

KERNEL AUTHENTICATION &
AUTHORIZATION FOR J2EE (KAAJEE)

VERSION 1.2.0
and

SECURITY SERVICE PROVIDER
INTERFACE (SSPI)

VERSION 1.2.0

FOR WEBLOGIC (WL) VERSIONS 10.3.6
AND HIGHER

DEPLOYMENT GUIDE

July 2020

Department of Veterans Affairs

Office of Information and Technology

Product Development

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 iv

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Revision History

Documentation Revisions

The following table displays the revision history for this manual. Revisions to the documentation are

based on patches and new versions released to the field.

Table i. Documentation revision history

Date Description Author(s)

07/2020 Software and documentation for KAAJEE 1.2.x.x,
Single Sign-On Web Application Plugin (SSOWAP)
1.1.0.xxx and KAAJEE Security Service Provider
Interface (SSPI) 1.2.0.005 referencing VistALink 1.6
and WebLogic 10.3.6 and higher.

Kernel Patches: XU*8.0*694 and XU*8.0*696

HPS Admin

REDACTED

03/2011 Software and documentation for KAAJEE 1.1.0.007
and KAAJEE Security Service Provider Interface
(SSPI) 1.1.0.002, referencing VistALink 1.6 and
WebLogic 9.2 and higher.

Software Version: 1.1.0.007

Security Service Provider Interface (SSPI) Version:
1.1.0.002

Kernel Patch: XU*8.0*504

Product Development Services
Security Program HWSC
development team.

Bay Pines, FL OIFO:

• REDACTED

Oakland, CA OIFO:

REDACTED

05/2006 Initial software and documentation for Kernel
Authentication and Authorization Java (2) Enterprise
Edition (KAAJEE) 1.0.0.019 and KAAJEE SSPIs
1.0.0.010, referencing VistALink 1.5 and WebLogic
8.1 (SP4 or higher).

Software Version: 1.0.0.019

SSPI Version 1.0.0.010

 REF: For a description of the current KAAJEE
software version numbering scheme, please review
the readme.txt file distributed with the KAAJEE
software.

ISS KAAJEE Development Team,
Oakland, CA Oakland Office of
Information Field Office (OIFO):

REDACTED

 •

 Revision History

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 v

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Date Description Author(s)

Patch Revisions

For a complete list of patches related to this software, please refer to the Patch Module on FORUM.

NOTE: Kernel is the designated custodial software application for KAAJEE; however,

KAAJEE comprises multiple patches and software releases from several HealtheVet-VistA

applications.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 vi

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Contents

Revision History .. iv

Figures .. x

Tables .. xii

Orientation ... xiv

I. User Guide .. I-1

1. KAAJEE Overview .. 1-1

Introduction ... 1-1

Security Service Provider Interfaces (SSPI) .. 1-6

KAAJEE Process Flow Overview ... 1-8

Using Industry Standard Form-based Authentication ... 1-9

KAAJEE's Use of Form-based Authentication ... 1-10

Container Security Detecting Authorization Failures ... 1-11

KAAJEE J2EE Web-based Application Login Page... 1-12

2. Future Software Implementations .. 2-1

Outstanding Issues ... 2-1

Future Enhancements .. 2-1

II. Developer's Guide ... II-1

3. KAAJEE Installation Instructions for Developers ... 3-1

Dependencies: Preliminary Considerations for Developer Workstation Requirements 3-1

Dependencies: KAAJEE and VistALink Software ... 3-3

Dependencies: KAAJEE-Related Software Applications/Modules .. 3-3

KAAJEE Installation Instructions ... 3-4

4. Integrating KAAJEE with an Application ... 4-1

Assumptions When Implementing KAAJEE .. 4-1

Software Requirements/Dependencies .. 4-2

Web-based Application Procedures to Implement KAAJEE .. 4-3

SSO/UC/CCOW Functionality Enabled .. 4-15

5. Role Design/Setup/Administration .. 5-1

1. Declare Groups (weblogic.xml file) .. 5-2

 Contents

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 vii

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

2. Create VistA M Server J2EE Security Keys Corresponding to WebLogic Group Names . 5-3

3. Declare J2EE Security Role Names .. 5-3

4. Map J2EE Security Role Names to WebLogic Group Names (weblogic.xml file) 5-4

5. Configure Web-based Application for J2EE Form-based Authentication 5-4

6. Protect Resources in Your J2EE Application .. 5-5

7. Grant Special Group to All Authenticated Users (Magic Role) .. 5-5

8. Administer Users ... 5-6

9. Administer Roles ... 5-6

6. KAAJEE Configuration File .. 6-1

KAAJEE Configuration File Tags ... 6-1

Suggested System Announcement Text .. 6-4

KAAJEE Configuration File (i.e., kaajeeConfig.xml) .. 6-5

7. Programming Guidelines ... 7-1

Application Involvement in User/Role Management .. 7-1

J2EE Container-enforced Security Interfaces .. 7-1

J2EE Username Format ... 7-1

LoginUserInfoVO Object .. 7-2

VistaDivisionVO Object ... 7-8

VistALink Connection Specs for Subsequent VistALink Calls .. 7-10

Providing the Ability for the User to Switch Divisions ... 7-11

logout.jsp File .. 7-12

III. Systems Management Guide .. III-1

8. Implementation and Maintenance .. 8-1

Namespace ... 8-1

Site Configuration ... 8-1

Security Key .. 8-3

KAAJEE SSPI Tables—Deleting Entries ... 8-4

KAAJEE Login Server Requirements ... 8-4

Administrative User ... 8-4

Log4J Configuration .. 8-6

Log Monitoring ... 8-7

Remote Procedure Calls (RPCs) ... 8-9

Files and Fields .. 8-11

Contents

viii Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Global Mapping/Translation, Journaling, and Protection.. 8-11

Application Proxies ... 8-12

Exported Options ... 8-12

Archiving and Purging .. 8-13

Callable Routines... 8-13

External Relations ... 8-13

Internal Relations .. 8-16

Software-wide and Key Variables ... 8-16

SACC Exemptions... 8-16

9. Software Product Security ... 9-1

Security Management .. 9-1

Mail Groups, Alerts, and Bulletins .. 9-1

Auditing—Log Monitoring ... 9-1

Remote Access/Transmissions .. 9-2

Interfaces ... 9-3

Electronic Signatures ... 9-3

Security Keys .. 9-4

File Security .. 9-4

Contingency Planning ... 9-4

Official Policies ... 9-4

10. Cactus Testing with KAAJEE .. 10-1

Enabling Cactus Unit Test Support ... 10-1

Using Cactus in a KAAJEE-Secured Application ... 10-2

Cactus ServletTestCase Example .. 10-4

Other Approaches Not Recommended .. 10-6

11. Troubleshooting ... 11-1

Common Login-related Error Messages .. 11-1

Glossary ... Glossary-1

Appendix A—Sample Deployment Descriptors .. Appendix A-1

Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names Appendix B-1

Index ... Index-1

 Contents

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 ix

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 x

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Figures

Figure 1-1. KAAJEE & J2EE Web-based application process overview diagram 1-8

Figure 1-2. Industry Standard for Form-Based Authentication overview ... 1-9

Figure 1-3. Sample KAAJEE Web login page (i.e., login.jsp) .. 1-12

Figure 1-4. Sample login persistent cookie information .. 1-19

Figure 3-1. Sample application weblogic.xml file (e.g., KAAJEE Sample Web Application) 3-8

Figure 3-2. Sample excerpt from a web.xml file—Using the run-as tag ... 3-9

Figure 3-3. Sample <context-root-name> tag found in the kaajeeConfig.xml file 3-9

Figure 4-1. Sample jdbc.properties.cache file .. 4-4

Figure 4-2. Sample jdbc.properties.oracle file ... 4-5

Figure 4-3. Sample empty KAAJEE configuration file ... 4-10

Figure 4-4. Sample excerpt of the KAAJEE web.xml file—Initialization servlet 4-11

Figure 4-5. Sample excerpt of the KAAJEE web.xml file—LoginController servlet configuration 4-12

Figure 4-6. Sample excerpt of the KAAJEE web.xml file—Listener configuration 4-13

Figure 4-7. web.xml element implementations needed for SSO/UC/CCOW enabled KAAJEE

SampleWebApp ... 4-17

Figure 4-8. Security warning displayed when the Sentillion’s Locator applet is being loaded 4-19

Figure 5-1. Sample application weblogic.xml file with group information (e.g., KAAJEE Sample Web

Application) ... 5-2

Figure 5-2. Sample excerpt of the KAAJEE web.xml file—J2EE Form-based Authentication

configuration setup .. 5-4

Figure 5-3. Sample web.xml file excerpt—Protecting an application URL .. 5-5

Figure 6-1. Mandatory OCIS banner warning message ... 6-4

Figure 6-2. Sample KAAJEE configuration file (i.e., kaajeeConfig.xml) ... 6-5

Figure 7-1. JavaBean Example: LoginUserInfoVO object .. 7-3

Figure 7-2. Sample JSP Web page code (e.g., AppHelloWorld.jsp) .. 7-6

Figure 7-3. JavaBean Example: VistaDivisionVO object .. 7-9

Figure 7-4. Sample logout.jsp file .. 7-12

Figure 8-1. Sample excerpt from a web.xml file—Using the run-as and security-role tags 8-5

Figure 8-2. Sample excerpt from a weblogic.xml file—Using the run-as-role-assignment tag 8-5

Figure 8-3. Sample logout log4j.xml file entries ... 8-8

Figure 10-1. Switching from FORM to BASIC in web.xml example ... 10-1

Figure 10-2. Cactus ServletTestCase example .. 10-4

 Figures and Tables

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 xi

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Figure 11-1. Error—Forbidden message: You are not authorized to view this page 11-2

Figure 11-2. Error—Forms authentication login failed ... 11-3

Figure 11-3. Error—You navigated inappropriately to this page .. 11-3

Figure 11-4. Error—Could not get a connection from connector pool .. 11-4

Figure 11-5. Error—Error retrieving user information .. 11-5

Figure 11-6. Error—Authorization failed for your user account on the M system 11-6

Figure 11-7. Error—Login failed due to too many invalid logon attempts ... 11-7

Figure 11-8. Error—Your verify code has expired or needs changing .. 11-7

Figure 11-9. Error—Not a valid ACCESS CODE/VERIFY CODE pair .. 11-8

Figure 11-10. Error—Logins are disabled on the M system ... 11-9

Figure 11-11. Error—Could not match you with your M account .. 11-10

Figure 11-12. Error—Institution/division you selected for login is not valid for your M user account 11-11

Figure 11-13. Error—Institution/division you selected for login is not valid for your M user account 11-12

Figure A-1. Sample KAAJEE Deployment Descriptor: application.xml file (e.g., KAAJEE sample

application) .. Appendix A-1

Figure A-2. Sample KAAJEE Deployment Descriptor: web.xml file (e.g., PATS application)

 ... Appendix A-1

Figure A-3. Sample KAAJEE Deployment Descriptor: weblogic.xml file (e.g., KAAJEE Sample Web

Application) ... Appendix A-5

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 xii

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Tables

Table i. Documentation revision history .. iv

Table ii. Documentation symbol/term descriptions .. xv

Table 1-1. Dependencies—KAAJEE software dependencies for consuming applications 1-5

Table 1-2. Login parameters .. 1-15

Table 2-1. KAAJEE current outstanding issues ... 2-1

Table 2-2. KAAJEE future enhancements ... 2-1

Table 3-1. Developer minimum hardware and software tools/utilities required for KAAJEE-enabled

application development .. 3-1

Table 3-2. Dependencies——KAAJEE, SSPIs, and VistALink software ... 3-3

Table 3-3. Dependencies—KAAJEE-related software applications/modules ... 3-3

Table 3-4. Dependencies—KAAJEE-related software documentation ... 3-4

Table 3-5. KAAJEE_1_1_0_xxx—KAAJEE folder structure ... 3-5

Table 4-1. Dependencies—KAAJEE software requirements for development ... 4-2

Table 4-2. KAAJEE jar distribution file .. 4-6

Table 4-3. Jar files and classpath defined for KAAJEE-enabled Web-based applications 4-6

Table 4-4. Other dependent jar files for KAAJEE-enabled Web-based applications 4-7

Table 4-5. KAAJEE login folder files ... 4-8

Table 4-6. KAAJEE listeners ... 4-12

Table 4-7. web.xml elements needed for SSO/UC/CCOW enabled KAAJEE Sample Application 4-16

Table 6-1. KAAJEE configuration file (i.e., kaajeeConfig.xml) tag settings .. 6-1

Table 7-1. Field Summary: LoginUserInfoVO object ... 7-3

Table 7-2. Constructor Summary: LoginUserInfoVO object .. 7-3

Table 7-3. Method Summary: LoginUserInfoVO object ... 7-4

Table 7-4. Constructor Summary: VistaDivisionVO object .. 7-9

Table 7-5. Method Summary: VistaDivisionVO object .. 7-9

Table 8-1. KAAJEE-related RPC list .. 8-9

Table 8-2. KAAJEE-related software new fields ... 8-11

Table 8-3. KAAJEE exported options ... 8-12

Table 8-4. External Relations—HealtheVet-VistA software ... 8-13

Table 8-5. External Relations—COTS software .. 8-14

Table 9-1. KAAJEE exported security keys .. 9-4

 Figures and Tables

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 xiii

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Table B-1. Sample spreadsheet showing a mapping between WebLogic group names and J2EE security

role names .. Appendix B-1

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 xiv

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Orientation

This Deployment Guide is intended for use in conjunction with the Kernel Authorization and

Authentication for J2EE (KAAJEE) software. It outlines the details of KAAJEE-related software and

gives guidelines on how the software is used within HealtheVet-Veterans Health Information Systems

and Technology Architecture (VistA).

The intended audience of this manual is all key stakeholders. The primary stakeholder is Common

Services. Additional stakeholders include:

• HealtheVet-VistA application developers of Web-based applications in the WebLogic

Application Server environment.

• Information Resource Management (IRM) and Information Security Officers (ISOs) at Veterans

Affairs Medical Centers (VAMCs) responsible for computer management and system security.

• Enterprise Product Support (EPS).

• VAMC personnel who will be using HealtheVet-VistA Web-based applications running in the

WebLogic Application Server environment.

How to Use this Manual

This manual is divided into three major parts:

• User Guide—Provides general overview of the KAAJEE sub project.

• Developers Guide—Provides step-by-step instructions for HealtheVet-VistA developers to follow

and Application Program Interfaces (APIs) to use when writing Web-based applications

incorporating the KAAJEE authorization and authentication functionality.

• Systems Management Guide—Provides implementation, maintenance, and security overview for

IRM and ISO personnel.

Throughout this manual, advice and instructions are offered regarding the use of KAAJEE software and

the functionality it provides for HealtheVet-Veterans Health Information Systems and Technology

Architecture (VistA) software products.

There are no special legal requirements involved in the use of KAAJEE-related software.

This manual uses several methods to highlight different aspects of the material:

• Various symbols/terms are used throughout the documentation to alert the reader to special

information. The following table gives a description of each of these symbols/terms:

 Orientation

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 xv

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Table ii. Documentation symbol/term descriptions

Symbol Description

NOTE/REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION or DISCLAIMER: Used to inform the reader to take special notice of
critical information.

• Descriptive text is presented in a proportional font (as represented by this font).

• "Snapshots" of computer online displays (i.e., roll-and-scroll screen captures/dialogues) and

computer source code, if any, are shown in a non-proportional font and enclosed within a box.

− User's responses to online prompts and some software code reserved/key words will be bold

typeface type.

− Author's comments, if any, are displayed in italics or as "callout" boxes.

NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box,

which point to specific areas of a displayed image.

• Java software code, variables, and file/folder names can be written in lower or mixed case.

• All uppercase is reserved for the representation of Mumps (M) code, variable names, or the

formal name of options, field/file names, and security keys (e.g., the XUPROGMODE key).

Assumptions About the Reader

This manual is written with the assumption that the reader is familiar with the following:

• VistALink—VistA M Server and Application Server software

• Linux (i.e., Red Hat Enterprise ES 6.0 or higher) or Microsoft Windows environment

• Java Programming language Java 2 Standard Edition (J2SE) Java Development Kit (JDK, a.k.a.

Java Software Development Kit [SDK])

• WebLogic 10.3.6 and higher—Application servers

• Oracle Database 11g—Database (e.g., Security Service Provider Interface [SSPI] or Standard

Data Services [SDS] 18.0 (or higher) database/tables)

• Oracle SQL*Plus Software 9.2.0.1.0 (or higher)

This manual provides an overall explanation of the installation procedures and functionality provided by

the software; however, no attempt is made to explain how the overall HealtheVet-VistA programming

system is integrated and maintained. Such methods and procedures are documented elsewhere. We

suggest you look at the various VA home pages on the VA Intranet for a general orientation to

HealtheVet-VistA the:

http://vista.med.va.gov/

Orientation

xvi Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Reference Materials

Readers who wish to learn more about KAAJEE should consult the following:

• Kernel Authentication & Authorization for J2EE (KAAJEE) Installation Guide

• Kernel Authentication & Authorization for J2EE (KAAJEE) Deployment Guide, this manual

• KAAJEE Web site:

http://vista.med.va.gov/kernel/kaajee/index.asp

• Kernel Systems Management Guide

• VistALink Installation Guide

• VistALink System Management Guide

• VistALink Developer Guide

REF: For more information on VistALink, please refer to the following Web address:

http://www.va.gov/vdl/application.asp?appid=163

HealtheVet-VistA documentation is made available online in Microsoft Word format and Adobe Acrobat

Portable Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader

(i.e., ACROREAD.EXE), which is freely distributed by Adobe Systems Incorporated at the following

Web address:

http://www.adobe.com/

REF: For more information on the use of the Adobe Acrobat Reader, please refer to the Adobe

Acrobat Quick Guide at the following Web address:

http://vista.med.va.gov/iss/acrobat/index.asp

HealtheVet-VistA documentation can be downloaded from the Veterans Health Affairs (VHA) Software

Document Library (VDL) Web site:

http://www.va.gov/vdl/

HealtheVet-VistA documentation and software can also be downloaded from the Enterprise Product

Support (EPS) anonymous directories at the various Office of Information Field Offices (OIFOs) noted

below:

• REDACTED

This method transmits the files from the first available File Transfer Protocol (FTP) server.

http://www.adobe.com/
http://www.va.gov/vdl/

 Orientation

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 xvii

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

DISCLAIMER: The appearance of any external hyperlink references in this manual does
not constitute endorsement by the Department of Veterans Affairs (VA) of this Web site
or the information, products, or services contained therein. The VA does not exercise
any editorial control over the information you may find at these locations. Such links
are provided and are consistent with the stated purpose of this VA Intranet Service.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 I-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

I. User Guide

This is the User Guide section of this supplemental documentation for Kernel Authentication and

Authorization Java (2) Enterprise Edition (KAAJEE). It is intended for use in conjunction with the

KAAJEE software. It details the user-related KAAJEE documentation (e.g., overview of the KAAJEE

sub-project), management of KAAJEE-related software, etc.).

User Guide

I-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

1. KAAJEE Overview

Introduction

The Kernel Authentication and Authorization for Java (2) Enterprise Edition (KAAJEE) software was

developed by Common Services Security Program. It was further supplemented by the implementation of

the SSOi 2-Factor Authentication (2FA) Authorization requirement, producing a new Single Sign-On

Web Application Plugin component – SSOWAP. For ease of reference and understanding, references

related to a specific functionality of the A/V codes validation version of KAAJEE is refered to as

KAAJEE Classic.

Kernel is the designated custodial software application for KAAJEE; however, KAAJEE comprises

multiple software and patches from several HealtheVet-VistA applications.

KAAJEE addresses the Authentication and Authorization (AA) needs of HealtheVet-VistA Web-based

applications in the Java 2 Platforms, Enterprise Edition (J2EE) environment. Over the long term, the

Department of Veterans Affairs (VA) will provide Authentication and Authorization (AA) services to

end-users enterprise wide; however, in the interim period, the Office of Information (OI) has a choice to

make as to which AA mechanism(s) would be the most effective. This applies both to the needs of the

applications themselves, as well as in anticipation of an expected migration to the future AA solution.

Most major J2EE application servers (e.g., WebLogic 10.3.6 and higher and Oracle's 11g) allow

enterprises to override the default source of AA and replace it with custom, enterprise-specific sources for

AA.

KAAJEE Classic authenticates against a VistA M Server first with Access and Verify codes via

VistALink's AV connection spec (i.e., KaajeeVistaLinkConnectionSpec). After the user has been properly

authenticated against a VistA M Server, KAAJEE dynamically creates a temporary username and

password and populates this into a Structured Query Language (SQL) database via custom Security

Service Provider Interfaces (SSPIs). This username and password is needed for the second

level/phase/pass authentication for the J2EE container.

SSOWAP depends on the Personal Identification Verification (PIV) authentication by the Identity and

Access Management (IAM) services, it then proceeds to authenticate further against a (Secure Token

Service (STS) Service cloud, followed by the selected VistA M Server. If the user has been properly

authenticated against a VistA M Server, SSOWAP dynamically creates a temporary username and

password and populates this into a Structured Query Language (SQL) database via custom Security

Service Provider Interfaces (SSPIs). This username and password is needed for the second

level/phase/pass authentication for the J2EE container.

REF: For more information on SSPIs and the overall KAAJEE-related AA process please refer

to the "Security Service Provider Interfaces (SSPI)" topic in this documentation.

Currently, Kernel maintains the primary VistA and HealtheVet-VistA user store (i.e., NEW PERSON file

[#200]), which provides both Authentication and Authorization (AA) services for all VistA and

KAAJEE Overview

1-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

HealtheVet-VistA applications. By leveraging Kernel, KAAJEE authenticates and authorizes J2EE Web

users by using Kernel's AA capabilities.

Some potential advantages to employing Kernel as the AA source include the following:

• Provides a single point of user management for existing and new HealtheVet-VistA applications.

• Allows the use of an existing credential—the Access and Verify code (KAAJEE Classic) or an

authorization token (SSOWAP)—for Authentication and Authorization, rather than introducing a

new security credential.

• Eliminates the need to maintain a mapping from WebLogic accounts to VistA M Server Kernel

accounts.

• Avoids an additional user store, which simplifies the migration to the future AA solution.

• Partitions user authorizations by Veterans Health Administration (VHA) site.

Some potential KAAJEE strategy limitations due to employing Kernel as the AA source include the

following:

• Kernel user accounts are not currently VA-wide; instead, they are facility-specific.

• Users must have an active VistA M Server Kernel account on some VistA system. Not all users

fit this requirement (e.g., Veterans Affairs Central Office [VACO] users).

• This strategy introduces a dependency on the M system's availability, to perform virtually any

function in a J2EE application.

• Correlating a user at one VA facility with the same user at a different VA facility is not

supported, given the current lack of an enterprise-wide VA person identifier (e.g., VA-wide

Person Identifier [VPID]).

REF: KAAJEE Classic and SSOWAP do not currently use the Department of Veterans

Affairs Personal Identification (VPID), since this field is not currently populated

enterprise-wide.

The KAAJEE software provides a Kernel-based Authentication and Authorization (AA) service for all

HealtheVet-VistA Web-based applications in the J2EE/WebLogic environment.

KAAJEE is designed to run on the WebLogic 10.3.6 and higher.

This manual discusses in more detail the major software modules that, together, provide for KAAJEE

functionality and how to deploy KAAJEE-enabled J2EE Form-based Authentication framework and the

Security Service Provider Interfaces (SSPIs).

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Features

KAAJEE Classic provides the following high-level features and functionality:

• Prompts users to enter their Access and Verify code when he/she attempts to access a protected

application resource for the first time during a user session.

• Validates the entered Access and Verify code against the M system/division selected by the user

at logon.

• Permits administrators to configure the display list of M systems, by division, against which an

end-user can log in.

SSOWAP provides the following high-level features and functionality:

• Accepts validation by the IAM services

• Validates against the SSOi STS cloud

• Validates at the M system/division selected by the user at logon.

• Returns all VistA M Server J2EE security keys and uses these as the basis for authorization

decisions, as each security key is cached as a WebLogic group name. The KAAJEE SSPIs

currently use an external Oracle 11g database to store this information for later authentication.

KAAJEE roles are defined by the list of roles in the web.xml file, VistA M Server J2EE security

keys, and WebLogic group names found in your application's weblogic.xml file.

REF: For more information on groups and roles, please refer to Chapter 5, "Role

Design/Setup/Administration," in this manual.

• (optional) Maps J2EE security role names with security key role names. Through <security-role-

assignment> tags (e.g., in weblogic.xml) the actual J2EE security role names can be different

than the security key role names. This mapping is optional, because if the same names are used

throughout, no <security-role-assignment> tags are required.

REF: For a sample spreadsheet showing a mapping between WebLogic group names

(i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping

WebLogic Group Names with J2EE Security Role Names" in this manual.

• Transforms valid Access and Verify codes into a J2EE-compatible username

(e.g., "kaaj_DUZ_8888~CMPSYS_523") and password, and submits the information to the J2EE

container. It then passes the submitted information to the KAAJEE SSPIs, which validate the

username and makes that username the current user.

Application developers can use the HttpServletRequest.getRemoteUser servlet method to return

demographic data, such as the KAAJEE-created username

(e.g., "kaaj_DUZ_8888~CMPSYS_523").

KAAJEE Overview

1-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

REF: For more information on formatting J2EE usernames, please refer to the "J2EE

Username Format" topic in Chapter 7, "Programming Guidelines," in this manual.

• Calls the KAAJEE SSPIs when the J2EE container checks user roles, which checks the role

cache for the given user, created at user login. This allows user authorizations to be managed on

the VistA M Server, and yet have fast response time in the J2EE application.

• Provides user demographics information, which includes the selected Division at login, user

VPID, user number (or DUZ), and user Name, all which are available to the application after

login via the Session object (cookie).

REF: For more information on the user demographics provided, please refer to the

following:

• "LoginUserInfoVO Object" topic in Chapter 7, "Programming Guidelines," in

this manual.

• VistALink and the HealtheVet-VistA documentation can be downloaded from

the VHA Software Document Library (VDL) Web site:

http://www.va.gov/vdl/

• Uses the SIGN-ON LOG file (#3.081) on the VistA M Server (i.e., the same M system used for

user authentication) to track user logons and logoffs.

REF: For more information on the SIGN-ON LOG file (#3.081), please refer to the

Kernel Systems Management Guide.

J2EE container-managed enforcement of security, both programmatic and declarative,
is fully enabled with KAAJEE.

Deployment of KAAJEE for a given J2EE application requires the KAAJEE components
to be integrated with the application, because the J2EE servlet specification requires
J2EE Form-based Authentication to run within the scope of the application using it.

http://www.va.gov/vdl/

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

KAAJEE Software Dependencies for Consuming Applications

Kernel is the designated custodial software application of the KAAJEE-related software; however,

KAAJEE comprises/depends on multiple patches/software releases from several HealtheVet-VistA

applications, as follows (listed by category):

Table 1-1. Dependencies—KAAJEE software dependencies for consuming applications

Software Version Patch/
Software
Release

Subject/Description

KAAJEE 1.2.0.xxx 1.2.0.xxx Updated KAAJEE server software, to be released with
Kernel Patch XU*8.0*504.

SSPIs 1.2.0.xxx 1.2.0.xxx KAAJEE SSPIs server software.

SSOWAP 1.1.0.xxx 1.2.0.xxx KAAJEE 2FA component

VistALink 1.6.1 XOBV 1.6.5 VistALink server software.

VistALInk 1.6 XOBV 1.6.3 VIstALink 2FA enabling patch

Kernel 8.0 XU*8.0*451 KAAJEE Login Page—Removal of Refresh Button. This
patch is currently in TEST and will be released with KAAJEE
1.1.0.004. This patch provides the following functionality or
bug fixes:

• Enhanced Login Functionality:

− Removed Refresh button from KAAJEE login
page.

− Added JavaScript code for client-side sorting of
Institutions.

− Provided Access code; Verify code capability in
one line.

− Added support for parameter passing of Default
Institution and Institution sorting preferences.
This addresses the issues of persistent cookies
when using Thin Clients and Terminal Servers.

− Made the KAAJEE Login Web page more
Section 508 friendlier.

• Added Sample Web Application—Provide KAAJEE
Sample Web Application.

• Updated Software Version Support:

− Compiled and tested KAAJEE against SDS 13.0.

− Compiled and tested KAAJEE against VistALink
1.5.1.xxx.

KAAJEE Overview

1-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Software Version Patch/
Software
Release

Subject/Description

• Bug Fixes:

− Fixed issue with KAAJEE login not updating
LAST SIGN-ON DATE/TIME field (#202) in the
NEW PERSON file (#200).

− Fixed Response already committed error—The
code that was fixed was associated with
processing the persistent cookie information on
the Application Server. This fix should also fix
the extra M process that was created.

REF: For specific VistA M Server patch details, please refer to the Patch Module on FORUM.

REF: For a list of the Commercial-Off-The-Shelf (COTS) software required for KAAJEE,

please refer to Table 8-5 in Chapter 8, "Implementation and Maintenance," in this manual.

Security Service Provider Interfaces (SSPI)

The Security Service Provider Interfaces (SSPIs) can be used by developers and third-party vendors to

develop security providers for the WebLogic Server environment. SSPIs allow customers to use custom

security providers for securing WebLogic Server resources. 1

Security providers are modules that "plug into" a WebLogic Server security realm to provide security

services to applications. They call into the WebLogic Security Framework on behalf of applications

implementing the appropriate SSPIs from the weblogic.security.spi package to create runtime classes for

the security provider.2

Some of the WebLogic security providers and utilities include (descriptions taken from WebLogic

Website):

• WebLogic Authentication Provider—"Supports delegated username/password authentication, and

utilizes an embedded Lightweight Directory Access Protocol (LDAP) server to store, edit, and list

user and group information." 3

NOTE: KAAJEE (Iteration 1) does not use WebLogic's embedded LDAP server. It

uses an Oracle 11g database to store users and groups by using SSPIs.

1 https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/archtect.html#1055098
2 https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/archtect.html#1055098
3 https://docs.oracle.com/middleware/1212/wls/SECMG/providers.htm#SECMG131

https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/archtect.html 1044113

https://docs.oracle.com/middleware/1212/wls/SECMG/providers.htm#SECMG131

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-7

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

• WebLogic Identity Assertion Provider—"Supports certificate authentication using X.509

certificates." 4

• WebLogic Principal Validation Provider—"Signs and verifies the authenticity of a specific type

of principal, much as an Identity Assertion provider supports a specific type of token; therefore,

you can use the WebLogic Principal Validation provider to sign and verify principals that

represent WebLogic Server users or WebLogic Server groups." 5

• WebLogic Authorization Provider—"Supplies the default enforcement of authorization for this

version of WebLogic Server. Using a policy-based authorization engine, the WebLogic

Authorization provider returns an access decision to determine if a particular user is allowed

access to a protected WebLogic resource." 6

• WebLogic Role Mapping Provider—"Determines dynamic roles for a specific user (subject) with

respect to a specific protected WebLogic resource for each of the default users and WebLogic

resources." 7

• WebLogic Auditing Provider—"Records information from a number of security requests, which

are determined internally by the WebLogic Security Framework. The WebLogic Auditing

provider also records the event data associated with these security requests, and the outcome of

the requests." 8

• WebLogic MBeanMaker Utility—This command-line utility takes an MBean Definition File

(MDF) as input and output files to generate an MBean type, which is used to configure and

manage the security provider.9

REF: For more information on the WebLogic security providers, utilities, and other related

information, please visit the following WebLogic Websites:

http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/12c/12c_poster/poster

https://docs.oracle.com/middleware/1212/wls/SCOVR/concepts.htm#SCOVR121.html

4 https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/archtect.html #1040282
5 https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/archtect.html #1049504
6 https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/archtect.html #1049520
7 https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/archtect.html html#1050163
8 https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/archtect.html #1040288
9 https://docs.oracle.com/cd/E13222_01/wls/docs81/secintro/terms.html

http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/12c/12c_poster/poster
https://docs.oracle.com/middleware/1212/wls/SCOVR/concepts.htm#SCOVR121

KAAJEE Overview

1-8 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

KAAJEE Process Flow Overview

Figure 1-1. KAAJEE & J2EE Web-based application process overview diagram

VistA M Server: Kernel

Web Application Server
(e.g., WebLogic)

Temporary Username & Password

KAAJEE/EJBs

Deployed Application

(WAR)

WebLogic's

ServletAuthentication.

authenticate API

(Servlet

Authentication)

10. Demographics

9. A/V codes &

Institution

11. Generate (or lookup based on

demographic) username,

password combination. Create in

a security store

J2EE Middle-tier SSPI
(either custom or built-in.)

Associates

authentication & role

information with user’s

HTTP session.

15. Is valid user?

Browser
(e.g., Internet Explorer)

Client Workstation

User

National SDS

Database
(e.g., Oracle or Caché)

Institution Name & Station Number

4. Station Number

used to retrieve

Institution Name

and validate

Parent Facility via

Standard Data

Services (SDS)

(Communication

via APIs)

Kernel Authentication & Authorization

13. Username

& Password

Unprotected

Web Page

Protected Login

Web Page
(Requests User

Enter A/V codes)

2. URL link to Protected page

Application

Web Page

Security Store/

Database
(e.g., Oracle, Caché,

RDBMS, or LDAP)

8. A/V codes & Institution

KAAJEE

Jar

Servlet

16. Valid Flag

Login Controller

Servlet

14. Username &

Password

12. KAAJEE passes

username/password

to WebLogic API

Container Security

Checks Authorization

Authorization

Error 403

Web Page

18. Successful

Authentication?

Successful

Authorization?

No

Yes

VistA-

Link

Login Error

Web Page

No

Yes

KAAJEE/EJBs

Deployed

Application

WAR

6. EnterAccess/

Verify (A/V)

Codes & Choose

Institution

7. A/V codes &

Institution (over SSL =

HTTPS://)

3. Request Institution

Name

5. Populate Institution

Name

19b. Error Login Web

 Page if not (invalid)

19a. URL Link to

Application Web Page

if authenticated (valid)

17. WebLogic API

returns

authentication

success/fail flag

1. URL Link to

Unprotected

Web Page

REF: KAAJEE is Clinical Context Object Workgroup (CCOW)-enable for user context. For

more information, see the section titled "SSO/UC/CCOW Functionality Enabled" in this

documentation. Also see the Single Sign-On/User Context (SSO/UC) Deployment Guide,

located on the VHA Software Document Library at the following address:

http://www.va.gov/vdl/application.asp?appid=162

http://www.va.gov/vdl/application.asp?appid=162

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-9

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

SSOi Login process overview

Using Industry Standard Form-based Authentication

Figure 1-2 shows what happens if you specify form-based authentication, in which you can customize the

login screen and error pages that an HyperText Transfer Protocol (HTTP) browser presents to the end

user.

Figure 1-2. Industry Standard for Form-Based Authentication overview

1. User requests access to a protected resource (URL)

login.jsp

error.jsp

Client

w/ Web

Browser

J2EE Application Server

j_security_check

?

2. User redirected to login Form-

based Authentication Web login page

3. User enters username & password (i.e.,

Access and Verify codes) via KAAJEE AA Form

4. Success: Redirected to Web application protected resource

4. Failure: Error page returned

With form-based authentication, the following things occur:

• A client requests access to a protected resource.

• If the client is unauthenticated, the server redirects the client to a login page.

• The client submits the login form to the server.

KAAJEE Overview

1-10 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

• If the login succeeds, the server redirects the client to the resource. If the login fails, the client is

redirected to an error page. 10

KAAJEE's Use of Form-based Authentication

Form-based authentication is not particularly secure. In form-based authentication, the content of the user

dialog box is sent as plain text, and the target server is not authenticated. This form of authentication can

expose your user names and passwords unless all connections are over Secure Sockets Layer (SSL). If

someone can intercept the transmission, the user name and password information can easily be decoded.

The J2EE servlet specification provides at least two means for Web-based applications to query for end-

user authentication credentials:

• Hyper Text Transport Protocol (HTTP) Basic Authentication

• J2EE Form-based Authentication

KAAJEE employs J2EE Form-based Authentication for the J2EE Web-based authentication process as

part of the larger security framework. VistALink provides connectivity between KAAJEE and the VistA

M Server.

J2EE Form-based Authentication works as follows:

1. The user on the client uses a Web browser to access a Web-based application's protected resource

(URL).

2. The J2EE Application Server (container) detects that the user is not in an authenticated user

session and redirects the user to the J2EE Form-based Authentication Web login page specified in

the <login-config> tag in the web.xml deployment descriptor.

NOTE: The container remembers the URL the user originally requested.

3. The user on the client submits their username and password (i.e., Access and Verify codes) via

the KAAJEE Authentication and Authorization (AA) Web login form.

a. The Web login page's responsibility is to collect user credentials (username and

password) and calls the WebLogic ServletAuthentication.authenticate API.

b. The WebLogic ServletAuthentication.authenticate API passes those credentials to the

WebLogic Custom Security Authentication Providers.

4. J2EE Application Server authenticates the user:

a. Success:

i. If the WebLogic Custom Security Authentication Providers authenticates the user, an

authenticated session is established.

b. Failure:

10 http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security5.html

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-11

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

i. If the WebLogic Custom Security Authentication Providers fails to authenticate the

user, an authenticated session is not established.

5. Upon return to the ServletAuthentication.authenticate API, a flag is set identifying if the user has

been authentication. KAAJEE checks this flag to determine where to redirect the user; either to

the target application page, or to the login error page.

There cannot be login buttons that point directly to the login page. Only an attempt to access a protected

resource (as opposed to the login page) triggers the J2EE Form-based Authentication process.

Authentication (i.e., challenging the end-user for Access and Verify codes by prompting them with the

logon Web form) is triggered when an end-user attempts to access a protected Web page in the

application:

The container will force the user to authenticate by submitting the login form only when required

(for example, when an unauthenticated user tries to access a protected resource). This is termed

lazy authentication, and means that users who never attempt to access a protected resource will

never be forced to authenticate. Once authenticated, a user will never be challenged again within

a session. The user identity will be carried through to calls to other components of the application.

Therefore, there is no need for user code behind protected resources to check that authentication

has occurred.11

Container Security Detecting Authorization Failures

Success or failure of the J2EE Application Server authorization for the user is defined as follows:

a. Success:

i. If the container security detects that the user has the roll needed to access the requested page,

the container permits access to that page.

b. Failure:

i. Upon failure, the container either displays a general 403 error page or redirects the user to a

specified error page identified in web.xml for 403 errors.

Generally, form-based authentication would handle both authentication and authorization. KAAJEE only

implements the user interface part of form-based authentication. The back-end security check is replaced

with the ServletAuthentication.authenticate API. Therefore, all authorization failures are handled solely

by container security. As such all users who are not authorized to access the targeted page after login will

receive an http '403' error. To provide a more user-friendly error message, KAAJEE now distributes a

'loginerror403.jsp' file. The consuming application may use this page or another of their choosing. To use

this page, add an '<error-page>' entry in web.xmlsimilar to the one listed below:

 <error-page>

 <error-code>403</error-code>

 <location>/login/loginerror403.jsp</location>

 </error-page>

11 Johnson, pg. 236.

KAAJEE Overview

1-12 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

KAAJEE Classic J2EE Web-based Application Login Page

KAAJEE provides the official HealtheVet VistA J2EE Web-based application login page (i.e., login.jsp)

to collect the end-user's Access and Verify codes, as well as the institution under which the user logs in.

Kernel on the VistA M Server uses that information to authenticate the end-user and sign them onto

VistA. A sample of the KAAJEE Web login page is displayed below:

Figure 1-3. Sample KAAJEE Classic Web login page (i.e., login.jsp)

CAUTION: As per the Software Engineering Process Group/Software Quality Assurance
(SEPG/SQA) Standard Operating Procedure (SOP) 192-039—Interface Control
Registration and Approval (effective 01/29/01, see
http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-
039%20Interface%20Control%20Registration%20and%20Approval.htm), application
programmers developing HealtheVet VistA J2EE Web-based applications that are
KAAJEE-enabled must use the KAAJEE login Web page (i.e., login.jsp) as delivered
(see Figure 1-3). Developers must not customize the login Web page or alter the
KAAJEE software code in any way.

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-13

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

CAUTION: In a domain consisting of an Administration Server and several Managed
Servers, the Administration Server must always be running, as new logins through
KAAJEE will not succeed while the Administration Server is down.

The KAAJEE Classic/SSOWAP Web login page:

• Complies with Section 508 of the Rehabilitation Act Amendments of 1998.

• Provides a consistent look-and-feel across all HealtheVet VistA J2EE Web-based applications

that are KAAJEE-enabled.

As you can see from Figure 1-3, the introductory text (i.e., system announcement message) is displayed in

the top portion of the Web login page and is preceded by the "System Announcements:" label.

Following the Introductory text, the name of the application to which you are signing on is displayed after

the "Log on for:" label. Applications pass in the name of their application. In this example (Figure 1-3),

the application name is KAAJEE Sample.

Session Expiration Dialog Box Warning End-Users of Session Time Out

In compliance with Section 508, during login label are the specific KAAJEE displays a warning to the

end-user entries used in alerting when there is only 30 seconds remaining in their session.

In order to log into the Web-based application, which is described in the topic that follows (i.e., Login

Procedures for J2EE Web-based Applications) KAAJEE provides this warning using JavaScript.

Therefore, KAAJEE distributes a login.js file, which is exported as part of the login\javascript\ folder.

REF: For more information on distribution of the login.js file, please refer to "Section 508

Compliance Addresses Session Timeouts" topic in section titled "5. Import

KAAJEE/SSOWAP Login Folder" of this manual.

Login Procedures for J2EE Web-based Applications with KAAJEE Classic

To log into VistA from a J2EE Web-based application, do the following:

1. (Required) Type in a valid Access code at the Access Code prompt.

KAAJEE Overview

1-14 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

NOTE: Users can optionally enter both their Access and Verify codes separated by a

semi-colon (;) at the ACCESS Code prompt (e.g., accesscode;verifycode) in order to

skip entering data in the Verify Code prompt that follows.

2. (required if not already entered in the Access Code prompt, see note above) Tab to the Verify

code field and type in a valid Verify code at the Verify Code prompt.

3. (optional) Select the sort order of the Institutions in the Institution dropdown list. You can sort

the Institutions by Station Number or Station Name. Click on (check) either the Sort by Station

Number or Sort by Station Name radio button.

4. (required) Select the appropriate Station Name/Number from the Institution dropdown list or

accept the default value displayed.

5. (required) Click on (press) the Login button or press the <Enter> key. After the authentication

process successfully completes on the VistA M Server, the requested application protected Web

page will be displayed.

NOTE: The asterisks located next to the Sort by Station Number/Sort by Station Name radio

buttons and the Institution dropdown box indicate that both the Station Name/Number sort

order preference and the last Institution selected by the user are stored in a persistent cookie (see

Figure 1-4). Thus, until the user changes this information, both the sort order preference and

default Institution will remain the same for each subsequent login.

Login Procedures for J2EE Web-based Applications with SSOWAP

1. The landing page will have all the required information from the IAM services. If there is an issue

with IAM provisioning or data, the initial login page will have the popup-debug fields, informing

the user of a misconfiguration.

2. (optional) Select the sort order of the Institutions in the Institution dropdown list. You can sort

the Institutions by Station Number or Station Name. Click on (check) either the Sort by Station

Number or Sort by Station Name radio button.

4. (required) Select the appropriate Station Name/Number from the Institution dropdown list or

accept the default value displayed.

 NOTE: Due to IAM’s limitation in handling child station provisioning, SSOWAP auto-expands

all the child stations for the parent stations user is provisioned for. This approach is different

from the KAAJEE Classic drop-down station list, where both the parent and child stations to be

displayed had to be specifically mentioned in the kaajeeConfig.xml

5. (required) Click on (press) the Proceed button or press the <Enter> key. After the authentication

process successfully completes on the VistA M Server, the requested application protected Web

page will be displayed.

 NOTE: Persistent cookies are not used in SSOWAP.

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-15

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Login Parameter Passing for J2EE Web-based Applications – KAAJEE Classic

KAAJEE allows developers and end-users to pass in predefined parameters when calling a Web-based

application URL. Table 1-2 defines the parameters that can be passed into the consuming application's

target URL/protected page. For the examples found in the table, the application URL is represented by the

[APP_URL] alias, which is defined as follows:

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp

The values indicated in the URL represent the following information:

• 99.9.99.99—J2EE Application Server Internet Protocol (IP) address where the sample Web-

based application is running.

• 9999—J2EE Application Server Port Number where the sample Web-based application is

running.

• kaajeeSampleApp—Application context root of the Web-based application running on the J2EE

Application Server.

• AppHelloWorld.jsp—Name of the Web-based application protected Web page running on the

J2EE Application Server.

Table 1-2. Login parameters

Parameter Description/Usage

kaajeeDefaultInstitution This KAAJEE login parameter is used to set the default Institution
Station Number/Name on the login page. The possible values are
any valid Department of Veterans Affairs Station Number
(e.g., 662).

The following is a sample URL passing in this parameter:

 [APP_URL]?kaajeeDefaultInstitution=662

kaajeeDisableInstitutionComponents This KAAJEE login parameter is used to disable (grey out) both the
Sort By Number/Name radio buttons and the default Institution
Station Number/Name on the login page. The possible values are
as follows (case sensitive):

• true

• false

The following is a sample URL passing in this parameter:

 [APP_URL]?kaajeeDisableInstitutionComponents=true

kaajeeSortStationBy This KAAJEE login parameter is used to set the default sort order of
the Institution Station Name/Number in the Institution dropdown list
on the login page. The possible values are as follows (case
sensitive):

• number

• name

KAAJEE Overview

1-16 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Parameter Description/Usage

The following is a sample URL passing in this parameter:

 [APP_URL]?kaajeeSortStationBy=name

kaajeeDisableSortStationBy This parameter is used to disable (grey out) the Sort by
Number/Name radio buttons on the login page. The possible values
are (case sensitive):

• true

• false

 NOTE: If the kaajeeDisableInstitutionComponents parameter
is set to "true" the Sort By Number/Name radio buttons on the
login page are automatically disabled as well.

The following is a sample URL passing in this parameter:

 [APP_URL]?kaajeeDisableSortStationBy=true

These parameters can be used in any combination and listed in any order, as shown in the examples that

follow.

Example 1:

This example shows one parameter being passed into an application's URL to set the following:

• Default institution to "662BU"

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp?kaajeeDefaultInstitution=6

62BU

Example 2:

This example shows two parameters being passed into an application's URL to set the following:

• Default institution to "662"

• Disable the institution components

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp?kaajeeDefaultInstitution=6

62&kaajeeDisableInstitutionComponents=true

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-17

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Example 3:

This example shows two parameters being passed into an application's URL to set the following:

• Default institution to "662"

• Sort Institutions by number

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp?kaajeeDefaultInstitution=6

62&kaajeeSortStationBy=number

Example 4:

This example shows two parameters being passed into an application's URL to set the following:

• Default institution to "662"

• Sort Institutions by name

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp?kaajeeDefaultInstitution=6

62&kaajeeSortStationBy=name

Example 5:

This example shows three parameters being passed into an application's URL to set the following:

• Default institution to "662"

• Sort Institutions by number

• Disable the sort radio buttons

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp?kaajeeDefaultInstitution=6

62&kaajeeSortStationBy=number&kaajeeDisableSortStationBy=true

Example 6:

This example shows three parameters being passed into an application's URL to set the following:

• Default institution to "662"

• Sort Institutions by name

• Disable the sort radio buttons

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp?kaajeeDefaultInstitution=6

62&kaajeeSortStationBy=name&kaajeeDisableSortStationBy=true

KAAJEE Overview

1-18 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Example 7:

This example shows three parameters being passed into an application's URL to set the following:

• Default institution to "662"

• Sort Institutions by number

• Disable the institution components

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp?kaajeeDefaultInstitution=6

62&kaajeeSortStationBy=number&kaajeeDisableInstitutionComponents=true

Example 8:

This example shows three parameters being passed into an application's URL to set the following:

• Default institution to "662"

• Sort Institutions by name

• Disable the institution components

http://99.9.99.99:9999/kaajeeSampleApp/AppHelloWorld.jsp?kaajeeDefaultInstitution=6

62&kaajeeSortStationBy=name&kaajeeDisableInstitutionComponents=true

NOTE: All of these sample URLs, with various combinations of parameters, can be saved as

shortcuts on your computer desktop.

 KAAJEE Overview

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 1-19

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Login Persistent Cookie Information – KAAJEE Classic

The more information link (i.e., "*Persistent Cookie Used [more information]"), at the bottom of the

Web login page, jumps you to the "Login Persistent Cookie Information" Web page (see Figure 1-4). This

Web page displays information that is stored in the persistent cookie.

For example, the persistent cookie stores your default Institution and Institution sort order preference. A

sample "Login Persistent Cookie Information" Web page is shown below:

Figure 1-4. Sample login persistent cookie information

KAAJEE Overview

1-20 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

In addition to the above information, the persistent cookie also displays the Uniform Resource Locator

(URL) of the application that includes the Internet Protocol (IP) address and application name

(e.g., 99.9.99.99/kaajeeSampleApp).

NOTE: The KAAJEE persistent cookies are not stored on Terminal Servers (e.g., Citrix). The

issue of using persistent cookies on Terminal Servers is that they are often not retained as part of

the roaming user profile upon logout and disconnect.

As a workaround, with the added support for parameter passing of Default Institution and

Institution sorting preferences users, users can create shortcuts on their desktops and use them to

pass in their Default Institution and Institution sorting preferences users rather than rely on

persistent cookies.

REF: For more information on parameter passing, please refer to the "Login Parameter Passing

for J2EE Web-based Applications" topic in this chapter.

REF: For information on common login-related error messages, please refer to the "Common

Login-related Error Messages" topic in Chapter 11, "Troubleshooting," in this manual.

For a list of other login-related error messages, please refer to the "Symptoms and Possible

Solutions" topic in Chapter 7 in the VistALink System Administration Guide.

REF: For more information on the Kernel signon process and related error messages, please

refer to the "Signon/Security" section in the Kernel Systems Management Guide.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 2-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

2. Future Software Implementations

Outstanding Issues

The following table lists the current outstanding issues with the Kernel Authentication and Authorization

Java (2) Enterprise Edition (KAAJEE) software:

Table 2-1. KAAJEE current outstanding issues

Issue Description

Enforce Failed Login
Attempt Limit

KAAJEE does not yet implement a failed login attempt limit. It's possible
that modifications to the KaajeeVistaLinkConnectionSpec class could
accomplish this by hooking into Kernel's new IP-based failed login limit
functionality. Implementing this may, therefore, depend on a new feature
that will be in the next iteration of VistALink (VL 1.6) combined with a new
Kernel feature.

Future Enhancements

The following table lists the future enhancements for KAAJEE:

Table 2-2. KAAJEE future enhancements

Enhancement Description

Provide Helper Function
for User's Default
Division

The LoginUserInfoVO object could provide a helper function to retrieve a
user's "default" division (as stored by the authenticating VistA M Server)
in the case that the enclosing J2EE application configures KAAJEE to
retrieve the <user-new-person-divisions> list at the time of authentication.

 REF: For more information on the LoginUserInfoVO object, please
refer to the "LoginUserInfoVO Object" topic in Chapter 7,
"Programming Guidelines," in this manual.

 REF: For more information on the <user-new-person-divisions> tag
in the kaajeeConfig.xml file, please refer to the "KAAJEE
Configuration File Tags" topic in Chapter 6, "KAAJEE Configuration
File," in this manual.

Support Change Verify
Code

KAAJEE does not currently allow users to change their Verify code when
signing onto VistA via KAAJEE-enabled Web-based applications.
Currently, users are presented with an error message and advised to use
another VistA application to change their Verify code.

Future Software Implementations

2-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Enhancement Description

 REF: For more information on this error code, please refer to the
"Error: Your verify code has expired or needs changing" topic
in Chapter 11, "Troubleshooting," in this manual.

Purge KAAJEE SSPI
Tables at System Startup

KAAJEE does not currently purge the SSPI tables at system startup, it
only deletes and recreates individual user entries in the tables during the
login process.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 II-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

II. Developer's Guide

This is the Developer's Guide section of this supplemental documentation for Kernel Authentication and

Authorization Java (2) Enterprise Edition (KAAJEE). It is intended for use in conjunction with the

KAAJEE software. It details the developer-related KAAJEE documentation (e.g., developer procedures

needed to incorporate the KAAJEE authorization and authentication functionality into Web-based

applications, APIs exported with KAAJEE, etc.).

Developer's Guide

II-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 3-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

3. KAAJEE Installation Instructions for Developers

Dependencies: Preliminary Considerations for Developer

Workstation Requirements

The following minimum hardware, software tools, and documentation are required by developers when

developing J2EE Web-based applications that are Kernel Authentication and Authorization Java (2)

Enterprise Edition (KAAJEE)-enabled:

Table 3-1. Developer minimum hardware and software tools/utilities required for KAAJEE-enabled

application development

Minimum Hardware/Software
Requirement

Description

Workstation Hardware 80x86-based client or server workstation.

Operating System One of the following 32-bit operating systems:

• Linux (i.e., Red Hat Enterprise ES 3.0)

• Microsoft Windows XP

• Microsoft Windows 2000

Development-related Software The following development-related software is
required in order to develop J2EE Web-based
applications that utilize KAAJEE functionality:

• KAAJEE Software (see Table 1-1)—Software

used to KAAJEE-enable Web-based
applications.

• Java 2 Standard Edition (J2SE) Java
Development Kit (JDK)—COTS software for
development of J2EE Web-based applications
that are KAAJEE-enabled. The JDK should
include Java Runtime Environment (JRE) and
other developer tools to write Java code.

• HealtheVet-VistA Web-based Software
Applications (e.g., Blind Rehab, Patient
Advocate Tracking System [PATS], Veterans
Personal Finance System [VPFS])—Web-
based software must be available to the end-
user/developer.

• Internet Browser (e.g., Microsoft Internet
Explorer 6.0 or higher)—Commercial-Off-The-
Shelf (COTS) software. Internet browser
software must be available to the end-user on
the client workstation.

KAAJEE Installation Instructions for Developers

3-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Minimum Hardware/Software
Requirement

Description

• Oracle SQL*Plus (9.2.0.1.0 or higher)—COTS
software for configuring SSPI SQL or Standard

Data Services (SDS) tables on an Oracle 10g

database.

 REF: For more information on configuring files
and integrating KAAJEE with Web-based
software applications, please refer to Chapter 4,
"Integrating KAAJEE with an Application," in
this manual.

Network Communications
Software/Capability

 REF: For more information on
telecommunications support, please
visit the VHA Communication Services
Office (CSO) Home Page:

REDACTED

All developer workstations must have the following
network communications software and capability:

• Networked client/server workstations running
Microsoft's native TCP/IP stack.

 NOTE: Currently, only Winsock
compliant TCP/IP protocol is supported
on the LAN or remotely as Point-to-Point
Protocol (PPP) or Serial Line Internet
Protocol (SLIP). You must use RAS
(Remote Access Service) or Dialup
Networking to connect to the server
using PPP or SLIP. For the setup of
RAS or Dialup Networking, please refer
to the appropriate operating system's
documentation.

• Connectivity with the VistA M Server (i.e., VA
Wide Area Network [WAN] connectivity). Run
PING.EXE to test the connectivity.

• Capability to log onto the NT network using a
unique NT Logon ID.

 KAAJEE Installation Instructions for Developers

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 3-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Dependencies: KAAJEE and VistALink Software

The following table shows the dependency relationships between the current version of KAAJEE, SSPIs,

and VistALink software:

Table 3-2. Dependencies——KAAJEE, SSPIs, and VistALink software

Developer-related Software Application Server Software

Software Version
KAAJEE Software
Release/Distribution

SSPI Software
Release/Distribution

VistALink Software
Release/Distribution

KAAJEE 1.2.0.xxx KAAJEE_1.2.0.xxx.
ZIP

kaajee_security_
provider_1.2.0.xxx.zip

VistALink 1.6.1

REF: For a list of VistALink dependent VistA M Server patches, please refer to the VistALink

Installation Guide.

Dependencies: KAAJEE-Related Software Applications/Modules

Table 3-3. Dependencies—KAAJEE-related software applications/modules

Module Description

WebLogic 10.3.6 and higher
Application Server
(running)

WebLogic 9.2 and higher servers use security provider packages that
allow a J2EE application running in WebLogic 9.2 and higher to draw
its Authentication and Authorization from Kernel on the VistA M
Server.

 NOTE: A J2EE standard for pluggable authentication for J2EE
servers is underway12, but won't be finalized until J2EE 1.5.

VistALink 1.6.1 The Application Server must also have the VistALink software
deployed and running. VistALink provides connectivity between
KAAJEE and the VistA M Server.

Standard Data Services
(SDS) 18.0 (or higher)

KAAJEE makes internal API calls to the SDS Database/Tables
located on an Oracle 10g database.

12 JSR-196, http://www.jcp.org/en/jsr/detail?id=196.

KAAJEE Installation Instructions for Developers

3-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

KAAJEE Installation Instructions

The following instructions are only required for those workstations to be used by developers to develop

KAAJEE-enabled HealtheVet-VistA Web-based software applications running on a WebLogic

Application Server.

REF: For Developer Workstation platform requirements, please refer to the "Dependencies:

Preliminary Considerations for Developer Workstation Requirements" topic in this chapter.

1. Confirm/Obtain Developer Workstation Distribution Files (recommended)

The following files are needed to install the KAAJEE developer-related software:

Table 3-4. Dependencies—KAAJEE-related software documentation

File Name Description

KAAJEE_1_2_RELEASENOTES.PDF Release Notes (manual). List of features new with
KAAJEE 1.1.

KAAJEE_1_2_INSTALLGUIDE.PDF Installation Guide (manual). Use in conjunction with
the READFIRST text file.

KAAJEE_1_2_DEPLOYGUIDE.PDF Deployment Guide (manual). Outlines the details of
KAAJEE-related software and gives guidelines on
how the software is used within HealtheVet-Veterans
Health Information Systems and Technology
Architecture. It contains the User Manual,
Programmer Manual, and Technical Manual
information for KAAJEE.

KAAJEE_1_2_0_xxx.ZIP KAAJEE Distribution File (jar files). This Zip file
contains the KAAJEE software for development of
HealtheVet-VistA Web-based applications requiring
Authentication and Authorization against Kernel on
the VistA M Server via KAAJEE.

REF: For the KAAJEE software release, all distribution files, unless otherwise noted, are

available for download from the Enterprise Product Support (EPS) anonymous

directories:

• REDACTED

REF: For the KAAJEE software preview/test release, all distribution files are available at the

following Web address:

http://vista.med.va.gov/kernel/kaajee/download.asp

 KAAJEE Installation Instructions for Developers

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 3-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

2. Create a KAAJEE Staging Folder (required)

Create a KAAJEE Staging Folder on your developer workstation. This will be referred to as the

<STAGING_FOLDER> alias for the rest of the instructions.

3. Unzip/Explode KAAJEE Software (required)

Unzip/Explode the KAAJEE_1_2_0_xxx.ZIP software distribution file in the

<STAGING_FOLDER>.

After unzipping/exploding the KAAJEE_1_2_0_xxx.ZIP file, you will see the following

contents/folder structure:

Table 3-5. KAAJEE_1_1_0_xxx—KAAJEE folder structure

Folder/Structure Description

<root> This folder contains the readme.txt file (manual), which
includes an introduction, change history, any special
installation instructions, and any known issues/limitations.

 NOTE: This file includes a description of the current
KAAJEE software version numbering scheme.

In the future, a separate authoritative source will be created
for determining future version numbering schemes for all
HealtheVet-VistA software file and folder names.

..\dd_examples This folder contains the sample application deployment
descriptor files (developer-related software):

• application.xml

 REF: For an example of this file, please refer to
Appendix A—Sample Deployment Descriptors
in this manual.

• kaajeeConfig.xml

 REF: For an example of this file, please refer to
Chapter 6, "KAAJEE Configuration File," in this
manual.

• kaajeeConfig.xsd

• role_mapping_worksheet.xls

 REF: For an example of this worksheet, please
refer to Appendix B—Mapping WebLogic

KAAJEE Installation Instructions for Developers

3-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Folder/Structure Description

Group Names with J2EE Security Role Names
in this manual.

• web.xml

 REF: For an example of this file, please refer to
Appendix A—Sample Deployment Descriptors
in this manual.

• weblogic.xml

 REF: For an example of this file, please refer to
Appendix A—Sample Deployment Descriptors
in this manual.

..\doc This folder contains the KAAJEE documentation (readme.txt
file).

..\jars This folder contains the KAAJEE jar files (developer-related
software).

..\jars\jsp\login This folder contains the complete set of KAAJEE Web forms
for J2EE Form-based Authentication to prompt the user for
their Access and Verify codes and enforce other rules related
to Kernel Signon Security (e.g., Login and Login Error Web
pages). These forms should be included in the application's
Web root, as "/login" (developer-related software).

..\javadoc

..\javadoc\gov\va\med\
authentication\kernel

This folder contains the KAAJEE API documentation
(manual) for the server-side Java source code (HTML
format). This folder contains the class-use subfolder that
describes the KAAJEE and login classes, inner classes,
interfaces, constructors, methods, fields, etc.

 REF: For more information, please review the
help-doc.html file located in the ..\javadoc folder.

..\samples This folder contains the KAAJEE Sample Web Application
ear and exploded ear files. It also includes the MD5 file for
software version validation purposes. In addition, there is
shortcuts subfile containing sample shortcut URLs.

..\src This folder contains the KAAJEE source code
(i.e., application server software).

 KAAJEE Installation Instructions for Developers

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 3-7

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

NOTE: KAAJEE makes internal API calls to the Standard Data Services (SDS)

Database/Tables 13.0 (or higher) located on an Oracle 10g database. SDS is responsible for

maintaining this database and related tables.

KAAJEE 1.2.0.xxx distributes SDS 18.0 client jar files as part of the Sample Web Application.

If you deploy the both the KAAJEE Sample Web Application and your own Web-based

application on the same WebLogic Application Server domain instance and intend to use a

different version of SDS, those client jar files will need to be swapped out for the appropriate

version of the SDS client jar files. Otherwise, there may be a conflict if both applications

reference the same JNDI tree.

4. Review/Use KAAJEE Files for Web-based Applications (recommended)

To build your HealtheVet-VistA J2EE Web-based applications that are KAAJEE-enabled, you need

to configure and include the kaajee-1.2.0.xxx.jar file located in the following directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\jars

Each HealtheVet-VistA Web-based application requiring Authentication and Authorization against

Kernel on the VistA M Server should use the standard KAAJEE Web login page, which is available

with the login.jsp file located in the following KAAJEE directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\jars\jsp\login\

CAUTION: Consuming applications should not provide a direct link to the
login.jsp file. Otherwise, users could get a login error message when they click
on that link.

REF: For more information on this login error message, please refer to the "

Error: You navigated inappropriately to this page" topic in Chapter 11,

"Troubleshooting," in this manual.

Review the sample descriptor files located in the following KAAJEE directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\dd_examples

Use these sample descriptor files as templates for your Web-based applications.

REF: For more information on configuring files and integrating KAAJEE with Web-

based software applications, please refer to Chapter 4, "Integrating KAAJEE with an

Application," in this manual.

KAAJEE Installation Instructions for Developers

3-8 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

For example:

Figure 3-1. Sample application weblogic.xml file (e.g., KAAJEE Sample Web Application)

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wls="http://www.bea.com/ns/weblogic/90"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

http://www.bea.com/ns/weblogic/90 http://www.bea.com/ns/weblogic/920/weblogic-

web-app.xsd">

<run-as-role-assignment>

<role-name>adminuserrole</role-name>

<run-as-principal-name>KAAJEE</run-as-principal-name>

</run-as-role-assignment>

<security-role-assignment>

<role-name>AUTHENTICATED_KAAJEE_USER</role-name>

<principal-name>AUTHENTICATED_KAAJEE_USER</principal-name>

</security-role-assignment>

<security-role-assignment>

<role-name>XUKAAJEE_SAMPLE_ROLE</role-name>

<principal-name>XUKAAJEE_SAMPLE</principal-name>

</security-role-assignment>

 <session-descriptor>

 <cookie-name>kaajeeJSESSIONID</cookie-name>

 </session-descriptor>

</weblogic-web-app>

In this sample application weblogic.xml file, the developers use KAAJEE Sample Web

Application-related VistA M Server J2EE security keys and role names.

The <session-descriptor> tag contains the <session-param> tag, which defines attributes for Hyper

Text Transport Protocol (HTTP) sessions, as shown in Table 3-1.

The WebLogic Application Server defines the session cookie name. If it is not set by the user, it

defaults to JSESSIONID. KAAJEE needs to set the session cookie name. You can set this to a more

specific name for your application. For example:

• KAAJEE: kaajeeJSESSIONID

• ApplicationOne: applicationoneJSESSIONID

• ApplicationTwo: applicationtwoJSESSIONID

For KAAJEE to execute correctly, it needs to have a <run-as> tag, which causes it to run as an

Admin user, as shown below:

 KAAJEE Installation Instructions for Developers

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 3-9

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Figure 3-2. Sample excerpt from a web.xml file—Using the run-as tag

 <servlet>

 <servlet-name>LoginController</servlet-name>

 <servlet-class>gov.va.med.authentication.kernel.LoginController</servlet-

class>

 <run-as>

 <role-name>adminuserrole</role-name>
 </run-as>

 </servlet>

Make sure that the application context name is in the kaajeeConfig.xml file, as shown below:

Figure 3-3. Sample <context-root-name> tag found in the kaajeeConfig.xml file

<context-root-name>/kaajeeSampleApp</context-root-name>

Congratulations! You have now completed the installation of KAAJEE-related software
on the developer workstation.

KAAJEE Installation Instructions for Developers

3-10 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

4. Integrating KAAJEE with an Application

This chapter describes how application developers can modify their HealtheVet-VistA Web-based

applications to integrate Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

1.2.0.xxx for Authentication and Authorization to the VistA M Server.

This chapter discusses the following topics:

• Assumptions When Implementing KAAJEE

• Software Requirements

• Web-based Application Procedures to Implement KAAJEE

Assumptions When Implementing KAAJEE

The following assumptions are made regarding application developers and HealtheVet-VistA J2EE Web-

based applications when implementing KAAJEE (Iteration 1):

• Developer Training—It is assumed that developers have J2EE experience, including the

following skills:

− Writing Servlets

− Configuring J2EE Deployment Descriptors

− Deploying Java-based applications

− Configuring WebLogic 10.3.6 and higher -specific Deployment Descriptors

− Configuring/Using Oracle 11g database (e.g., Security Service Provider Interface [SSPI])

− Configuring/Using Log4J

− Implementing the security plug-in for WebLogic 10.3.6 and higher by using custom Security

Service Provider Interfaces (SSPIs)

REF: Information about implementing the security plug-in and SSPIs for WebLogic

10.3.6 and higher can be found at the following references:

• Kernel Authentication & Authorization for J2EE (KAAJEE) Installation

Guide

• WebLogic Documentation at the following Website:

• http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/wls/12c/12

c_poster/poster.html#Applications using JMX to communicate to the

WebLogic SSPIs at the following Website:

https://docs.oracle.com/middleware/1212/wls/index.html

Integrating KAAJEE with an Application

4-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Software Requirements/Dependencies

In order to KAAJEE-enable a Web-based application, developers require the following software:

Table 4-1. Dependencies—KAAJEE software requirements for development

Category Software Version/Notes

Developer
Workstation

Java Integrated Development
Environment (IDE)

Java 2 Standard Edition
(J2SE) Java Development Kit
(JDK)

Any version. Developer software installed on
the workstation used for developing HealtheVet-
VistA J2EE Web-based applications.

The JDK should include a Java Runtime
Environment (JRE) and other developer tools to
write Java code.

KAAJEE Version 1.2.0.xxx. Developer software installed
on the workstation used for developing, running,
and testing HealtheVet-VistA KAAJEE-enabled

J2EE Web-based applications (see Table 1-1).

Application
Server

WebLogic Version 10.3.6 and higher

KAAJEE SSPIs Version 1.2.0.xxx.

VistALink Version 1.6. Developer's software is installed on
WebLogic 10.3.6 and higher application servers
used by the developer's application.

Database Oracle Database Version 11g or higher (e.g., Security Service
Provider Interface [SSPI])

SDS Tables Version 18.0 or higher.

 NOTE: KAAJEE works with SDS 18.0 or
higher; however, KAAJEE 1.2.0.008
distributes SDS 18.0 client jar files as part
of the Sample Web Application. If you
deploy both the KAAJEE Sample Web
Application and your own Web-based
application on the same WebLogic
Application Server domain instance and
intend to use a different version of SDS,
those client jar files will need to be
swapped out for the appropriate version
of the SDS client jar files. Otherwise,
There may be a conflict if both
applications reference the same JNDI
tree.

VistA M Server Kernel Version 8.0, fully patched (see Table 1-1).

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

NOTE: Kernel is the designated custodial software application for KAAJEE; however,

KAAJEE comprises multiple patches and software releases from several HealtheVet-VistA

applications.

REF: For the specific KAAJEE software and VistA M Server patches required for the

implementation of KAAJEE, please refer to Table 1-1 in the "KAAJEE Software Dependencies

for Consuming Applications

" Chapter 1 in this manual.

Web-based Application Procedures to Implement KAAJEE

1. Use of VistALink to Authenticate Users Based on Configured Station Numbers

KAAJEE makes use of VistALink to authenticate a user against a specific M system, based on

configured station numbers. KAAJEE relies on VistALink during the following steps:

a. Obtain the Java Naming and Directory Interface (JNDI) name of the VistALink connector

pool (i.e., standard that provides a unified interface to multiple naming and directory

services), based on the Station Number of the institution the user selects in the applications'

Web login page. VistALink's institution mapping facility is used to return the JNDI name

of the appropriate connector (and therefore destination M system) based on station number.

The list of allowed authenticating Station Numbers is defined in the server-side

deployment descriptor (i.e., kaajeeConfig.xml file).

b. Make Remote Procedure Calls (RPC) calls over the selected VistALink connector to the

corresponding M system, to check the user's credentials (i.e., Access and Verify codes).

The VistALink connector whose JNDI name was obtained in Step #1a above is used.

KAAJEE depends on institution mapping being set up for your VistALink connectors. J2EE Web-

based application developers must set up connectors at every site they intend to support KAAJEE

logins.

REF: For more information on VistALink, please consult the VistALink documentation.

Integrating KAAJEE with an Application

4-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

2. Access VA Standard Data Services (SDS) Tables

VA Standard Data Services (SDS) has created and maintains standardized tables in an Oracle 10g

database (e.g., VA Institutions). These tables must be accessible to your Web-based application.

The minimum version required is 18.0. KAAJEE uses the read-only Institution API and the data in

the SDS Institution table to do the following:

• Retrieve institution display names.

• Retrieve child institutions.

• Verify if divisions share the same VistA M Server provider instance.

NOTE: KAAJEE works with SDS 18.0 or higher; however, KAAJEE 1.2.0.xxx

distributes Standard Data Service (SDS) 13.0 client jar files as part of the Sample Web

Application. If you deploy the both the KAAJEE Sample Web Application and your own

Web-based application on the same WebLogic Application Server domain instance and

intend to use a different version of SDS, those client jar files will need to be swapped out

for the appropriate version of the SDS client jar files. Otherwise, there may be a conflict if

both applications reference the same JNDI tree.

Therefore, the following are required:

• A Connection Pool and a Data Source needs to be created on the application server to point

to the Oracle 11g database housing the SDS tables.

To configure the SDS tables for a J2EE DataSource, please refer to the "Configuring for a

J2EE DataSource" topic in the SDS API Installation Guide.

REF: The SDS API Installation Guide is included in the SDS software

distribution ZIP files, which are available for download at the following Website:

REDACTED

• The jdbc.properties file needed by the SDS read-only API must be in your application's

classpath at the location expected by the API.

KAAJEE distributes two sample versions of the jdbc.properties file, depending on the

operating system. These sample files are located in the following distribution directory:

<STAGING_FOLDER>/kaajee-1.2.0.xxx/samples/exploded/kaajeeSampleApp-

1.2.0.xxxEAR/APP-INF/classes/gov/va/stddata/factory/db

Figure 4-1. Sample jdbc.properties.cache file

jdbc.url=jdbc:Cache://127.0.0.1:1972/SDS

jdbc.driver=com.intersys.jdbc.CacheDriver

user=_SYSTEM

password=SYS

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Figure 4-2. Sample jdbc.properties.oracle file

jdbc.url=jdbc:oracle:thin:@<DB-HOST>:1521:<DB-NAME>

jdbc.driver=oracle.jdbc.driver.OracleDriver

user=<SDSUSER_ID>

password=<SDSUSER_PASSWORD>

• The SDS read-only API 18.0 (or higher) must itself be available in your application's

classpath. This API uses the following two .jar files:

− vha-stddata-basic-18.0.jar

− vha-stddata-client-18.0.jar

NOTE: Depending on the operating system, you can use either of these sample

files; however, make sure you substitute the values appropriate to your system

and rename the file to jdbc.properties.REF: For more information on the use of

the SDS APIs, please refer to the SDS API Installation Guide. The SDS

documentation is included in the SDS software distribution ZIP files, which are

available for download at the following Web address:

REDACTED

• The SDS read-only API 18.0 (or higher) must itself be available in your application's

classpath. KAAJEE 1.2.0.xxx distributes the following two SDS 13.0 client jar files as part

of the Sample Web Application:

− vha-stddata-client-18.0.jar

− vha-stddata-basic-18.0.jar

NOTE: KAAJEE works with SDS 13.0 or higher; however, KAAJEE 1.2.0.xxx

distributes SDS 18.0 client jar files as part of the Sample Web Application. If you

deploy the both the KAAJEE Sample Web Application and your own Web-based

application on the same WebLogic Application Server domain instance and

intend to use a different version of SDS, those client jar files will need to be

swapped out for the appropriate version of the SDS client jar files. Otherwise,

There may be a conflict if both applications reference the same JNDI tree.

REF: For more information on the use of the SDS APIs, please refer to the SDS API

Installation Guide. The SDS documentation is included in the SDS software distribution

ZIP files, which are available for download at the following Website:

REDACTED

Integrating KAAJEE with an Application

4-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

3. Import KAAJEE or SSOWAP Jar File

Below instructions apply to either KAAJEE Classic or SSOWAP (2FA) component. It is either, or,

not combined – either the A/V code authentication or 2FA.

The following jar file is present in the STAGING_FOLDER>\kaajee-1.2.0.xxx\jars folder of the

KAAJEE distribution zip file (i.e., KAAJEE_1_2_0_xxx.ZIP):

Table 4-2. KAAJEE jar distribution file

Jar File Name Description

kaajee-1.2.0.xxx.jar The KAAJEE Classic java classes.

ssowap-1.0.1.*.jar The KAAJEE 2FA java classes

To import this library into your development environment, add this jar to the compiler paths of your

Integrated Development Environment (IDE), ANT configuration, and/or anywhere else in your

development environment that needs to know classpaths.

Table 4-3. Jar files and classpath defined for KAAJEE Classic-enabled Web-based applications

Classpath Description

kaajee-1.2.0.xxx.jar KAAJEE developer-related software.

j2ee.jar J2EE java classes.

jaxen-full.jar XML software.

log4j-1.2.8.jar Log file software.

saxpath.jar XML SAX parser.

weblogic.jar WebLogic API.

Table 4-4a. Jar files and classpath defined for SSOWAP(2FA)-enabled Web-based applications

Classpath Description

ssowap-1.0.1.xxx.jar KAAJEE 2FA Authentication developer-related software.

The kaajee-1.2.0.xxx.jar or ssowap-1.0.1.*.jar file must be distributed in your application's

Enterprise Archive (.ear) file with an application-level classloader.

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-7

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

When you are ready to deploy/distribute your application, perform the following steps:

a. (required) Package the kaajee-1.2.0.xxx.jar file (see Table 4-2 or Table 4-2a) in your

application's ear file (e.g., in a "../APP-INF/lib" folder descendent from the root level of

your application's ear file).

b. (required) Ensure that kaajee-1.2.0.xxx.jar is not located in a deeper level of the classloader

hierarchy than that of an application, anywhere on the application server. Otherwise, the

singletons will be instantiated with settings inappropriate for your application, and the

KAAJEE security system will function inappropriately for your application.

4. Import Other Dependent Jar Files

KAAJEE-enabled Web-based applications also have dependencies on the following jar files:

Table 4-5. Other dependent jar files for KAAJEE Classic-enabled Web-based applications

Jar File Name Description

Log4J.jar (optional) A logging utility from the Apache Jakarta Project.

 NOTE: The Jakarta Project creates and maintains open
source solutions on the Java platform for distribution to the
public at no charge.

 REF: For more information on the Jakarta Project, please
visit the following Web address:

http://jakarta.apache.org/

vha-stddata-client-18.0.jar (required) Two Standard Data Services (SDS) jar files (as of
Version 18.0).

vha-stddata-basic-18.0.jar

To import these libraries into your development environment, add all jars to the compiler paths of

your IDE, ANT configuration, and/or anywhere else in your development environment that needs

to know classpaths.

Once you install VistALink on a WebLogic Application Server, both VistALink and Log4J

libraries are available on a classloader that is parent to all other applications; therefore, you do not

need to export these jar files in your application.

You do, however, need to export the SDS jar files. Because they are used by the kaajee-

1.2.0.xxx.jar, they need to be loaded via an application-level classloader in order for the kaajee-

1.2.0.xxx.jar to have visibility to them.

Thus, when you deploy/distribute your application it is recommended that you distribute both SDS

jar files in the same ear file location as you distribute the kaajee-1.2.0.xxx.jar file.

http://jakarta.apache.org/

Integrating KAAJEE with an Application

4-8 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

5. Import KAAJEE/SSOWAP Login Folder

The following files are present in the "login\" folder contained in the

<STAGING_FOLDER>\kaajee-1.2.0.xxx\jars\kaajee_classic_jsp or

<STAGING_FOLDER>\ssowap-1.0.1.xxx\jars\ssowap_jsp folder of the KAAJEE distribution zip

file (i.e., KAAJEE_1_2_0_xxx.ZIP):

Table 4-6. KAAJEE login folder files

Directory File Name Description

..login\ login.jsp Login Web page for authentication. This is
the Login Web page where users enter their
Access and Verify codes and choose an
Institution from a dropdown list.

 CAUTION: Consuming
applications should not provide
a direct link to the login.jsp file.
Otherwise, users could get a
login error message when they
click on that link, see the
description for
navigatonerrordisplay.jsp in this
table.

..login\ loginCookieInfo.htm Login persistent cookie information.

..login\ loginerror.jsp J2EE Form-based Authentication error Web
page for failure to authenticate J2EE
Application Server login credentials.

..login\ Loginerror403.jsp KAAJEE authorization error Web page.

..login\ loginerrordisplay.jsp Login error display Web page for failure to
authenticate VistA M Server login
credentials.

 REF: For more information on these
types of errors, please refer to
Chapter 11, "Troubleshooting," in this
manual.

..login\ navigatonerrordisplay.jsp Error display Web page displayed after a
user successfully logs into a Web
application and then presses the browser
Back button to get back to the KAAJEE
Web login page.

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-9

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Directory File Name Description

 REF: For more information on this
error, please refer to the "

Error: You navigated inappropriately to this

page" topic in Chapter 11,

"Troubleshooting," in this manual.

..login\ SessionTimeout.jsp Login session timeout Web page.

..login\images\ HealtheVetVistaSmallBlue.jpg HealtheVet-VistA small blue logo image file.

..login\images\ HealtheVetVistaSmallWhite.jpg HealtheVet-VistA small white logo image
file.

..login\javascript\ login.js This JavaScript file supports functions
associated with code for the KAAJEE
login.jsp file. For example:

• Sorting of Institutions.

• Enabling/Disabling of components
as part of login parameter passing.

• Helper function for the Section 508
Alert dialog timeout box.

Import the entire "login\" folder, including the folder itself, into your Web-based application. These

files must be brought into your J2EE Web-based application, and distributed with it, because by the

J2EE standard, any pages that are used in J2EE Form-based Authentication must run in the same

context as the Web-based application:

REF: For more information on how to configure your web.xml file for the login folder,

please refer to "5. Configure Web-based Application for J2EE Form-based

Authentication" topic in Chapter 5, "Role Design/Setup/Administration," in this manual.

Section 508 Compliance Addresses Session Timeouts

To address Section 508 compliance regarding session timeouts, KAAJEE displays an alert dialogue

box warning the end-user logging in how much time remains before the session expires. This

warning is displayed 30 seconds prior to the expiration of the login user's session. To provide this

warning, KAAJEE utilizes JavaScript. Therefore, KAAJEE distributes a login.js file, which is

exported as part of the login\javascript\ folder.

Integrating KAAJEE with an Application

4-10 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

6. Set Up KAAJEE/SSOWAPConfiguration File

KAAJEE relies on a configuration file (i.e., kaajeeConfig.xml file) to read in all administrator-

configurable settings.

You can use the kaajeeConfig.xml file that is distributed with the KAAJEE software or you can

create a KAAJEE configuration file in your J2EE Web-based application and export it along with

your Web-based application.

REF: For a sample kaajeeConfig.xml file, please refer to Figure 6-2 in Chapter 6,

"KAAJEE Configuration File," in this manual.

If you create a new KAAJEE configuration file, do the following:

a. (required) Create an empty XML file within your Web-based application's context root

(e.g., in the WEB-INF folder). The developer can choose any name for this XML file.

b. (required) Set the top-level tag for the file to <kaajee-config>. For example:

Figure 4-3. Sample empty KAAJEE configuration file

<?xml version="1.0" encoding="UTF-8"?>

<kaajee-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="kaajeeConfig.xsd">

</kaajee-config>

c. (required) Configure the file created in the previous step (i.e., Step #6b) by following

guidelines in Chapter 6, "KAAJEE Configuration File," in this manual. At a minimum, the

following tags must be configured (see Table 6-1):

• <kaajee-config>.

• <login-station-numbers> (controls the login Web page's Institution dropdown list).

• <context-root-name>.

NOTE: For every login Station Number you enter here, you also need to use

VistALink's Institution Mapping to associate that login Station Number with a

VistALink connector. SSOWAP does not make use of that setting, instead, it

retrieves the station numbers from the IAM services

WARNING: The context root must have a minimum of four characters
following the forward slash (e.g., /kaajeeSampleApp).

REF: For more details, please refer to Chapter 6, "KAAJEE Configuration File," in this

manual.

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-11

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

7. Configure KAAJEE Initialization Servlet (web.xml file)

You can place the KAAJEE configuration file anywhere within your Web-based application's

context root. KAAJEE provides an initialization servlet to initialize KAAJEE.

The classname of the servlet is:

gov.va.med.authentication.kernel.InitKaajeeServlet

This servlet in the web.xml file is used to:

• Pass the location and name of the KAAJEE configuration file (see Figure 4-4) as a servlet

parameter named:

kaajee-config-file-location

• Control the sequence of startup using the <load-on-startup> tag.

For example:

Figure 4-4. Sample excerpt of the KAAJEE web.xml file—Initialization servlet

 <servlet>

 <servlet-name>KaajeeInit</servlet-name>

 <servlet-class>gov.va.med.authentication.kernel.InitKaajeeServlet</servlet-class>

 <init-param>

 <param-name>kaajee-config-file-location</param-name>

 <param-value>/WEB-INF/kaajeeConfig.xml</param-value>

 </init-param>

 <load-on-startup>3</load-on-startup>

 </servlet>

REF: For a sample web.xml file, please refer to "Appendix A—Sample Deployment

Descriptors" in this manual.

8. Configure KAAJEE LoginController Servlet (web.xml file)

The kaajee-1.2.0.xxx.jar file includes one servlet that you must configure in your J2EE Web-based

application's web.xml file. This servlet is referenced by the Web forms in the \login folder.

The servlet must be mapped to the url-pattern "/LoginController".

Configure the servlet in your application's web.xml file, as shown below:

Integrating KAAJEE with an Application

4-12 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Figure 4-5. Sample excerpt of the KAAJEE web.xml file—LoginController servlet configuration

 <servlet>

 <servlet-name>LoginController</servlet-name>

 <servlet-class>gov.va.med.authentication.kernel.LoginController</servlet-class>

 <run-as>

 <role-name>adminuserrole</role-name>
</run-as>

 </servlet>

 <servlet-mapping>

 <servlet-name>LoginController</servlet-name>

 <url-pattern>/LoginController</url-pattern>

 </servlet-mapping>

9. Configure KAAJEE Listeners (web.xml file)

KAAJEE has two similar listeners, both of which perform logout actions for a user. Both of these

listeners are available in case one listener does not work with a specific container/platform

(e.g., WebLogic, Oracle 10g, etc.):

Table 4-7. KAAJEE listeners

Listener Description

KaajeeSessionAttributeListener The KaajeeSessionAttributeListener listens for specific
(individual) session attributes that are targeted for removal,
which signals a user session ending, and performs user
logout actions.

KaajeeHttpSessionListener The KaajeeHttpSessionListener listens for session
destruction. It is looking for the whole session being
destroyed and performs user logout actions.

KAAJEE uses two different approaches to configure the listeners for future compatibility. While an

HttpSessionAttributeListener method would be expected to be the way to retrieve the value of an

attribute (in the case of the LoginUserInfoVO object) as a user session is destroyed13, the

HttpSessionListener's sessionDestroyed method is used to provide this functionality.

13 Hall, Marty, More Servlets and Java Server Pages, 2002, pg. 523.

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-13

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Configure these listeners in your application's web.xml file as follows (listeners in bold typeface):

Figure 4-6. Sample excerpt of the KAAJEE web.xml file—Listener configuration

 <listener>

 <listener-class>

 gov.va.med.authentication.kernel.KaajeeSessionAttributeListener

 </listener-class>

 </listener>

 <listener>

 <listener-class>

 gov.va.med.authentication.kernel.KaajeeHttpSessionListener

 </listener-class>

 </listener>

10. Design/Set Up Application Roles

Some preparation is required to correctly set up application roles. The following areas are involved:

• WebLogic group mappings (weblogic.xml).

REF: For a sample spreadsheet showing a mapping between WebLogic group

names (i.e., principals) with J2EE security role names, please refer to "Appendix

B—Mapping WebLogic Group Names with J2EE Security Role Names" in this

manual.

• VistA M Server J2EE security keys (correspond to WebLogic server group names).

• J2EE security role declarations (web.xml and weblogic.xml).

• Security constraints using J2EE security role and group names (weblogic.xml).

REF: For more detailed role configuration instructions, please refer to Chapter 5, "Role

Design/Setup/Administration," in this manual.

11. Configure Log4J Logging for KAAJEE

KAAJEE uses Log4J to log error and debugging information. It is strongly recommended that you

configure your application to use Log4J (in addition to any other logging system your application is

using) in order to gain access to the error and debugging information produced by KAAJEE.

Configure Log4J logging so that KAAJEE error and/or debug messages are logged to the same file

used by all J2EE-based applications running in the same domain on the application server. This

assists users on the application server to monitor and troubleshoot KAAJEE and all other J2EE-

based applications in one place.

Integrating KAAJEE with an Application

4-14 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

REF: For specific directions on setting up logging for KAAJEE, please refer to the

"Log4J Configuration" section in Chapter 8, "Implementation and Maintenance," in the

Implementation and Maintenance section of this documentation.

12. Protect KAAJEE Web Pages

At this point, your application is configured with KAAJEE, but has not yet been configured to

protect any Web pages using KAAJEE. To authenticate and authorize users with KAAJEE, you

need to protect the Web pages in your application by configuring J2EE Form-based Authentication

in your application's web.xml file.

Once you protect your application Web pages, KAAJEE is activated. When a user tries to access a

protected Web page, if all is configured correctly, the user is redirected to the KAAJEE Web login

page for Authentication and Authorization.

REF: For information on setting up KAAJEE to protect Web pages, please refer to

Chapter 5, "Role Design/Setup/Administration," in this manual.

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-15

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

SSO/UC/CCOW Functionality Enabled

Kernel Authentication & Authorization for J2EE (KAAJEE) 1.2.0 is Single Sign-On/User Context

(SSO/UC) enabled via the implementation of the CCOW user context. CCOW or Clinical Context Object

Workgroup is an HL7 standard protocol designed to enable disparate applications to synchronize in real-

time, and at the user-interface level. It is vendor independent and allows applications to present

information at the desktop and/or portal level in a unified way. Applications that incorporate this

functionality offer their users the convenience of only having to present their credentials (Access/Verify

codes) once via their first signon to the SSO/UC/CCOW enabled application. Subsequent applications

selected by the user, which are also SSO/UC/CCOW enabled, will not prompt the user for their

credentials.

REF: For more information on CCOW and Single Signon/User Context (SSO/UC), refer to the

Single Sign-On/User Context (SSO/UC) Deployment Guide (Kernel Patch XU*8.0*337), located

on the VHA Software Document Library at the following address:

 http://www.va.gov/vdl/application.asp?appid=162

Enabling Your KAAJEE Application

To enable your KAAJEE application, in addition to the elements required by KAAJEE, you must do the

following:

1. Modify your application’s web.xml to include the necessary elements described in the following

section.

2. Ensure your application contains a folder called ‘applets’ that contains the WebJ2Applets.jar

library.

3. Ensure that your application contains the WebJContextor.jar library.

4. Ensure that clients of your application have the required Sentillion desktop components as

described in the Single Sign-On/User Context (SSO/UC) Deployment Guide.

KAAJEE Sample Application with SSO/UC

For example, the sample application that comes with your distribution can be SSO/UC enabled by

replacing the following web.xml file:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\samples\exploded\kaajeeSampleApp-

1.2.0.xxxEAR\kaajeeSampleApp.war\WEB-INF\web.xml

With the following web.xml file:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\samples\sso-ccow\web.xml

You will then need to (re)deploy the sample application.

http://www.va.gov/vdl/application.asp?appid=162

Integrating KAAJEE with an Application

4-16 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

SSO/UC Elements in web.xml

Table 4-8 lists the elements that need to be added to your web.xml file. You can find the actual elements

in the file named sso-elements.txt where you can cut and paste them in your application’s web.xml file.

This file can be found in your distribution, in the following directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\samples\sso-ccow\sso-elements.txt

Table 4-8. web.xml elements needed for SSO/UC/CCOW enabled KAAJEE Sample Application

Category Element

Filters ContextInitializerFilter and its corresponding filter-mapping

ContextWriterFilter and its corresponding filter-mapping

Listener CcowHttpSessionListener

Servlet ContextParticipantServlet and its corresponding servlet-mapping

Figure 4-7 provides the contents of file sso-elements.tx which contains the elements listed in Table 4-8.

ATTENTION: The order of placement of these elements is critical when building of your
web.xml file. You can see the ordering of these elements in the web.xml file found in
the following directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\samples\sso-ccow\web.xml

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-17

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Figure 4-7 shows the web.xml element implementations needed for SSO/UC/CCOW enabled KAAJEE

SampleWebApp:

Figure 4-7. web.xml element implementations needed for SSO/UC/CCOW enabled KAAJEE SampleWebApp

<!-- Filters -->

 <filter>

 <filter-name>ContextInitializerFilter</filter-name>

 <filter-class>

 gov.va.med.authentication.kernel.ccow.ContextInitializerFilter

 </filter-class>

 <init-param>

 <param-name>context-participant</param-name>

 <param-value>ccowcp</param-value>

 <!--should match ContextParticipantServlet

 servlet-mapping url-pattern '/ccowcp'

 -->

 </init-param>

 <init-param>

 <param-name>applet-codebase</param-name>

 <param-value>applets/</param-value>

 <!-- directory that contains library WebJ2Applets.jar-->

 </init-param>

 <init-param>

 <param-name>ccow-kaajee-appl-name</param-name>

 <param-value>VistaLinkLoginModule</param-value>

 <!-- name of application registered with the ccow vault -->

 </init-param>

 <init-param>

 <param-name>session-id</param-name>

 <param-value>kaajeeJSESSIONID</param-value>

 <!-- must match value set in weblogic.xml, session-descriptor, CookieName -->

 </init-param>

 <init-param>

 <param-name>app-archive-J2</param-name>

 <param-value>WebJ2Applets.jar</param-value>

 </init-param>

 <init-param>

 <param-name>app-archive-IE</param-name>

 <param-value>WebIEApplets.cab</param-value>

 </init-param>

 <init-param>

 <param-name>UseIETag</param-name>

 <param-value>false</param-value>

 </init-param>

 <init-param>

 <param-name>app-locate-timeout</param-name>

 <param-value>60</param-value>

 </init-param>

 <init-param>

 <param-name>locator-applet-body</param-name>

 <param-value></param-value>

 <!-- Text you want visible while locator applet is sent to browser -->

 </init-param>

 <init-param>

 <param-name>app-debug</param-name>

 <param-value></param-value>

 <!-- to enable the Sun Java Console to capture and display

 the locator applet activity. value is 'debug'

Integrating KAAJEE with an Application

4-18 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

 -->

 </init-param>

 </filter>

 <filter>

 <filter-name>ContextWriterFilter</filter-name>

 <filter-class>

 gov.va.med.authentication.kernel.ccow.ContextWriterFilter

 </filter-class>

 </filter>

 <filter-mapping>

 <filter-name>ContextInitializerFilter</filter-name>

 <url-pattern>login/login.jsp</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ContextWriterFilter</filter-name>

 <servlet-name>LoginController</servlet-name>

 </filter-mapping>

<!-- Listeners -->

 <listener>

 <listener-class>

 gov.va.med.authentication.kernel.ccow.CcowHttpSessionListener

 </listener-class>

 </listener>

<!-- Servlets -->

 <servlet>

 <servlet-name>ContextParticipantServlet</servlet-name>

 <servlet-class>

 gov.va.med.authentication.kernel.ccow.ContextParticipantServlet

 </servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ContextParticipantServlet</servlet-name>

 <url-pattern>/ccowcp</url-pattern>

 <!--should match config value of context-participant in ContextInitializerFilter

-->

 </servlet-mapping>

 Integrating KAAJEE with an Application

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 4-19

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Special Instructions for the Users of Your SSO/UC Application

The first time a user uses your application with SSO/UC, the user will be displayed with a security

warning, indicating the loading of one of the special applets. Instruct your user to accept and run the

application and to ensure check the option to “always trust content from this publisher”; so that the

warning doesn’t appear every time the user uses your application. See Figure 4-8 below:

Figure 4-8. Security warning displayed when the Sentillion’s Locator applet is being loaded

Integrating KAAJEE with an Application

4-20 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 5-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

5. Role Design/Setup/Administration

Protected resources in the various development environments are as follows:

• M—Menus act as protected resources and VistA M Server J2EE security keys act as groups

• Web-based applications (Kernel Authentication and Authorization Java (2) Enterprise Edition

[KAAJEE])—Static Web pages, servlets, jsps, etc.

Roles can be assigned to the protected resources. The web.xml file lists all of those roles in addition to

listing the Web protected resources and their associated roles. The web.xml file is used declaratively to

filter access to protected resources based on authorized roles. Further detailed authorization can be done

programmatically with the isUserInRole (role_name) method.

The weblogic.xml file maps roles to principals (i.e., user and/or groups); however, KAAJEE only uses

groups. Principals are physical in that they pertain to physical users. The role acts as a lock on a protected

resource and the key is the principal. Only certain principals can open a lock (i.e., only those principals

that are mapped to the role/lock). Since KAAJEE only uses groups and groups equate to VistA M Server

J2EE security keys, then a user in M can have several security keys and some, if any, may open the

role/locks in the J2EE world.

Some setup is required to correctly set up application roles. The following steps are involved:

1. Declare Groups (weblogic.xml file)

2. Create VistA M Server J2EE Security Keys Corresponding to WebLogic Group Names

3. Declare J2EE Security Role Names

4. Map J2EE Security Role Names to WebLogic Group Names (weblogic.xml file)

5. Configure Web-based Application for J2EE Form-based Authentication

6. Protect Resources in Your J2EE Application

7. Grant Special Group to All Authenticated Users (Magic Role)

8. Administer Users

9. Administer Roles

REF: For a sample spreadsheet showing a mapping between WebLogic group names

(i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping

WebLogic Group Names with J2EE Security Role Names" in this manual.

REF: For samples of the web.xml and weblogic.xml files, please refer to "Appendix A—

Sample Deployment Descriptors" in this manual.

KAAJEE includes a "magic" role (i.e., AUTHENTICATED_KAAJEE_USER).

REF: For more information on the "magic" role, please refer to "7. Grant Special Group

to All Authenticated Users (Magic Role)" in this chapter.

Role Design/Setup/Administration

5-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

1. Declare Groups (weblogic.xml file)

KAAJEE roles are based on the group names in your application's weblogic.xml file.

For example:

Figure 5-1. Sample application weblogic.xml file with group information (e.g., KAAJEE Sample Web

Application)

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wls="http://www.bea.com/ns/weblogic/90"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

http://www.bea.com/ns/weblogic/90 http://www.bea.com/ns/weblogic/920/weblogic-

web-app.xsd">

<run-as-role-assignment>

<role-name>adminuserrole</role-name>

<run-as-principal-name>KAAJEE</run-as-principal-name>

</run-as-role-assignment>

<security-role-assignment>

<role-name>AUTHENTICATED_KAAJEE_USER</role-name>

<principal-name>AUTHENTICATED_KAAJEE_USER</principal-name>

</security-role-assignment>

<security-role-assignment>

<role-name>XUKAAJEE_SAMPLE_ROLE</role-name>

<principal-name>XUKAAJEE_SAMPLE</principal-name>

</security-role-assignment>

 <session-descriptor>

 <cookie-name>kaajeeJSESSIONID</cookie-name>

 </session-descriptor>

</weblogic-web-app>

The <principal-name> tag is the group name and also the VistA M Server J2EE Security Key name

(see 2. Create VistA M Server J2EE Security Keys Corresponding to WebLogic Group Names).

In this example, the group name is "XUKAAJEE_SAMPLE" and the role name is

"XUKAAJEE_SAMPLE_ROLE."

Developers must place the weblogic.xml file in the application's <WEBROOT>\WEB-INF folder,

if not already present.

NOTE: The <WEBROOT> represents the root directory of the application war file, if

exploded.

 Role Design/Setup/Administration

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 5-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Developers should distribute the weblogic.xml file in the WEB-INF folder in the application's war

file; this war file is in the ear file.

2. Create VistA M Server J2EE Security Keys Corresponding to

WebLogic Group Names

At user login, KAAJEE uses the XUS ALLKEYS RPC (added with Kernel Patch XU*8.0*337) to

get all VistA M Server J2EE security keys associated with the user.

KAAJEE returns all VistA M Server J2EE security keys. KAAJEE then caches the results in the

Oracle database and uses those security keys along with the security roles in the application's

weblogic.xml file as the basis for subsequent authorization decisions.

Therefore, for every WebLogic group name in the weblogic.xml file, if a user is to be authorized to

the J2EE security role that maps to the WebLogic group name (see #3. Declare J2EE Security

Role Names below), the user must be granted a VistA M Server J2EE Security Key whose name

corresponds precisely to the WebLogic group name found in the weblogic.xml file. Application

developers must also make sure that they set the SEND TO J2EE field (#.05) in the SECURITY

KEY file (#19.1) to YES for those corresponding VistA M Server J2EE security keys.

NOTE: To set the SEND TO J2EE field (#.05), use VA FileMan's Enter or Edit File

Entries option [DIEDIT].

Regardless of whether a particular user is assigned a particular security key, the entire set of

application-specific VistA M Server J2EE security keys corresponding to the entire set of

weblogic.xml group names should be exported by your application to all VistA M Servers that

would be used for authentication for your application.

3. Declare J2EE Security Role Names

In the simplest implementation, J2EE role names used by your application have exactly the same

name as the corresponding WebLogic group names found in your application's weblogic.xml file

(see Figure 5-1). In such cases, no mapping is required to link J2EE security role names to

WebLogic group names.

Role Design/Setup/Administration

5-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

4. Map J2EE Security Role Names to WebLogic Group Names

(weblogic.xml file)

The security role is mapped to the group, where the group is a collection of users. This mapping is

done in the weblogic.xml file (Figure 5-1); however, as long as the <role-name> tags of a security

role match one-to-one with names in the <principal-name> tag in the weblogic.xml file, no

mapping is needed.

REF: For a sample spreadsheet showing a mapping between WebLogic group names

(i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping

WebLogic Group Names with J2EE Security Role Names" in this manual.

5. Configure Web-based Application for J2EE Form-based

Authentication

J2EE Form-based Authentication cannot be directly invoked. Instead, it is triggered by a user's

attempted access to a protected page. Thus, if you need the user's identity, then all Web pages that

need that identity should be protected by a security constraint in order to trigger the J2EE Form-

based Authentication login process.

To configure J2EE Form-based Authentication for the applications protected resource, use the

<auth-method> begin and end tags with a value of "FORM." Also, configure the location of the

form-login-page and form-error-page, as shown below:

Figure 5-2. Sample excerpt of the KAAJEE web.xml file—J2EE Form-based Authentication configuration

setup

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login/login.jsp</form-login-page>

 <form-error-page>/login/loginerror.jsp</form-error-page>

 </form-login-config>

 </login-config>

NOTE: Because of the way J2EE Form-based Authentication works, there cannot be

login buttons that point directly to the Web login page. Only an attempt to access a

protected resource—as opposed to the Web login page, which cannot be protected since it

must be accessed prior to successful authentication—triggers the J2EE Form-based

Authentication process.

 Role Design/Setup/Administration

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 5-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

6. Protect Resources in Your J2EE Application

Resource methods (e.g., Web URLs) can now be protected using both declarative security (i.e., the

standard J2EE deployment descriptor settings) and programmatic security.

For example, for Web pages, add the following to protect a particular URL:

Figure 5-3. Sample web.xml file excerpt—Protecting an application URL

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>KAAJEE Login Page</web-resource-name>

 <url-pattern>/login/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <user-data-constraint>

 <!-- For the KAAJEE Login Page, use 'CONFIDENTIAL' when possible. -->

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>A Protected Page</web-resource-name>

 <url-pattern>/AppHelloWorld.jsp</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>XUKAAJEE_SAMPLE_ROLE</role-name>

 </auth-constraint>

 <user-data-constraint>

 <!-- Use a value of 'CONFIDENTIAL' to place this page in SSL. -->

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

Once a user tries to access a protected Web page resource, for example, the login process is

triggered.

7. Grant Special Group to All Authenticated Users (Magic Role)

A new group with the following name is automatically granted to all KAAJEE-authenticated users:

AUTHENTICATED_KAAJEE_USER

This "magic" role can be used to secure pages for users that do not otherwise have any special

VistA M Server J2EE security keys granted but that need to access your application. This allows

you to identify such users by still triggering the authentication process via a role security constraint.

Role Design/Setup/Administration

5-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

NOTE: In order to use this magic role in an application, KAAJEE software declared this

group name in the KaajeeManageableLoginModuleImpl.java file in the KAAJEE SSPI

software. It is also made available as a J2EE security role in the standard J2EE

deployment descriptor(s) as well.

8. Administer Users

Users simply need to be active, enabled users on a VistA M Server (one that is also configured to be

one of the systems against which logins can be performed).

The existing Kernel user management tools are used to manage the divisions that are permissible

for users to log into at any given site.

All users on each VistA M Server who are going to log in through KAAJEE must have the XUS

KAAJEE WEB LOGON "B"-type option. Kernel exports and links this option with the

XUCOMMAND menu. Since all authenticated users have access to XUCOMMAND, this linkage

enables all users to have access to all RPCs listed under the XUS KAAJEE WEB LOGON "B"-type

option.

9. Administer Roles

J2EE roles are administered as VistA M Server J2EE security keys on the VistA M Server on which

a given user has an account. To assign a J2EE role to the user, simply create (if needed) a VistA M

Server J2EE Security Key with the same name as the J2EE principal (WebLogic group) that you

wish to grant, and then grant the VistA M Server J2EE Security Key to the end-user.

VistA M Server security keys are non-hierarchical; hence, the roles implemented via VistA M

Server J2EE security keys are also non-hierarchical. This matches J2EE security roles themselves,

which are also flat.

NOTE: VistA M Server security keys are not multi-divisional; therefore, KAAJEE roles

based on VistA M Server J2EE security keys are also not multi-divisional. Because of the

use of the VistA M Server J2EE Security Key mechanism, for whatever divisions a user

has rights to log into at one division, the end-user will have the same roles at any other

division of an integrated site that the end-user is given permission by the IRM system

manager to log into.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 6-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

6. KAAJEE Configuration File

The kaajeeConfig.xml file controls a number of settings necessary for Kernel Authentication and

Authorization Java (2) Enterprise Edition (KAAJEE) to operate. It is located in the following directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\dd_examples

The tag sequence within the kaajeeConfig.xml file is not significant; however, this file must parse as a

valid XML file.

KAAJEE Configuration File Tags

The kaajeeConfig.xml file has the following tags and default values:

Table 6-1. KAAJEE configuration file (i.e., kaajeeConfig.xml) tag settings

Tag Name Description

<kaajee-config> Root XML tag. For example:

 <kaajee-config

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation=

 "kaajeeConfig.xsd">

 </kaajee-config>

<host-application-name> The login Web page uses this value to prominently display your
application name, so that users know why they are seeing the login
Web page. For example:

<host-application-name>KAAJEE Sample

</host-application-name>

<login-station-numbers> This tag contains the sub-tags (i.e., <station-number> tags) that are
used to store a set of Station Numbers to present to a user at login
time. It is administrator configurable.

<station-number>
(repeated n times)

Within the <login-station-numbers> tag, add one <station-number> tag
for every Station Number that is valid for the user to log into, for your
application. You can specify both division-level and facility-level
Station Numbers, as appropriate for your application. The values
entered must be valid and recognized by Standard Data Services
(SDS).

 NOTE: When a user selects a division to log into, KAAJEE uses
this as the Station Number parameter it passes to VistALink's
Institution Mapping to retrieve a JNDI connector name for
VistALink; therefore, every login station number should have a
mapping configured in VistALink's Institution Mapping.

KAAJEE Configuration File

6-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Tag Name Description

As distributed:

<login-station-numbers>

 <station-number>###</station-number>

 <station-number>###9XX</station-number>

 <station-number>###9XX</station-number>

 <station-number>###XX</station-number>

 <station-number>###XX</station-number>

 <station-number>###</station-number>

 <station-number>###9XX</station-number>

 <station-number>###9XX</station-number>

 <station-number>###XX</station-number>

 <station-number>###XX</station-number>

</login-station-numbers>

Sample entries:

<login-station-numbers>

 <station-number>11000</station-number>

 <station-number>459</station-number>

 <station-number>523</station-number>

 <station-number>631</station-number>

 <station-number>662</station-number>

</login-station-numbers>

 NOTE: In this example, 11000 is not a valid station number that
is recognized by SDS and would not be available for selection
by the user at signon.

 NOTE: For more information on editing the login Station
Numbers in the kaajeeConfig.xml file, please refer to the "Edit
the KAAJEE Configuration File" topic in the KAAJEE Installation
Guide.

<context-root-name> This tag is used to generate the stored username in the
kaajeeManageableAuthenticator's user store, not as the actual context
root name for the application. The <context-root-name> must be "/"
followed by at least four characters. For example:

<context-root-name>/kaajeeSampleApp</context-root-name>

The KAAJEE code explicitly takes the 2nd through 5th characters to
use as the username prefix.

<system-announcement> This tag is an administrator-configurable logon banner. It is the
introductory text displayed to users when they sign onto the system.

KAAJEE was developed for centralized (national)
applications/systems, where the main database (not M-based) and the
application server are co-located; therefore, there is a one-to-many
relationship between the application server and VistA M Servers.
Because the presentation of the introductory text comes before the
user signs into any VistA M Server and selects the Institution/Division,
this text cannot be derived from a specific VistA M Server but must
come from the application server. Thus, this tag is an administrator-

 KAAJEE Configuration File

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 6-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Tag Name Description

configurable logon banner. It holds the introductory text displayed to
users when they sign onto the system via one of these centralized
KAAJEE-enabled applications.

Sites must enter announcement text in this tag. Use a tilde (~)
character to provide line breaks, or "~ ~" (each tilde separated by a
space) to provide a paragraph break.

For example:

<system-announcement>

 My System Announcement~

 Line 2~ ~

 Paragraph 2

</system-announcement>

 REF: For another example of introductory text, please refer to
the "Suggested System Announcement Text" topic in this
chapter.

<user-new-person-divisions> Some applications want to support division switching only to those
divisions that an IRM system manager has configured as valid
divisions in a person's NEW PERSON file (#200) entry on their host
VistA M Server.

Defaults to "false" (case sensitive).

To tell KAAJEE to return this list of divisions after login in the
LoginUserInfoVO object, set the retrieve attribute of this tag to "true"
(case sensitive):

<user-new-person-divisions retrieve="true" />

<computing-facility-divisions> Some applications want to support division switching for all divisions
supported at the same computing facility as the login division,
regardless of whether explicit access has been granted to the user for
any particular division.

Defaults to "false" (case sensitive).

To tell KAAJEE to return this list of divisions in the LoginUserInfoVO
object, set the retrieve attribute tag of this tag to "true" (case
sensitive):

<computing-facility-divisions retrieve="true" />

<cactus-insecure-mode> Enables an application with valid Access/Verify code login credentials
to retrieve a non-expiring "temporary" j_username/j_password
credential to use for unit testing (e.g., testing with the CACTUS unit
testing framework).

Defaults to "false" (case sensitive).

For example:

<cactus-insecure-mode enabled="false" />

KAAJEE Configuration File

6-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Tag Name Description

 As the tag name indicates, setting this mode decreases
system security. This mode should never be enabled on a
production system. It defaults to "false" unless enabled is
specifically set to "true" (case sensitive).

 REF: For more information on CACTUS testing, please refer to
Chapter 10, "Cactus Testing with KAAJEE," in this manual.

Suggested System Announcement Text

The following is suggested text for a mandatory banner warning from the Office of Cyber and

Information Security (OCIS) as of February 20, 2002:14

Figure 6-1. Mandatory OCIS banner warning message

U.S. Government Computer System

U. S. government systems are intended to be used by authorized government network users for
viewing and retrieving information only, except as otherwise explicitly authorized for official business
and limited personal use in accordance with policy. Information from these systems resides on and
transmits through computer systems and networks funded by the government. All access or use
constitutes understanding and acceptance that there is no reasonable expectation of privacy in the
use of Government networks or systems.

The data and documents on this system include Federal records that contain sensitive information
protected by various Federal statutes, including the Privacy Act, 5 U.S.C. Section 552a, and veterans'
records confidentiality statutes such as 38 U.S.C. Sections 5701 and 7332. Access to the data and
records is on a need-to-know basis only.

All access or use of this system constitutes user understanding and acceptance of these terms and
constitutes unconditional consent to review and action including (but not limited to) monitoring,
recording, copying, auditing, inspecting, investigating, restricting access, blocking, tracking, disclosing
to authorized personnel, or any other authorized actions by all authorized government and law
enforcement personnel.

Unauthorized user attempts or acts to (1) access, upload, change, or delete information on this
system, (2) modify this system, (3) deny access to this system, (4) accrue resources for unauthorized
use or (5) otherwise misuse this system are strictly prohibited. Such attempts or acts are subject to
action that may result in criminal, civil, or administrative penalties.

14 See REDACTED?.

https://vaww.ocis.va.gov/portal/server.pt

 KAAJEE Configuration File

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 6-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

KAAJEE Configuration File (i.e., kaajeeConfig.xml)

Figure 6-2. Sample KAAJEE configuration file (i.e., kaajeeConfig.xml)

<?xml version="1.0" encoding="UTF-8"?>

<kaajee-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="kaajeeConfig.xsd">

 <!-- host application name, used for login page display and logging -->

 <host-application-name>KAAJEE Sample</host-application-name>

 <!-- put each station number for KAAJEE login here -->

 <login-station-numbers>

 <station-number>###</station-number>

 <station-number>###9XX</station-number>

 <station-number>###9XX</station-number>

 <station-number>###XX</station-number>

 <station-number>###XX</station-number>

 <station-number>###</station-number>

 <station-number>###9XX</station-number>

 <station-number>###9XX</station-number>

 <station-number>###XX</station-number>

 <station-number>###XX</station-number>

 </login-station-numbers>

 <!-- defined application context root Name -->

 <context-root-name>/kaajeeSampleApp</context-root-name>

 <!-- put the system announcement here. Use ~ for a line break, or ~ ~ for a

 paragraph break. -->

 <system-announcement>

 U.S. Government Computer System

 ~ ~

 U. S. government systems are intended to be used by authorized government

network users for viewing and retrieving information only, except as otherwise

explicitly authorized for official business and limited personal use in accordance

with policy. Information from these systems resides on and transmits through

computer systems and networks funded by the government. All access or use

constitutes understanding and acceptance that there is no reasonable expectation of

privacy in the use of Government networks or systems.

 ~ ~

 The data and documents on this system include Federal records that contain

sensitive information protected by various Federal statutes, including the Privacy

Act, 5 U.S.C. Section 552a, and veterans' records confidentiality statutes such as

38 U.S.C. Sections 5701 and 7332. Access to the data and records is on a need-to-

know basis only.

 ~ ~

 All access or use of this system constitutes user understanding and acceptance

of these terms and constitutes unconditional consent to review and action including

(but not limited to) monitoring, recording, copying, auditing, inspecting,

investigating, restricting access, blocking, tracking, disclosing to authorized

personnel, or any other authorized actions by all authorized government and law

enforcement personnel.

 ~ ~

KAAJEE Configuration File

6-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

 Unauthorized user attempts or acts to (1) access, upload, change, or delete

information on this system, (2) modify this system, (3) deny access to this system,

(4) accrue resources for unauthorized use or (5) otherwise misuse this system are

strictly prohibited. Such attempts or acts are subject to action that may result

in criminal, civil, or administrative penalties.

 </system-announcement>

 <!-- set to true to return a user's "New Person" division multiple as part

 of login -->

 <user-new-person-divisions retrieve="true" />

 <!-- set to true to return all children divisions of the login division's

 computing facility, as part of login -->

 <computing-facility-divisions retrieve="true" />

 <cactus-insecure-mode enabled="false" />

</kaajee-config>

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 7-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

7. Programming Guidelines

Application Involvement in User/Role Management

Under ordinary circumstances, an application that is Kernel Authentication and Authorization Java (2)

Enterprise Edition (KAAJEE)-enabled should not record, store, or otherwise manage which user divisions

are legal for a user to log into, or which roles a user has been granted. Kernel acts as the external source

of Authentication and Authorization, as well as the point of user provisioning.

With KAAJEE, the IRM system manager handles all these tasks on the VistA M Server. This is one of the

benefits of the KAAJEE approach; the user and role administration is all handled at the same VistA M

Server location as it always has been.

J2EE Container-enforced Security Interfaces

As with any security framework solution (e.g., SSPIs), all J2EE container-enforced security is supported.

You can access the username of the end-user programmatically, and you can use both programmatic and

declarative role checking to protect resources.

The web.xml and weblogic.xml files are used for declarative role checking. Using the isUserInRole

and/or isCallerInRole methods are considered programmatic authorization/role checking. Using custom

SSPIs with J2EE Form-based Authentication (e.g., KAAJEE) can be considered programmatic

Authentication and Authorization. Using Basic Authentication with just deployment descriptors is purely

declarative Authentication and Authorization. Whenever code is added to the equation of deciding

Authentication and Authorization, then it becomes programmatic.

J2EE Username Format

For KAAJEE, the J2EE username for a given user is returned in the following format:

xxxx_DUZ_nnnn~CMPSYS_nnn

Where:

• xxxx—The first four characters following the "/" of the value as entered in the

<context-root-name> tag in the kaajeeConfig.xml file.

• DUZ_nnnn—The user's DUZ as stored in the NEW PERSON file (#200).

• CMPSYS_nnn—The Station Number of the login division's computing system provider as

returned by Standard Data Services' Institution getVistaProvider() API.

Programming Guidelines

7-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

REF: For more information on the use of the SDS APIs, please refer to the SDS API

Installation Guide. The SDS documentation is included in the SDS software distribution

ZIP files, which are available for download at the following Website:

REDACTED

For example:

kaaj_DUZ_8888~CMPSYS_523

Where:

• kaaj—The first four characters following the "/" of the value as entered in the

<context-root-name> tag in the kaajeeConfig.xml file.

• 8888—The user's DUZ as stored in the NEW PERSON file (#200).

• 523—The Station Number of the login division's computing system provider, as returned by

Standard Data Services' Institution getVistaProvider() API.

On the VistA M Server, this should correspond to the Station Number of the default Institution, as defined

in the KAAJEE login host computer system's KERNEL SYSTEM PARAMETERS file (#8989.3).

This means that for all the divisions supported on a given VistA M Server, a user will have the same J2EE

username returned to them. For logins against a different computer system, the same user will likely have

a different DUZ, as well as a different parent facility, returned.

NOTE: In the future, the Department of Veterans Affairs Personal Identification (VPID) may

alter the username, assuming an enterprise-wide user identifier is created in VHA or VA. The

VPID will be stored in the NEW PERSON file (#200), in addition to being stored in national

directories.

LoginUserInfoVO Object

After login, KAAJEE returns additional demographic information in a LoginUserInfoVO object

(i.e., value object). KAAJEE stores the LoginUserInfoVO object (i.e., value object) in the Hyper Text

Transport Protocol (HTTP) Session Object. The object is stored in the session object using the key value

stored in the LoginUserInfoVO.SESSION_KEY string.

LoginUserInfoVO is implemented as a JavaBean, therefore it can be accessed as a JavaBean, within Java

Server Pages (JSP) Web pages.

NOTE: A JavaBean is a reusable component that can be used in any Java application

development environment. JavaBeans are dropped into an application container, such as a form,

and can perform functions ranging from a simple animation to complex calculations.15

15 Definition of JavaBean from the following Glossary WebWeb site: http://www.orafaq.com/glossary/faqglosj.htm,

7/17/04, Revision 2.1; Author: Frank Naudé.

 Programming Guidelines

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 7-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

For example:

Figure 7-1. JavaBean Example: LoginUserInfoVO object

public class LoginUserInfoVO

extends java.lang.Object

implements java.io.Serializable

KAAJEE returns this JavaBean to the enclosing application after login. It is returned to the enclosing

application as an object in HttpSession. It contains user demographics information about the logged-in

user. A public static field provides the key for the application to find the object in HttpSession.

Table 7-1. Field Summary: LoginUserInfoVO object

Field Summary

static java.lang.String SESSION_KEY

The key under which this value is placed in the session object during login,
and from which this object can be retrieved by the enclosing Web-based
application post-login.

Table 7-2. Constructor Summary: LoginUserInfoVO object

Constructor Summary

LoginUserInfoVO()

generic constructor.

Programming Guidelines

7-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Table 7-3. Method Summary: LoginUserInfoVO object

Method Summary

Return Type Method Name and Description

java.util.TreeMap getLoginDivisionVistaProviderDivisions()

Returns a list of divisions (based on information in the SDS Institution table)
whose Vista Provider is the same as the Vista Provider computer system of the
login division. This list is returned as a TreeMap. The key value in the TreeMap
is the Station Number, which is a String. The object value stored under each
key is a VistaDivisionVO object.

 REF: See also the "VistaDivisionVO Object" topic in this manual.

This method is provided to applications to support division switching for all
divisions supported at the same computing facility as the login division,
regardless of whether explicit access has been granted to the user for any
particular division. Applications can display a list of other divisions that the user
could switch to within the application, allowing the user to select a different
division. It is then the application's responsibility to use the proper division for
its own internal business rules. The application developer should be aware that
this method may not be appropriate when using VistALink RPC calls as the
login user may not be permitted access to a specific division.

java.lang.String getLoginStationNumber()

Returns the Station Number of the Division the user selected at login. This can
be used as a key to retrieve additional information (e.g., name about the login
division from the TreeMap of permitted divisions returned by the
getPermittedDivisions method).

java.util.TreeMap getPermittedNewPersonFileDivisions()

Returns a list of the user's permitted divisions returned as a TreeMap. The key
value in the TreeMap is the Station Number, which is a String. The object value
stored under each key is a VistaDivisionVO object.

 REF: See also the "VistaDivisionVO Object" topic in this manual.

This list represents all of the divisions on the VistA M Server that the user could
have logged into. Applications can display a list of other divisions that the user
could switch to within the application, allowing the user to select a different
division. It is then the application's responsibility to use the proper division for
its own internal business rules, and also to pass the proper Division Station
Number with each VistALink RPC call it makes to M.

java.lang.String getUserDegree()

Returns the user's Degree value from the NAME COMPONENTS file (#20).

java.lang.String getUserDuz()

Return the user's DUZ from the NEW PERSON file (#200).

 Programming Guidelines

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 7-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Method Summary

Return Type Method Name and Description

java.lang.String getUserFirstName()

Returns the users' First Name value from the NAME COMPONENTS file (#20).

java.lang.String getUserLastName()

Returns the user's Last Name value from the NAME COMPONENTS file (#20).

java.lang.String getUserMiddleName()

Returns the user's Middle Name value from the NAME COMPONENTS file
(#20).

java.lang.String getUserName01()

Returns the user's name as it's stored in the NAME field (# .01) in the NEW
PERSON file (#200). For example:

KRNUSER,ONE E

java.lang.String getUserNameDisplay()

Returns the Display Name of the user, as put together by the Name
Standardization APIs on M. For example:

One E. Krnuser

java.lang.String getUserParentAdministrativeFacilityStationNumber()

Returns the parent facility of the Division used for login, as resolved on the
login computer system based on that system's INSTITUTION file (#4) from the
SDS 13.0 (or higher) tables.

java.lang.String getUserParentComputerSystemStationNumber()

Returns the computer system's default Institution/Computer System Institution,
as identified in the system's KERNEL SYSTEM PARAMETERS file (#8989.3).

java.lang.String getUserPrefix()

Returns the user's Prefix value from the NAME COMPONENTS file (#20).

java.lang.String getUserSuffix()

Returns the user's Suffix value from the NAME COMPONENTS file (#20).

java.lang.String toString()

Returns a string representation of the values in the object.

Programming Guidelines

7-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

An example of using this JavaBean in a Java Server Page (JSP) Web page is shown below:

Figure 7-2. Sample JSP Web page code (e.g., AppHelloWorld.jsp)

<%@ page language="java" %>

<%@ page import ="gov.va.med.authentication.kernel.LoginUserInfoVO,

 gov.va.med.authentication.kernel.VistaDivisionVO,

 java.util.Set,

 java.util.Iterator,

 java.util.TreeMap,

 javax.naming.NamingException,

 javax.resource.ResourceException" %>

<html>

<head><title>Hello, World</title></head>

<body>

 <% String groupname = "XUKAAJEE_SAMPLE_ROLE";

 %>

<h2>Hi there. This web page is a protected application resource.</h2>

<h2>[YOUR APP PAGE GOES HERE]</h2>

<p><i>To get here you needed to both <i>authenticate</i> and <i>authorize</i>.

 So let's see who you are.</i></p>

<p>Authenticated username -- request.getRemoteUser(): <%=

request.getRemoteUser() %>

 </p>

<p>Authorization -- request.isUserInRole("<%= groupname %>")?:

 <%= request.isUserInRole(groupname) %>

Authorization -- request.isUserInRole(AUTHENTICATED_KAAJEE_USER)?: <font

color="red">

 <%= request.isUserInRole("AUTHENTICATED_KAAJEE_USER") %>

Authorization -- request.principal name ?:

 <%= request.getUserPrincipal() %>

 <% LoginUserInfoVO userLoginInfo =

 (LoginUserInfoVO) session.getAttribute(LoginUserInfoVO.SESSION_KEY);

 pageContext.setAttribute("userInfo", userLoginInfo);

 %>

 <jsp:useBean id="userInfo" scope="page"

 type="gov.va.med.authentication.kernel.LoginUserInfoVO" />

 <table border="0" cellspacing="3" cellpadding="3">

 <tr align="left">

 <td colspan="2">

 <p>User Info (from Session): </p></td>

 </tr>

 <tr>

 <td align="right">VPID:</td>

 <td><jsp:getProperty name="userInfo" property="UserVpid" /></td>

 </tr>

 <tr>

 <td align="right">DUZ:</td>

 Programming Guidelines

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 7-7

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

 <td><jsp:getProperty name="userInfo" property="UserDuz" /></td>

 </tr>

 <tr>

 <td align="right">User name (.01 New Person): </td>

 <td><jsp:getProperty name="userInfo" property="UserName01" /></td>

 </tr>

 <tr>

 <td align="right">User name (display):</td>

 <td><jsp:getProperty name="userInfo"

 property="UserNameDisplay" /></td>

 </tr>

 <tr>

 <td align="right">Last Name:</td>

 <td><jsp:getProperty name="userInfo"

 property="UserLastName" /></td>

 </tr>

 <tr>

 <td align="right">First Name:</td>

 <td><jsp:getProperty name="userInfo"

 property="UserFirstName" /></td>

 </tr>

 <tr>

 <td align="right">Middle name:</td>

 <td><jsp:getProperty name="userInfo"

 property="UserMiddleName" /></td>

 </tr>

 <tr>

 <td align="right">Prefix:</td>

 <td><jsp:getProperty name="userInfo" property="UserPrefix" /></td>

 </tr>

 <tr>

 <td align="right">Suffix:</td>

 <td><jsp:getProperty name="userInfo" property="UserSuffix" /></td>

 </tr>

 <tr>

 <td align="right">Degree:</td>

 <td><jsp:getProperty name="userInfo" property="UserDegree" /></td>

 </tr>

 <tr>

 <td align="right">Login Station Number:</td>

 <td><jsp:getProperty name="userInfo"

 property="LoginStationNumber" /></td>

 </tr>

 <tr>

 <td align="right">Parent Administrative

 Facility Station Number:</td>

 <td><jsp:getProperty name="userInfo"

 property="UserParentAdministrativeFacilityStationNumber" /></td>

 </tr>

 <tr>

 <td align="right">Parent Computer System Station Number:</td>

 <td><jsp:getProperty name="userInfo"

 property="UserParentComputerSystemStationNumber" /></td>

 </tr>

 <tr>

 <td align="right" valign="top">Permissible Divisions

 (New Person file):</td>

 <td>

 <%

 StringBuffer sb = new StringBuffer();

 {

Programming Guidelines

7-8 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

 TreeMap permittedDivisions =

 userLoginInfo.getPermittedNewPersonFileDivisions();

 if (permittedDivisions != null) {

 Set keySet = permittedDivisions.keySet();

 Iterator it = keySet.iterator();

 while (it.hasNext()) {

 String divNumber = (String) it.next();

 VistaDivisionVO vDiv =

 (VistaDivisionVO) permittedDivisions.get(divNumber);

 sb.append(vDiv.toString());

 sb.append("
");

 }

 }

 }

 %>

 <%= sb.toString() %>

 </td>

 </tr>

 <tr>

 <td align="right" valign="top">

 Divisions that are children of

the Login Division's Computing Facility

institution, sharing the same computing

facility:</td>

 <td>

 <%

 sb = new StringBuffer();

 {

 TreeMap cfDivisions =

 userLoginInfo.getLoginDivisionVistaProviderDivisions();

 if (cfDivisions != null) {

 Set keySet = cfDivisions.keySet();

 Iterator it = keySet.iterator();

 while (it.hasNext()) {

 String divNumber = (String) it.next();

 VistaDivisionVO vDiv =

 (VistaDivisionVO) cfDivisions.get(divNumber);

 sb.append(vDiv.toString());

 sb.append("
");

 }

 }

 }

 %>

 <%= sb.toString() %>

 </td>

 </tr>

 </table>

 <p>LOGOUT</p>

</body>

</html>

VistaDivisionVO Object

The VistaDivisionVO object JavaBean is used to store an individual division, when division TreeMaps

(i.e., tree structure, keyed on Division Station Number strings) are returned by the LoginUserInfoVO

methods.

 Programming Guidelines

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 7-9

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

REF: For more information on the LoginUserInfoVO methods, please refer to Table 7-3 in this

chapter.

For example:

Figure 7-3. JavaBean Example: VistaDivisionVO object

public class VistaDivisionVO

extends java.lang.Object

implements java.io.Serializable

Represents a VistA Division, including Station Name and Station Number.

Table 7-4. Constructor Summary: VistaDivisionVO object

Constructor Summary

VistaDivisionVO()

Instantiates a VistaDivision with all fields set to a null string.

Table 7-5. Method Summary: VistaDivisionVO object

Method Summary

Return Type Method Name and Description

boolean getIsDefault()

Returns whether or not this is set to the default Login Division.

java.lang.String getName()

Returns the Station Name of the Division, presumably from the VistA M Server
INSTITUTION file (#4) entry (depending on the source of the information the
instance contains)

java.lang.String getNumber()

Returns the Station Number of the Division, presumably from the VistA M Server
INSTITUTION file (#4) entry (depending on the source of the information the
instance contains)

java.lang.String toString()

Returns a string representation of the Division information

Programming Guidelines

7-10 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

VistALink Connection Specs for Subsequent VistALink Calls

For subsequent VistALink calls (i.e., after the user has already been authenticated), application

developers can use one of the VistALink connection specs for general application use. The information

returned by the KAAJEE login helps streamline this process.

For example, if your J2EE application needs to make a VistALink connection to the same division under

which the user logged in (a frequent circumstance for some applications), application developers can use

the VistaLinkDuzConnectionSpec. This connection spec identifies the user to the VistA M Server based

on the user's DUZ (i.e., Kernel user internal entry number [IEN]) in the NEW PERSON file (#200).

Thus, for subsequent VistALink calls, an application can do any of the following:

• Retrieve the division against which the user logged in from the LoginUserInfoVO object.

• Retrieve the JNDI name for the corresponding VistALink connector pool using the Login

Division.

The JNDI can be retrieved by using VistALink's

InstitutionMappingDelegate.getJndiConnectorNameForInstitution method. The following are

examples of the usage of this method:

String jndiConnectionName =

InstitutionMappingDelegate.getJndiConnectorNameForInstitution(institution);

String jndiName =

InstitutionMappingDelegate.getJndiConnectorNameForInstitution(division);

• Retrieve the user's DUZ from the LoginUserInfoVO object.

• Make the connection to the VistA M Server using the VistaLinkDuzConnectionSpec. This

particular connection specification class does not require any additional user mapping on the

VistA M Server/Kernel side. As long as there is a "trust" relationship between your J2EE

Application Server and the VistA M Server in question, then there should be no reason not to use

the VistaLinkDuzConnectionSpec.

REF: For more information on the LoginUserInfoVO object, please refer to the

"LoginUserInfoVO Object" topic in this chapter.

NOTE: The VistaLinkDuzConnectionSpec has been deprecated; however, its use will most

likely continue until the conversion to VPIDs is completed.

REF: For more information on the VistALink connection specs, please refer to the VistALink

Developer Guide.

 Programming Guidelines

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 7-11

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Providing the Ability for the User to Switch Divisions

Applications that support multi-divisional functionality need to manage the set of divisions between

which a user can switch. KAAJEE supports this need by providing valid lists of divisions to which the

user can switch.

KAAJEE provides two different division lists, because different applications have different business rules

as to which divisions should be supported:

• Divisions from a User's New Person File

• All Divisions at the Login Division's Computing Facility

Divisions from a User's New Person File

Some applications want to support division switching only to those divisions that an IRM system manager

has configured as valid divisions in a user's NEW PERSON file (#200) entry on their host VistA M

Server. To obtain this list of divisions from KAAJEE:

1. Configure the KAAJEE software to retrieve this information. In the kaajeeConfig.xml file, set the

following tag to "true" (case sensitive):

<user-new-person-divisions retrieve="true" />

2. Access the list in the LoginUserInfoVO object, using the getPermittedNewPersonFileDivisions()

method.

The list of divisions from the user's DIVISION Multiple field (#16) in the NEW PERSON file (#200) on

the VistA M Server is filtered. The DIVISION must be within the same computing facility as the

KAAJEE Login Division, as determined by the Standard Data Services (SDS) Institution utilities

(i.e., Institution.getVistaProvider method).

All Divisions at the Login Division's Computing Facility

Some applications want to support division switching for all divisions supported at the same computing

facility as the login division, regardless of whether explicit access has been granted to the user for any

particular division. To obtain this list of divisions from KAAJEE do the following:

1. Configure the KAAJEE software to retrieve this information. In the kaajeeConfig.xml file, set the

following tag to "true" (case sensitive):

<computing-facility-divisions retrieve="true" />

2. Access the list in the LoginUserInfoVO object using the

getLoginDivisionVistaProviderDivisions() method.

The list of divisions is filtered. Divisions must be within the same computing facility as the KAAJEE

Login Division, as determined by the SDS Institution utilities (i.e., Institution.getVistaProvider method).

Programming Guidelines

7-12 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

logout.jsp File

The KAAJEE listeners (see Table 4-7) listen for session logouts. Logouts can either be user-initiated or

due to a session timeout. If a logout is detected (i.e., session.invalidate), the KAAJEE listeners call the

XUS KAAJEE LOGOUT RPC (see Table 8-1.) to log the user off of the system and update the SIGN-ON

LOG file (#3.081) to show the user is now logged off of the system.

REF: For more information on the SIGN-ON LOG file (#3.081), please refer to the Kernel

Systems Management Guide.

KAAJEE 1.2.0.xxx distributes a sample logout.jsp file, which is located in the following directory:

<STAGING_FOLDER>/kaajee-1.2.0.xxx/jars/jsp/logout.jsp

The sample logout.jsp file is shown below:

Figure 7-4. Sample logout.jsp file

<%@ page language="java" %>

<HTML>

 <HEAD>

 <!--

 *

 * @author Security Service

 * @version 1.2.0.007

 * -->

 <TITLE>Logout Page</TITLE>

 </HEAD>

 <BODY>

 <%

 session.invalidate();

 %>

 <H3>You are now logged out.</H3>

 </BODY>

</HTML>

This sample logout.jsp file is an optional and is only provided as a template on how to provide a logout

link and corresponding logout.jsp. However, consuming applications must provide a means for the user

logged in to log out.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 III-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

III. Systems Management Guide

This is the Systems Management Guide section of this supplemental documentation for Kernel

Authentication and Authorization Java (2) Enterprise Edition (KAAJEE). It is intended for use in

conjunction with the KAAJEE software. It details the technical-related KAAJEE documentation

(e.g., implementation and maintenance of KAAJEE, routines, files, options, interfaces, product security,

etc.).

Systems Management Guide

III-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

8. Implementation and Maintenance

Information throughout this chapter is meant to help IRM in the implementation and maintenance of

Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE).

For the J2EE and VistA-M server installations, see the chapters listed below found in the

KAAJEE software, see the KAAJEE 1.2.0 & Security Service Provider Interface (SSPI) 1.2.0

for WebLogic 10.3.6 and higher Installation Guide:

− "J2EE Application Server Installation Instructions"

− "VistA M Server Installation Instructions"

NOTE: For the VistA M Server installation, also see the description for Kernel Patch

XU*8*504 located in the Patch Module on FORUM.

Namespace

KAAJEE consists of VistA M Server patches that have been assigned to the following namespaces (listed

alphabetically):

• XU—Kernel

• XWB—RPC Broker

NOTE: Kernel is the designated custodial software application for KAAJEE; however,

KAAJEE comprises multiple patches and software releases from several HealtheVet-VistA

applications.

REF: For the specific KAAJEE software and VistA M Server patches required for the

implementation of KAAJEE, please refer to Table 1-1 in the "KAAJEE Software Dependencies

for Consuming Applications

" topic in this manual.

Site Configuration

The VistA M Server KERNEL SYSTEM PARAMETERS file (#8989.3) holds the site parameters for the

installation of Kernel. This allows users to configure and fine tune Kernel for:

• Site-specific requirements and optimization needs.

• HealtheVet-VistA software application requirements.

Some parameters are defined by IRM during the Kernel software installation process (e.g., agency

information, volume set multiple, default parameters). Other parameters can be edited subsequent to

Implementation and Maintenance (J2EE)

8-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

installation (e.g., spooling, response time, and audit parameters). Priorities can also be set for interactive

users and for TaskMan. Defaults for fields (e.g., timed read, auto menu, and ask device) are defined for

use when not otherwise specified for a user or device. The values in the KERNEL SYSTEM

PARAMETERS file (#8989.3) can be edited with the Enter/Edit Kernel Site Parameters option

[XUSITEPARM].

Validate User Division Entries

During the authentication process for Web-based applications that are KAAJEE-enabled, KAAJEE

displays a list of validated institutions to the user. KAAJEE uses the Standard Data Services (SDS) tables

13.0 (or higher) as the authoritative source to validate the list of station numbers that are stored in the

<login-station-numbers> tag in the kaajeeConfig.xml file. After a user selects an institution from this

validated list, the software follows the VistA authentication process (i.e., Kernel Signon).

NOTE: The validation of the VistA institution occurs before the actual login to the VistA M

Server, but after the user selects the Login button on the KAAJEE Web login page. The

selected institution is checked against the SDS 18.0 (or higher) tables for an entry and a VistA

Provider. Also, KAAJEE checks that an entry exists in the KAAJEE configuration file.

REF: For more information on the <login-station-numbers> tag and/or the kaajeeConfig.xml

file, please refer to the "J2EE Application Server Installation Instructions" chapter in the

KAAJEE 1.2 on WebLogic 10.3.6 and higher Installation Guide.

The VistA authentication process (i.e., Kernel Signon) requires that each user be associated with at least

one division/institution. The local DUZ (2) variable on the VistA M Server stores the Internal Entry

Number (IEN) of the login institution. Entries in the DIVISION multiple (#16) in the NEW PERSON file

(#200) permit users to sign onto the institution(s) stored in this field. If there are no entries in the

DIVISION multiple (#16) of the NEW PERSON file (#200) for the user signing on, information about the

login institution comes from the value in the DEFAULT INSTITUTION field (#217) in the KERNEL

SYSTEM PARAMETERS file (#8989.3).

Therefore, sites running any application that is used to sign onto VistA must verify that the institution(s)

are set up correctly for the application user, as follows:

• Multi-divisional Sites: The DIVISION multiple (#16) in the NEW PERSON file (#200) must be

set up for all users. This assures that the application users have access to only those stations for

which they are authorized.

• Non-multi-divisional Sites: Sites must verify that the value in the DEFAULT INSTITUTION

field (#217) in the KERNEL SYSTEM PARAMETERS file (#8989.3) is correct.

 Implementation and Maintenance (J2EE)

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Validate Institution Associations

KAAJEE uses the Standard Data Services (SDS) tables 18.0 (or higher) as the authoritative source for

institution data. Data in the ASSOCIATIONS Multiple field (#14) in the local site's INSTITUTION file

(#4) is uploaded to FORUM, which is then used to populate the SDS tables. Thus, in order to sign onto

VistA the data in the ASSOCIATIONS Multiple field (#14) must have correct information.

The ASSOCIATIONS Multiple is used to link groups of institutions into associations. The

ASSOCIATIONS Multiple consists of the following subfields:

• ASSOCIATIONS (#.01)—This field is a pointer to the INSTITUTIONS ASSOCIATION TYPES

file (#4.05).

• PARENT OF ASSOCIATION (#1)—This field points back to the INSTITUTION file (#4) to

indicate the parent of the association. This field is cross-referenced to find the children of a parent

for an association type.

In the ASSOCIATIONS Multiple, child facilities point to their administrative parent. All clinics point to a

division parent, all divisions point to a primary facility parent, primary facilities point to an HCS parent or

VISN parent. HCS entries point to a VISN parent. Thus, all parent relationships eventually resolve to a

VISN. The first entry (IEN=1) in the ASSOCIATIONS Multiple references the VISN to which the

division belongs, so that the PARENT OF ASSOCIATION field in that entry must point to a VISN in the

INSTITUTION file (#4), and the second entry (IEN=2) references the actual parent of the current

institution.

Therefore, sites running any application that is used to sign onto VistA must verify that the

ASSOCIATION Multiple field (#14) in the INSTITUTION file (#4) has a file entry for their own

institution (and all child divisions if it's a multi-divisional site), and make sure that it is set up correctly. If

changes are needed, use the IMF edit option [XUMF IMF ADD EDIT] to update those entries.

REF: For more information on the XUMF IMF ADD EDIT option as well as the

ASSOCIATIONS Multiple and PARENT OF ASSOCIATION fields data requirements, please

refer to the Institution File Redesign (IFR) supplemental documentation located on the VDL at

the following Web address:

http://www.va.gov/vdl/application.asp?appID=9

Security Key

The XUKAAJEE_SAMPLE security key is exported with the KAAJEE software in Kernel Patch

XU*8*504. This key must be assigned to users on the VistA M Server to authorize their access to the

protected page of the KAAJEE sample Web application.

NOTE: For more information on the VistA M Server security key XUKAAJEE_SAMPLE

exported with the KAAJEE software, see Table 9-1 in this documentation.

http://www.va.gov/vdl/application.asp?appID=9

Implementation and Maintenance (J2EE)

8-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

KAAJEE SSPI Tables—Deleting Entries

KAAJEE does not currently purge the two KAAJEE SSPI tables at system startup. It only deletes and

recreates individual user entries in the tables during the login process.

REF: For more information regarding the KAAJEE SSPI tables, please refer to the KAAJEE

Installation Guide.

KAAJEE Login Server Requirements

In a domain consisting of an Administration Server and several Managed Servers, the Administration

Server must always be running, as new logins through KAAJEE will not succeed while the

Administration Server is down.

Administrative User

Ensure the Existence of, or Create, a KAAJEE User with Administrative Privileges.

For KAAJEE to execute correctly, the files web.xml and weblogic.xml has content that

declares that KAAJEE will run with the needed privileges.

Check that your WebLogic server already has a user named “KAAJEE” and is part of the

Administrators group, or it is part of the Admin global security role. If there is such a user,

your installation of the KAAJEE web application will execute properly.

WebLogic Security Realm:

If you need to create a new user in WebLogic, ensure that:

1. It is named KAAJEE

2. It is assigned to the Administrators group

Active Directory Authentication Provider:

If your WebLogic domain has integrated an Active Directory authentication provider, and you

will be creating the user in Active Directory, ensure that:

1. It is named KAAJEE

2. The user is part of a group that can be mapped in the WebLogic security realm to the

Global Security Role named Admin.

 Implementation and Maintenance (J2EE)

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

The following shows the contents of the web.xml and weblogic.xml files as it pertains to the

KAAJEE user.

In the KAAJEE server exploded ear directory, navigate to the web.xml and weblogic.xml files.

The directory path is as follows:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\dd_examples

web.xml:

This file has a <run-as> tag, which causes it to run with the necessary administrative

privileges. In addition, a corresponding security-role tag is defined. See the sample excerpt

below:

Figure 8-1. Sample excerpt from a web.xml file—Using the run-as and security-role tags

<servlet>

 <servlet-name>LoginController</servlet-name>

 <servlet-class>

 gov.va.med.authentication.kernel.servlet.LoginController

 </servlet-class>

 <run-as>

 <role-name>adminuserrole</role-name>

 </run-as>

</servlet>

<security-role>

 <role-name>adminuserrole</role-name>

</security-role>

weblogic.xml:

This file has a <run-as> tag, which causes it to run as an administrative user whose username is

“KAAJEE.” In addition, a corresponding security-role tag is defined. See the sample excerpt

below.

Figure 8-2. Sample excerpt from a weblogic.xml file—Using the run-as-role-assignment tag

<run-as-role-assignment>

 <role-name>adminuserrole</role-name>

 <run-as-principal-name>KAAJEE</run-as-principal-name>

</run-as-role-assignment>

Important! The “KAAJEE” user or alternate must exist in the WebLogic Application
server and have system administration privileges.

Implementation and Maintenance (J2EE)

8-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Log4J Configuration

In order to provide a unified logger and consolidate all log/error entries into one file, all J2EE-based

application-specific loggers must be added to the same log4j configuration file, which should be the active

log4j configuration file for the server. After locating the active log4j configuration file used on the server

you are configuring (e.g., mylog4j.xml file), add in the KAAJEE (and FatKAAT) loggers to that file.

To locate the active log4j configuration file, look for the"-Dlog4j.configuration=" argument in the startup

script file (i.e., setDomainEnv.cmd/.sh, or startWebLogic.cmd/.sh). The "-Dlog4j.configuration=" should

be set to the absolute location of the configuration file (e.g., c:/mydirectory/mylog4j.xml). If no such

argument is present, look for a file named "log4j.xml" in a folder on the server classpath.

You must configure log4j for the first time, if all three of the following conditions exist:

• The "-Dlog4j.configuration=" argument does not exist in the WebLogic JVM startup script files.

• The "log4j.xml" file does not exist in the classpath.

• There is no pre-existing log4j configuration file in the folder placed on the classpath of the

WebLogic Application Server containing the configuration files for all HealtheVet-VistA J2EE

applications (e.g., <HEV CONFIGURATION FOLDER>).

For first time log4j configuration procedures, please refer to the "log4j Configuration File" topic in the

VistALink Installation Guide. Also, sample log4j configuration files are included with the VistALink

software distribution.

REF: For more information on VistALink, please refer to the following Web site: :

REDACTED

Once the log4j file is initially configured, you need to configure the file specifically for KAAJEE log

entries as outlined in the KAAJEE Installation Guide.

REF: For the specific step-by-step procedures on how to configure the log4j for KAAJEE,

please refer to the "Configure log4j for All J2EE-based Application Log Entries" topic in the

KAAJEE Installation Guide.

REF: For more information on log4j guidelines, please refer to the Application Structure &

Integration Services (ASIS) Log4j Guidelines for HealtheVet-VistA Applications document

available at the following Website:

http://vista.med.va.gov/vistaarch/healthevet/Documents/Log4j%20Guidance%201.0.doc

 Implementation and Maintenance (J2EE)

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-7

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Log Monitoring

Log4J Log

In test, developers use this log during Web application development as a debugging tool. It can provide

detailed context for application and authentication failures. It is a complimentary tool for testing

applications.

In production, Web administrators should monitor this log. If a problem is detected and developers or the

Web administrators are unable to resolve it, the user should call the National Help Desk and file a

Remedy ticket.

Implementation and Maintenance (J2EE)

8-8 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

The following figure (Figure 8-3) shows sample data in the log4j file:

Figure 8-3. Sample logout log4j.xml file entries

.

.

.

1221895406 2006-05-02 14:51:53,252 [ExecuteThread: '14' for queue:

'weblogic.kernel.Default'] DEBUG

gov.va.med.authentication.kernel.KaajeeHttpSessionListener:sessionDestroyed:41 -

Session destroyed GXSXGMQCLDx3STLtSLNMQ1zZSGzLSfsBZ9Dsf6p1hmTTGNz7S76l!-

1114227413!1146606295311

1221895406 2006-05-02 14:51:53,252 [ExecuteThread: '14' for queue:

'weblogic.kernel.Default'] DEBUG

gov.va.med.authentication.kernel.KaajeeHttpSessionListener:sessionDestroyed:46 -

Got LoginUserInfoVO object.

 matchManagedConnection-

>gov.va.med.vistalink.adapter.spi.VistaLinkManagedConnection[]10.6.21.15[]18001[]1[

]J2EE[fdi]2[mdi]1->gov.va.med.vistalink.adapter.spi.VistaLinkConnectionRequestInfo-

>gov.va.med.authentication.kernel.KaajeeVistaLinkConnectionSpec->av

 matchManagedConnection->no match on request info-

>gov.va.med.vistalink.adapter.spi.VistaLinkManagedConnection[]10.6.21.15[]18001[]1[

]J2EE[fdi]2[mdi]1->gov.va.med.vistalink.adapter.spi.VistaLinkConnectionRequestInfo-

>gov.va.med.authentication.kernel.KaajeeVistaLinkConnectionSpec->av

 Connection re-authentication status: 'notauthenticated'. cri =

gov.va.med.vistalink.adapter.spi.VistaLinkConnectionRequestInfo-

>gov.va.med.authentication.kernel.KaajeeVistaLinkConnectionSpec->av

1221895419 2006-05-02 14:51:53,265 [ExecuteThread: '14' for queue:

'weblogic.kernel.Default'] DEBUG

gov.va.med.authentication.kernel.LoginControllerUtils:getVistaLinkConnection:178 -

got connection.

1221895447 2006-05-02 14:51:53,293 [ExecuteThread: '14' for queue:

'weblogic.kernel.Default'] DEBUG

gov.va.med.authentication.kernel.LogoutController:performLogoutActions:74 -

Executed RPC to mark signon log at station #'662BU' for user DUZ '1000098' logged

off for signon log IEN '3060502.144534'.

1221895450 2006-05-02 14:51:53,296 [ExecuteThread: '14' for queue:

'weblogic.kernel.Default'] DEBUG

gov.va.med.authentication.kernel.KaajeeSessionAttributeListener:attributeRemoved:42

- Attribute removed: gov.va.med.authentication.kernel.LoginUserInfo

1221895451 2006-05-02 14:51:53,297 [ExecuteThread: '14' for queue:

'weblogic.kernel.Default'] DEBUG

gov.va.med.authentication.kernel.KaajeeSessionAttributeListener:attributeRemoved:47

- Found LoginUserInfoVO object.

1221895464 2006-05-02 14:51:53,310 [ExecuteThread: '14' for queue:

'weblogic.kernel.Default'] DEBUG

gov.va.med.authentication.kernel.LoginControllerUtils:getVistaLinkConnection:178 -

got connection.

1221895476 2006-05-02 14:51:53,322 [ExecuteThread: '14' for queue:

'weblogic.kernel.Default'] DEBUG

gov.va.med.authentication.kernel.LogoutController:performLogoutActions:74 -

Executed RPC to mark signon log at station #'662BU' for user DUZ '1000098' logged

off for signon log IEN '3060502.144534'.

.

.

.

 Implementation and Maintenance (J2EE)

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-9

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

In the sample log entries above (Figure 8-3), only the KAAJEE-specific logout-related entries are

displayed, the VistALink entries have been filtered out. If included, the VistALink entries would show the

"about to execute RPC:" and the "Completed execution of RPC: 'XUS KAAJEE LOGOUT'."

M-side Log

This event log records VistA M Server-related errors. IRM should monitor this log for any errors related

to KAAJEE and take appropriate actions to remedy the error.

Sign-On Log

This event log records all users that sign onto the VistA M Server via Kernel in the SIGN-ON LOG file

(#3.081). IRM should monitor this log. IRM should check for unusual activity (e.g., unusual amount of

activity for a given user). If there is an unusual amount of activity for a particular user, IRM should

further investigate by contacting the user in question and taking appropriate action as deemed appropriate.

REF: For more information on the SIGN-ON LOG file (#3.081), please refer to the Kernel

Systems Management Guide.

Failed Access Attempts Log

This event log records users that fail to enter a valid Access/Verify code pair. IRM should monitor this

log and check for unusual activity (e.g., unusual amount of activity for a given user). If there is an unusual

amount of activity for a particular user, IRM should further investigate by contacting the user in question

and taking appropriate action as deemed appropriate.

Remote Procedure Calls (RPCs)

The following remote procedure calls (RPC) are exported with KAAJEE (listed alphabetically):

Table 8-1. KAAJEE-related RPC list

RPC Name RPC Description

XUS ALLKEYS Kernel Patch XU*8.0*329 exports this RPC. This RPC returns all
J2EE VistA M Server J2EE security keys (i.e., those security keys
with the SEND TO J2EE field [#.05] in the SECURITY KEY file
[#19.1] set to YES).

XUS GET USER INFO Kernel Patch XU*8.0*115 exports this RPC. It returns information
about a user after logon. The VPID is returned through this RPC.

XUS KAAJEE GET CCOW
TOKEN

Kernel Patch XU*8.0*504 exports this RPC. This RPC returns a
CCOW token that is associated with the remote client IP address.

Implementation and Maintenance (J2EE)

8-10 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

RPC Name RPC Description

XUS KAAJEE GET USER INFO Kernel Patch XU*8.0*329 exports this RPC. This RPC returns a
variety of user demographics and other information (e.g. DUZ, user
name, degree, Station Numbers, etc.) needed for users to sign onto
the VistA M Server via KAAJEE.

It returns the following in the results array.

RESULT(0)—User's DUZ from the NEW PERSON file (#200).

RESULT(1)—User name from the .01 field of the NEW PERSON
file (#200).

RESULT(2)—User's full name from the NAME COMPONENTS
file (#20).

RESULT(3)—FAMILY (LAST) NAME from the NAME
COMPONENTS file (#20).

RESULT(4)—GIVEN (FIRST) NAME from the NAME
COMPONENTS file (#20).

RESULT(5)—MIDDLE NAME from the NAME COMPONENTS
file (#20).

RESULT(6)—PREFIX from the NAME COMPONENTS file
(#20).

RESULT(7)—SUFFIX from the NAME COMPONENTS file (#20).

RESULT(8)—DEGREE from the NAME COMPONENTS file
(#20).

RESULT(9)—Station Number of the division in which the user is
working.

RESULT(10)—Station Number of the parent facility for the login
division from the INSTITUTION file (#4).

RESULT(11)—Station Number of the parent "computer system"
from the KERNEL SITE PARAMETERS file (#8989.3).

RESULT(12)—Signon log entry IEN.

RESULT(13)—Number of permissible divisions.

RESULT(14 - n)—Permissible divisions for user login, in the
following format:

IEN of file 4^Station Name^Station Number^default? (1 or 0)

XUS KAAJEE GET USER VIA
PROXY

Kernel Patch XU*8.0*504 exports this RPC. This RPC returns a
variety of user demographics and other information (e.g. DUZ, user
name, degree, Station Numbers, etc.) needed for users to sign onto
the VistA M Server via KAAJEE. The result is the same as the XUS
KAAJEE GET USER INFO RPC above. This RPC is invoked via the
KAAJEE,PROXY Application Proxy User.

XUS KAAJEE LOGOUT Kernel Patch XU*8.0*329 exports this RPC. This RPC calls the
LOUT^XUSCLEAN API in order to mark a KAAJEE-signed on user's
entry in the SIGN-ON LOG file (#3.081) as signed off.

 Implementation and Maintenance (J2EE)

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-11

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

REF: For more information on these RPCs, please refer to the REMOTE PROCEDURE file

(#8994) or the Kernel RPC Website located at the following Website:

http://vista.med.va.gov/kernel/rpcs/index.shtml

Files and Fields

There are no new VistA M Server files or fields directly exported with KAAJEE; however, the

following modified file and new field are associated with KAAJEE and exported with Kernel

Patch XU*8.0*337:

Table 8-2. KAAJEE-related software new fields

File
Number File Name Field Name

Field
Number Field Description

19.1 SECURITY KEY SEND TO J2EE .05 This field was released with Kernel
Patch XU*8.0*337. It indicates
whether or not a VistA M Server
security key is a J2EE-related
security key and should be sent to
the application server for temporary
role assignment. Application
developers must set this field to YES
for those security keys that
correspond to WebLogic group
names that are stored in the
application's weblogic.xml file.

 REF: For more information on
J2EE security–related keys
and WebLogic groups, please
refer to "2. Create VistA M
Server J2EE Security Keys
Corresponding to WebLogic
Group Names" topic in Chapter
5, "Role
Design/Setup/Administration,"
in this manual.

Global Mapping/Translation, Journaling, and Protection

There are no special global mapping/translation, journaling, and protection instructions for KAAJEE.

Implementation and Maintenance (J2EE)

8-12 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Application Proxies

The software infrastructure required by J2EE middle-tier applications for the creation and use of the

Application Proxy User and the ability to invoke a special category of authorized RPCs was initially

provided by Kernel Patch XU*8.0*361 and VistALink 1.5 and continues to be supported.

Kernel Patch XU*8.0*504 exports and/or sets up the following software infrastructure required for the

creation and use of the KAAJEE Application Proxy User:

• Adds "KAAJEE,PROXY" to the NEW PERSON file (#200) as the unique name of the KAAJEE

Application Proxy User.

• Sets the USER CLASS field (#9.5) in the NEW PERSON file (#200) to "Application Proxy" for

the KAAJEE,PROXY Application Proxy User.

• Assigns the XUS KAAJEE PROXY LOGON "B"-type Secondary menu option to the

KAAJEE,PROXY Application Proxy User.

• Sets the APP PROXY ALLOWED field (#.11) in the REMOTE PROCEDURE file (#8994) to

"YES" for each of the following RPCs executed by the KAAJEE,PROXY Application Proxy

User:

− XUS KAAJEE GET USER VIA PROXY

Exported Options

The following menu options are exported with KAAJEE (listed alphabetically):

Table 8-3. KAAJEE exported options

Option Name Option Description

XUCOMMAND This menu option is used to link the XUS KAAJEE WEB LOGON option.
As all authenticated users have access to XUCOMMAND, this linkage
enables all users to have access to all RPCs listed under the XUS
KAAJEE LOGON "B"-type option.

XUS KAAJEE WEB LOGON This "B"-type option contains references to the following RPCs in its
"RPC" multiple:

• XUS ALLKEYS

• XUS KAAJEE GET USER INFO

• XUS KAAJEE LOGOUT

• XUS KAAJEE GET CCOW TOKEN

This option has no effect on those RPCs as such; however, having this
option assigned allows KAAJEE to call these RPCs on behalf of the
end-user.

XUS KAAJE PROXY
LOGON

This "B"-type option contains references to the following RPC in its
"RPC" multiple:

• XUS KAAJEE GET USER VIA PROXY

 Implementation and Maintenance (J2EE)

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-13

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Option Name Option Description

This option has no effect on those RPCs as such; however, having this
option assigned allows KAAJEE to call these RPCs on behalf of the
end-user.

REF: For more information on KAAJEE-related RPCs, please refer to the "Remote Procedure

Calls (RPCs)" topic in this chapter.

Archiving and Purging

There are no special archiving, purging, or journaling instructions for KAAJEE.

REF: For more information regarding the KAAJEE SSPI tables, please refer to the KAAJEE

Installation Guide.

Callable Routines

There are no callable VistA M Server routines exported with KAAJEE.

External Relations

HealtheVet-VistA Software Requirements

KAAJEE relies on the following HealtheVet-VistA software to run effectively (listed alphabetically):

Table 8-4. External Relations—HealtheVet-VistA software

Software Version Description

Kernel 8.0 Server software—Fully patched.

Kernel Toolkit 7.3 Server software—Fully patched.

RPC Broker 1.1 Client/Server software—Fully patched.

Standard Data Services (SDS) 18.0
(or higher)

Oracle 11g Database and Software—Fully patched.
Contains Institution-related data tables accessed via
supported APIs created by SDS.

 NOTE: KAAJEE works with SDS 18.0 or higher;
however, KAAJEE 1.2.0.xxx distributes SDS 18.0
client jar files as part of the Sample Web
Application. If you deploy the both the KAAJEE
Sample Web Application and your own Web-

Implementation and Maintenance (J2EE)

8-14 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Software Version Description

based application on the same WebLogic
Application Server domain instance and intend to
use a different version of SDS, those client jar
files will need to be swapped out for the
appropriate version of the SDS client jar files.
Otherwise, There may be a conflict if both
applications reference the same JNDI tree.

VA FileMan 22.2 Server software—Fully patched.

VistALink 1.6.1 Client/Server software—Fully patched.

COTS Software Requirements

The KAAJEE authorization and authentication software interface with the following Commercial-Off-

The-Shelf (COTS) software products in order to run effectively (listed alphabetically):

Table 8-5. External Relations—COTS software

Software Version Description

WebLogic 9.2 and 10.x Application server software—Fully patched.

Java IDE
(e.g., MyEclipse/
Eclipse)

Any Developer workstation software—The Java Integrated
Development Environment (IDE) is used when developing
J2EE Web-based applications that are KAAJEE-enabled.

Java 2 Standard
Edition (J2SE)
Java
Development Kit
(JDK, e.g., Sun
Microsystems')

Any Developer workstation software—Fully patched. The JDK is
used when developing J2EE Web-based applications that are
KAAJEE-enabled. The JDK should include Java Runtime
Environment (JRE) and other developer tools to write Java
code.

Sentillion Web
Software
Development Kit
(SDK)

TBD Developer workstation software—The SDK is used when
developing CCOW-aware and KAAJEE-enabled applications.

Sentillion Web

Software

Development Kit

(SDK)

TBD Developer Client Workstation software—The SDK is used

when developing CCOW-aware and FatKAAT-enabled

applications.

NOTE: There are no other COTS (non-VA) products embedded in or requiring special

interfaces by this version of KAAJEE, other than those provided by the underlying operating

systems.

 Implementation and Maintenance (J2EE)

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-15

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

DBA Approvals and Database Integration Agreements

The Database Administrator (DBA) maintains a list of Integration Agreements (IAs) or mutual

agreements between software developers allowing the use of internal entry points or other software-

specific features that are not available to the general programming public. These IAs are listed on

FORUM.

KAAJEE is not dependent on any IAs; however, Kernel is the custodial package of KAAJEE Integration

Agreement (IA) #4851.

To obtain the current list of IAs, if any, to which the Kernel (KAAJEE-related) software is a

custodian:

1. Sign on to the FORUM system (forum.va.gov).

2. Go to the Database Administrator (DBA) menu [DBA].

3. Select the Integration Agreements Menu option [DBA IA ISC].

4. Select the Custodial Package Menu option [DBA IA CUSTODIAL MENU].

5. Choose the ACTIVE by Custodial Package option [DBA IA CUSTODIAL].

6. When this option prompts you for a package, enter XXXX—Where XXXX equals: XU or

Kernel.

7. All current IAs to which the software is a custodian are listed.

To obtain detailed information on a specific integration agreement:

1. Sign on to the FORUM system (forum.va.gov).

2. Go to the DBA menu [DBA].

3. Select the Integration Agreements Menu option [DBA IA ISC].

4. Select the Inquire option [DBA IA INQUIRY].

5. When prompted for "INTEGRATION REFERENCES," enter the specific integration agreement

number of the IA you would like to display.

6. The option then lists the full text of the IA you requested.

To obtain the current list of IAs, if any, to which the Kernel (KAAJEE-related) software is a

subscriber:

1. Sign on to the FORUM system (forum.va.gov).

2. Go to the DBA menu [DBA].

3. Select the Integration Agreements Menu option [DBA IA ISC].

4. Select the Subscriber Package Menu option [DBA IA SUBSCRIBER MENU].

5. Choose the Print ACTIVE by Subscribing Package option [DBA IA SUBSCRIBER].

Implementation and Maintenance (J2EE)

8-16 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

6. When prompted with "START WITH SUBSCRIBING PACKAGE," enter XXXX (in uppercase).

When prompted with "GO TO SUBSCRIBING PACKAGE," enter XXXX (in uppercase)—

Where "XXXX" equals: XU.

7. All current IAs to which the software is a subscriber are listed.

Internal Relations

Relationship of KAAJEE with the VistA M Server

Namespace

KAAJEE consists of VistA M Server patches that have been assigned to the following namespaces (listed

alphabetically):

• XU—Kernel

• XWB—RPC Broker

In order to develop J2EE Web-based applications so that they can be authorized and authenticated against

Kernel, VistALink 1.6 software must be installed on the application server as well as Kernel 8.0 (fully

patched).

VistALink 1.6 software (i.e., XOBS 1.5; fully patched) must be installed on the developer workstation

and the application server.

Software-wide and Key Variables

KAAJEE does not employ the use of software-wide or key variables on the VistA M Server.

SACC Exemptions

KAAJEE does not have any Programming Standards and Conventions (SAC) exemptions.

 Implementation and Maintenance (J2EE)

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 8-17

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 9-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

9. Software Product Security

Security Management

There are no special legal requirements involved in the use of Kernel Authentication and Authorization

Java (2) Enterprise Edition (KAAJEE).

Mail Groups, Alerts, and Bulletins

Mail Groups

KAAJEE does not create or utilize any specific mail groups.

Alerts

KAAJEE does not make use of alerts.

Bulletins

KAAJEE does not make use of bulletins.

Auditing—Log Monitoring

Log4J Log

In test, developers use this log during Web application development as a debugging tool. It can provide

detailed context for application failures. It is a complimentary tool for testing applications.

In production, the Enterprise Management Center (EMC) and/or Application Server Administrators

should monitor this log. If a problem is detected and developers or the administrators are unable to

resolve it, the user should call the National Help Desk and file a Remedy ticket.

M-side Log

This event log records VistA M Server-related errors. Information Resource Management (IRM) should

monitor this log for any errors related to KAAJEE and take appropriate actions to remedy the error.

Software Product Security

9-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Sign-On Log

This event log records all users that sign onto the VistA M Server via Kernel in the SIGN-ON LOG file

(#3.081). IRM should monitor this log. IRM should check for unusual activity (e.g., unusual amount of

activity for a given user). If there is an unusual amount of activity for a particular user, IRM should

further investigate by contacting the user in question and taking appropriate action as deemed appropriate.

Failed Access Attempts Log

This event log records users that fail to enter a valid Access/Verify code pair. IRM should monitor this

log. IRM should check for unusual activity (e.g., unusual amount of activity for a given user). If there is

an unusual amount of activity for a particular user, IRM should further investigate by contacting the user

in question and taking appropriate action as deemed appropriate.

Remote Access/Transmissions

For every user logon, Web browser applications on the client workstation transmit/receive data using

Hyper Text Transport Protocol (HTTP) to communicate with KAAJEE-enabled applications deployed on

the application server.

NOTE: HTTP rides over Transmission Control Protocol/Internet Protocol (TCP/IP) in the

payload packet.

On the application server, KAAJEE-enabled Web-based applications call the KAAJEE

login/authentication component, which then calls VistALink using APIs. VistALink uses Transmission

Control Protocol/Internet Protocol (TCP/IP) to transmit data to and receive data from VistA M Servers.

The KAAJEE SSPIs on the application server use Java Database Connector (JDBC) to query the remote

security store database (e.g., Oracle), which holds the temporary username and password. KAAJEE also

uses the SDS APIs to query tables on the remote national SDS database.

After authentication, applications can optionally make subsequent VistALink calls to run any RPCs

authorized to the authenticated user.

 Software Product Security

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 9-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Interfaces

The KAAJEE and KAAJEE SSPIs software interfaces with the following VA software:

• VistALink 1.6

• Standard Data Services (SDS) tables 18.0 (or higher).

NOTE: KAAJEE works with SDS 18.0 or higher; however, KAAJEE 1.2.0.xxx

distributes SDS 13.0 client jar files as part of the Sample Web Application. If you

deploy the both the KAAJEE Sample Web Application and your own Web-based

application on the same WebLogic Application Server domain instance and intend to

use a different version of SDS, those client jar files will need to be swapped out for the

appropriate version of the SDS client jar files. Otherwise, There may be a conflict if

both applications reference the same JNDI tree.address:

REDACTED

REF: For more information on Common Services and SDS tables, please visit the following

Website:

REDACTED

KAAJEE and KAAJEE SSPIs interfaces with the following non-VA Commercial-Off-The-Shelf (COTS)

products/software:

• Oracle or Caché databases.

• WebLogic 10.3.6 and higher Application Servers

NOTE: There are no other COTS (non-VA) products embedded in or requiring special

interfaces by this version of KAAJEE, other than those provided by the underlying operating

systems.

Electronic Signatures

There are no electronic signatures used within KAAJEE 1.2.0.xxx.

Software Product Security

9-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Security Keys

The following VistA M Server security key is exported with KAAJEE 1.2.0.xxx:

Table 9-1. KAAJEE exported security keys

Security Key Description

XUKAAJEE_SAMPLE This security key is exported with Kernel Patch XU*8.0*504. This security
key is required in order to access the KAAJEE Sample Web Application
exported with KAAJEE. First, an initial authentication occurs against a VistA
M Server (i.e., Access and Verify codes). Then, if the login user passes this
phase, the XUKAAJEE_SAMPLE VistA M security key is used to create a
J2EE group/principal of the same name on the J2EE Application Server, if
not already created. In addition, the login user will be assigned membership
to this group on the J2EE Application Server during the login session. This
membership is necessary as the authorization aspect of container security. It
validates the role-based access by the membership of the associated
group/principal.

The XUKAAJEE_SAMPLE security key must be assigned to users on the
VistA M Server to authorize their access to the protected page of the
KAAJEE sample Web application.

NOTE: KAAJEE calls the XUS ALLKEYS RPC to return all VistA M Server J2EE security

keys; however, there are no new KAAJEE-specific VistA M Server security keys exported with

this version of KAAJEE.

File Security

There are no new file or field security changes associated with KAAJEE.

Contingency Planning

All sites should develop a local contingency plan to be used in the event of software/hardware problems

in a production (live) environment. The contingency plan must identify the procedure for maintaining

functionality provided by this software in the event of system outage.

Official Policies

There are no special legal requirements involved in the use of KAAJEE.

Distribution of KAAJEE is unrestricted.

 Software Product Security

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 9-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

As per the Software Engineering Process Group/Software Quality Assurance (SEPG/SQA) Standard

Operating Procedure (SOP) 192-039—Interface Control Registration and Approval (effective 01/29/01),

application programmers must not alter any HealtheVet VistA Class I software code.

REF: For more information on SOP 192-039—Interface Control Registration and Approval,

please refer to the following Website:

http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-

039%20Interface%20Control%20Registration%20and%20Approval.htm

Software Product Security

9-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 10-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

10. Cactus Testing with KAAJEE

Cactus is a simple test framework for unit testing server-side Java code (servlets, Enterprise JavaBeans

[EJBs], tag libs, filters, etc.).16 Kernel Authentication and Authorization Java (2) Enterprise Edition

(KAAJEE) supports testing with the Cactus container-based unit testing tool. It is possible that other

container-based unit testing tools could be supported as well, but Cactus is the one that is the basis of

developing KAAJEE's unit test support.

NOTE: This chapter assumes that the reader has a basic understanding of the Jakarta Cactus

unit testing tool.

REF: For more information on the Cactus testing tool, please visit the Jakarta Cactus Website at

the following Website:

http://jakarta.apache.org/cactus/

Enabling Cactus Unit Test Support

To enable Cactus unit test support, do the following:

1. Switch from FORM to BASIC authentication. For example, In your J2EE Web-based

application's web.xml, code as follows:

Figure 10-1. Switching from FORM to BASIC in web.xml example

 <login-config>

 <auth-method>BASIC</auth-method>

 <form-login-config>

 <form-login-page>/login/login.jsp</form-login-page>

 <form-error-page>login/loginerror.jsp</form-error-page>

 </form-login-config> -->

 </login-config>

2. Turn on Cactus Support in the KAAJEE configuration file, set the following tag to "true" (case

sensitive):

<cactus-insecure-mode enabled="true" />

This mode should never be enabled on a production system. It defaults to
"false" unless enable is specifically set to "true" (case sensitive).

Essentially, this switch turns the "one-time login token" to a "many-time login token," allowing

the re-use of login credentials over repeated Cactus unit tests.

16 "The Apache Jakarta Project;" Overview of Cactus WebWeb site: http://jakarta.apache.org/cactus/, last updated

2/15/05.

http://jakarta.apache.org/cactus/
http://jakarta.apache.org/cactus/

Cactus Testing with KAAJEE

10-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

3. Add the normal required Cactus configuration information into your application's web.xml.

Using Cactus in a KAAJEE-Secured Application

There are probably several approaches to obtaining a login credential on your Cactus test client side, to

use to login on the container side. Essentially:

• Start with a valid-for-login Access code, Verify code and Division.

• Pass these, on the container side, to the LoginController.getFormsAuthCredentialsForCactus().

• The return value (for valid login credentials) is an object that contains valid j_username and

j_password values.

How do you do this?

One approach is:

1. Configure both secured and unsecured Cactus test redirector servlets in your Web-based

application's web.xml deployment descriptor.

2. Create one Cactus test in your test suite that uses an unsecured ServletRedirector Cactus test

redirector servlet. This application will gather a set of login credentials from the server.

• The beginXXX, testXXX and endXXX methods should be, sequentially in your test class

source code, the first set of tests. Cactus/JUnit appear to follow source code order when

sequencing test execution.

• This unsecured Cactus test should start with the Access code, Verify code, and Division.

These could be hard-coded into the test class, or could be kept in a client-side

configuration file, read on the client during the beginXXX method, and passed to the

server-side testXXX method as session attributes.

• In the server-side testXXX method, call the KAAJEE LoginController class's static

getFormsAuthCredentialsForCactus method to obtain a valid j_username and j_password

value. These are returned in a KAAJEE CactusFormsAuthCredentialVO object.

• In the server-side testXXX method, you could also obtain and cache the

LoginUserInfoVO object. The getFormsAuthCredentialsForCactus will put this into the

testXXX method's session object if you pass that as a parameter. You need to store this

somewhere on the server so you can retrieve it in subsequent testXXX methods; the

example below stores it in a static class variable in the server-side version of the test

class.

• Using the toString() method of the CactusFormsAuthCredentialVO object, write the

credentials to the Web page output, using the servlet's PrintWriter.

• Back on the client in the endXXX method, instantiate a new

CactusFormsAuthCredentialVO object, using the complete Web response as input. The

CactusFormsAuthCredentialVO class can instantiate itself by looking for its own

"toString" output in any given string.

 Cactus Testing with KAAJEE

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 10-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

• On the client side, again in the endXXX method, store these values (the

CactusFormsAuthCredentialVO object provides a valid j_username and j_password) in a

static class variable in the test class.

3. If you are caching the LoginUserInfoVO object in the server instance of the test class, you could

add code in the setUp() method (executed before every testXXX method) to put the

LoginUserInfoVO object back into session, for use as needed by each testXXX method.

4. For the rest of the Cactus tests in the test class, use the secured ServletRedirector (specify in the

beginXXX method), and pass the credentials using a Cactus BasicAuthentication object. The

testXXX methods should all run in the server context created by the login of the secure

ServletRedirector.

This approach has been tested for ServletTestCase. While it should work for JspTestCase, it has not been

tested.

Cactus Testing with KAAJEE

10-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Cactus ServletTestCase Example

Figure 10-2. Cactus ServletTestCase example

package gov.va.med.authentication.kernel.samples;

import java.io.IOException;

import java.io.PrintWriter;

import gov.va.med.authentication.kernel.CactusFormsAuthCredentialVO;

import gov.va.med.authentication.kernel.KaajeeLoginException;

import gov.va.med.authentication.kernel.LoginController;

import gov.va.med.authentication.kernel.LoginUserInfoVO;

import junit.framework.Test;

import junit.framework.TestSuite;

import org.apache.cactus.ServletTestCase;

import org.apache.cactus.WebRequest;

import org.apache.cactus.WebResponse;

import org.apache.cactus.client.authentication.BasicAuthentication;

public class TestSampleApp extends ServletTestCase {

 /**

 * Access code, Verify code, Division to transform

 * into a valid j_username, j_password

 */

 private static final String userAccessCode = "good!@#$1";

 private static final String userVerifyCode = "good!@#$2";

 private static final String userDivision = "631";

 /**

 * To store the login credentials on the client side

 */

 private static CactusFormsAuthCredentialVO clientCredentials;

 /**

 * To store the userInfo session object on the server side

 * (problematic if multiple tests are running simultaneously)

 */

 private static LoginUserInfoVO serverUserInfo;

 public TestSampleApp(String theName) {

 super(theName);

 }

 public static Test suite() {

 TestSuite testSuite = new TestSuite(TestSampleApp.class);

 return testSuite;

 }

 /**

 * Runs on SERVER, before every test.

 */

 public void setUp() {

 // put login user info object back into session, if

 // already cached in the static class variable.

 if (serverUserInfo!= null) {

 session.setAttribute(LoginUserInfoVO.SESSION_KEY, serverUserInfo);

 Cactus Testing with KAAJEE

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 10-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

 }

 }

 /**

 * Runs on SERVER, after every test.

 */

 public void tearDown() {

 }

 /**

 * Runs on CLIENT. Communicates with server-side test execution via

 * WebRequest. This test should use a _unsecured_ Cactus redirector.

 */

 public void beginGetServerCredentials(WebRequest webRequest) {

 // use unsecured test director (depends on web.xml configuration)

 webRequest.setRedirectorName("ServletRedirector");

 }

 /**

 * Runs on SERVER. Gets the j_username and j_password login

 * credentials, and returns to client by writing to the servlet output.

 */

 public void testGetServerCredentials() {

 try {

 PrintWriter out = response.getWriter();

 // call KAAJEE to get valid j_username/j_password credentials

 // based on a/v code, division

 CactusFormsAuthCredentialVO serverCredentials =

 LoginController.getFormsAuthCredentialsForCactus(

 userDivision,

 userAccessCode,

 userVerifyCode,

 session);

 // return credentials to client via servlet output

 out.println("testGetServerCredentials credentials: " +

 serverCredentials.toString());

 // get LoginUserInfoVO from session; save in static

 // class variable in server side test class (not OK

 // if multiple tests are running simultaneously)

 serverUserInfo = (LoginUserInfoVO)

 session.getAttribute(LoginUserInfoVO.SESSION_KEY);

 } catch (KaajeeLoginException e) {

 //

 } catch (IOException e) {

 //

 }

 }

 /**

 * Runs on CLIENT. Stores login credentials returned from server

 * in static class variable (client-side).

 */

 public void endGetServerCredentials(WebResponse webResponse) {

 System.out.println(webResponse.getText());

 // parse, store login credentials returned from server

 clientCredentials = new

 CactusFormsAuthCredentialVO(webResponse.getText());

 }

 /**

 * Runs on CLIENT. This test should use a _secure_ Cactus redirector,

Cactus Testing with KAAJEE

10-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

 * using credentials gathered by earlier test run.

 */

 public void beginSecureLogin(WebRequest webRequest) {

 // use secured test director (depends on web.xml configuration)

 webRequest.setRedirectorName("ServletRedirectorSecure");

 // use credentials obtained previously to login

 webRequest.setAuthentication(

 new BasicAuthentication(clientCredentials.getJUsername(),

 clientCredentials.getJPassword()));

 }

 /**

 * Runs on SERVER.

 */

 public void testSecureLogin() {

 // test should be running in the KAAJEE-created container

 // security context of the KAAJEE-logged-in ServletRedirectSecure.

 //

 // Now run any tests you need, in the KAAJEE

 try {

 PrintWriter out = response.getWriter();

 // display security context info

 out.println("getRemoteUser: " + request.getRemoteUser());

 } catch (IOException e) {

 //

 }

 }

 /**

 * Runs on CLIENT.

 */

 public void endSecureLogin(WebResponse webResponse) {

 System.out.println(webResponse.getText());

 }

}

Other Approaches Not Recommended

It would be possible to insert a valid j_username and j_password directly into the kaajeeweblogontoken

table. Reasons not to do this include:

• The LoginUserInfoVO object will not be created.

• The proper DUZ for the given Access and Verify code is guaranteed when obtained from the

LoginUserInfoVO object.

• Going through the full process of translating an Access/Verify code at runtime into a login

credential assures that there are no problems (login-wise) with the M account being connected to.

• The tables are purged at every server restart, destroying the credential.

• Inserting malformed credentials into the table may cause login problems.

Another approach is to use the LoginController's getFormsAuthCredentialsForCactus method to get a

valid credential once, store this credential on the client, and re-use between tests. This approach has the

most of the same drawbacks as the first alternate method described above.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 11-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

11. Troubleshooting

Common Login-related Error Messages

This chapter describes some of the common Kernel Authentication and Authorization Java (2) Enterprise

Edition (KAAJEE) and VistALink-related error messages that users might encounter during the

Authentication and Authorization process of KAAJEE-enabled applications. For each error message

listed, we include the cause and suggest possible resolutions to correct the error. All KAAJEE/VistALink

error messages are displayed in an HTML format (i.e., Web page) in any of the following template files:

• loginerror.jsp

• loginerror403.jsp

• loginerrordisplay.jsp

• navigatonerrordisplay.jsp

These files are located in the following directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\jars\jsp\login\

The following error messages are discussed in this chapter:

• Error: You are not authorized to view this page

• Error: Forms authentication login failed

• Error: You navigated inappropriately to this page

• Error: Could not get a connection from connector pool

• Error: Authorization failed for your user account on the M system

• Error: Login failed due to too many invalid logon attempts

• Error: Your verify code has expired or needs changing

• Error: Not a valid ACCESS CODE/VERIFY CODE pair

• Error: Logins are disabled on the M system

• Error: Could not match you with your M account

• Error: Institution/division you selected for login is not valid for your M user account

• Error: Error logging on or retrieving user information

NOTE: The error messages discussed in this chapter are not listed in any particular order.

Troubleshooting

11-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Error: You are not authorized to view this page

Message:

Figure 11-1. Error—Forbidden message: You are not authorized to view this page

You are not authorized to view this page

You might not have permission to view this directory or page using the credentials you supplied.

If you believe you should be able to view this directory or page, please try to contact the Website by
using any e-mail address or phone number that may be listed on the REDACTED home page.

You can click Search to look for information on the Internet.

HTTP Error 403 – Forbidden
Internet Explorer

Cause: The user attempts to access a protected resource, and instead of being prompted for

their login credentials, they are immediately given a Hyper Text Transport Protocol

(HTTP) Error 403 (not authorized) error (Figure 11-1).

Some possible reasons that the authorization may have failed:

• Lack of Proper Security Keys—The end-user's account does not have the

VistA M Server J2EE security keys matching the role required for this page.

• Error Retrieving User Roles—Some other error prevented proper retrieval of

user roles during the login process.

Resolution: For the following situations, the user must contact IRM or the System Administrator

for assistance:

• Lack of Proper Security Keys—Get the necessary VistA M Server J2EE

security keys assigned.

• Error Retrieving User Roles—Check the log4J logs for any errors.

Error: Forms authentication login failed

Message:

 Troubleshooting

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 11-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Figure 11-2. Error—Forms authentication login failed

Forms authentication login failed.

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. No obvious

error is returned, but the user is sent to the loginerror.jsp error page (error message

template) that states a generic message: "Forms authentication login failed." (Figure

11-2).

The user was redirected by KAAJEE to the login error page. KAAJEE expects to find the

loginerror.jsp in the /login folder of the application context root.

Some possible reasons that the authentication may have failed:

• WebLogic Configuration Problem—The WebLogic Custom Security

Authentication Providers are not configured correctly.

Resolution: For the following situations, the user must contact IRM or the System Administrator for

assistance:

• WebLogic Configuration Problem—If you have Log4J configured to log the

gov.va.med.authentication.kernel package for DEBUG level messages, examine

the Log4J log files for output from the class UserManagerImp. If no such output

is present, the WebLogic Custom Security Authentication Providers are probably

not configured correctly in weblogic.xml, or the application did not deploy

correctly.

Error: You navigated inappropriately to this page

Message:

Figure 11-3. Error—You navigated inappropriately to this page

You navigated inappropriately to this page.

The login process should only be invoked via the consuming application by using your original
bookmark, shortcut or URL destination

Cause: After successfully logging into the Web application, the user presses the browser Back

button until they reach the level of the KAAJEE Web login page. This message is

displayed by the navigatonerrordisplay.jsp.

Resolution: Because the user is already successfully logged into the Web application, they should

just press the browser Forward button to get back to the desired Web application

page.

Troubleshooting

11-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Error: Could not get a connection from connector pool

Message:

Figure 11-4. Error—Could not get a connection from connector pool

There was a login error detected by the login system:

 Error processing login credentials: Could not get a connection from connector pool for
institution 'nnn'.

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-4).

In this case, the descriptive error message stated that the system could not get a

connection from the connector pool for the institution selected by the user.

Several possible reasons for this failure include:

• No Institution mapping is configured to associate Station Number nnn

(e.g., 662) with a JNDI name of a connector.

• No connector exists for the mapped JNDI name returned by VistALink's

Institution Mapping.

• The VistA M Server to which the connector is connecting is down.

Resolution: The user must contact IRM or the Systems Administrator for assistance. A review of

the log files for both the application and the connector should further narrow down the

exact cause of the failure.

 Troubleshooting

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 11-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Error: Error retrieving user information

Message:

Figure 11-5. Error—Error retrieving user information

There was a login error detected by the login system:

 Error processing login credentials: Error retrieving user information.; Root cause exception:
gov.va.med.foundations.rpc.RpcFaultException: Fault Code: 'Server'; Fault String: 'Internal
Application Error'; Fault Actor: 'XUS KAAJEE GET USER INFO'; Code: '182301'; Type: 'XUS
KAAJEE GET USER INFO'; Message: 'No valid DUZ found. [Security Type: AV][Access code
does not match a NP entry.''

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-5).

In this case, the descriptive error message stated that the system could not find a valid

DUZ for the user. The Access code entered by the user was not found in the NEW

PERSON file (#200).

Resolution: The user must contact IRM or the Systems Administrator to verify that the user is

allowed access to the VistA M Server account in question and then grant the user

appropriate access.

Troubleshooting

11-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Error: Authorization failed for your user account on the M system

Message:

Figure 11-6. Error—Authorization failed for your user account on the M system

There was a login error detected by the login system:

 Authorization failed for your user account on the M system; could not log you on.

 Please contact your site manager for assistance.

 More details below:

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-6).

Several possible reasons for this failure include:

• The user is not authorized to access the VistA M Server in question.

• The user is not set up correctly on the VistA M Server in question.

Resolution: The user must contact IRM or the Systems Administrator to verify that the user is

allowed access to the VistA M Server account in question and then grant the user

appropriate access.

 Troubleshooting

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 11-7

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Error: Login failed due to too many invalid logon attempts

Message:

Figure 11-7. Error—Login failed due to too many invalid logon attempts

There was a login error detected by the login system:

 Login failed due to too many invalid logon attempts.

 Please contact your site manager for assistance.

 More details below:

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-7).

The user has exceeded the allowed number of login attempts to the VistA M Server

and must wait a prescribed period of time before attempting another login.

Resolution: If after the prescribed wait period has passed and the user tries to log back into the

VistA M Server, and again fails in the attempt, the user must contact IRM or the

System Administrator for assistance.

Error: Your verify code has expired or needs changing

Message:

Figure 11-8. Error—Your verify code has expired or needs changing

There was a login error detected by the login system:

 Your verify code has expired or needs changing; could not log you on.

 Please use another application to change your verify code and then try the log on again here.
Or, contact your site manager for assistance.

Try login again.

Troubleshooting

11-8 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-8).

Several possible reasons for this failure include:

• The user's Verify code has expired a predefine time limit and must be changed

before being allowed to access the VistA M Server.

• The user is given a temporary Verify code because they are new to the VistA

M Server or asked IRM to give them new access. Upon their first login, this

temporary Verify code expires immediately and must be changed.

Resolution: Since KAAJEE-enabled Web-based applications do not support changing your Verify

code at this time, users must use another non-KAAJEE-enabled Web-based application

in order to be prompted to change their Verify code.

Error: Not a valid ACCESS CODE/VERIFY CODE pair

Message:

Figure 11-9. Error—Not a valid ACCESS CODE/VERIFY CODE pair

There was a login error detected by the login system:

 Not a valid ACCESS CODE/VERIFY CODE pair.

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-9).

Several possible reasons for this failure include:

• The user has entered an incorrect Access code.

• The user has entered an incorrect Verify code.

• The user has entered both an incorrect Access and Verify code.

• The user is not allowed access to the VistA M Server in question.

• The user was not set up correctly on the VistA M Server in question.

For security reasons, the system does not specify which code was entered incorrectly.

Resolution: The user should re-enter the correct Access and Verify codes.

 Troubleshooting

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 11-9

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

If the error persists, the user must contact IRM or the System Administrator to verify

that the user is allowed access to the VistA M Server account in question and then

grant the user appropriate access.

Error: Logins are disabled on the M system

Message:

Figure 11-10. Error—Logins are disabled on the M system

There was a login error detected by the login system:

 Logins are disabled on the M system.

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-10).

IRM or the System Administrator has disabled logins on the VistA M Server. Logins

are sometimes disabled in order to install new software or perform system

maintenance.

Resolution: The user should wait and try to log into the VistA M Server at a later time. If the user

feels the time period to log back into the system is excessive, the user should contact

IRM or the System Administrator for assistance.

Troubleshooting

11-10 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Error: Could not match you with your M account

Message:

Figure 11-11. Error—Could not match you with your M account

There was a login error detected by the login system:

 Could not match you with your M account; could not log you on.

 Please contact your site manager for assistance.

 More details below:

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-11).

Several possible reasons for this failure include:

• The user is not allowed access to the VistA M Server in question.

• The user was not set up correctly on the VistA M Server in question.

• The user has entered an incorrect Access code.

• The user has entered an incorrect Verify code.

• The user has entered both an incorrect Access and Verify code.

Resolution: The user must contact IRM or the System Administrator to verify that the user is

allowed access to the VistA M Server account in question and then grant the user

appropriate access.

 Troubleshooting

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 11-11

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Error: Institution/division you selected for login is not valid for your M user account

Message:

Figure 11-12. Error—Institution/division you selected for login is not valid for your M user account

There was a login error detected by the login system:

 Institution/division you selected for login is not valid for your M user account; could not log you
 on.

 Please contact your site manager for assistance.

 More details below:

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-12).

Several possible reasons for this failure include:

• The user does not have the selected Institution/Division entry in the

DIVISION Multiple field (#16) in the NEW PERSON file (#200) entry.

• The SDS tables could not validate the Division selected.

Resolution: The user must contact IRM or the System Administrator to verify that the user is

allowed access to the Institution/Division in question and then grant the user

appropriate access.

Troubleshooting

11-12 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Error: Error logging on or retrieving user information

Message:

Figure 11-13. Error—Institution/division you selected for login is not valid for your M user account

There was a login error detected by the login system:

 Error logging on or retrieving user information; could not log you on.

 Please contact your site manager for assistance.

 More details below:

Try login again.

Cause: The user enters their Access and Verify codes and presses the Login button. The user

is then redirected to the loginerrordisplay.jsp error page (error message template) with

a descriptive error message displayed (Figure 11-11).

Several possible reasons for this failure include:

• The user is not allowed access to the VistA M Server in question.

• The user was not set up correctly on the VistA M Server in question.

• The user has entered an incorrect Access code.

• The user has entered an incorrect Verify code.

• The user has entered both an incorrect Access and Verify code.

Resolution: The user must contact IRM or the System Administrator to verify that the user is

allowed access to the VistA M Server account in question and then grant the user

appropriate access.

REF: For a list of other login-related error messages, please refer to the "Symptoms and

Possible Solutions" topic in the VistALink System Administration Guide.

REF: For more information on the Kernel signon process and related error messages, please

refer to the "Signon/Security" section in the Kernel Systems Management Guide.

 Troubleshooting

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 11-13

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

This page is left blank intentionally.

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Glossary-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Glossary

AA Authentication and Authorization

AAC Formerly the Austin Automation Center. Renamed to the Austin

Information Technology Center (AITC)

AAIP Authentication and Authorization Infrastructure Program (terminated,

see PIV or refer to OCIS)

The Office of Human Resources and Administration is currently

managing the Personal Identity Verification (PIV) project with the

assistance of the Office of Security and Law Enforcement and the

Office of Cyber and Information Security (OCIS). This program

replaces the Authentication and Authorization Infrastructure Project

(AAIP) that OCIS formally managed and has since terminated. VA

will issue a Directive that will mandate use of the FIPS 201 processes

and preparing a series of Handbooks (Identity Proofing, Issuance, and

Privacy) to describe specific implementation roles, responsibilities,

and processes as defined in FIPS 201. The PIV Program Office is

working with the three Administrations to ensure all business, systems

and policy requirements are adequately addressed and making a

concerted effort to coordinate an enterprise-wide approach for identity

and access management. Of specific interest is the need to coordinate

the various requirements for identity and access management.

Access Code A password used by the Kernel system to identify the user. It is used

with the verify code.

Adapter Another term for resource adapter or connector.

Administration Server Each WebLogic server domain must have one server instance that acts

as the administration server. This server is used to configure all other

server instances in the domain.

AITC Austin Information Technology Center

Alias An alternative filename.

Alpha/VMS Alpha: Hewlett Packard computer system

VMS: Virtual Memory System

Anonymous Software

Directories

M directories where VHA application and patch zip files are placed

for distribution.

API Application Program Interface

http://vaww.vista.med.va.gov/iss/acronyms/p-acronyms.asp#piv
http://vaww.vista.med.va.gov/iss/acronyms/o-acronyms.asp#ocis
http://vaww.vista.med.va.gov/iss/acronyms/p-acronyms.asp#piv
http://vaww.vista.med.va.gov/iss/acronyms/f-acronyms.asp#fips
http://vaww.vista.med.va.gov/iss/acronyms/f-acronyms.asp#fips
http://vaww.vista.med.va.gov/iss/acronyms/p-acronyms.asp#piv

Glossary

Glossary-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Application Proxy User A Kernel user account designed for use by an application rather than

an end-user.

Application Server Software/hardware for handling complex interactions between users,

business logic, and databases in transaction-based, multi-tier

applications. Application servers, also known as app servers, provide

increased availability and higher performance.

ASTM American Society for Testing and Materials

Authentication Verifying the identity of the end-user.

Authorization Granting or denying user access or permission to perform a function.

Base Adapter Version 8.1 of WebLogic introduced a "link-ref" mechanism enabling

the resources of a single "base" adapter to be shared by one or more

"linked" adapters. The base adapter is a standalone adapter that is

completely set up. Its resources (classes, jars, etc.) can be linked to

and reused by other resource adapters (linked adapters). The deployer

only needs to modify a subset of the linked adapters’ deployment

descriptor settings. Note: This mechanism is no longer supported in

WebLogic 9 and later for J2CA 1.5 adapters (e.g., VistALink 1.6).

Caché Caché is an M environment, a product of InterSystems Corp.

Cache/VMS Cache: InterSystems Caché object database that runs SQL

VMS: Virtual Memory System

CCI Common Client Interface

CCOW A standard defining the use of a technique called "context

management," providing the clinician with a unified view on

information held in separate and disparate healthcare applications that

refer to the same patient, encounter or user.

Formerly Clinical Context Object Workgroup, now known as the

CCOW Technical Committee. CCOW is an end-user-focused standard

that complements HL7's traditional emphasis on data interchange and

enterprise workflow. Using a technique known as context

management, the clinical user's experience is one of interacting with a

single system, when in fact he or she may be using multiple,

independent applications from many different systems, each via its

native user interface. By synchronizing and coordinating applications

so that they automatically follow the user's context, the CCOW

Standard serves as the basis for ensuring secure and consistent access

to patient information from heterogeneous sources. The benefits

include applications that are easier to use, increased utilization of

electronically available information, and an increase in patient safety.

 Glossary

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Glossary-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Further, CCOW support for secure context management provides a

healthcare standards basis for addressing HIPAA requirements. For

example, CCOW enables the deployment of highly secure single sign-

on solutions.

Classpath The path searched by the JVM for class definitions. The class path

may be set by a command-line argument to the JVM or via an

environment variable.

Client Can refer to both the client workstation and the client portion of the

program running on the workstation.

Connection Factory A J2CA class for creating connections on request.

Connection Pool A cached store of connection objects that can be available on demand

and reused, increasing performance and scalability. VistALink uses

connection pooling when running on a J2EE server.

Connector A system-level driver that integrates J2EE application servers with

Enterprise Information Systems (EIS). VistALink is a J2EE connector

module designed to connect to Java applications with VistA/M

systems. The term is used interchangeably with connector module,

adapter, adapter module, and resource adapter.

Connector Proxy User For security purposes, each instance of a J2EE connector must be

granted access to the M server it connects to. This is done via a Kernel

user account set up on the M system. This provides initial

authentication for the app server and establishes a trusted connection.

The M system manager must set up the connector user account and

communicate the access code, verify code and listener IP address and

port to the J2EE system manager.

COTS Commercial, Off-The-Shelf

CPRS Computerized Patient Record System

CSV Comma-Separated Values format

DBF Database file format underlying many database applications

(originally dBase)

DBMS Database Management System

DCL Digital Command Language. An interactive command and scripting

language for VMS.

Division Division is an Institution in the INSTITUTION file (#4) that is

identified via a unique Station Number. Divisions are "sub"-divisions

or child sites within an integrated set of facilities, whose computing is

hosted on the computer system of the primary facility. The parent-

Glossary

Glossary-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

child relationship between a division and a primary facility is

maintained by the ASSOCIATIONS multiple field (#14) in the

INSTITUTION file (#4). A sub-division may be a medical center,

clinic, or nursing home. The primary facility is also a division of

itself. Clinics and nursing homes are often sub-divisions. The Station

Number for child sites is 5 characters, the first 3 of which are the 3

numbers of the parent facility. For example, Livermore, CA is a

medical center that is a child of Palo Alto, CA. Its Station Number is

640A4.

DSM Digital Standard MUMPS. An M environment, a product of

InterSystems Corp.

DUZ A local variable holding a number that identifies the signed-on user.

The number is the Internal Entry Number (IEN) of the user’s record in

the NEW PERSON file (file #200)

EAR (file) Enterprise ARchive file (.ear extension). This file has the same format

as a regular .jar file. An ear file is like a zip file packaged for J2EE

application deployment. The .ear file contains everything necessary to

deploy an enterprise application on an application server. An ear file

can contain 1-n Web modules. It contains at least one .war (Web

Archive) file which contains the Web component of the application as

well as the .jar (Java Archive) file. In addition, there are some

deployment descriptor files in XML.17

EIS Enterprise Information System

EJB Enterprise JavaBeans. Enterprise JavaBeans (EJB) technology is the

server-side component architecture for the Java 2 Platform, Enterprise

Edition (J2EE) platform. EJB technology enables rapid and simplified

development of distributed, transactional, secure and portable

applications based on Java technology.18

EPHI The HealtheVet-VistA architecture is a services-based architecture.

Applications are constructed in tiers with distinct user interface,

middle, and data tiers. Two types of services will exist:

Core Services—Infrastructure and data.

Application Services—A single logical authoritative source of

data.Electronic Protected Health Information

FatKAAT Fat-Client (i.e. Rich client) Kernel Authentication and Authorization

FDA FileMan Data Array

REDACTED
18 Definition from the following Sun Microsystems WebWeb site: http://java.sun.com/products/ejb/.

 Glossary

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Glossary-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

File #18 System file #18 was the precursor to the KERNEL SYSTEMS

PARAMETERS file, and is now obsolete. It uses the same number

space that is now assigned to VistALink. Therefore, file #18 must be

deleted before VistALink can be installed.

Global A multi-dimensional data storage structure -- the mechanism for

persistent data storage in a MUMPS database.

Healthevet-VistA The HealtheVet-VistA architecture is a services-based architecture.

Applications are constructed in tiers with distinct user interface,

middle, and data tiers. Two types of services will exist:

• Core Services—Infrastructure and data.

• Application Services—A single logical authoritative source of

data.

HIPAA Health Insurance Portability and Accountability Act

HL7 Health Level 7

HTTP HyperText Transport Protocol

HTTP Session Object Hyper Text Transport Protocol (HTTP) Session Objects are used like

cookies to maintain states as Web pages are considered stateless rather

than stateful.

IDE Integrated development environment. A suite of software tools to

support writing software.

Institution A Department of Veterans Affairs (VA) facility assigned a number by

headquarters, as defined by Directive 97-058. An entry in the

INSTITUTION file (#4) that represents the Veterans Health

Administration (VHA). There are a wide variety of facility types in

the INSTITUTION file, including medical centers, clinics,

domiciliaries, administrative centers, Veterans Integrated Service

Networks (VISNs), and so forth.

Institution Mapping The VistALink 1.6 release includes a small utility that administrators

can use to associate station numbers with JNDI names, and which

allows runtime code to retrieve the a VistALink connection factory

based on station number.

IP Internet Protocol

ISO Information Security Officer

J2CA J2EE Connector Architecture. J2CA is a framework for integrating

J2EE-compliant application servers with Enterprise Information

Glossary

Glossary-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Systems, such as the VHA’s VistA/M systems. It is the framework for

J2EE connector modules that plug into J2EE application servers, such

as the VistALink adapter.

J2EE The Java 2 Platform, Enterprise Edition (J2EE) is an environment for

developing and deploying enterprise applications. The J2EE platform

consists of a set of services, APIs, and protocols that provide the

functionality for developing multi-tiered, Web-based applications. A

J2EE Connector Architecture specification for building adapters to

connect J2EE systems to non-J2EE enterprise information systems.

J2SE Java 2 Standard Edition. Sun Microsystem’s programming platform

based on the Java programming language. It is the blueprint for

building Java applications, and includes the Java Development Kit

(JDK) and Java Runtime Environment (JRE).

JAAS Java Authentication and Authorization Service. JAAS is a pluggable

Java framework for user authentication and authorization, enabling

services to authenticate and enforce access controls upon users.

JAR file Java archive file. It is a file format based on the ZIP file format, used

to aggregate many files into one.

JAVA Java is a programming language. It can be used to complete

applications that may run on a single computer or be distributed

among servers and clients in a network.

Java Library A library of Java classes usually distributed in JAR format.

JavaBeans JavaBeans expose methods, properties, and events, which can then be

accessed by other components or scripts. JavaBeans are commonly

mistaken for design patterns as they both use similar conventions

(e.g., both use Setter and Getter methods). A JavaBean is a reusable

component that can be used in any Java application development

environment. JavaBeans are dropped into an application container,

such as a form, and can perform functions ranging from a simple

animation to complex calculations.19

Javadoc Javadoc is a tool for generating API documentation in HTML format

from doc comments in source code. Documentation produced with

this tool is typically called Javadoc.

JBoss JBoss is a free software / open source Java EE-based application

server.

JCA CCI J2EE Connector Architecture Common Client Interface

19 REDACTED

 Glossary

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Glossary-7

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

JDBC Java Database Connector. JDBC technology is an API (included in

both J2SE and J2EE releases) that provides cross-DBMS connectivity

to a wide range of SQL databases and access to other tabular data

sources, such as spreadsheets or flat files. With a JDBC technology-

enabled driver, you can connect all corporate data even in a

heterogeneous environment.20

JDK Java Development Kit. A set of programming tools for developing

Java applications.

JMX Java Management eXtensions. A java specification for building

manageability into java applications, including J2EE-based ones.

JNDI Java Naming and Directory Interface. A protocol to a set of APIs for

multiple naming and directory services.

JRE The Java Runtime Environment consists of the Java virtual machine,

the Java platform core classes, and supporting files. JRE is bundled

with the JDK but also available packaged separately.

JSP Java Server Pages. A language for building web interfaces for

interacting with web applications.

JSP Java Server Pages.

JVM Java Virtual Machine. The JVM interprets compiled Java binary code

(byte code) for specific computer hardware.

KAAJEE Kernel Authentication and Authorization for Java 2 Enterprise Edition

KaajeeVistaLinkConnection

Spec

KAAJEE currently maintains this VistALink class and uses it to

connect to the VistA M Server. This class extends

VistaLinkConnectionSpecImpl. In other words, it inherits from the

VistALink class VistaLinkConnectionSpecImpl. KAAJEE has added

additional code in order to handle the IP address.

 NOTE: In the future, VistALink may incorporate and maintain

this code.

KERNEL A facility is multidivisional if it supports one or more divisions.

HealtheVet-VistA applications are required to be multidivisional-

aware. Thus, it must be designed to work correctly at a multi-

divisional facility.Set of VistA software routines that function as an

intermediary between the host operating system and the VistA

application packages such as Laboratory, Pharmacy, IFCAP, etc. The

Kernel provides a standard and consistent user and programmer

20 Definition from the following Sun Microsystems WebWeb site: http://java.sun.com/products/jdbc/.

Glossary

Glossary-8 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

interface between application packages and the underlying M

implementation.

KIDS Oracle 9i (or higher version) is a relational database that supports the

Structured Query Language (SQL), now an industry standard.

Currently, it is used to store the KAAJEE SSPIs.Kernel Installation

and Distribution System. The VistA/M module for exporting new

VistA software packages.

LDAP Acronym for Lightweight Directory Access Protocol. LDAP is an

open protocol that permits applications running on various platforms

to access information from directories hosted by any type of server.

Linked Adapter Version 8.1 of WebLogic introduced a "link-ref" mechanism enabling

the resources of a single "base" adapter to be shared by one or more

"linked" adapters. The base adapter is a standalone adapter that is

completely set up. Its resources (classes, jars, etc.) can be linked to

and reused by other resource adapters (linked adapters). The deployer

only needs to modify a subset of linked adapters’ deployment

descriptor settings. Note: This mechanism is no longer supported in

WebLogic 9 and later for J2CA 1.5 adapters (e.g., VistALink 1.6).

Linux An open-source operating system that runs on various types of

hardware platforms. HealtheVet-VistA servers use both Linux and

Windows operating systems.

Listener A socket routine that runs continuously at a specified port to field

incoming requests. It sends requests to a front controller for

processing. The controller returns its response to the client through the

same port. The listener creates a separate thread for each request, so it

can accept and forward requests from multiple clients concurrently.

log4J Utility An open-source logging package distributed under the Apache

Software license. Reviewing log files produced at runtime can be

helpful in debugging and troubleshooting.

logger In log4j, a logger is a named entry in a hierarchy of loggers. The

names in the hierarchy typically follow Java package naming

conventions. Application code can select a particular logger by name

to write output to, and administrators can configure where a particular

named logger’s output is sent.

M (MUMPS) Massachusetts General Hospital Utility Multi-programming System,

abbreviated M. M is a high-level procedural programming computer

language, especially helpful for manipulating textual data.

Managed Server A server instance in a WebLogic domain that is not an administration

server, i.e., not used to configure all other server instances in the

domain.

http://www.webopedia.com/TERM/L/open_source.html
http://www.webopedia.com/TERM/L/operating_system.html
http://www.webopedia.com/TERM/L/platform.html

 Glossary

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Glossary-9

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

MBeans In the Java programming language, an MBean (managed bean) is a

Java object that represents a manageable resource, such as an

application, a service, a component, or a device. MBeans must be

concrete Java classes.

Messaging A framework for one application to asynchronously deliver data to

another application, typically using a queuing mechanism.

Multidivisional A facility is multidivisional if it supports one or more divisions.

HealtheVet-VistA applications are required to be multidivisional-

aware. Thus, it must be designed to work correctly at a multi-

divisional facility.

Multiple A VA FileMan data type that allows more than one value for a single

entry.

Namespace A unique 2-4 character prefix for each VistA package. The DBA

assigns this character string for developers to use in naming a

package’s routines, options, and other elements. The namespace

includes a number space, a pre-defined range of numbers that package

files must stay within.

NEW PERSON (#200) FILE A VistA file that contains data on employees, users, practitioners, etc.

of the VA.

NIST National Institute for Standards and Technology

OCIS Office of Cyber and Information Security

OI Office of Information

OI&T Office of Information & Technology

ORACLE 10g Oracle is a relational database that supports the Structured Query

Language (SQL), now an industry standard.

OS Operating System

OS&LE Office of Security and Law Enforcement

Patch An update to a VistA software package that contains an enhancement

or bug fix. Patches can include code updates, documentation updates,

and information updates. Patches are applied to the programs on M

systems by IRM services.

PHI Protected Health Information

PIV Personal Identity Verification

Glossary

Glossary-10 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Primary Facility Primary facilities, also called Parent Facilities, are always medical

centers, and they have a three-digit Station Number. A primary

facility may be a standalone medical center, or it may be the parent

facility of an integrated set of facilities, often called a healthcare

network. For example, Palo Alto, CA is the headquarters of the Palo

Alto Healthcare Network (HCN). Its Station Number is 640. An

integrated set of facilities always falls within the boundary of a VISN.

Production A system on which some production (i.e., "live" data) is stored,

accessed, and/or updated.

ra.xml ra.xml is the standard J2EE deployment descriptor for J2CA

connectors. It describes connector-related attributes and its

deployment properties using a standard DTD (Document Type

Definition) from Sun.

Re-authentication When using a J2CA connector, the process of switching the security

context of the connector from the original application connector

"user" to the actual end-user. This is done by the calling application

supplying a proper set of user credentials.

Resource Adapter J2EE resource adapter modules are system-level drivers that integrate

J2EE application servers with Enterprise Information Systems (EIS).

This term is used interchangeably with resource adapter and

connector.

RM Requirements Management

Routine A program or sequence of computer instructions that may have some

general or frequent use. M routines are groups of program lines that

are saved, loaded, and called as a single unit with a specific name.

RPC Remote Procedure Call. A defined call to M code that runs on an M

server. A client application, through the RPC Broker, can make a call

to the M server and execute an RPC on the M server. Through this

mechanism a client application can send data to an M server, execute

code on an M server, or retrieve data from an M server

RPC Broker The RPC Broker is a client/server system within VistA. It establishes

a common and consistent framework for client-server applications to

communicate and exchange data with VistA/M servers.

RPC Security All RPCs are secured with an RPC context (a "B"-type option). An

end-user executing an RPC must have the "B"-type option associated

with the RPC in the user’s menu tree. Otherwise an exception is

thrown.

S&OCS Security & Other Common Services

 Glossary

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Glossary-11

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

SAD Software Architecture Document

SDD Software Design Document

SE&I Software Engineering & Integration

Servlet A Java program that resides on a server and executes requests from

client web pages.

Singleton "An object that cannot be instantiated. A singleton can be created, but

it can't be instantiated by developers—meaning that the singleton class

has control over how it is created. The restriction on the singleton is

that there can be only one instance of a singleton created by the Java

Virtual Machine (JVM)."21

Socket An operating system object that connects application requests to

network protocols.

SPI J2CA service provider interface Service-Level Contract

SRS Software Requirements Specification

SSL Secure Socket Layer. A low-level protocol that enables secure

communications between a server and a browser. It provides

communication privacy.

SSO/UC Single Sign-On/User Context

SSPI Security Service Provider Interface

STATION NUMBER A Station Number uniquely identifies every VA primary facility and

division; however, entries for some facility types do not have Station

Numbers. Station Numbers are stored in Field #99 in the VistA M

Server INSTITUTION file (#4).

TCP/IP Transmission Control Protocol (TCP) and the Internet Protocol (IP)

Term Definition

TEST A system on which no production (i.e., "live" data) is stored, accessed,

and/or updated.

TREEMAPS TreeMaps are like name/value pairs. They are sorted by the keys.

There are other types of maps as well (e.g., map, hashmap, hashtable,

collection, etc.). TreeMaps have a Put and a Get method; therefore,

you can use the Put method and pass in a key and an object. An object

can be like any object (e.g., value object).

21 Definition taken from the "Java Coffee Break" Web site: http://www.javacoffeebreak.com/articles/designpatterns/

http://www.javacoffeebreak.com/articles/designpatterns/

Glossary

Glossary-12 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

TRM The Technical Reference Model

TXT Text file format

UI User Interface

UML Unified Modeling Language is a standardized specification language

for object modeling.

URL Uniform Resource Locator

User Provisioning User account management—Create, modify, and delete user accounts

and privileges (e.g., definition by roles and rules) for access to

computer system resources. Enterprises typically use user

provisioning to manage internal user access.22

VA Department of Veterans Affairs

VACO Veterans Affairs Central Office

Value Object Value Objects (VO) allow programs to store values for different

elements where they can be extracted later using a method. They

follow certain design patterns.

Verify Code A password used in tandem with the access code to provide secure

user access. The Kernel’s Sign-on/Security system uses the verify

code to validate the user's identity.

VHA Veterans Health Administration

VISN Veterans Integrated Service Network(s)

VistA Veterans Health Information Systems and Technology Architecture.

The VHA’s portfolio of M-based application software used by all VA

medical centers and associated facilities.

VistALinK (VL) VistaLink is a runtime and development tool providing connection

and data conversion between Java and M applications in client-server

and n-tier architectures, to which this document describes the

architecture and design.

VistALink Libraries Classes written specifically for VistALink.

VMS Virtual Memory System. An operating system, originally designed by

DEC (now owned by Hewlett-Packard), that operates on the VAX and

Alpha architectures.

22 Definition taken from the following Web site:

http://www.biu.ac.il/Computing/security/glossary%20of%20useful%20terms.htm (based on www. Gartner.com)

http://www.biu.ac.il/Computing/security/glossary%20of%20useful%20terms.htm

 Glossary

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Glossary-13

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

VPFS Veterans Personal Finance System. The re-hosted Integrated Patient

Funds (IPF) software (a.k.a. Personal Funds of Patients [PFOP]) that

is written in J2EE and planned to run on a centralized system. A Web

browser front-end will be used for the user interface.

VPID VA Person Identifier. A new enterprise-level identifier uniquely

identifying VA ‘persons’ across the entire VA domain.

WAR (file) Web ARchive file (.war extension). Web Modules are packaged in

.war files. A war file does not need to contain jsps and/or html

content. A war file can be deployed by itself.

WebLogic WebLogic is a J2EE Platform application server.

WebSphere WebSphere Application Server (WAS) is and IBM application server.

WLU WebLogic Server Upgrade project

XLS Microsoft Office XL worksheet and workbook file format

XML Extensible Markup Language

XmlBeans XMLBeans is a Java-to-XML binding framework which is part of the

Apache Software Foundation XML project.

XOB Namespace The VistALink namespace. All VistALink programs and their

elements begin with the characters "XOB."

REF: For a comprehensive list of commonly used infrastructure- and security-related terms and

definitions, please visit the Glossary Web page at the following Web address:

REDACTED

For a comprehensive list of acronyms, please visit the Acronyms Web site at the following Web

address:

REDACTED

Glossary

Glossary-14 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Appendix A-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Appendix A—Sample Deployment Descriptors

All KAAJEE sample deployment descriptors are located in the following KAAJEE directory

(i.e., kaajee-1.2.0.xxx):

<STAGING_FOLDER>\kaajee-1.2.0.xxx\dd_examples

REF: For a sample of the kaajeeConfig.xml file, please refer to Figure 6-2 in chapter 6,

"KAAJEE Configuration File," in this manual.

application.xml

Figure A-1. Sample KAAJEE Deployment Descriptor: application.xml file (e.g., KAAJEE sample

application)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application

1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">

<application>

 <display-name>KaajeeSampleEar</display-name>

 <module>

 <web>

 <web-uri>kaajeeSampleApp.war</web-uri>

 <context-root>/kaajeeSampleApp</context-root>

 </web>

 </module>

</application>

Application developers would customize this sample descriptor for their use by replacing the following

information with information specific to their application:

• <display-name> Tag—Replace "KaajeeSampleEar" ear file name with the name of your

application ear file.

• <web-uri> Tag—Replace "kaajeeSampleApp.war" war file name with the name of your

application war file.

• <context-root> Tag—Replace "/kaajeeSampleApp" root directory with the name of your

application root directory.

web.xml

Figure A-2. Sample KAAJEE Deployment Descriptor: web.xml file (e.g., PATS application)

<?xml version='1.0' encoding='UTF-8'?>

Appendix A—Sample Deployment Descriptors

Appendix A-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <listener>

 <listener-class>

 gov.va.med.authentication.kernel.KaajeeSessionAttributeListener

 </listener-class>

 </listener>

 <listener>

 <listener-class>

 gov.va.med.authentication.kernel.KaajeeHttpSessionListener

 </listener-class>

 </listener>

 <servlet>

 <servlet-name>SampleAppInit</servlet-name>

 <servlet-

class>gov.va.med.authentication.kernel.samples.InitSampleAppServlet</servlet-class>

 <init-param>

 <param-name>log4j-init-file</param-name>

 <param-value>/log4jConfig.xml</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>KaajeeInit</servlet-name>

 <servlet-class>gov.va.med.authentication.kernel.InitKaajeeServlet</servlet-

class>

 <init-param>

 <param-name>kaajee-config-file-location</param-name>

 <param-value>/WEB-INF/kaajeeConfig.xml</param-value>

 </init-param>

 <load-on-startup>3</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>LoginController</servlet-name>

 <servlet-class>gov.va.med.authentication.kernel.LoginController</servlet-class>

 <run-as>

<role-name>adminuserrole</role-name>

</run-as>

 </servlet>

 <servlet-mapping>

 <servlet-name>LoginController</servlet-name>

 <url-pattern>/LoginController</url-pattern>

 </servlet-mapping>

 <session-config>

 <session-timeout>2</session-timeout>

 </session-config>

 <error-page>

 <error-code>403</error-code>

 <location>/login/loginerror403.jsp</location>

 </error-page>

 <error-page>

 <error-code>404</error-code>

 Appendix A—Sample Deployment Descriptors

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Appendix A-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

 <location>/AppErrorPage.jsp</location>

 </error-page>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>KAAJEE Login Page</web-resource-name>

 <url-pattern>/login/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <user-data-constraint>

 <!-- For the KAAJEE Login Page, use 'CONFIDENTIAL' when possible. -->

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>A Protected Page</web-resource-name>

 <url-pattern>/AppHelloWorld.jsp</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>XUKAAJEE_SAMPLE_ROLE</role-name>

 </auth-constraint>

 <user-data-constraint>

 <!-- Use a value of 'CONFIDENTIAL' to place this page in SSL. -->

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login/login.jsp</form-login-page>

 <form-error-page>/login/loginerror.jsp</form-error-page>

 </form-login-config>

 </login-config>

 <security-role>

 <description>KERNEL KAAJEE Sample role</description>

 <role-name>XUKAAJEE_SAMPLE_ROLE</role-name>

 </security-role>

 <security-role>

 <description>auto-assigned authenticated user role</description>

 <role-name>AUTHENTICATED_KAAJEE_USER</role-name>

 </security-role>

 <security-role>

 <role-name>adminuserrole</role-name>

 </security-role>

</web-app>

Appendix A—Sample Deployment Descriptors

Appendix A-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Application developers would customize this sample descriptor for their use by adding in their application

servlets and by replacing the following information with information specific to their application:

• <security-constraint> Tag (multiple):

− <url-pattern> Tag—Replace "/AppHelloWorld.jsp" security constraint URL with your

application's security constraint URL.

− <role-name> Tag—Replace "XUKAAJEE_SAMPLE_ROLE" security constraint role

name with your application's security constraint role name.

− <user-data-constraint>

 <transport-guarantee> Tag—Replace "NONE" with "CONFIDENTIAL" to put your

page in SSL.

NOTE: For the KAAJEE Login Page, use 'CONFIDENTIAL' when possible.

• <security-role> Tag (multiple):

− <description> Tag—Replace/add all security role descriptions (e.g., "KERNEL KAAJEE

Sample role") with your application's security role descriptions.

− <role-name> Tag—Replace/add all security role names

(e.g., "XUKAAJEE_SAMPLE_ROLE") with your application's security role names.

weblogic.xml

The BEA weblogic.xml file is used to map security role names (i.e., <security-role> element entries in the

web.xml file) to users and/or groups (i.e., principals); KAAJEE only uses groups. The WebLogic

Application Server will only allow mapped security roles access to protected URL resources.

REF: For a sample spreadsheet showing a mapping between WebLogic group names

(i.e., principals) with J2EE security role names, please refer to "Appendix B—Mapping

WebLogic Group Names with J2EE Security Role Names" in this manual.

 Appendix A—Sample Deployment Descriptors

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Appendix A-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Figure A-3. Sample KAAJEE Deployment Descriptor: weblogic.xml file (e.g., KAAJEE Sample Web

Application)

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wls="http://www.bea.com/ns/weblogic/90"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd http://www.bea.com/ns/weblogic/90

http://www.bea.com/ns/weblogic/920/weblogic-web-app.xsd">

<run-as-role-assignment>

<role-name>adminuserrole</role-name>

<run-as-principal-name>KAAJEE</run-as-principal-name>

</run-as-role-assignment>

<security-role-assignment>

<role-name>AUTHENTICATED_KAAJEE_USER</role-name>

<principal-name>AUTHENTICATED_KAAJEE_USER</principal-name>

</security-role-assignment>

<security-role-assignment>

<role-name>XUKAAJEE_SAMPLE_ROLE</role-name>

<principal-name>XUKAAJEE_SAMPLE</principal-name>

</security-role-assignment>

 <session-descriptor>

 <cookie-name>kaajeeJSESSIONID</cookie-name>

 </session-descriptor>

</weblogic-web-app>

Application developers would customize this sample descriptor for their use by replacing the following

information with information specific to their application:

• <security-role-assignment> Tag:

− <role-name> Tag—Replace "XUKAAJEE_SAMPLE_ROLE" security role assignment

role name with your application's security role assignment role name.

− <principal-name> Tag—Replace "XUKAAJEE_SAMPLE" security role assignment

principal name with your application's security role assignment principal name.

• <session-param> Tag:

− <param-value> Tag—Replace "kaajeeJSESSIONID" security param value with your

application's param value.

NOTE: Creating the weblogic.xml deployment descriptor is optional. If you do not include this

file, or include the file but do not include mappings for all security roles, all security roles

without mappings will default to any user or group whose name matches the role name.23

23 Excerpt taken from the WebLogic Server™ Programming WebLogic Security Guide, Page 2-12; downloaded

from the BEA Website: www.bea.com.Web site

http://www.bea.com/

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) Appendix B-1

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names

The following table supersedes the role_mapping_worksheet.xls as delivered with KAAJEE 1.2.0.xxx. The role_mapping_worksheet.xls

Microsoft Excel spreadsheet is located in the following directory:

<STAGING_FOLDER>\kaajee-1.2.0.xxx\dd_examples

Table B-1. Sample spreadsheet showing a mapping between WebLogic group names and J2EE security role names

VistA Security
Key Name

WebLogic Group
Name

(via WebLogic
Console)

<security-role-assignment>
subelement <principal-name>

(i.e., group name)

From: WebLogic group name...
(weblogic.xml)

<security-role-assignment>
subelement <role-name>

...To: J2EE security role name

(weblogic.xml)

J2EE <security-role>
role-name

(web.xml, ejb-jar.xml,
application.xml)

<--------------- (WebLogic Group Names [a.k.a. Principals]) --------------> <---------------- (J2EE Security Role Names) ------------------->

DG-CLERK DG-CLERK DG-CLERK CLERK CLERK

DG-SUPERVISOR DG-SUPERVISOR DG-SUPERVISOR SUPER SUPER

DG-ADMIN DG-ADMIN DG-ADMIN ADMIN ADMIN

NOTE: The <security-role-assignment> elements in the weblogic.xml file are not needed when the <role-name> element and the

<principal-name> element are the same. By default, WebLogic automatically creates a group of the same name if no mapping is defined

in weblogic.xml.

Appendix B—Mapping WebLogic Group Names with J2EE Security Role Names

Appendix B-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) Index-1

Deployment Guide

Version 1.2 on WebLogic 10.3.6 and higher

Index

A
Ability for the User to Switch Divisions, 7-10

Access Code

Not Valid (Error Message), 11-8

Access VA Standard Data Services (SDS) Tables, 4-3

Acronyms

Home Page Web Address, Glossary, 13

ACTIVE by Custodial Package Option, 8-14

Administer

Roles, 5-6

Users, 5-6

Adobe

Home Page Web Address, xv

Adobe Acrobat Quick Guide

Home Page Web Address, xv

Alerts, 9-1

All Divisions at the Login Division's Computing Facility,

7-11

Announcement Text, Sample, 6-4

Apache

Jakarta Cactus

Website, 10-1

Jakarta Project

Home Page Web Address, 4-7

APIs

Institution getVistaProvider(), 7-1, 7-2

APP PROXY ALLOWED Field (#.11), 8-11

Appendix A—Sample Deployment Descriptors, A, 1

Appendix B—Mapping WebLogic Group Names with

J2EE Security Role Names

B, 1

Application Involvement in User/Role Management, 7-1

Application Servers

WebLogic, 1-2, 3-3, 4-1, 4-2, 9-3

application.xml File, A, 1

Archiving, 8-12

ASIS Documents

Log4j Guidelines Website, 8-6

Assumptions

About the Reader, xiv

When Implementing KAAJEE, 4-1

Auditing

Log Monitoring, 9-1

Authentication

J2EE Form-based, 1-8

J2EE Form-based Authentication, 1-8

J2EE Web-based Applications, 1-10

Authorization failed for your user account on the M system

(Error Message), 11-6

B
Broker

Namespace, 8-15

Bulletins, 9-1

C
Cactus Testing

Enabling Cactus Unit Test Support, 10-1

KAAJEE, 10-1

Other Approaches Not Recommended, 10-6

ServletTestCase Example, 10-4

Using Cactus in a KAAJEE-Secured Application, 10-2

Callable Routines, 8-12

CCOW, 8-13

Functionality Enabled, 4-15

classloader, 4-6, 4-7

Common Login-related Error Messages, 11-1

Configuration File, 6-1

Elements, 6-1

Configuring

KAAJEE

Configuration File, 4-9, 4-10, 4-11, 6-5

Initialization Servlet (web.xml), 4-10

Listeners (web.xml), 4-12

LoginController Servlet (web.xml), 4-11

KAAJEE Login Server Requirements, 8-4

kaajeeConfig.xml File, 3-9, 4-9, 6-1, 7-11

Log4J, 8-5

Logging for KAAJEE, 4-13

Login Division, 1-2, 2-1, 7-11

SDS Tables, 4-4

Security Provider, 1-6

web.xml File, 4-11, 4-13

Web-based Application for J2EE Form-based

Authentication, 5-4

Connections, 9-2

ConnectionSpec

VistALink Connection Specs for Subsequent VistALink

Calls, 7-10

VistaLinkDuzConnectionSpec, 7-10

Connector Pool, 7-10

Constructor Summary

LoginUserInfoVO Object, 7-3

VistaDivisionVO Object, 7-9

Constructors

LoginUserInfoVO(), 7-3

VistaDivisionVO(), 7-9

Container-enforced Security Interfaces, J2EE, 7-1

Contents, v

Contingency Planning, 9-4

Cookie

Information, 1-17

COTS Software Requirements, 8-13

Could not

Get a connection from connector pool (Error Message),

11-4

Match you with your M account (Error Message), 11-9

Index

Index-2 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Create VistA M Server J2EE security keys Corresponding

to WebLogic Group Names, 5-3

Custodial Package Menu, 8-14

D
DBA Approvals and Integration Agreements, 8-14

DBA IA CUSTODIAL MENU, 8-14

DBA IA CUSTODIAL Option, 8-14

DBA IA INQUIRY Option, 8-14

DBA IA ISC Menu, 8-14

DBA IA SUBSCRIBER MENU, 8-14

DBA IA SUBSCRIBER Option, 8-14

DBA Menu, 8-14

Declare

Groups (weblogic.xml file), 5-2

J2EE Security Role Names, 5-3

Default Division

Providing Helper Function for User's Default Division

Enhancement, 2-1

Delete

KAAJEE SSPI Tables, 8-4

Dependencies

KAAJEE, 1-4

KAAJEE and VistALink, 3-2

Software, 4-2

Deployment Descriptors

application.xml File, A, 1

Samples, A, 1

web.xml File

A, 1, 4

weblogic.xml File

A, 4

Design/Set Up Application Roles, 4-13

Developer

KAAJEE Installation, 3-1

Workstation

Platform Requirements, 3-1

Developer's Guide, II-1

DIEDIT Option, 5-3

DIVISION Multiple Field (#16), 7-11, 11-10

Divisions

From a User's New Person File, 7-11

Providing Helper Function for User's Default Division

Enhancement, 2-1

Switching

All Divisions at the Login Division's Computing

Facility, 7-11

Divisions from a User's New Person File, 7-11

Providing the Ability for the User to Switch

Divisions, 7-10

Documentation

Revisions, iii

E
ear File, 4-6, 4-7, 5-3

Glossary, 4

Electronic Signatures, 9-3

Enabling

Cactus Unit Test Support, 10-1

Enforce Failed Login Attempt Limit Issue, 2-1

Enhancements

KAAJEE, 2-1

Providing Helper Function for User's Default Division,

2-1

Enter or Edit File Entries Option, 5-3

Enter/Edit Kernel Site Parameters Option, 8-2

EPS Anonymous Directories, 3-4

Error logging on or retrieving user information (Error

Message), 11-11

Error retrieving user information (Error Message), 11-5

Errors

Authorization failed for your user account on the M

system, 11-6

Could not

Get a connection from connector pool, 11-4

Match you with your M account, 11-9

Error logging on or retrieving user information, 11-11

Error retrieving user information, 11-5

Forms authentication login failed, 11-2

Institution/division you selected for login is not valid for

your M user account, 11-10

Login failed due to too many invalid logon attempts, 11-

7

Login-related, 11-1

Logins are disabled on the M system, 11-9

Not a valid ACCESS CODE/VERIFY CODE pair, 11-8

You are not authorized to view this page, 11-2, 11-3

Your verify code has expired or needs changing, 11-7

EVS Anonymous Directories, xv

Examples

KAAJEE Configuration File, 6-5

Exemptions

SAC, 8-15

Exported Options, 8-11

External Relations, 8-12

F
Failed

Access Attempts Log, 8-8, 9-2

Login Attempt Limit, Enforcement Issue, 2-1

FatKAAT

Download Home Page Web Address, 3-4

Features

KAAJEE, 1-2

Fields

APP PROXY ALLOWED (#.11), 8-11

DIVISION Multiple (#16), 7-11, 11-10

LoginUserInfoVO Object, 7-3

SEND TO J2EE (#.05), 5-3, 8-8, 8-10

SESSION_KEY, 7-3

Figures and Tables, ix

FileMan File Protection, 9-4

Files

application.xml, A, 1

Configuration File Elements, 6-1

ear, 4-6, 4-7, 5-3

 Index

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Index-3

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Glossary, 4

HealtheVetVistaSmallBlue.jpg, 4-9

HealtheVetVistaSmallWhite.jpg, 4-9

INSTITUTION (#4), 7-5, 7-9

Glossary, 3, 5, 11

j2ee.jar, 4-6

jaxen-full.jar, 4-6

jdbc.properties, 4-4, 4-5

KAAJEE

Configuration, 4-9, 4-10, 4-11, 10-1

Example, 6-5

Distribution Zip, 4-5, 4-8

Jar, 4-5

kaajee-1.0.0.019.jar, 3-6, 4-5, 4-6, 4-7, 4-11

kaajeeConfig.xml, 3-9, 4-9, 6-1, 7-11

KERNEL SYSTEM PARAMETERS (#8989.3), 7-2, 7-

5, 8-2

Log4J, 4-6

log4j-1.2.8.jar, 4-6

login.jsp, 4-8

loginCookieInfo.htm, 4-8

loginerror.jsp, 4-8

loginerrordisplay.jsp, 4-8

logout.jsp, 7-11

NAME COMPONENTS (#20), 7-4, 7-5

navigationerrordisplay.jsp, 4-8

NEW PERSON (#200), 6-3, 7-1, 7-2, 7-4, 7-5, 7-10, 7-

11, 8-11, 11-10

REMOTE PROCEDURE (#8994), 8-10

saxpath.jar, 4-6

SDS jar, 4-7

Security, 9-4

SECURITY KEY (#19.1), 5-3, 8-8, 8-10

SessionTimeout.jsp, 4-9

SIGN-ON LOG (#3.081), 1-3, 7-11, 8-8, 8-9, 9-2

vha-stddata-basic-13.0.jar, 4-5, 4-7

vha-stddata-client-13.0.jar, 4-5, 4-7

war, 5-3

Glossary, 4, 12

web.xml, 1-2, 4-11, 4-13, 4-14, 5-1, 7-1, 10-1, 10-2, 11-

3

A, 1, 4

weblogic.jar, 4-6

weblogic.xml, 1-2, 1-3, 3-8, 4-13, 5-1, 5-2, 5-3, 7-1, 8-

10, 11-3

A, 4

Files and Fields, 8-10, 8-11

Formats

J2EE Username, 7-1

Forms authentication login failed (Error Message), 11-2

Functionality

CCOW Functionality Enabled, 4-15

Future Enhancements

KAAJEE, 2-1

Providing Helper Function for User's Default Division,

2-1

Purge KAAJEE SSPI Tables at System Startup, 2-2

Support Change Verify Code, 2-1

G
getIsDefault Method, 7-9

getLoginDivisionVistaProviderDivisions() Method, 7-4, 7-

11

getLoginStationNumber() Method, 7-4

getName Method, 7-9

getNumber Method, 7-9

getPermittedNewPersonFileDivisions() Method, 7-4, 7-11

getUserDegree() Method, 7-4

getUserDuz() Method, 7-4

getUserFirstName() Method, 7-5

getUserLastName() Method, 7-5

getUserMiddleName() Method, 7-5

getUserName01() Method, 7-5

getUserNameDisplay() Method, 7-5

getUserParentAdministrativeFacilityStationNumber()

Method, 7-5

getUserParentComputerSystemStationNumber() Method,

7-5

getUserPrefix() Method, 7-5

getUserSuffix() Method, 7-5

Globals

Mapping, 8-10

Translation, 8-10

Glossary, 1

Home Page Web Address, Glossary, 13

gov.va.med.authentication.kernel Package, 11-3

Grant Special Group to All Authenticated Users (Magic

Role), 5-5

Groups, 1-2, 4-13, 5-3, 5-5, 8-10

Declare, 5-2

Guidelines

Programming, 7-1

H
HealtheVet-VistA Software Requirements, 8-12

HealtheVetVistaSmallBlue.jpg File, 4-9

HealtheVetVistaSmallWhite.jpg File, 4-9

Home Pages

Acronyms Home Page Web Address, Glossary, 13

Adobe Acrobat Quick Guide Web Address, xv

Adobe Home Page Web Address, xv

Apache

Jakarta Cactus Website, 10-1

Jakarta Project Web Address, 4-7

ASIS Documents

Log4j Guidelines Website, 8-6

FatKAAT

Download Home Page Web Address, 3-4

Glossary Home Page Web Address, Glossary, 13

KAAJEE

Home Page Web Address, xv

Kernel

RPCs Website, 8-10

SDS Home Page Web Address, 4-5, 9-3

SDS Website, 4-4, 4-5, 7-1, 9-3

SOP 192-039 Website, 9-5

VHA CSO Website, 3-2

Index

Index-4 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

VHA Software Document Library (VDL)

Home Page Web Address, xv, 1-3

IFR Home Page Web Address, 8-3

VistALink

Website, xv

VistALink Home Page Web Address, 8-6

WebLogic

Documentation Website, 1-6, 4-1

How to

Use this Manual, xiii

HTTP, 1-8, 3-8, 7-2, 9-2, 11-2

Session Object, 7-2

HttpSessionAttributeListener method, 4-12

HttpSessionListener's sessionDestroyed Method, 4-12

Hyper Text Transport Protocol (HTTP), 1-8, 3-8, 7-2, 9-2,

11-2

I
Images

HealtheVetVistaSmallBlue.jpg, 4-9

HealtheVetVistaSmallWhite.jpg, 4-9

Implementation and Maintenance (J2EE Site), 8-1

Import

KAAJEE Jar Files, 4-5

KAAJEE Login Folder, 4-8

Other Dependent Jar Files, 4-6

Inquire Option, 8-14

Installation

KAAJEE Developer Instructions, 3-1

KAAJEE Virgin Installation, 3-3

INSTITUTION File (#4), 7-5, 7-9

Glossary, 3, 5, 11

Institution getVistaProvider() API, 7-1, 7-2

Institution.getVistaProvider Method, 7-11

Institution/division you selected for login is not valid for

your M user account (Error Message), 11-10

Instructions

Installing KAAJEE for Development, 3-1

KAAJEE Virgin Installation, 3-3

Integrating KAAJEE with an Application, 4-1

Integration Agreements, 8-14

Integration Agreements Menu Option, 8-14

Interfaces, 9-3

Internal Relations, 8-15

Introduction

KAAJEE, 1-1

Introductory Text

Suggested System Announcement Text, 6-4

isCallerInRole Method, 7-1

Issues

Enforce Failed Login Attempt Limit, 2-1

Outstanding, 2-1

KAAJEE, 2-1

isUserInRole Method, 5-1, 7-1

J
J2EE

Container-enforced Security Interfaces, 7-1

Form-based Authentication, 1-8

Username Format, 7-1

Web-based Application Authentication Login Page, 1-

10

j2ee.jar File, 4-6

Java Server Page Web Page Sample, 7-6

JavaBean Example

VistaDivisionVO Object, 7-9

jaxen-full.jar File, 4-6

jdbc.properties File, 4-4, 4-5

JNDI, 6-1, 7-10, 11-4

Journaling

Globals, 8-10

JSP Web Page Sample, 7-6

K
KAAJEE

Cactus Testing, 10-1

Configuration File, 4-9, 4-10, 4-11, 6-1, 10-1

Elements, 6-1

Example, 6-5

Dependencies, 4-2

Distribution Zip File, 4-5, 4-8

Features, 1-2

Future Enhancements, 2-1

Home Page Web Address, xv

Installation

Developers, 3-1

Virgin Installation, 3-3

Interfaces, 9-3

Introduction, 1-1

Listeners, 4-12, 7-11

Namespace, 8-1, 8-15

Outstanding Issues, 2-1

Overview, 1-1

Remote Access/Transmissions, 9-2

Software

Dependencies for Consuming Applications, 1-4

Requirements, 4-2

SSPI Tables

Deleting Entries, 8-4

Troubleshooting, 11-1

VistA M Server Patch Dependencies, 1-4

VistALink Dependencies, 3-2

kaajee-1.0.0.019.jar File, 3-6, 4-5, 4-6, 4-7, 4-11

kaajeeConfig.xml File, 3-9, 4-9, 6-1, 7-11

KaajeeHttpSessionListener Listener, 4-12

KaajeeSessionAttributeListener Listener, 4-12

KAAJEEWEBLOGONTOKEN Table, 10-6

Kernel

Namespace, 8-15

Patches

XU*8.0*451, 1-4, 9-4

RPC Website, 8-10

KERNEL SYSTEM PARAMETERS File (#8989.3), 7-2,

7-5, 8-2

Key Variables, 8-15

Keys, xiv, 9-4

 Index

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Index-5

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

VistA M Server J2EE security keys, 1-2, 3-8, 4-13, 5-1,

5-2, 5-3, 5-5, 5-6, 8-8, 9-4, 11-2

VistA M Server J2EE Security Keys, 5-3

VistA M Server Security Keys, 5-6

XUKAAJEE_SAMPLE, 9-4

L
Listeners

KAAJEE, 4-12, 7-11

KaajeeHttpSessionListener, 4-12

KaajeeSessionAttributeListener, 4-12

Log4J, 4-1, 4-7, 4-13, 11-3

Configuration, 8-5

File, 4-6

Log, 8-6, 9-1, 11-3

log4j-1.2.8.jar File, 4-6

Logging Utility, Apache Jakarta Project, 4-6

Login

Attempt Limit, Enforcement of Failed Attempts Issue,

2-1

Error Messages, 11-1

Parameter Passing for J2EE Web-based Applications, 1-

13

Persistent Cookie Information, 1-17

Procedures for J2EE Web-based Applications, 1-12

Screen

J2EE Web-based Application Authentication, 1-10

Login failed due to too many invalid logon attempts (Error

Message), 11-7

login.jsp, 4-8

loginCookieInfo.htm File, 4-8

loginerror.jsp File, 4-8

loginerrordisplay.jsp File, 4-8

Logins

KAAJEE Login Server Requirements, 8-4

Logins are disabled on the M system (Error Message), 11-9

LoginUserInfoVO Object, 2-1, 4-12, 6-3, 7-2, 7-10, 7-11,

10-2, 10-3, 10-6

Constructor Summary, 7-3

Field Summary, 7-3

Methods, 7-5, 7-8

LoginUserInfoVO() Constructor, 7-3

LoginUserInfoVO.SESSION_KEY String, 7-2

logout.jsp File, 7-11

Logouts, 7-11

KAAJEE, 8-9

Logs

Failed Access Attempts, 8-8, 9-2

Log4J, 8-6, 9-1

Monitoring, 8-6, 9-1

M-side, 8-8, 9-1

Sign-On, 8-8, 9-2

M
Magic Role, 5-5

Mail Groups, 9-1

Maintenance and Implementation (J2EE), 8-1

Mapping

Globals, 8-10

J2EE Security Role Names to WebLogic Group Names

(weblogic.xml), 5-3

MBeanMaker Utility, 1-6

Menus

Custodial Package Menu, 8-14

DBA, 8-14

DBA IA CUSTODIAL MENU, 8-14

DBA IA ISC, 8-14

DBA IA SUBSCRIBER MENU, 8-14

DBA Option, 8-14

Integration Agreements Menu, 8-14

Subscriber Package Menu, 8-14

XUCOMMAND, 5-6, 8-11

Messages

Authorization failed for your user account on the M

system, 11-6

Could not

Get a connection from connector pool, 11-4

Match you with your M account, 11-9

Error logging on or retrieving user information, 11-11

Error retrieving user information, 11-5

Forms authentication login failed, 11-2

Institution/division you selected for login is not valid for

your M user account, 11-10

Login failed due to too many invalid logon attempts, 11-

7

Logins are disabled on the M system, 11-9

Not a valid ACCESS CODE/VERIFY CODE pair, 11-8

You are not authorized to view this page, 11-2, 11-3

Your verify code has expired or needs changing, 11-7

Methods

getIsDefault(), 7-9

getLoginDivisionVistaProviderDivisions(), 7-4, 7-11

getLoginStationNumber(), 7-4

getName(), 7-9

getNumber(), 7-9

getPermittedNewPersonFileDivisions(), 7-4, 7-11

getUserDegree(), 7-4

getUserDuz(), 7-4

getUserFirstName(), 7-5

getUserLastName(), 7-5

getUserMiddleName(), 7-5

getUserName01(), 7-5

getUserNameDisplay(), 7-5

getUserParentAdministrativeFacilityStationNumber(),

7-5

getUserParentComputerSystemStationNumber(), 7-5

getUserPrefix(), 7-5

getUserSuffix(), 7-5

HttpSessionAttributeListener, 4-12

HttpSessionListener's sessionDestroyed, 4-12

Institution.getVistaProvider, 7-11

isCallerInRole, 7-1

isUserInRole, 5-1, 7-1

LoginUserInfoVO Object, 7-5, 7-8

toString()

LoginUserInfoVO Object, 7-5

VistaDivisionVO Object, 7-9

Index

Index-6 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

VistaDivisionVO Object, 7-9

Monitoring

Logs, 8-6, 9-1

M-side Log, 8-8, 9-1

N
NAME COMPONENTS File (#20), 7-4, 7-5

Namespace

KAAJEE, 8-1, 8-15

navigationerrordisplay.jsp File, 4-8

NEW PERSON File (#200), 6-3, 7-1, 7-2, 7-4, 7-5, 7-10, 7-

11, 8-11, 11-10

Not a valid ACCESS CODE/VERIFY CODE pair (Error

Message), 11-8

O
Objects

LoginUserInfoVO, 2-1, 4-12, 6-3, 7-2, 7-10, 7-11, 10-2,

10-3, 10-6

Constructor Summary, 7-3

Field Summary, 7-3

Methods, 7-5, 7-8

Value, 7-2

VistaDivisionVO, 7-8

Constructor Summary, 7-9

JavaBean Example, 7-9

Methods, 7-9

Official Policies, 9-4

Options

ACTIVE by Custodial Package, 8-14

Custodial Package Menu, 8-14

DBA, 8-14

DBA IA CUSTODIAL, 8-14

DBA IA CUSTODIAL MENU, 8-14

DBA IA INQUIRY, 8-14

DBA IA ISC, 8-14

DBA IA SUBSCRIBER MENU, 8-14

DBA IA SUBSCRIBER Option, 8-14

DBA Option, 8-14

DIEDIT, 5-3

Enter or Edit File Entries, 5-3

Enter/Edit Kernel Site Parameters, 8-2

Exported, 8-11

Inquire, 8-14

Integration Agreements Menu, 8-14

Print ACTIVE by Subscribing Package, 8-14

Subscriber Package Menu, 8-14

XUCOMMAND, 5-6, 8-11

XUS KAAJEE WEB LOGON, 5-6, 8-11

XUSITEPARM, 8-2

Orientation, xiii

Other Approaches Not Recommended

Cactus Testing, 10-6

Outstanding Issues, 2-1

KAAJEE, 2-1

Overview

KAAJEE, 1-1

P
Packages

gov.va.med.authentication.kernel, 11-3

Page not authorized (Error Message), 11-2, 11-3

Parameter Passing

Login, 1-13

Patches

KAAJEE, 1-4

Revisions, iv

XU*8.0*451, 1-4, 9-4

Persistent Cookie

Information, 1-17

Policies, Official, 9-4

Preliminary Considerations

Developer Workstation Requirements, 3-1

Principals, 1-6, 5-1, 4

Print ACTIVE by Subscribing Package Option, 8-14

Procedures

Login, 1-12

Paramter Passing, 1-13

Logouts, 7-11

Signon, 1-12

Parameter Passing, 1-13

Web-based Application Procedures to Implement

KAAJEE, 4-3

Programming Guidelines, 7-1

Protecting

Globals, 8-10

KAAJEE Web Pages, 4-14

Resources in Your J2EE Application, 5-5

Purging, 8-12

KAAJEE SSPI Tables at System Startup, 2-2

R
Reader

Assumptions About the, xiv

Reference Materials, xv

Relations of KAAJEE-related Software

External, 8-12

Internal, 8-15

VistA M Server, 8-15

Remote Access/Transmissions, 9-2

Connections, 9-2

Remote Procedure Calls (RPCs), 8-8

REMOTE PROCEDURE File (#8994), 8-10

Revision History, iii

Documentation, iii

Patches, iv

Roles

Administering, 5-6

Application Involvement in User/Role Management, 7-1

Design/Setup/Administration, 5-1

Magic Role, 5-5

Routines

Callable, 8-12

RPC Broker

Namespace, 8-15

 Index

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Index-7

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

RPCs, 8-8

Kernel RPC Website, 8-10

XUS ALLKEYS, 8-8

XUS CCOW VAULT PARAM, 8-11

XUS FATKAAT SERVERINFO, 8-11

XUS KAAJEE GET USER INFO, 8-8

XUS KAAJEE LOGOUT, 7-11, 8-9

S
SAC Exemptions, 8-15

saxpath.jar File, 4-6

SDS

Home Page Web Address, 4-5, 9-3

jar Files, 4-7

Website, 4-4, 4-5, 7-1, 9-3

Security, 9-1

Files, 9-4

Keys, xiv, 9-4

VistA M Server J2EE security keys, 1-2, 3-8, 4-13,

5-1, 5-2, 5-3, 5-5, 5-6, 8-8, 9-4, 11-2

VistA M Server J2EE Security Keys, 5-3

VistA M Server Security Keys, 5-6

Management, 9-1

SECURITY KEY File (#19.1), 5-3, 8-8, 8-10

Security Keys

XUKAAJEE_SAMPLE, 9-4

Security Service Provider Interfaces (SSPI), 1-5

SEND TO J2EE Field (#.05), 5-3, 8-8, 8-10

ServletTestCase Example

Cactus Testing, 10-4

SESSION_KEY Field, 7-3

SessionTimeout.jsp File, 4-9

Set Up

KAAJEE Configuration File, 4-9

Signatures, Electronic, 9-3

Signon

Parameter Passing for J2EE Web-based Applications, 1-

13

Procedures for J2EE Web-based Applications, 1-12

SIGN-ON LOG File (#3.081), 1-3, 7-11, 8-8, 8-9, 9-2

singletons, 4-6

Software

Dependencies, 4-2

KAAJEE and VistALink, 3-2

KAAJEE Dependencies, 1-4

KAAJEE Software Dependencies for Consuming

Applications, 1-4

Product Security, 9-1

Requirements, 4-2

COTS, 8-13

HealtheVet-VistA, 8-12

Variables, 8-15

XOBS V. 1.5 (VistALink), 8-15

SOP 192-039

Website, 9-5

SSPI, 1-5

Standard Data Services (SDS) Institution Utilities, 7-11

Strings

LoginUserInfoVO.SESSION_KEY, 7-2

Subscriber Package Menu Option, 8-14

Suggested System Announcement Text, 6-4

Support for

Change Verify Code, 2-1

Switching Divisions

Providing the Ability for the User to Switch Divisions,

7-10

System Announcement Text, Sample, 6-4

Systems Management Guide, III-1

T
Table of Contents, v

Tables

Deleting KAAJEE SSPI Table Entries, 8-4

KAAJEEWEBLOGONTOKEN, 10-6

Tables and Figures, ix

Testing

Cactus Testing for KAAJEE, 10-1

There was a login error detected by the login system

Authorization failed for your user account on the M

system (Error Message), 11-6

Could not

Get a connection from connector pool (Error

Message), 11-4

match you with your M account (Error Message), 11-

9

Error logging on or retrieving user information (Error

Message), 11-11

Error retrieving user information (Error Message), 11-5

Institution/division you selected for login is not valid for

your M user account (Error Message), 11-10

Login failed due to too many invalid logon attempts

(Error Message), 11-7

Logins are disabled on the M system (Error Message),

11-9

Not a valid ACCESS CODE/VERIFY CODE pair

(Error Message), 11-8

Your verify code has expired or needs changing (Error

Message), 11-7

toString Method

VistaDivisionVO Object, 7-9

toString() Method

LoginUserInfoVO Object, 7-5

Translation

Globals, 8-10

Troubleshooting

Authorization failed for your user account on the M

system, 11-6

Could not

Get a connection from connector pool, 11-4

Match you with your M account, 11-9

Error logging on or retrieving user information, 11-11

Error retrieving user information, 11-5

Forms authentication login failed, 11-2

Institution/division you selected for login is not valid for

your M user account, 11-10

KAAJEE, 11-1

Login failed due to too many invalid logon attempts, 11-

7

Index

Index-8 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

Logins are disabled on the M system, 11-9

Not a valid ACCESS CODE/VERIFY CODE pair, 11-8

You are not authorized to view this page, 11-2, 11-3

Your verify code has expired or needs changing, 11-7

U
URLs

Acronyms Home Page Web Address, Glossary, 13

Adobe Acrobat Quick Guide Web Address, xv

Adobe Home Page Web Address, xv

Apache

Jakarta Cactus Website, 10-1

Jakarta Project Web Address, 4-7

ASIS Documents

Log4j Guidelines Website, 8-6

FatKAAT

Download Home Page Web Address, 3-4

Glossary Home Page Web Address, Glossary, 13

KAAJEE

Home Page Web Address, xv

Kernel

RPCs Website, 8-10

SDS Home Page Web Address, 4-5, 9-3

SDS Website, 4-4, 4-5, 7-1, 9-3

SOP 192-039

Website, 9-5

VHA CSO Website, 3-2

VHA Software Document Library (VDL)

Home Page Web Address, xv, 1-3

IFR Home Page Web Address, 8-3

VistALink Home Page Web Address, 8-6

WebLogic

Documentation Website, 1-6, 4-1

Use of VistALink to Authenticate Users Based on

Configured Station Numbers, 4-3

User Guide, I-1

Username

J2EE Format, 7-1

Users

Administering, 5-6

Application Involvement in User/Role Management, 7-1

Using Cactus in a KAAJEE-Secured Application, 10-2

Utilities

Logging Utility, Apache Jakarta Project, 4-6

MBeanMaker, 1-6

Standard Data Services (SDS) Institution Utilities, 7-11

V
VA FileMan File Protection, 9-4

Value Object, 7-2

Variables

Key, 8-15

Software-wide, 8-15

Verify Code

Expired (Error Message), 11-7

Not Valid (Error Message), 11-8

VHA CSO

Website, 3-2

VHA Software Document Library (VDL)

Home Page Web Address, xv, 1-3

IFR Home Page Web Address, 8-3

vha-stddata-basic-13.0.jar File, 4-5, 4-7

vha-stddata-client-13.0.jar File, 4-5, 4-7

VistA M Server

J2EE security keys, 1-2, 3-8, 4-13, 5-1, 5-2, 5-3, 5-5, 5-

6, 8-8, 9-4, 11-2

J2EE Security Keys, 5-3

Security Keys, 5-6

VistaDivisionVO Object, 7-8

Constructor Summary, 7-9

JavaBean Example, 7-9

Methods, 7-9

VistaDivisionVO() Constructor, 7-9

VistALink

Connection Specs for Subsequent VistALink Calls, 7-10

Connector Pool, 7-10

VistaLinkDuzConnectionSpec, 7-10

XOBS V. 1.5, 8-15

VistALink Home Page Web Address, xv, 8-6

VistaLinkDuzConnectionSpec, 7-10

VistALink's Institution Mapping, 4-10, 6-1, 11-4

VPID, 1-2, 7-2, 7-10

W
war File, 5-3

Glossary, 4, 12

Web Pages

Acronyms Home Page Web Address, Glossary, 13

Adobe Acrobat Quick Guide Web Address, xv

Adobe Home Page Web Address, xv

Apache

Jakarta Cactus Website, 10-1

Jakarta Project Home Page Web Address, 4-7

ASIS Documents

Log4j Guidelines Website, 8-6

FatKAAT

Download Home Page Web Address, 3-4

Glossary Home Page Web Address, Glossary, 13

KAAJEE

Home Page Web Address, xv

Kernel

RPC Website, 8-10

SDS Home Page Web Address, 4-5, 9-3

SDS Website, 4-4, 4-5, 7-1, 9-3

SOP 192-039 Website, 9-5

VHA CSO Website, 3-2

VHA Software Document Library (VDL)

Home Page Web Address, xv, 1-3

IFR Home Page Web Address, 8-3

VistALink

Website, xv

VistALink Home Page Web Address, 8-6

WebLogic

Documentation Website, 1-6, 4-1

web.xml File, 1-2, 4-11, 4-13, 4-14, 5-1, 7-1, 10-1, 10-2,

11-3

 Index

July 2020 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 Index-9

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

A, 1, 4

Web-based

Application Procedures to Implement KAAJEE, 4-3

Authentication, 1-10

WebLogic

Application Server, 1-2, 3-3, 4-1, 4-2, 9-3

Documentation

Website, 1-6

Documentation Website, 4-1

KAAJEE Login Server Requirements, 8-4

weblogic.jar, 4-6

weblogic.xml File, 1-2, 1-3, 3-8, 4-13, 5-1, 5-2, 5-3, 7-1, 8-

10, 11-3

A, 4

X
XML

application.xml File, A, 1

web.xml File

A, 1, 4

weblogic.xml File

A, 4

XUCOMMAND Menu, 5-6, 8-11

XUKAAJEE_SAMPLE Security Key, 9-4

XUS ALLKEYS RPC, 8-8

XUS CCOW VAULT PARAM RPC, 8-11

XUS FATKAAT SERVERINFO RPC, 8-11

XUS KAAJEE GET USER INFO RPC, 8-8

XUS KAAJEE LOGOUT RPC, 7-11, 8-9

XUS KAAJEE WEB LOGON Option, 5-6, 8-11

XUSITEPARM Option, 8-2

Y
You are not authorized to view this page (Error Message),

11-2, 11-3

Your verify code has expired or needs changing (Error

Message), 11-7

Index

Index-10 Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE)

 July 2020

 Deployment Guide

 Version 1.2 on WebLogic 10.3.6 and higher

