1^DID(): Attribute Retriever, 215

$$GET1^DIQ(): Single Data Retriever, 262

$$HTML^DILF(): HTML Encoder/Decoder,

248

$$IENS^DILF(): IENS Creator, 249

$$KEYVAL^DIE(): Key Validator, 224

$$OREF^DILF(): Root Converter (Closed to

Open Format), 250

$$ROOT^DILFD(): File Root Resolver, 259

$$ROUSIZE^DILF, 63

$$TEST^DDBRT, 340

$$VALUE1^DILF():FDA

Value Retriever (Single), 250

$$VFIELD^DILFD(): Field Verifier, 261

$$VFILE^DILFD(): File Verifier, 261

^

^%DTC, 112

^DDGF, 296

^DDS, 317

^DI

Programmer Access, 369

^DIAC, 12

^DIC, 13

^DIE, 38

^DIEZ, 47

^DIFG: Installer, 363

^DIK, 48

^DIKZ, 62

^DIM, 63

^DIOZ, 64

^DIPT, 78

^DIPZ, 79

^DIR, 85

^DIWF, 103

^DIWP, 105

^DIWW, 107

A

Actions

Post-Selection Action

Advanced File Definition, 403

Adding (ScreenMan Form Editor)

Blocks, 308

Fields, 308

Pages:, 307

Adding, Selecting, and Editing

ScreenMan Form Editor, 303

Advanced File Definition, 393

Assigning a Location for Fields Stored

within a Global, 394

Assigning Sub-Dictionary Numbers, 395

Audit Condition, 404

Computed Dates, 396

Computed Expressions, 396

Computed Multiples, 397

VA FileMan 22.2

Developer’s Guide 477 January 2017

Computed Pointers, 396

Editing a Cross-reference, 404

Executable Help, 405

Field Global Storage, 394

File Global Storage, 393

INPUT Transform, 399

INPUT Transforms and the Verify Fields

Option, 402

Introduction, 393

MUMPS Data Type, 398

OUTPUT Transform, 402

Post-Selection Action, 403

Screened Pointers and Set of Codes, 398

Special Lookup Programs, 403

Storing Data by Position within a Node, 395

Storing Data in a Global other than ^DIZ,

393

APIs

$$CREF^DILF(), 243

$$EXTERNAL^DILFD(), 252

$$EZBLD^DIALOG(), 153

$$FIND1^DIC(), 178

$$FLDNUM^DILFD(), 257

$$GET^DDSVAL(), 320

$$GET^DDSVALF(), 323

$$GET1^DID(), 215

$$GET1^DIQ(), 262

$$HTML^DILF(), 248

$$IENS^DILF(), 249

$$KEYVAL^DIE(), 224

$$OREF^DILF(), 250

$$ROOT^DILFD(), 259

$$ROUSIZE^DILF, 63

$$TEST^DDBRT, 340

$$VALUE1^DILF(), 250

$$VFIELD^DILFD(), 261

$$VFILE^DILFD(), 261

%XY^%RCR, 116

^%DTC, 112

^DDS, 317

^DIAC, 12

^DIC, 13

^DIE, 38

^DIEZ, 47

^DIFG, 363

^DIK, 48

^DIKZ, 62

^DIM, 63

^DIOZ, 64

^DIPT, 78

^DIPZ, 79

^DIR, 85

^DIWF, 103

^DIWP, 105

^DIWW, 107

Auditing, 328

BLD^DIALOG(), 147

BROWSE^DDBR, 333

Browser, 332

C^%DTC, 112

CHANGED^DIAUTL, 330

CHK^DIE(), 217

Classic VA FileMan, 3

CLEAN^DILF, 242

CLOSE^DDBRZIS, 341

COMMA^%DTC, 113

D^DIQ, 80

DA^DILF(), 244

Database Server (DBS) Calls, 118

DELIX^DDMOD, 140

VA FileMan 22.2

Developer’s Guide 478 January 2017

DELIXN^DDMOD, 143

DIBT^DIPT, 79

DO^DIC1, 30

DOCLIST^DDBR, 338

DQ^DICQ, 36

DT^DICRW, 37

DT^DILF(), 245

DT^DIO2, 63

DT^DIQ, 80

DW^%DTC, 114

EN^DDBR, 332

EN^DDIOL, 8

EN^DIAXU, 355

EN^DIB, 13

EN^DID, 37

EN^DIEZ, 48

EN^DIFGG, 365

EN^DIK, 51

EN^DIKZ, 62

EN^DIPZ, 80

EN^DIQ, 81

EN^DIQ1, 82

EN^DIS, 99

EN^DIU2, 100

EN^DIWE, 101

EN1^DIK, 52, 53

EN1^DIWF, 104

EN2^DIWF, 105

ENALL^DIK, 54, 56

EXPORT^DDMP, 349

EXTRACT^DIAXU, 357

FDA^DILF(), 247

FIELD^DID(), 209

FIELDLST^DID(), 211

FILE^DDMP, 343

FILE^DICN, 33

FILE^DID(), 212

FILE^DIE(), 218

Filegrams, 363

FILELST^DID(), 214

FILESEC^DDMOD, 145

FIND^DIC(), 157

GETS^DIQ(), 265

H^%DTC, 114

HELP^%DTC, 115

HELP^DIE(), 222

HLP^DDSUTL(), 325

Import Tool, 343

IX^DIC, 27

IX^DIK, 57

IX1^DIK, 58, 59

IXALL^DIK, 60, 61

LAST^DIAUTL, 329

LIST^DIC(), 190

LOCK^DILF(), 249

MSG^DDSUTL(), 326

MSG^DIALOG(), 154

NOW^%DTC, 115

OPEN^DDBRZIS, 341

Other, 328

POST^DDBRZIS, 342

PRD^DILFD(), 258

PUT^DDSVAL(), 321

PUT^DDSVALF(), 324

RECALL^DILFD(), 258

REFRESH^DDSUTL(), 326

REQ^DDSUTL(), 326

S^%DTC, 115

ScreenMan, 317

ScreenMan Introduction, 317

VA FileMan 22.2

Developer’s Guide 479 January 2017

TURNON^DIAUTL, 328

UNED^DDSUTL(), 327

UPDATE^DIE(), 226

VAL^DIE(), 234

VALS^DIE(), 237

VALUES^DILF(), 251

WAIT^DICD, 33

WP^DDBR, 336

WP^DIE(), 241

X ^DD(”DD”), 7

Y^DIQ, 82

YMD^%DTC, 116

YX^%DTC, 116

Appendix A—VA FileMan Error Codes, 444

Introduction, 444

Array and Variable Clean-up

CLEAN^DILF, 242

ASSIGN A VERSION NUMBER, 423

Assigning

A Location for Fields Stored within a Global

Advanced File Definition, 394

Sub-Dictionary Numbers

Advanced File Definition, 395

Assumptions, xxxi

Attribute

Dictionary

Global File Structure, 382

Retriever

$$GET1^DID(), 215

Audit Condition

Advanced File Definition, 404

AUDIT File (#1.1), 349, 351, 404

Auditing

APIs, 328

Calls

CHANGED^DIAUTL, 330

LAST^DIAUTL, 329

TURNON^DIAUTL, 328

B

B Cross-reference

Checking, 439

Backward Pointers

Relational Navigation

ScreenMan Forms, 279

BLD^DIALOG(): DIALOG Extractor, 147

Block

Properties

ScreenMan Forms, 286, 288

Apply Only to Repeating Blocks, 274

Coordinate, 286

DD Number, 287

Disable Navigation, 287

Name, 286, 287

Order, 286

Pointer Link, 286

Pre Action and Post Action, 286

Replication, Index, Initial Position,

Disallow LAYGO, Field for

Selection, 287

Stored in the

BLOCK File, 287

FORM File (#.403), 286

Type of Block, 286

ScreenMan Forms)

Pre Action and Post Action, 287

BLOCK File (#.404), 270, 286, 287, 288, 294,

295, 308, 312, 316, 327, 442

Block Viewer Screen

ScreenMan Form Editor, 305

Blocks

VA FileMan 22.2

Developer’s Guide 480 January 2017

Adding Blocks with ScreenMan Form

Editor, 308

Header Blocks with ScreenMan Form

Editor, 308

Branching Logic, Pre Action, Post Action, and

Post Action on Change

ScreenMan Forms

Field Properties, 292

BROWSE^DDBR, 333

Browser

APIs, 332

Calls

$$TEST^DDBRT, 340

BROWSE^DDBR, 333

CLOSE^DDBRZIS, 341

DOCLIST^DDBR, 338

EN^DDBR, 332

OPEN^DDBRZIS, 341

POST^DDBRZIS, 342

WP^DDBR, 336

Builds Routines Containing

Data Dictionaries

DIFROM, 431

Data Values

DIFROM, 432

Security Access Codes

DIFROM, 432

BULLETIN File (#3.6), 440, 441

BULLETINS, 430, 431, 433, 437, 441

C

C^%DTC, 112

Callable Routines

ScreenMan Forms, 296

Callout Boxes, xxvii

Caption and Data Coordinates

ScreenMan Forms

Field Properties, 290

Caption, Executable Caption, and Suppress

Colon After Caption

ScreenMan Forms

Field Properties, 288

Category

Cross-reference

Classic Calls, 4

CHANGED^DIAUTL, 330

Check of Version Number

DIFROM, Running an INIT, 434

Checking the B Cross-reference or Zero Node,

439

CHK^DIE(): Data Checker, 217

Choosing another Form

ScreenMan Form Editor, 315

Classic Calls

$$ROUSIZE^DILF, 63

%XY^%RCR, 116

^%DTC, 112

^DIAC, 12

^DIC, 13

^DIE, 38

^DIEZ, 47

^DIK, 48

^DIKZ, 62

^DIM, 63

^DIOZ, 64

^DIPT, 78

^DIPZ, 79

^DIR, 85

^DIWP, 105

^DIWW, 107

C^%DTC, 112

COMMA^%DTC, 113

VA FileMan 22.2

Developer’s Guide 481 January 2017

Cross-referenced by Category, 4

D^DIQ, 80

DIBT^DIPT, 79

DO^DIC1, 30

DQ^DICQ, 36

DT^DICRW, 37

DT^DIO2, 63

DT^DIQ, 80

DW^%DTC, 114

EN^DDIOL, 8

EN^DIB, 13

EN^DID, 37

EN^DIEZ, 48

EN^DIK, 51

EN^DIKZ, 62

EN^DIPZ, 80

EN^DIQ, 81

EN^DIQ1, 82

EN^DIS, 99

EN^DIU2, 100

EN^DIWE, 101

EN1^DIK, 52, 53

EN1^DIWF, 104

EN2^DIWF, 105

ENALL^DIK, 54, 56

FILE^DICN, 33

H^%DTC, 114

HELP^%DTC, 115

IX^DIC, 27

IX^DIK, 57

IX1^DIK, 58, 59

IXALL^DIK, 60, 61

Listed

Alphabetically, 7

NOW^%DTC, 115

S^%DTC, 115

WAIT^DICD, 33

X ^DD(”DD”), 7

Y^DIQ, 82

YMD^%DTC, 116

YX^%DTC, 116

Classic Calls (Alphabetic Order), 7

Classic VA FileMan API, 3

CLEAN^DILF: Array and Variable Clean-up,

242

Cleaning Up the Output Arrays

DBS Calls, 125

CLONE^DDS, 297

CLOSE^DDBRZIS, 341

COMMA^%DTC, 113

Command Summary

ScreenMan Form Editor, 302

COMPILED ROUTINE File (#.83), 64

Completes Building Routines of Package

Components

DIFROM, 433

Completes the Code that Runs the Init

DIFROM, 433

Computed

Dates

Advanced File Definition, 396

Expressions

Advanced File Definition, 396

Fields

ScreenMan Forms, 279

Multiples

Advanced File Definition, 397

Pointers

Advanced File Definition, 396

Contents of Arrays

VA FileMan 22.2

Developer’s Guide 482 January 2017

DBS Calls, 122

DIERR Array, 124

DIHELP Array, 122

DIMSG Array, 123

Conventions

Documentation, xxvi

Converter to External

$$EXTERNAL^DILFD(), 252

Coordinate and Lower Right Coordinate

ScreenMan Forms Page Property, 284

Create Export Template Option, 349

Creating

DIALOG File Entries, 413

LANGUAGE File Entries, 417

Non-English Text in the DIALOG File

(#.84), 415

VA FileMan Functions, 419

Function File Entries, 419

Introduction, 419

Cross-Reference A Field Option, 381, 404, 407,

410

Cross-references

^DIKZ, 62

EN^DIK, 48, 51, 52, 53, 54, 56, 57, 58, 59,

60, 61

EN^DIKZ, 62

EN1^DIK, 52, 53

ENALL^DIK, 54, 56

Global File Structure, 380, 384

IX^DIK, 57

IX1^DIK, 58, 59

IXALL^DIK, 60, 61

Trigger, 407

D

D^DIQ, 80

DA() Creator

DA^DILF(), 244

DA^DILF(): DA() Creator, 244

Data

Editing DBS Calls

$$KEYVAL^DIE(), 224

CHK^DIE(), 217

FILE^DIE(), 218

HELP^DIE(), 222

RECALL^DILFD(), 258

UPDATE^DIE(), 226

VAL^DIE(), 234

VALS^DIE(), 237

WP^DIE(), 241

Export

EXPORT^DDMP, 349

Filing

ScreenMan Forms, 283

Import

FILE^DDMP, 343

Length

ScreenMan Forms

Field Properties, 289

Retrieval

DBS Calls

$$GET1^DIQ(), 262

GETS^DIQ(), 265

EN^DIQ1, 82

GETS^DIQ(), 265

Storage Conventions

Global File Structure, 377

Validation

ScreenMan Forms

Field Properties, 291

ScreenMan Forms Form Properties, 283

Data Checker

VA FileMan 22.2

Developer’s Guide 483 January 2017

CHK^DIE(), 217

DATA COMES WITH FILE, 423

Data Dictionary

Audit

Global File Structure, 383

Data Dictionary Utilities Menu, xxxi

DBS Calls

$$FLDNUM^DILFD(), 257

$$GET1^DID(), 215

$$ROOT^DILFD(), 259

$$VFIELD^DILFD(), 261

$$VFILE^DILFD(), 261

FIELD^DID(), 209

FIELDLST^DID(), 211

FILE^DID(), 212

FILELST^DID(), 214

PRD^DILFD(), 258

Listings, xxxi

Modification DBS Calls

DELIX^DDMOD, 140

DELIXN^DDMOD, 143

FILESEC^DDMOD, 145

Data Types

MUMPS Data Type

Advanced File Definition, 398

Set of Codes Data Type

Advanced File Definition, 398

Database Server (DBS)

API, 118

Calls

Alphabetic Order, 129

Cross-referenced by Category, 127

Date Converter

DT^DILF(), 245

Date/Time

%DT, 107, 111

Formats, Introduction

%DT, 107, 111

Utilities

%DT, 107, 111

^%DTC, 112

C^%DTC, 112

DT^DIO2, 63

DW^%DTC, 114

H^%DTC, 114

NOW^%DTC, 115

S^%DTC, 115

X ^DD(”DD”), 7

YMD^%DTC, 116

YX^%DTC, 116

DBS Calls, 118

$$CREF^DILF(), 243

$$EXTERNAL^DILFD(), 252

$$EZBLD^DIALOG(), 153

$$FIND1^DIC(), 178

$$FLDNUM^DILFD(), 257

$$GET1^DID(), 215

$$GET1^DIQ(), 262

$$HTML^DILF(), 248

$$IENS^DILF(), 249

$$KEYVAL^DIE(), 224

$$OREF^DILF(), 250

$$ROOT^DILFD(), 259

$$VALUE1^DILF(), 250

$$VFIELD^DILFD(), 261

$$VFILE^DILFD(), 261

BLD^DIALOG(), 147

By Category, 127

CHK^DIE(), 217

CLEAN^DILF, 242

VA FileMan 22.2

Developer’s Guide 484 January 2017

Cleaning Up the Output Arrays, 125

Contents of Arrays, 122

DIERR Array, 124

DIHELP Array, 122

DIMSG Array, 123

DA^DILF(), 244

DELIX^DDMOD, 140

DELIXN^DDMOD, 143

Documentation Conventions, 121

DT^DILF(), 245

Example of Call to VA FileMan DBS, 126

FDA: Format of Data Passed to and from

VA FileMan, 120

FDA^DILF(), 247

FIELD^DID(), 209

FIELDLST^DID(), 211

FILE^DID(), 212

FILE^DIE(), 218

FILELST^DID(), 214

FILESEC^DDMOD, 145

FIND^DIC(), 157

Format and Conventions, 118

GETS^DIQ(), 265

HELP^DIE(), 222

How Information Is Returned, 121

How the Database Server (DBS)

communicates, 121

How to Use, 118

IENS

Identify Entries and Subentries, 119

Introduction, 118

LIST^DIC(), 190

Listed

Alphabetically, 129

By Category, 129

LOCK^DILF(), 249

MSG^DIALOG(), 154

Obtaining Formatted Text From The Arrays,

125

Overview, 121

PRD^DILFD(), 258

RECALL^DILFD(), 258

UPDATE^DIE(), 226

VAL^DIE(), 234

VALS^DIE(), 237

VALUES^DILF(), 251

WP^DIE(), 241

DD AUDIT File (#.6), 140, 141

DD Deletion

EN^DIU2, 100

DD Field List Retriever

FIELDLST^DID(), 211

DD Field Retriever

FIELD^DID(), 209

DD File List Retriever

FILELST^DID(), 214

DD File Retriever

FILE^DID(), 212

DD Number

ScreenMan Forms

Block Properties, 287

DDBR, 332

DDS DELETE A FORM Option, 294

DDS EDIT/CREATE A FORM Option, 293,

296, 301

DDS PURGE UNUSED BLOCKS Option, 295,

316

DDS RUN A FORM Option, 293

DDS SCREEN MENU, 293, 294, 295, 296

DDS Variable, 318

DDSBR Variable

VA FileMan 22.2

Developer’s Guide 485 January 2017

ScreenMan Forms, 281

DDSSTACK Variable

ScreenMan Forms, 282

DDXP CREATE EXPORT TEMPLATE

Option, 349

Default and Executable Default

ScreenMan Forms

Field Properties, 289

DEFAULT PROTOCOL Field, 442

Delete a Form Option, 294

Delete a Form ScreenMan Forms Option, 294

Deleting Screen Elements

ScreenMan Form Editor, 316

DELIX^DDMOD

Traditional Cross-reference Delete, 140

DELIXN^DDMOD

New-Style Index Delete, 143

Determining Install Status of

DDs and Data

DIFROM, Running an INIT, 435

Other Package Components

DIFROM, Running an INIT, 437

Security Codes

DIFROM, Running an INIT, 436

Developer Tools, 369

DEVICE file (#3.5), 350

DEVICE File (#3.5), 69, 263, 342, 344

DI DDU Menu, xxxi

DIALOG Extractor

BLD^DIALOG(), 147

DIALOG Extractor (Single Line)

$$EZBLD^DIALOG(), 153

DIALOG File (#.84), 122, 124, 147, 149, 153,

155, 412, 413, 414, 415

Creating DIALOG File Entries, 413

Creating Non-English Text in the DIALOG

File (#.84), 415

Internationalization, 414

Introduction, 412

LANGUAGE File

Introduction, 416

LANGUAGE File (#.85), 416

Creating LANGUAGE File Entries, 417

Use of the LANGUAGE File, 416

Role of the VA FileMan DIALOG File in

Internationalization, 414

Use of the DIALOG File (#.84), 412

Internationalization, 414

User Messages, 412

DIAUDIT PURGE DATA Option, 331

DIBT^DIPT, 79

Dictionary of Files, 378

DIEDFILE Option, 20, 23, 403, 404

DIEDIT Option, 13, 47, 409, 413, 415, 417, 419

DIERR Array, 124

DIFG Option, 204

DIFQ Variables

DIFROM, 435

DIFROM, 421

Exporting Data, 421

Importing Data, 433

Introduction, 421

Order Entry and DIFROM, 427

PACKAGE File (#9.4), 422

PACKAGE File and DIFROM

ENVIRONMENT CHECK ROUTINE,

423

EXCLUDED NAME SPACE, 423

FILE, 423

NAME, 422

Other PACKAGE File Fields, 426

VA FileMan 22.2

Developer’s Guide 486 January 2017

POST-INITIALIZATION ROUTINE,

423

PREFIX, 422

PRE-INIT AFTER USER COMMIT,

423

Template Multiples, 422

Preparing To Run DIFROM, 421

Running

DIFROM

Builds Routines Containing

Data Dictionaries, 431

Data Values, 432

Security Access Codes, 432

Completes Building Routines of

Package Components, 433

Completes the Code that Runs the Init,

433

Entering Current Version Information,

430

Exporting File Security, 430

Gathers Miscellaneous Package

Components, 431

Gathers Templates and Forms, 433

Identifying the Init Routines, 429

Including Other Package Components,

430

Including Templates (No Package File

Entry), 430

Package Identification, 429

Preliminary Validations, 428

Specifications for Exported Files, 429

Specifying Routine Size, 430

Starting DIFROM, 428

Steps, 428

INIT

Check of Version Number, 434

Determining Install Status of

DDs and Data, 435

Other Package Components, 437

Security Codes, 436

DIFQ Variables, 435

General Processing, 441

Installing

Data, 438

Data Dictionaries, 437

Other Package Components, 440

Pre-init After User Commit Routine,

437

Preliminary Steps, 434

Recording the Install on the Target

System, 443

Reindexing the Files, 440

Running Environment Check Routine,

435

Running the Post-Initialization Routine,

443

Special Processing, 441

Starting the Update, 437

Steps, 433

DIHELP Array, 122

DIIDENT Option, 383

DIINQUIRE Option, 81

DIITRAN Option, 387, 399

DILIST Option, xxxi, 37

DIMODIFY Option, 47, 387, 393, 394, 395,

399, 405, 410

DIMSG Array, 123

DIOTHER Menu, 293, 296

DIRDEX Option, 54, 56, 60, 62, 131

Disable

Editing and Disallow LAYGO

ScreenMan Forms

Field Properties, 290

VA FileMan 22.2

Developer’s Guide 487 January 2017

Navigation

ScreenMan Forms

Block Properties, 287

Disclaimers, xxvi

Software, xxv

DISEARCH Option, 99

Display

D^DIQ, 80

Display Group

ScreenMan Forms

Field Properties, 290

DISPLAY GROUP DEFAULT Field, 442

Displaying Multiples in Repeating Blocks

ScreenMan Forms, 272

Distribution Package

Global File Structure, 385

DIUSER Menu, 296, 316

DIUTILITY Menu, 20, 47, 54, 56, 60, 62, 131,

381, 387, 399, 403, 404, 407, 410

DIVERIFY Option, 402

DIXREF Option, 381, 404, 407, 410

DO^DIC1, 30

DOCLIST^DDBR, 338

Documentation

Conventions, xxvi

DBS Calls, 121

Navigation, xxviii

Symbols, xxvi

DQ^DICQ, 36

DT^DICRW, 37

DT^DILF(): Date Converter, 245

DT^DIO2, 63

DT^DIQ, 80

DW^%DTC, 114

E

Edit File Option, 20, 23, 403, 404

Edit/Create a Form Option, 293, 296, 301

Edit/Create a Form ScreenMan Option, 293

Editing

Cross-reference

Advanced File Definition, 404

ScreenMan Form Editor

Field Properties, 310

”Popup” Page Coordinates, 314

Block Properties, 312

Field Captions and Data Length, 311

Form Properties, 315

Page Properties, 313

Editing, Adding, and Selecting

ScreenMan Form Editor, 303

Editors

ScreenMan

Form Editor, 301

Elements

Moving Screen Elements with ScreenMan

Form Editor, 309

Selecting Screen Elements with ScreenMan

Form Editor, 309

EN^DDBR, 332

EN^DDIOL, 8

EN^DIAXU: Extract Data, 355

EN^DIB, 13

EN^DID, 37

EN^DIEZ, 48

EN^DIFGG: Generator, 365

EN^DIK, 51

EN^DIKZ, 62

EN^DIPZ, 80

EN^DIQ, 81

VA FileMan 22.2

Developer’s Guide 488 January 2017

EN^DIQ1, 82

EN^DIS, 99

EN^DIU2, 100

EN^DIWE, 101

EN1^DIK, 52, 53

EN1^DIWF, 104

EN2^DIWF, 105

ENALL^DIK, 54, 56

Enter or Edit File Entries Option, 13, 47, 409,

413, 415, 417, 419

Entering Current Version Information

DIFROM, 430

Entry Editing

^DIE, 38

^DIK, 48

EN^DIB, 13

EN^DIQ1, 82

EN^DIWE, 101

ENVIRONMENT CHECK ROUTINE

PACKAGE File and DIFROM, 423

Error Codes, 444

101, 444

110, 445

111, 445

120, 445

1300, 464

1500, 465

1501, 465

1502, 465

1503, 465

1504, 466

1610, 466

1700, 466

1701, 466

1805, 467

1810, 467

1812, 467

1820, 467

1821, 468

1822, 468

1833, 468

1850, 468

1870, 469

200, 446

201, 446

202, 446

203, 446

204, 447

205, 447

206, 447

207, 447

299, 448

301, 448

302, 448

3021, 469

3022, 469

3023, 469

304, 448

305, 449

306, 449

307, 449

308, 449

309, 450

310, 450

311, 450

312, 450

330, 451

348, 451

351, 451

352, 452

VA FileMan 22.2

Developer’s Guide 489 January 2017

401, 452

402, 452

403, 452

404, 453

405, 453

406, 453

407, 453

408, 454

409, 454

420, 454

501, 454

502, 455

505, 455

510, 455

520, 456

525, 456

537, 456

601, 457

602, 457

603, 457

630, 458

648, 458

701, 459

703, 459

710, 459

712, 460

714, 460

716, 460

720, 461

726, 461

730, 461

740, 462

742, 462

744, 462

746, 463

8090, 470

8095, 470

810, 463

820, 463

840, 464

842, 464

845, 464

Introduction, 444

Examples

Call to VA FileMan DBS, 126

EXCLUDED NAME SPACE

PACKAGE File and DIFROM, 423

Executable Help, 122

Advanced File Definition, 405

EXecutable Help, 122

Exiting, Quitting, Saving, and Obtaining Help

ScreenMan Form Editor, 304

Export Tool API

Calls

EXPORT^DDMP, 349

EXPORT^DDMP: Data Export, 349

Exporting

Data

DIFROM, 421

File Security

DIFROM, 430

Extract Data

EN^DIAXU, 355

EXTRACT^DIAXU, 357

Extract Tool, 355

Calls

EN^DIAXU, 355

EXTRACT^DIAXU, 357

Introduction, 355

EXTRACT^DIAXU: Extract Data, 357

VA FileMan 22.2

Developer’s Guide 490 January 2017

F

FDA

Loader

FDA^DILF(), 247

Value Retriever (Single)

$$VALUE1^DILF(), 250

Values Retriever

VALUES^DILF(), 251

FDA: Format of Data Passed to and from VA

FileMan, 120

FDA^DILF():FDA

Loader, 247

Features

ScreenMan Forms, 272

Field

Definition 0-Node

Global File Structure, 386

Global Storage

Advanced File Definition, 394

Identifiers

Global File Structure, 383

Number Retriever

$$FLDNUM^DILFD(), 257

Order

ScreenMan Forms

Field Properties, 288

Properties

ScreenMan Forms

Branching Logic, Pre Action, Post

Action, and Post Action on Change,

292

Caption and Data Coordinates, 290

Caption, Executable Caption, and

Suppress Colon After Caption, 288

Data Length, 289

Data Validation, 291

Default and Executable Default, 289

Disable Editing and Disallow LAYGO,

290

Display Group, 290

Field, 288

Field Order, 288

Field Type, 288

Required, 290

Right Justify, 290

Subpage Link, 291

Unique Name, 288

ScreenMan Forms

Field Properties, 288

Type

ScreenMan Forms

Field Properties, 288

Verifier

$$VFIELD^DILFD(), 261

FIELD, 423

FIELD^DID(): DD Field Retriever, 209

FIELDLST^DID(): DD Field List Retriever, 211

Fields

Adding Fields with ScreenMan Form Editor,

308

Validator

VALS^DIE(), 237

FILE, 423

PACKAGE File and DIFROM, 423

File Characteristics Nodes

Global File Structure, 382

File Entries (Data Storage)

Global File Structure, 379

FILE file (#1), 423

File Global Storage

Advanced File Definition, 393

VA FileMan 22.2

Developer’s Guide 491 January 2017

File Header

Global File Structure, 378

File Root Resolver

$$ROOT^DILFD(), 259

File Verifier

$$VFILE^DILFD(), 261

FILE^DDMP: Data Import, 343

FILE^DICN, 33

FILE^DID(): DD File Retriever, 212

FILE^DIE(): Filer, 218

Filegrams

API, 363

Calls

^DIFG, 363

EN^DIFGG, 365

Introduction, 363

Option, 204

FILELST^DID(): DD File List Retriever, 214

FileMan

Error Codes, 444

Introduction, 444

Functions

Creating, 419

Filer

FILE^DIE(), 218

Files

Advanced File Definition, 393

AUDIT (#1.1), 349, 351, 404

BLOCK (#.404), 270, 286, 287, 288, 294,

295, 308, 312, 316, 327, 442

BULLETIN (#3.6), 440, 441

COMPILED ROUTINE (#.83), 64

DD AUDIT (#.6), 140, 141

DEVICE (#3.5), 69, 263, 342, 344, 350

DIALOG (#.84), 122, 124, 147, 149, 153,

155, 412, 413, 414, 415

Entry in the Dictionary of Files

Global File Structure, 378

FILE (#1), 423

FOREIGN FORMAT (#.44), 346, 347, 467

FORM (#.403), 270, 283, 286, 294, 312,

317, 442, 469

FUNCTION (#.5), 419, 420, 442

Global File Structure, 377

HELP FRAME (#9.2), 440, 441

IMPORT TEMPLATE (#.46), 469

INDEX (#.11), 15, 72, 76, 129, 133, 135,

136, 138, 143, 162, 175, 176, 180, 187,

189, 381, 384

INPUT TEMPLATE (#.402), 440

KEY (#.31), 35, 47, 162, 180, 225, 381

LANGUAGE (#.85), 414, 416, 417

MAIL GROUP (#3.8), 431

MUMPS OPERATING SYSTEM (#.7),

xxviii, 63, 428, 434, 439, 442, 463

OPTION (#19), 440, 443

ORDER PARAMETERS (#100.99), 427,

440, 442

PACKAGE (#9.4), 421, 422, 426, 427, 429,

430, 431, 433, 435, 437, 440, 443

PRINT TEMPLATE (#.4), 78, 363, 365,

366, 433

PROTOCOL (#101), 427, 442

SORT TEMPLATE (#.401), 79

TERMINAL TYPE (#3.2), 263, 341, 464

FILESEC^DDMOD

Set File Protection Security Codes, 145

FIND^DIC(): Finder, 157

Finder

FIND^DIC(), 157

Finder (Single Record)

VA FileMan 22.2

Developer’s Guide 492 January 2017

$$FIND1^DIC(), 178

FOREIGN FORMAT File (#.44), 346, 347, 467

Form (ScreenMan Forms)

Layout: Forms and Pages, 270

Properties, 283

Data Validation, 283

Form Name, 283

Post Save, 284

Pre Action and Post Action, 283

Record Selection Page, 284

Title, 283

Structure, 270

Form Doc Print

^DIWF, 103

EN1^DIWF, 104

EN2^DIWF, 105

Form Editor

ScreenMan, 301

Adding Blocks, 308

Adding Fields, 308

Adding Pages, 307

Adding, Selecting, and Editing, 303

Block Viewer Screen, 305

Choosing another Form, 315

Command Summary, 302

Deleting Screen Elements, 316

Editing ”Pop-p” Page Coordinates, 314

Editing Block Properties, 312

Editing Field Captions and Data Length,

311

Editing Field Properties, 310

Editing Form Properties, 315

Editing Page Properties, 313

Exiting, Quitting, Saving, and Obtaining

Help, 304

Going to another Page, 306

Header Blocks, 308

Introduction, 301

Invoking, 301

Main Screen, 304

Moving Screen Elements, 303, 309

Navigating on the Form Editor Screens,

306

Navigating on the Main Screen and

Block Viewer Screen, 302

Quick Page Navigation, 302

Reordering All Fields on a Block, 312

Selecting Screen Elements, 309

FORM File (#.403), 270, 283, 286, 294, 312,

317, 442, 469

Format and Conventions

DBS Calls, 118

Formatter

^DIWP, 105

Form-Only Fields

ScreenMan Forms, 274

Forms and Pages

ScreenMan Forms: Form Layout, 270

Forms in ScreenMan, 270

Forward Pointers

Relational Navigation

ScreenMan Forms, 276

FUNCTION, 442

FUNCTION File (#.5), 419, 420, 442

Function File Entries

VA FileMan Functions (Creating), 419

Functional Description, 1

Functions

Creating VA FileMan Functions, 419

FUNCTIONS, 430, 431, 433, 437

VA FileMan 22.2

Developer’s Guide 493 January 2017

G

Gathers

Miscellaneous Package Components

DIFROM, 431

Templates and Forms

DIFROM, 433

General Processing

DIFROM, Running an INIT, 441

Generator

EN^DIFGG, 365

GETS^DIQ(): Data Retriever, 265

Global File Structure, 377

Attribute Dictionary, 382

Cross-references, 380, 384

Data Dictionary Audit, 383

Data Storage Conventions, 377

Distribution Package, 385

Field Definition 0-Node, 386

Field Identifiers, 383

File Characteristics Nodes, 382

File Entries (Data Storage), 379

File Header, 378

File’s Entry in the Dictionary of Files, 378

INDEX File, 381

Introduction, 377

KEY File, 381

Other Field Definition Nodes, 389

Package Revision Data, 385

Post-Action, 383

Reading the Attribute Dictionary: An

Example, 391

Screens, 385

Special Lookup, 383

Version Number, 385

Write Identifiers, 384

Glossary, 471

Going to another Page

ScreenMan Form Editor, 306

H

H^%DTC, 114

Header Blocks

ScreenMan Form Editor, 308

ScreenMan Forms Page Property, 285

Help

At Prompts, xxxi

Online, xxxi

Question Marks, xxxi

HELP FRAME File (#9.2), 440, 441

HELP FRAMES, 430, 431, 433, 437, 441

Help Messages (ScreenMan)

HLP^DDSUTL(), 325

MSG^DDSUTL(), 326

HELP^%DTC, 115

HELP^DIE(): Helper, 222

Helper

HELP^DIE(), 222

HLP^DDSUTL(), 325

Home Pages

Adobe Website, xxxii

VA Software Document Library (VDL)

Website, xxxii

How Information Is Returned

DBS Calls, 121

How the Database Server (DBS) communicates,

121

How to

Obtain Technical Information Online, xxxi

Read the Attribute Dictionary: An Example

Global File Structure, 391

Use the DBS calls, 118

VA FileMan 22.2

Developer’s Guide 494 January 2017

Use this Manual, xxiv

HTML Encoder/Decoder

$$HTML^DILF(), 248

HTML Manuals, xxv

I

Identifier Option, 383

Identifying the Init Routines

DIFROM, 429

IENS

Creator

$$IENS^DILF(), 249

Identify Entries and Subentries, 119

IMPORT TEMPLATE File (#.46), 469

Import Tool API, 343

Calls

FILE^DDMP, 343

Introduction, 343

Importing Data

DIFROM, 433

Including

Other Package Components

DIFROM, 430

Templates (No Package File Entry)

DIFROM, 430

INDEX File (#.11), 15, 72, 76, 129, 133, 135,

136, 138, 143, 162, 175, 176, 180, 187, 189,

381, 384

Global File Structure, 381

INPUT Template, 442

INPUT TEMPLATE File (#.402), 440

INPUT TEMPLATES, 437

INPUT Transform

Advanced File Definition, 399

Input Transform (Syntax) Option, 387, 399

INPUT Transforms and the Verify Fields Option

Advanced File Definition, 402

Inquiry to File Entries Option, 81

Installer

^DIFG, 363

Installing

Data

DIFROM, Running an INIT, 438

Data Dictionaries

DIFROM, Running an INIT, 437

Other Package Components

DIFROM, Running an INIT, 440

Intended Audience, xxv

Internationalization

Creating Non-English Text in the DIALOG

File (#.84), 415

DIALOG File (#.84), 414

LANGUAGE File (#.85), 416

Role of the DIALOG File (#.84), 414

Use of the DIALOG File (#.84), 414

Introduction, 1

Advanced File Definition, 393

DBS Calls, 118

DIALOG File (#.84), 412

DIFROM, 421

Extract Tool, 355

Filegrams

API, 363

Global File Structure, 377

Import Tool API, 343

LANGUAGE File (#.85), 416

ScreenMan Form Editor, 301

ScreenMan Forms, 270

Trigger Cross-references, 407

VA FileMan Functions

Creating, 419

VA FileMan 22.2

Developer’s Guide 495 January 2017

Invoke ScreenMan

^DDS, 317

Invoking the ScreenMan Form Editor, 301

Is This a ”Pop-Up” Page?

ScreenMan Forms Page Property, 285

IX^DIC, 27

IX^DIK, 57

IX1^DIK, 58, 59

IXALL^DIK, 60, 61

K

KEY File (#.31), 35, 47, 162, 180, 225, 381

Global File Structure, 381

Key Validator

$$KEYVAL^DIE(), 224

L

LANGUAGE File (#.85), 414, 416, 417

Creating LANGUAGE File Entries, 417

Introduction, 416

Use of the LANGUAGE File (#.85), 416

LAST^DIAUTL, 329

LAYGO

ScreenMan Forms Field Properties, 290

Linking Pages of a Form

ScreenMan Forms, 271

List File Attributes Option, xxxi, 37

LIST^DIC(): Lister, 190

Lister

LIST^DIC(), 190

Lock Global Reference

LOCK^DILF(), 249

LOCK^DILF(): Lock Global Reference, 249

Lookup

Adding Entries

^DIAC, 12

^DIC, 13

DQ^DICQ, 36

FILE^DICN, 33

IX^DIC, 27

DBS Calls

$$FIND1^DIC(), 178

FIND^DIC(), 157

LIST^DIC(), 190

Special Lookup Programs

Advanced File Definition, 403

M

MAIL GROUP File (#3.8), 431

Main Screen

ScreenMan Form Editor, 304

Major APIs, 3

Manuals

In HTML, xxv

Reference, xxxii

MAY USER OVERRIDE DATA UPDATE,

423

MAY USER OVERRIDE DD UPDATE, 423

MENU Field, 442

Menus

Data Dictionary Utilities, xxxi

DDS SCREEN MENU, 293, 294, 295, 296

DI DDU, xxxi

DIOTHER, 293, 296

DIUSER, 296, 316

DIUTILITY, 20, 47, 54, 56, 60, 62, 131,

381, 387, 399, 403, 404, 407, 410

Other Options, 293, 296

ScreenMan, 293, 294, 295, 296

Utility Functions, 20, 47, 54, 56, 60, 62,

131, 381, 387, 399, 403, 404, 407, 410

VA FileMan, 296, 316

MERGE OR OVERWRITE SITE’S DATA, 423

VA FileMan 22.2

Developer’s Guide 496 January 2017

Modify File Attributes Option, 47, 387, 393,

394, 395, 399, 405, 410

Moving Screen Elements

ScreenMan Form Editor, 303, 309

MSG^DDSUTL(), 326

MSG^DIALOG(): Output Generator, 154

MUMPS Data Type

Advanced File Definition, 398

MUMPS OPERATING SYSTEM File (#.7),

xxviii, 63, 428, 434, 439, 442, 463

N

Name

ScreenMan Forms

Block Properties, 287

ScreenMan Forms Page Property, 284

NAME

PACKAGE File and DIFROM, 422

Navigating

Form Editor Screens

ScreenMan Form Editor, 306

On the Form Editor Screens

ScreenMan Form Editor, 306

Quick Page Navigation ScreenMan Form

Editor, 302

ScreenMan Form Editor on the Main Screen

and Block Viewer Screen, 302

Via DD Fields—Syntax for Pointer Link

ScreenMan Forms, 277

Via Form Only Fields—Syntax for Pointer

Link

ScreenMan Forms, 278

New-Style Index Delete

DELIXN^DDMOD, 143

Next Page and Previous Page

ScreenMan Forms Page Property, 285

NOW^%DTC, 115

Number

ScreenMan Forms Page Property, 284

O

Obtaining Formatted Text From The Arrays

DBS Calls, 125

Obtaining, Exiting, Saving, and Quitting Help

ScreenMan Form Editor, 304

Online

Documentation, xxxi

Technical Information, How to Obtain, xxxi

OPEN^DDBRZIS, 341

OPTION File (#19), 440, 443

Options

Create Export Template, 349

Cross-Reference A Field, 381, 404, 407, 410

Data Dictionary Utilities, xxxi

DDS DELETE A FORM, 294

DDS EDIT/CREATE A FORM, 293, 296,

301

DDS PURGE UNUSED BLOCKS, 295,

316

DDS RUN A FORM, 293

DDS SCREEN MENU, 293, 294, 295, 296

DDXP CREATE EXPORT TEMPLATE,

349

Delete a Form, 294

DI DDU, xxxi

DIAUDIT PURGE DATA, 331

DIEDFILE, 20, 23, 403, 404

DIEDIT, 13, 47, 409, 413, 415, 417, 419

DIFG, 204

DIIDENT, 383

DIINQUIRE, 81

DIITRAN, 387, 399

DILIST, xxxi, 37

VA FileMan 22.2

Developer’s Guide 497 January 2017

DIMODIFY, 47, 387, 393, 394, 395, 399,

405, 410

DIOTHER, 293, 296

DIRDEX, 54, 56, 60, 62, 131

DISEARCH, 99

DIUSER, 296, 316

DIUTILITY, 20, 47, 54, 56, 60, 62, 131,

381, 387, 399, 403, 404, 407, 410

DIVERIFY, 402

DIXREF, 381, 404, 407, 410

Edit File, 20, 23, 403, 404

Edit/Create a Form, 293, 296, 301

Enter or Edit File Entries, 13, 47, 409, 413,

415, 417, 419

Filegrams, 204

Identifier, 383

Input Transform (Syntax), 387, 399

Inquiry to File Entries, 81

List File Attributes, xxxi, 37

Modify File Attributes, 47, 387, 393, 394,

395, 399, 405, 410

Other Options, 293, 296

Purge Data Audits option, 331

Purge Unused Blocks, 294, 295, 316

Re-Index File, 54, 56, 60, 62, 131

Run A Form, 293

ScreenMan, 293, 294, 295, 296

ScreenMan Forms

Delete a Form, 294

Edit/Create a Form, 293

Purge Unused Blocks, 295

Run a Form, 293

Search File Entries, 99

Utility Functions, 20, 47, 54, 56, 60, 62,

131, 381, 387, 399, 403, 404, 407, 410

VA FileMan, 296, 316

Verify Fields, 402

Advanced File Definition, 402

OPTIONS, 430, 431, 433, 437, 442

Order Entry and DIFROM, 427

ORDER PARAMETERS File (#100.99), 427,

440, 442

Orientation, xxiv

Other

APIs, 328

Field Definition Nodes

Global File Structure, 389

PACKAGE File Fields

PACKAGE File and DIFROM, 426

Other Options Menu, 293, 296

Output Generator

MSG^DIALOG(), 154

OUTPUT Transform

Advanced File Definition, 402

Overview

DBS Calls, 121

P

PACKAGE File (#9.4), 421, 422, 426, 427, 429,

430, 431, 433, 435, 437, 440, 443

DIFROM, 422

ENVIRONMENT CHECK ROUTINE,

423

EXCLUDED NAME SPACE, 423

FILE, 423

NAME, 422

Other PACKAGE File Fields, 426

POST-INITIALIZATION ROUTINE,

423

PREFIX, 422

PRE-INIT AFTER USER COMMIT,

423

Template Multiples, 422

VA FileMan 22.2

Developer’s Guide 498 January 2017

PACKAGE FILE ENTRIES, 441

Package Identification

DIFROM, 429

PACKAGE PARAMETERS, 442

Package Revision Data

Global File Structure, 385

Initializer

PRD^DILFD(), 258

Pages

Adding Blocks with ScreenMan Form

Editor, 307

ScreenMan Forms

Properties, 284

Coordinate and Lower Right

Coordinate, 284

Header Block, 285

Is This a ”Pop-Up” Page?, 285

Name, 284

Next Page and Previous Page, 285

Number, 284

Parent Field, 285

Pre Action and Post Action, 285

Parent Field

ScreenMan Forms Page Property, 285

Pointer Link

ScreenMan Forms Block Properties, 286

Post Save

ScreenMan Forms Form Properties, 284

POST^DDBRZIS, 342

Post-Action

Global File Structure, 383

POST-INITIALIZATION ROUTINE

PACKAGE File and DIFROM, 423

Post-Selection Action

Advanced File Definition, 403

PRD^DILFD(): Package Revision Data

Initializer, 258

Pre Action and Post Action

ScreenMan Forms

Block Properties, 287

ScreenMan Forms Block Properties, 286

ScreenMan Forms Form Properties, 283

ScreenMan Forms Page Property, 285

PREFIX

PACKAGE File and DIFROM, 422

PRE-INIT AFTER USER COMMIT

PACKAGE File and DIFROM, 423

Pre-init After User Commit Routine

DIFROM, Running an INIT, 437

Preliminary

Steps

DIFROM, Running an INIT, 434

Validations

DIFROM, 428

Preparing To Run DIFROM, 421

PRINT Template, 442

PRINT TEMPLATE File (#.4), 78, 363, 365,

366, 433

PRINT TEMPLATES, 437

PRINT^DDS, 299

Printing

^DIWF, 103

^DIWP, 105

^DIWW, 107

DT^DIQ, 80

EN^DIQ, 81

EN^DIS, 99

EN1^DIWF, 104

EN2^DIWF, 105

Y^DIQ, 82

VA FileMan 22.2

Developer’s Guide 499 January 2017

Programmer Access

^DI, 369

Programmer Mode Utilities

^DDGF, 296

CLONE^DDS, 297

PRINT^DDS, 299

RESET^DDS, 300

ScreenMan Forms, 296

Programmer Tools, 369

Prompting/Messages

^DIR, 85

EN^DDIOL, 8

HELP^%DTC, 115

WAIT^DICD, 33

Properties

Block Coordinate

ScreenMan Forms, 286

Block Name

ScreenMan Forms, 286

Block Order

ScreenMan Forms, 286

Block Properties Stored in the BLOCK File

ScreenMan Forms, 287

Block Properties Stored in the FORM File

ScreenMan Forms, 286

Branching Logic, Pre Action, Post Action,

and Post Action on Change

ScreenMan Forms, 292

Caption and Data Coordinates

ScreenMan Forms, 290

Caption, Executable Caption, and Suppress

Colon After Caption

ScreenMan Forms, 288

Data Length

ScreenMan Forms, 289

Data Validation

ScreenMan Forms, 283, 291

DD Number

ScreenMan Forms, 287

Default and Executable Default

ScreenMan Forms, 289

Disable Editing and Disallow LAYGO

ScreenMan Forms, 290

Disable Navigation

ScreenMan Forms, 287

Display Group

ScreenMan Forms, 290

Editing Block Properties with ScreenMan

Form Editor, 312

Editing Field Properties with ScreenMan

Form Editor, 310

Editing Form Properties with ScreenMan

Form Editor, 315

Editing Page Properties with ScreenMan

Form Editor, 313

Field

ScreenMan Forms, 288

Field Order

ScreenMan Forms, 288

Field Type

ScreenMan Forms, 288

Form Name

ScreenMan Forms, 283

Header Blocks

ScreenMan Forms, 285

Is This a ”Pop-Up” Page?

ScreenMan Forms, 285

Name

ScreenMan Forms, 287

Next Page and Previous Page

ScreenMan Forms, 285

VA FileMan 22.2

Developer’s Guide 500 January 2017

Page Coordinate and Lower Right

Coordinate

ScreenMan Forms, 284

Page Name

ScreenMan Forms, 284

Page Number

ScreenMan Forms, 284

Parent Field

ScreenMan Forms, 285

Pointer Link

ScreenMan Forms, 286

Post Save

ScreenMan Forms, 284

Pre Action and Post Action

ScreenMan Forms, 283, 285, 286, 287

Record Selection Page

ScreenMan Forms, 284

Replication, Index, Initial Position, Disallow

LAYGO, Field for Selection

ScreenMan Forms, 287

Required

ScreenMan Forms, 290

Right Justify

ScreenMan Forms, 290

Subpage Link

ScreenMan Forms, 291

Title

ScreenMan Forms, 283

Type of Block

ScreenMan Forms, 286

Unique Name

ScreenMan Forms, 288

Properties of Form-Only Fields

ScreenMan Forms, 274

PROTOCOL File (#101), 427, 442

PROTOCOL TO EXPORT Field, 442

PS Anonymous Directories, xxxii

Purge Data Audits Option, 331

Purge Unused Blocks Option, 294, 295, 316

Purge Unused Blocks ScreenMan Forms Option,

295

PUT^DDSVAL(), 321

PUT^DDSVALF(), 324

Q

Question Mark Help, xxxi

Quick Page Navigation

ScreenMan Form Editor, 302

Quitting, Exiting, Saving, and Obtaining Help

ScreenMan Form Editor, 304

R

Reader

^DIR, 85

Recall Record Number

RECALL^DILFD(), 258

RECALL^DILFD(): Recall Record Number,

258

Record Selection Page

ScreenMan Forms Form Properties, 284

Recording the Install on the Target System

DIFROM, Running an INIT, 443

Reference Materials, xxxii

Referencing

Data Dictionary Fields

ScreenMan Forms, 279

Form-Only and Computed Fields

ScreenMan Forms, 280

Refresh Screen (ScreenMan)

REFRESH^DDSUTL(), 326

REFRESH^DDSUTL(), 326

Re-Index File Option, 54, 56, 60, 62, 131

Reindexing the Files

VA FileMan 22.2

Developer’s Guide 501 January 2017

DIFROM, Running an INIT, 440

Relational Navigation (ScreenMan Forms)

Backward Pointers, 279

Forward Pointers, 276

Reordering All Fields on a Block

ScreenMan Form Editor, 312

Replication, Index, Initial Position, Disallow

LAYGO, Field for Selection

ScreenMan Forms Block Properties, 287

REQ^DDSUTL(), 326

Required

ScreenMan Forms

Field Properties, 290

RESET^DDS, 300

Retrieve/Stuff Fields (ScreenMan)

$$GET^DDSVAL(), 320

$$GET^DDSVALF(), 323

PUT^DDSVAL(), 321

PUT^DDSVALF(), 324

Right Justify

ScreenMan Forms

Field Properties, 290

Role of the VA FileMan DIALOG File (#.84) in

Internationalization, 414

Root Converter

Closed to Open Format

$$OREF^DILF(), 250

Open to Closed Format

$$CREF^DILF(), 243

Run A Form Option, 293

Run a Form ScreenMan Forms Option, 293

Running

An INIT (Steps), 433

DIFROM (Steps), 428

Environment Check Routine

DIFROM, Running an INIT, 435

Post-Initialization Routine

DIFROM, Running an INIT, 443

Run-Time Field Status (ScreenMan)

REQ^DDSUTL(), 326

UNED^DDSUTL(), 327

S

S^%DTC, 115

Screen Elements

Moving with ScreenMan Form Editor, 303

SCREEN TEMPLATES, 433

SCREEN TEMPLATES (FORMS), 437, 442

SCREEN TO DETERMINE DD UPDATE, 423

Screened Pointers and Set of Codes

Advanced File Definition, 398

ScreenMan, 270

API, 317

Introduction, 317

Calls

$$GET^DDSVAL(), 320

$$GET^DDSVALF(), 323

^DDS, 317

HLP^DDSUTL(), 325

MSG^DDSUTL(), 326

PUT^DDSVAL(), 321

PUT^DDSVALF(), 324

REFRESH^DDSUTL(), 326

REQ^DDSUTL(), 326

UNED^DDSUTL(), 327

Form Editor, 301

Adding Blocks, 308

Adding Fields, 308

Adding Pages, 307

Adding, Selecting, and Editing, 303

Block Viewer Screen, 305

VA FileMan 22.2

Developer’s Guide 502 January 2017

Choosing another Form, 315

Command Summary, 302

Deleting Screen Elements, 316

Editing ”Popup” Page Coordinates, 314

Editing Block Properties, 312

Editing Field Captions and Data Length,

311

Editing Field Properties, 310

Editing Form Properties, 315

Editing Page Properties, 313

Exiting, Quitting, Saving, and Obtaining

Help, 304

Going to another Page, 306

Header Blocks, 308

Introduction, 301

Invoking, 301

Main Screen, 304

Moving Screen Elements, 303, 309

Navigating on the Form Editor Screens,

306

Navigating on the Main Screen and

Block Viewer Screen, 302

Quick Page Navigation, 302

Reordering All Fields on a Block, 312

Selecting Screen Elements, 309

Forms, 270

Backward Pointers

Relational Navigation, 279

Block Properties, 286, 288

Callable Routines, 296

Computed Fields, 279

Data Filing, 283

DDSBR Variable, 281

DDSSTACK Variable, 282

Displaying Multiples in Repeating

Blocks, 272

Features, 272

Form Layout: Forms and Pages, 270

Form Properties, 283

Form Name, 283

Form Structure, 270

Form-Only Fields, 274

Forward Pointers

Relational Navigation, 276

Introduction, 270

Linking Pages of a Form, 271

Navigating Via DD Fields—Syntax for

Pointer Link, 277

Navigating Via Form Only Fields—

Syntax for Pointer Link, 278

Options, 293

Delete a Form, 294

Edit/Create a Form, 293

Purge Unused Blocks, 295

Run a Form, 293

Page Properties, 284

Programmer Mode Utilities, 296

Properties

Block Coordinate, 286

Block Name, 286

Block Order, 286

Block Properties Stored in the BLOCK

File, 287

Block Properties Stored in the FORM

File, 286

Branching Logic, Pre Action, Post

Action, and Post Action on Change,

292

Caption and Data Coordinates, 290

Caption, Executable Caption, and

Suppress Colon After Caption, 288

Data Length, 289

Data Validation, 283, 291

VA FileMan 22.2

Developer’s Guide 503 January 2017

DD Number, 287

Default and Executable Default, 289

Disable Editing and Disallow LAYGO,

290

Disable Navigation, 287

Display Group, 290

Field, 288

Field Order, 288

Field Type, 288

Header Block, 285

Is This a ”Pop-Up” Page?, 285

Name, 287

Next Page and Previous Page, 285

Page Coordinate and Lower Right

Coordinate, 284

Page Name, 284

Page Number, 284

Parent Field, 285

Pointer Link, 286

Post Save, 284

Pre Action and Post Action, 283, 285,

286, 287

Record Selection Page, 284

Replication, Index, Initial Position,

Disallow LAYGO, Field for

Selection, 287

Required, 290

Right Justify, 290

Subpage Link, 291

Title, 283

Type of Block, 286

Unique Name, 288

Properties of Form-Only Fields, 274

Referencing

Data Dictionary Fields, 279

Form-Only and Computed Fields, 280

Relational Navigation

Backward Pointers, 279

Forward Pointers, 276

Syntax for Pointer Link—Navigating

Via

DD Fields, 277

Form Only Fields, 278

Variables Available in Repeating

Blocks, 273

Help Messages Calls

HLP^DDSUTL(), 325

MSG^DDSUTL(), 326

Programmer Mode Utilities

^DDGF, 296

CLONE^DDS, 297

PRINT^DDS, 299

RESET^DDS, 300

Refresh Screen Calls

REFRESH^DDSUTL(), 326

Retrieve/Stuff Fields Calls

$$GET^DDSVAL(), 320

$$GET^DDSVALF(), 323

PUT^DDSVAL(), 321

PUT^DDSVALF(), 324

Run-Time Field Status Calls

REQ^DDSUTL(), 326

UNED^DDSUTL(), 327

ScreenMan Calls

$$GET^DDSVAL(), 320

$$GET^DDSVALF(), 323

^DDS, 317

HLP^DDSUTL(), 325

MSG^DDSUTL(), 326

PUT^DDSVAL(), 321

PUT^DDSVALF(), 324

VA FileMan 22.2

Developer’s Guide 504 January 2017

REFRESH^DDSUTL(), 326

REQ^DDSUTL(), 326

UNED^DDSUTL(), 327

ScreenMan Forms

Block Properties that Apply Only to

Repeating Blocks, 274

ScreenMan Menu, 293, 294, 295, 296

Screens

Global File Structure, 385

Search File Entries

EN^DIS, 99

Search File Entries Option, 99

SECURITY KEYS, 430, 431, 433, 437, 442

Selecting Screen Elements

ScreenMan Form Editor, 309

Selecting, Adding, and Editing

ScreenMan Form Editor, 303

Set File Protection Security Codes

FILESEC^DDMOD, 145

Single Data Retriever

$$GET1^DIQ(), 262

Software Disclaimer, xxv

SORT Template, 442

SORT TEMPLATE File (#.401), 79

SORT TEMPLATES, 437, 465

Special Lookup

Global File Structure, 383

Programs

Advanced File Definition, 403

Special Processing

DIFROM, Running an INIT, 441

Specifications for Exported Files

DIFROM, 429

Specifying Routine Size

DIFROM, 430

Standalone VA FileMan, 2

Starting

DIFROM, 428

The Update

DIFROM, Running an INIT, 437

Storing Data

By Position within a Node

Advanced File Definition, 395

In a Global other than ^DIZ

Advanced File Definition, 393

SUBORDINATE KEY Multiple Field, 442

Subpage Link

ScreenMan Forms

Field Properties, 291

Symbols

Found in the Documentation, xxvi

Syntax for Pointer Link—Navigating Via

DD Fields

ScreenMan Forms, 277

Form Only Fields

ScreenMan Forms, 278

T

Template Compilation

^DIEZ, 47

Template Multiples

PACKAGE File and DIFROM, 422

Templates

^DIEZ, 47

^DIOZ, 64

^DIPT, 78

^DIPZ, 79

DIBT^DIPT, 79

EN^DIEZ, 48

EN^DIPZ, 80

TEMPLATES, 433

VA FileMan 22.2

Developer’s Guide 505 January 2017

TERMINAL TYPE File (#3.2), 263, 341, 464

Text Editing

EN^DIWE, 101

Title

ScreenMan Forms Form Properties, 283

Tools

Extract, 355

For Developers, 369

Import Tool API, 343

Traditional Cross-reference Delete

DELIX^DDMOD, 140

Transforms

INPUT Transform

Advanced File Definition, 399

OUTPUT Transform

Advanced File Definition, 402

Triggers

Cross-references, 407

Different Files, 410

Introduction, 407

Same File, 408

Different Files

Cross-references, 410

Same File

Cross-references, 408

TURNON^DIAUTL, 328

Type of Block

ScreenMan Forms Block Properties, 286

U

UNED^DDSUTL(), 327

Unique Name

ScreenMan Forms

Field Properties, 288

UPDATE THE DATA DICTIONARY, 423

UPDATE^DIE(): Updater, 226

Updater

UPDATE^DIE(), 226

URLs

Adobe Website, xxxii

VA Software Document Library (VDL)

Website, xxxii

Use of the

DIALOG File (#.84), 412

Internationalization, 414

LANGUAGE File (#.85), 416

User Dialogue DBS Calls

$$EZBLD^DIALOG(), 153

BLD^DIALOG(), 147

MSG^DIALOG(), 154

User Messages

DIALOG File (#.84), 412

Using

Identifiers to Verify a Match, 439

Internal Entry Number to Verify a Match,

439

Utilities

$$ROUSIZE^DILF, 63

%XY^%RCR, 116

^DIM, 63

COMMA^%DTC, 113

DO^DIC1, 30

DT^DICRW, 37

EN^DID, 37

EN^DIU2, 100

Utility DBS Calls

$$CREF^DILF(), 243

$$EXTERNAL^DILFD(), 252

$$HTML^DILF(), 248

$$IENS^DILF(), 249

$$OREF^DILF(), 250

VA FileMan 22.2

Developer’s Guide 506 January 2017

$$VALUE1^DILF(), 250

CLEAN^DILF, 242

DA^DILF(), 244

DT^DILF(), 245

FDA^DILF(), 247

LOCK^DILF(), 249

VALUES^DILF(), 251

Utility Functions Menu, 20, 47, 54, 56, 60, 62,

131, 381, 387, 399, 403, 404, 407, 410

V

VA FileMan

Error Codes, 444

Introduction, 444

Functional Description, 1

Functions (Creating), 419

Function File Entries, 419

Introduction, 419

Standalone, 2

What is it?, 1

VA FileMan Menu, 296, 316

VA Software Document Library (VDL)

Website, xxxii

VAL^DIE(): Validator, 234

Validator

VAL^DIE(), 234

VALS^DIE(): Fields Validator, 237

VALUES^DILF():FDA

Values Retriever, 251

Variables Available in Repeating Blocks

ScreenMan Forms, 273

Verify Fields Option, 402

Version Number

Global File Structure, 385

W

WAIT^DICD, 33

Websites

Adobe Website, xxxii

VHA Software Document Library (VDL),

xxxii

What is VA FileMan?, 1

Word-processing Filer

WP^DIE(), 241

Word-processing Print

^DIWP, 105

WP Print

^DIWP, 105

^DIWW, 107

WP^DDBR, 336

WP^DIE(): Word-processing Filer, 241

Write Identifiers

Global File Structure, 384

X

X ^DD(”DD”), 7

Y

Y^DIQ, 82

YMD^%DTC, 116

YX^%DTC, 116

Z

Zero Node

Checking, 439

