
RPC Broker 1.1

User Guide

May 2020

Department of Veterans Affairs (VA)

Office of Information and Technology (OIT)

Enterprise Program Management Office (EPMO)

RPC Broker 1.1
User Guide ii May 2020

Revision History

Document Revisions

Date Revision Description Authors
05/06/2020 8.0 Tech Edits based on the Broker

Development Kit (BDK) release with
RPC Broker Patch XWB*1.1*71.
• Updated Section 1.1.1

functionality added with
XWB*1.1*71

• Changed all references
throughout to “Patch XWB*1.1*71”
as the latest BDK release.

• Updated references to show RPC
Broker Patch XWB*1.1*71
supports Delphi 10.3, 10.2, 10.1,
10.0, and XE8 throughout.

• This was a bug fix-only patch, so
no new options, routines, files,
fields, security keys, APIs, or
RPCs.

• Reformatted all references to file
and field name numbers
throughout.

• Updated all styles and formatting
to match current documentation
standards and style guidelines.

RPC Broker 1.1; XWB*1.1*71 BDK

Developer: RG
Technical Writer: TB

05/18/2017 7.2 Updated the CALLBACKTYPE entry
in “Table 10: Fields in the REMOTE
APPLICATION (#8994.5) File” to
include the “S—Station-number
callback” value.
RPC Broker 1.1; XWB*1.1*65 BDK

Developer: HW
Technical Writer: TB

05/17/2017 7.1 Tech Edits:
• Updated/Added “Caution” note

for the Reference PType input
parameter in Table 6, Step 1 in
Section 3.6, and Section 4.3.

• Reformatted all references to
file and field name numbers
throughout.

RPC Broker 1.1; XWB*1.1*65 BDK

Developers: HW and VD
Technical Writer: TB

RPC Broker 1.1
User Guide iii May 2020

Date Revision Description Authors
01/24/2017 7.0 Tech Edits based on release of RPC

Broker Patch XWB*1.1*65:
• Reformatted document to

follow current documentation
standards and style formatting
requirements.

• Inserted Section 5, “Broker
Security Enhancement (BSE);”
content taken from Chapters
1-2 in the Broker Security
Enhancement (BSE) Patch
XWB*1.1*45 Supplement.

• Added content and references
to the TXWBSSOi component
in Sections 1.1 and 2.4.

• Updated Section 1.1.1 for 2-
factor authentication feature
and current level of Delphi
version support.

• Updated Section 2.1.4.
• Added Caution note to the

Reference PType in Table 6.
• Updated Figure 7.
• Updated registry information in

Section 4.1.1.
• Added Figure 9.
• Corrected Section 4.1.2.
• Updated debug instructions in

Section 6.1.
• Updated instructions in

Section 6.2.1.
• Updated Section 7.1 and 7.1.1

for currently supported Delphi
versions.

• Updated Section 7.1.2 and
7.1.3 for .bpl file references.

• Changed references from
“Borland Delphi” to
“Embarcadero Delphi”
throughout.

• Added new glossary terms:
SAML and XML.

RPC Broker 1.1; XWB*1.1*65 BDK

Developer: HW
Technical Writer: TB

RPC Broker 1.1
User Guide iv May 2020

Date Revision Description Authors
04/27/2016 6.0 Tech Edits:

• Reformatted document to
follow current documentation
standards and style formatting
requirements.

• Updated the “Orientation”
section.

• Updated Section 1.1.1.
• Updated Table 3 for

TRPCBroker component key
properties.

• Updated Section 2.1.4.
• Updated Figure 2.
• Deleted Sections 2.3,

"TSharedBroker Component"
and 2.4, "TSharedRPCBroker
Component."

• Updated Section 3.2. Added
Section 3.2.1 and titled and
modified Section 3.2.2.

• Updated Table 7.
• Updated Section 3.7.2.
• Updated Figure 7.
• Updated Section 4.1.
• Updated Figure 8.
• Updated Section 4.1.2.
• Update Figure 10.
• Updated Sections 6.2.1 and

6.2.2.
• Updated Section 7.
• Updated Sections 7.1.1, 7.1.2,

and 7.1.3.
• Deleted, Sections 6.1.4,

"SharedRPCBroker_RXE5.bpl
File" and 6.1.5,
"SharedRPCBroker_DXE5.bpl
File."

• Deleted Sections 6.2, “Delphi
XE4 Packages,” 6.3, "Delphi
XE3 Packages," and 6.4,
“Delphi XE2 Packages.”

• Updated Section 8.1.

Developer: HW
Technical Writer: TB

RPC Broker 1.1
User Guide v May 2020

Date Revision Description Authors
• Deleted references to

TSharedRPCBroker and
TSharedBroker components
throughout, since they were
removed from the software.

• Updated help file references
from “BROKER.HLP” to
“Broker_1_1.chm”
throughout.

• Updated references to show
RPC Broker Patch
XWB*1.1*60 supports Delphi
XE7, XE6, XE5, and XE4
throughout.

RPC Broker 1.1; XWB*1.1*60 BDK

12/04/2013 5.1 Tech Edit:
• Updated document for RPC

Broker Patch XWB*1.1*50
based on feedback from HW.

• Removed references related to
Virgin Installations throughout.

• Updated file name references
throughout.

• Removed distribution files that
are obsolete or no longer
distributed throughout.

• Updated RPC Broker support
on the following software:
o Microsoft® XP and 7.0

(operating system)
throughout.

o Microsoft® Office Products
2010 throughout.

o Changed references from
“Borland” to
“Embarcadero” and
updated support for Delphi
Versions XE5, XE4, XE3,
and XE2 throughout.

• Updated all images for prior
Microsoft® Windows operating
systems to Windows 7
dialogues.

• Deleted Section 6, “RPC
Broker Developer Utilities,”

Developer: HW
Technical Writer: TB

RPC Broker 1.1
User Guide vi May 2020

Date Revision Description Authors
since those utilities no longer
exist in this latest version of
the Broker.

• Updated the “RPC Broker and
Delphi” section for Delphi XE5,
XE4, XE3, and XE2.

• Removed sample DLL from
Section 8.

• Redacted document for the
following information:
o Names (replaced with role

and initials).
o Production IP addresses

and ports.
o Intranet websites.

RPC Broker 1.1; XWB*1.1*50 BDK
07/25/2013 5.0 Tech Edit:

• Baselined document.
• Updated all styles and

formatting to follow current
internal team style template.

• Updated all organizational
references.

RPC Broker 1.1; XWB*1.1*50 BDK

Developer: HW
Technical Writer: TB

08/26/2008 4.2 Updates for RPC Broker Patch
XWB*1.1*50:

• Added new properties.
• Support for Delphi 5, 6, 7,

2005, 2006, and 2007.
• Changed references form

Patch 47 to Patch 50 where
appropriate.

RPC Broker 1.1; XWB*1.1*50 BDK

Project Manager: JSch
Developer: JI
SQA: GS
Technical Writer: TB

07/03/2008 4.1 Updates for RPC Broker Patch
XWB*1.1*47:

• No content changes required;
no new public classes,
methods, or properties added
to those available in
XWB*1.1*40.

• Bug fixes to the
ValidAppHandle function and
fixed memory leaks.

Common Services (CS)
Development Team
Oakland, CA OIFO:
Project Manager: JSch
Developer: JI
SQA: GS
Technical Writer: TB

RPC Broker 1.1
User Guide vii May 2020

Date Revision Description Authors
• Support added for Delphi

2005, 2006, and 2007.
• Reformatted document.
• Changed references form

Patch 40 to Patch 47 where
appropriate.

RPC Broker 1.1; XWB*1.1*47 BDK

02/24/2005 4.0 Revised Version for RPC Broker
Patches XWB*1.1*35 and 40.
Also, reviewed document and edited
for the “Data Scrubbing” and the “PDF
508 Compliance” projects.
Data Scrubbing—Changed all
patient/user TEST data to conform to
standards and conventions as
indicated below:

• The first three digits (prefix) of
any Social Security Numbers
(SSN) start with “000” or “666.”

• Patient or user names are
formatted as follows:
XWBPATIENT,[N] or
XWBUSER,[N] respectively,
where the N is a number
written out and incremented
with each new entry
(e.g., XWBPATIENT, ONE,
XWBPATIENT, TWO, etc.).

• Other personal demographic-
related data (e.g., addresses,
phones, IP addresses, etc.)
were also changed to be
generic.

PDF 508 Compliance—The final PDF
document was recreated and now
supports the minimum requirements
to be 508 compliant (i.e., accessibility
tags, language selection, alternate
text for all images/icons, fully
functional Web links, successfully
passed Adobe Acrobat Quick Check).
RPC Broker 1.1; XWB*1.1*35 & 40
BDK

Developer: JI
Technical Writer: TB

05/08/2002 3.0 Revised Version for RPC Broker
Patch XWB*1.1*26.

Developer: JI
Technical Writer: TB

RPC Broker 1.1
User Guide viii May 2020

Date Revision Description Authors
RPC Broker 1.1; XWB*1.1*26 BDK

05/01/2002 2.0 Revised Version for RPC Broker
Patch XWB*1.1*13.
RPC Broker 1.1; XWB*1.1*13 BDK

Developer: JI
Technical Writer: TB

09/--/1997 1.0 Initial RPC Broker Version 1.1
software release.
RPC Broker 1.1

Developer: JI
Technical Writer: TB

Patch Revisions
For the current patch history related to this software, see the Patch Module on FORUM.

RPC Broker 1.1
User Guide ix May 2020

Table of Contents

Revision History ...ii
List of Figures ..xi
List of Tables ...xi
Orientation ... xiii
1 Introduction .. 1

1.1 About this Version of the BDK ... 1
1.1.1 Features .. 2
1.1.2 Backward Compatibility Issues ... 3

2 RPC Broker Components for Delphi ... 4
2.1 TRPCBroker Component .. 4

2.1.1 TRPCBroker Properties and Methods ... 4
2.1.2 TRPCBroker Key Properties ... 5
2.1.3 TRPCBroker Key Methods .. 6
2.1.4 How to Connect to an M Server .. 7

2.2 TCCOWRPCBroker Component ... 9
2.2.1 Single Signon/User Context (SSO/UC) ... 9

2.3 TXWBRichEdit Component .. 9
2.4 TXWBSSOiToken Component .. 11

3 Remote Procedure Calls (RPCs) ... 12
3.1 What is a Remote Procedure Call? .. 12

3.1.1 Relationship between an M Entry Point and an RPC 12
3.2 Create Your Own RPCs... 12

3.2.1 Preliminary Considerations ... 12
3.2.2 Process ... 13

3.3 Writing M Entry Points for RPCs ... 13
3.3.1 First Input Parameter for RPCs (Required) ... 13
3.3.2 Return Value Types for RPCs ... 13
3.3.3 Input Parameter Types for RPCs (Optional) ... 16
3.3.4 RPC M Entry Point Examples ... 16

3.4 RPC Entry in the REMOTE PROCEDURE File ... 17
3.5 What Makes a Good Remote Procedure Call? .. 18
3.6 How to Execute an RPC from a Client Application 18
3.7 RPC Security: How to Register an RPC .. 19

3.7.1 Bypassing RPC Security for Development .. 20
3.7.2 BrokerExample Online Code Example .. 20

RPC Broker 1.1
User Guide x May 2020

4 Other RPC Broker APIs ... 22
4.1 GetServerInfo Function .. 22

4.1.1 Overview ... 22
4.1.2 Syntax ... 23

4.2 VistA Splash Screen Procedures ... 23
4.3 XWB GET VARIABLE VALUE RPC .. 25
4.4 M Emulation Functions ... 25

4.4.1 Translate Function .. 25
4.5 Encryption Functions ... 26

4.5.1 In Delphi .. 26
4.5.2 On the VistA M Server .. 26

4.6 $$BROKER^XWBLIB .. 26
4.7 $$RTRNFMT^XWBLIB ... 27

5 Broker Security Enhancement (BSE) ... 28
5.1 Introduction ... 28

5.1.1 Features .. 29
5.1.2 Architectural Scope ... 29

5.2 Process Overview ... 29
5.2.1 Process Diagrams ... 33

5.3 BSE-related VistA Applications and Modules .. 35
5.4 Kernel—Authentication Interface to VistA .. 36
5.5 RPC Broker .. 36

5.5.1 Client ... 36
5.5.2 Server ... 37

5.6 REMOTE APPLICATION (#8994.5) File .. 37
5.7 Security Phrase ... 39
5.8 Kernel Authentication Token ... 39

6 Debugging and Troubleshooting .. 41
6.1 How to Debug Your Client Application.. 41

6.1.1 RPC Error Trapping .. 41
6.2 Troubleshooting Connections ... 41

6.2.1 Identifying the Listener Process on the Server 41
6.2.2 Identifying the Handler Process on the Server 42
6.2.3 Testing Your RPC Broker Connection... 42

7 RPC Broker and Delphi .. 43
7.1 Delphi 10.3, 10.2, 10.1, 10.0, and XE8 Packages 43

7.1.1 Delphi Starter Edition—Not Recommended for BDK Development 43
7.1.2 XWB_RXE#.bpl File .. 44
7.1.3 XWB_DXE#.bpl File .. 44

RPC Broker 1.1
User Guide xi May 2020

8 RPC Broker Dynamic Link Library (DLL) 45
8.1 DLL Interface ... 45

8.1.1 Exported Functions ... 45
8.1.2 Header Files Provided ... 45
8.1.3 Return Values from RPCs ... 46
8.1.4 COTS Development and the DLL ... 46

Glossary .. 47
Index ... 50

List of Figures

Figure 1: Delphi’s Tool Properties Dialogue—Broker_1_1.chm Entry xix
Figure 2: OnCreate Event Handler—Sample Code ... 8
Figure 3: RPC M Entry Point Example—Sum of Two Numbers 16
Figure 4: RPC M Entry Point Example—Sorted Array... 16
Figure 5: Param Property—Sample Settings .. 18
Figure 6: Exception Handler—try...except Code—Sample Usage 19
Figure 7: RPC Broker Example Application ... 21
Figure 8: Server and Port Configuration Selection Dialogue ... 22
Figure 9: Sample Registry Information .. 23
Figure 10: VistA Splash Screen .. 24
Figure 11: Displaying a VistA Splash Screen: Sample Code .. 24
Figure 12: XWB GET VARIABLE VALUE RPC Usage—Sample Code 25
Figure 13: Encryption in VistA M Server—Sample Code .. 26
Figure 14: Decryption in VistA M Server—Sample Code .. 26
Figure 15: BSE—Process Sequence Flow Diagram ... 33
Figure 16: BSE—Process Overview.. 34

List of Tables

Table 1: Documentation Symbol Descriptions ... xiv
Table 2: Commonly Used RPC Broker Terms ... xvi
Table 3: TRPCBroker Component Key Properties .. 5
Table 4: TRPCBroker Component Methods .. 6
Table 5: RPC Broker Return Value Types ... 14
Table 6: Input Parameter Types .. 16
Table 7: REMOTE PROCEDURE File Key Field Entries .. 17
Table 8: BSE—Application Authentication Server Class Types 32

RPC Broker 1.1
User Guide xii May 2020

Table 9: BSE—Software Applications and Modules .. 35
Table 10: Fields in the REMOTE APPLICATION (#8994.5) File 37
Table 11: Header Files that Provide Correct Declarations for DLL Functions 45
Table 12: TRPCBroker Component’s Results Property... 46
Table 13: Glossary of Terms and Acronyms ... 47

RPC Broker 1.1
User Guide xiii May 2020

Orientation

How to Use this Manual
Throughout this manual, advice and instructions are offered regarding the use of the Remote
Procedure Call (RPC) Broker 1.1 Development Kit (BDK) and the functionality it provides for
Veterans Health Information Systems and Technology Architecture (VistA).

Intended Audience
The intended audience of this manual is the following stakeholders:

• Enterprise Program Management Office (EPMO)—VistA legacy development teams.

• System Administrators—System administrators at Department of Veterans Affairs (VA)
regional and local sites who are responsible for computer management and system
security on the VistA M Servers.

• Information Security Officers (ISOs)—Personnel at VA sites responsible for system
security.

• Product Support (PS).

Disclaimers
Software Disclaimer
This software was developed at the Department of Veterans Affairs (VA) by employees of the
Federal Government in the course of their official duties. Pursuant to title 17 Section 105 of the
United States Code this software is not subject to copyright protection and is in the public
domain. VA assumes no responsibility whatsoever for its use by other parties, and makes no
guarantees, expressed or implied, about its quality, reliability, or any other characteristic. We
would appreciate acknowledgement if the software is used. This software can be redistributed
and/or modified freely provided that any derivative works bear some notice that they are derived
from it, and any modified versions bear some notice that they have been modified.

 CAUTION: To protect the security of VistA systems, distribution of this software
for use on any other computer system by VistA sites is prohibited. All requests
for copies of this software for non-VistA use should be referred to the VistA
site’s local Office of Information and Technology Field Office (OITFO).

RPC Broker 1.1
User Guide xiv May 2020

Documentation Disclaimer
This manual provides an overall explanation of RPC Broker and the functionality contained in
RPC Broker 1.1; however, no attempt is made to explain how the overall VistA programming
system is integrated and maintained. Such methods and procedures are documented elsewhere.
We suggest you look at the various VA Internet and Intranet Websites for a general orientation to
VistA. For example, visit the Office of Information and Technology (OIT) VistA Development
Intranet website.

 DISCLAIMER: The appearance of any external hyperlink references in this
manual does not constitute endorsement by the Department of Veterans Affairs
(VA) of this Website or the information, products, or services contained therein.
The VA does not exercise any editorial control over the information you find at
these locations. Such links are provided and are consistent with the stated
purpose of this VA Intranet Service.

Documentation Conventions
This manual uses several methods to highlight different aspects of the material:

• Various symbols are used throughout the documentation to alert the reader to special
information. Table 1 gives a description of each of these symbols:

Table 1: Documentation Symbol Descriptions

Symbol Description

NOTE / REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION / RECOMMENDATION / DISCLAIMER: Used to caution the
reader to take special notice of critical information.

• Descriptive text is presented in a proportional font (as represented by this font).

• Conventions for displaying TEST data in this document are as follows:
o The first three digits (prefix) of any Social Security Numbers (SSN) begin with either “000”

or “666.”
o Patient and user names are formatted as follows:

− [Application Name]PATIENT,[N]

− [Application Name]USER,[N]

RPC Broker 1.1
User Guide xv May 2020

Where “[Application Name]” is defined in the Approved Application Abbreviations
document and “[N]” represents the first name as a number spelled out and
incremented with each new entry.
For example, in RPC Broker (XWB) test patient names would be documented as
follows:

XWBPATIENT,ONE; XWBPATIENT,TWO; XWBPATIENT,14, etc.

For example, in RPC Broker (XWB) test user names would be documented as
follows:

XWBUSER,ONE; XWBUSER,TWO; XWBUSER,14, etc.

• “Snapshots” of computer online displays (i.e., screen captures/dialogues) and computer
source code are shown in a non-proportional font and may be enclosed within a box.

• User’s responses to online prompts are in boldface and highlighted in yellow
(e.g., <Enter>).

• Emphasis within a dialogue box is in boldface and highlighted in blue
(e.g., STANDARD LISTENER: RUNNING).

• Some software code reserved/key words are in boldface with alternate color font.

• References to “<Enter>” within these snapshots indicate that the user should press the
<Enter> key on the keyboard. Other special keys are represented within < > angle
brackets. For example, pressing the PF1 key can be represented as pressing <PF1>.

• Author’s comments are displayed in italics or as “callout” boxes.

 NOTE: Callout boxes refer to labels or descriptions usually enclosed within a
box, which point to specific areas of a displayed image.

• This manual refers to the M programming language. Under the 1995 American National
Standards Institute (ANSI) standard, M is the primary name of the MUMPS
programming language, and MUMPS is considered an alternate name. This manual uses
the name M.

• All uppercase is reserved for the representation of M code, variable names, or the formal
name of options, field/file names, and security keys (e.g., the XUPROGMODE security
key).

 NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and
file/folder names can be written in lower or mixed case.

RPC Broker 1.1
User Guide xvi May 2020

Documentation Navigation
This document uses Microsoft® Word’s built-in navigation for internal hyperlinks. To add Back
and Forward navigation buttons to your toolbar, do the following:

1. Right-click anywhere on the customizable Toolbar in Word (not the Ribbon section).
2. Select Customize Quick Access Toolbar from the secondary menu.
3. Press the drop-down arrow in the “Choose commands from:” box.
4. Select All Commands from the displayed list.
5. Scroll through the command list in the left column until you see the Back command

(circle with arrow pointing left).
6. Click/Highlight the Back command and press Add to add it to your customized toolbar.
7. Scroll through the command list in the left column until you see the Forward command

(circle with arrow pointing right).
8. Click/Highlight the Forward command and press Add to add it to your customized

toolbar.
9. Press OK.

You can now use these Back and Forward command buttons in your Toolbar to navigate back
and forth in your Word document when clicking on hyperlinks within the document.

 NOTE: This is a one-time setup and is automatically available in any other Word
document once you install it on the Toolbar.

Commonly Used Terms
Table 2 lists terms and their descriptions that can be helpful while reading the RPC Broker
documentation:

Table 2: Commonly Used RPC Broker Terms

Term Description
Client A single term used interchangeably to refer to a user, the workstation

(i.e., PC), and the portion of the program that runs on the workstation.

Component A software object that contains data and code. A component may or
may not be visible.

 REF: For a more detailed description, see the Embarcadero
Delphi for Windows User Guide.

GUI The Graphical User Interface application that is developed for the client
workstation.

Host The term Host is used interchangeably with the term Server.

Server The computer where the data and the RPC Broker remote procedure

RPC Broker 1.1
User Guide xvii May 2020

Term Description
calls (RPCs) reside.

 REF: For additional terms and definitions, see the “Glossary.”

How to Obtain Technical Information Online
Exported VistA M Server-based software file, routine, and global documentation can be
generated using Kernel, MailMan, and VA FileMan utilities.

 NOTE: Methods of obtaining specific technical information online are indicated where
applicable under the appropriate section.

REF: See the RPC Broker Technical Manual for further information.

Help at Prompts
VistA M Server-based software provides online help and commonly used system default
prompts. Users are encouraged to enter question marks at any response prompt. At the end of the
help display, you are immediately returned to the point from which you started. This is an easy
way to learn about any aspect of VistA M Server-based software.

Obtaining Data Dictionary Listings
Technical information about VistA M Server-based files and the fields in files is stored in data
dictionaries (DD). You can use the List File Attributes [DILIST] option on the Data
Dictionary Utilities [DI DDU] menu in VA FileMan to print formatted data dictionaries.

 REF: For details about obtaining data dictionaries and about the formats available, see
the “List File Attributes” chapter in the “File Management” section of the VA FileMan
Advanced User Manual.

Assumptions
This manual is written with the assumption that the reader is familiar with the following:

• VistA computing environment:

o Kernel—VistA M Server software
o Remote Procedure Call (RPC) Broker—VistA Client/Server software
o VA FileMan data structures and terminology—VistA M Server software

RPC Broker 1.1
User Guide xviii May 2020

• Microsoft Windows environment

• M programming language

• Object Pascal programming language

• Object Pascal programming language/Embarcadero Delphi Integrated Development
Environment (IDE)—RPC Broker

References
Readers who wish to learn more about RPC Broker should consult the following:

• RPC Broker Release Notes

• RPC Broker Deployment, Installation, Back-Out, and Rollback (DIBR) Guide

• RPC Broker Systems Management Guide

• RPC Broker Technical Manual

• RPC Broker User Guide (this manual)

• RPC Broker Developer’s Guide—Document and BDK Online Help, which provides an
overview of development with the RPC Broker. The help is distributed in two zip files:
o Broker_1_1.zip (i.e., Broker_1_1.chm)—This zip file contains the standalone online

HTML help file. Unzip the contents and double-click on the Broker_1_1.chm file to
open the help.

o Broker_1_1-HTML_Files.zip—This zip file contains the associated HTML help
files. Unzip the contents in the same directory and double-click on the index.htm file
to open the help.

RPC Broker 1.1
User Guide xix May 2020

You can create an entry for Broker_1_1.chm in Delphi’s Tools menu, to make it easily
accessible from within Delphi. To do this, use Delphi’s Tools | Configure Tools option
and create a new menu entry as shown in Figure 1.

Figure 1: Delphi’s Tool Properties Dialogue—Broker_1_1.chm Entry

• RPC Broker VA Intranet website.

This site provides announcements, additional information (e.g., Frequently Asked
Questions [FAQs], advisories), documentation links, archives of older documentation and
software downloads.

VistA documentation is made available online in Microsoft® Word format and in Adobe Acrobat
Portable Document Format (PDF). The PDF documents must be read using the Adobe Acrobat
Reader, which is freely distributed by Adobe Systems Incorporated at: http://www.adobe.com/
VistA documentation can be downloaded from the VA Software Document Library (VDL)
Website: http://www.va.gov/vdl/
RPC Broker documentation is located on the VDL at:
https://www.va.gov/vdl/application.asp?appid=23
VistA documentation and software can also be downloaded from the Product Support (PS)
Anonymous Directories.

http://www.adobe.com/
http://www.va.gov/vdl/
https://www.va.gov/vdl/application.asp?appid=23

RPC Broker 1.1
User Guide 1 May 2020

1 Introduction
The Remote Procedure Call (RPC) Broker (also referred to as “Broker”) is a client/server system
within Department of Veterans Affairs (VA) Veterans Health Information Systems and
Technology Architecture (VistA) environment. It establishes a common and consistent
foundation for client/server applications being written as part of VistA. It enables client
applications to communicate and exchange data with M Servers.
This manual provides an overview of software development with the RPC Broker. It introduces
developers to the RPC Broker and the Broker Development Kit (BDK) with emphasis on using
the RPC Broker in conjunction with Embarcadero’s Delphi software. However, the RPC Broker
supports other development environments.

 REF: For more complete information on development with the RPC Broker components,
see the BDK Online Help (i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

This document is intended for the VistA development community and system administrators. A
wider audience of technical personnel engaged in operating and maintaining the Department of
Veterans Affairs (VA) software can also find it useful as a reference.

1.1 About this Version of the BDK
RPC Broker 1.1 (fully patched) provides developers with the capability to create new VistA
client/server software using the following RPC Broker Delphi components in the 32-bit
environment:

• TCCOWRPCBroker

• TContextorControl

• TRPCBroker (original component)

• TXWBRichEdit

• TXWBSSOi

 NOTE: These RPC Broker components wrap the functionality of the Broker resulting in
a more modularized and orderly interface. Those components derived from the original
TRPCBroker component, inherit the TRPCBroker properties and methods.

RPC Broker 1.1
User Guide 2 May 2020

1.1.1 Features
This enhanced Broker software has the following functionality/features:

• Supports Active Directory (AD) Credentials—When a user is unable to log onto a
workstation with their Personal Identity Verification (PIV) card, the user contacts the
Enterprise Service Desk (ESD) to receive a PIV exemption to allow them to log on with
their Active Directory (AD) credentials (username and password). This enhanced BDK
detects this condition and allows the user to use their AD credentials to secure a SAML
token from IAM for logging onto VistA via applications compiled with this version of the
BDK.

• Supports 2-factor Authentication—The TRPCBroker component authenticates a user by
making a mutual Transport Layer Security (TLS) authentication connection to the
Identity and Access Management (IAM) Secure Token Service (STS). Mutual
authentication refers to two parties authenticating each other at the same time. Mutual
TLS authentication uses the TLS protocol to authenticate and identify a user using Public
Key Encryption (PKI) certificates (usually found on a portable smart card or device) and
a private Personal Identification Number (PIN) to unlock the certificate. The STS server
returns a digitally-signed token containing the user’s identity. This token is trusted by the
VistA M Server as a delegated form of user authentication.

• Supports IPv4/IPv6 Dual-Stack Environment—The TRPCBroker component uses
WinSock 2.2 Application Programming Interfaces (APIs) that support network
connections using Internet Protocol (IP) version 4 and/or IP version 6. IPv6 is a protocol
designed to handle the growth rate of the Internet and to cope with the demanding
requirements of services, mobility, and end-to-end security.

• Supports Secure Shell (SSH)—The TRPCBroker component enabled Secure Shell (SSH)
Tunnels to be used for secure connections. This functionality is controlled by setting an
internal property value (mandatory SSH) or command line option at run time.

• Supports Broker Security Enhancement (BSE)—The TRPCBroker component enabled
visitor access to remote sites using authentication established at a home site.

• Supports Single Sign-On/User context (SSO/UC)—TCCOWRPCBroker component
enables Single Sign-On/User Context (SSO/UC) in CCOW-enabled applications.

• Supports Non-Callback Connections—By default the RPC Broker components are built
with a UCX or non-callback Broker connection, so that it can be used from behind
firewalls, routers, etc.

• Supports Silent Logon capabilities—RPC Broker provides “Silent Login” capability. It
provides functionality associated with the ability to make logins to a VistA M Server
without the RPC Broker asking for Access and Verify code information.

• Documented Deferred RPCs and Capability to Run RPCs on a Remote Server.

• Multi-instances of the RPC Broker—RPC Broker code permits an application to open
two separate Broker instances with the same Server/ListenerPort combination, resulting
in two separate partitions on the server. Previously, an attempt to open a second Broker
instance ended up using the same partition. For this capability to be useful for concurrent

RPC Broker 1.1
User Guide 3 May 2020

processing, an application would have to use threads to handle the separate Broker
sessions.

 CAUTION: Although we believe there should be no problems, the RPC
Broker is not guaranteed to be thread safe.

• Updated components, properties, methods, and types.

• Separate Design-time and Run-time Packages—BDK contains separate run-time and
design-time packages.

• Supports Delphi 10.3, 10.2, 10.1, 10, 10.0, and XE8.

To develop VistA applications in a 32-bit environment you must have Delphi XE8 or greater.
However, the Broker routines on the M server continue to support VistA applications previously
developed in the 16-bit environment.
The default installation of the Broker creates a separate BDK directory (i.e., BDK32) that
contains the required Broker files for development.

 REF: For a complete list of all new or modified features and functionality with RPC
Broker 1.1, see the RPC Broker Release Notes.

1.1.2 Backward Compatibility Issues
Client applications compiled with RPC Broker 1.1 will not work at a site that has not upgraded
its RPC Broker server software to Version 1.1.
On the other hand, client applications compiled with RPC Broker 1.0 will work with the RPC
Broker 1.1 server.

RPC Broker 1.1
User Guide 4 May 2020

2 RPC Broker Components for Delphi

 REF: For more detailed information on the RPC Broker components for Delphi, see the
BDK Online Help (i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

2.1 TRPCBroker Component
The main tool to develop client applications for the RPC Broker environment is the TRPCBroker
component for Delphi. The TRPCBroker component adds the following abilities to your Delphi
application:

• Connecting to an M server:

o Authenticate the user
o Set up the environment on the server
o Bring back the introductory text

• Invoking Remote Procedure Calls (RPCs) on the M Server:
o Send data to the M Server
o Perform actions on the server
o Return data from the server to the client

To add the TRPCBroker component to your Delphi application, simply drop it from the Kernel
tab of Delphi’s component palette to a form in your application.

2.1.1 TRPCBroker Properties and Methods
As a Delphi component, the TRPCBroker component is controlled and accessed through its
properties and methods. By setting its properties and executing its methods, you can connect to
an M server from your application and execute RPCs on the M server to exchange data and
perform actions on the M server.
For most applications, you only need to use a single TRPCBroker component to manage
communications with the M server.

RPC Broker 1.1
User Guide 5 May 2020

2.1.2 TRPCBroker Key Properties
The following table lists the most important properties of the TRPCBroker component.

 REF: For a complete list of all of Broker properties, see the BDK Online Help
(i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

Table 3: TRPCBroker Component Key Properties

Property Description
ClearParameters If True, the Param property is cleared after every invocation of the

Call, strCall, or the lstCall methods.

ClearResults If True, the Results property is cleared before every invocation of
the Call method, thus assuring that only the results of the last call
are returned.

Connected Setting this property to True connects your application to the
server.

ListenerPort Sets server port to connect to a Broker Listener process (mainly for
development purposes; for end-users, determine on the fly with
GetServerInfo method.)

Param Run-time array in which you set any parameters to pass as input
parameters when calling an RPC on the server.

RemoteProcedure Name of a RemoteProcedure entry that the Call, lstCall, or strCall
method should invoke.

Results This is where any results are stored after a Call, lstCall, or strCall
method completes.

Server Name of the server to connect to (mainly for development
purposes; for end-users, determine on-the-fly with GetServerInfo
method.)

SSHPort Holds a specific port number for Secure Shell (SSH) Tunneling if
the UseSecureConnection property is set to “SSH” or “PLINK”. If
not specified, uses the RPC Broker listener port for the remote
server.

SSHPw Holds a password for SSH Tunneling if the UseSecureConnection
property is set to “PLINK”.

SSHUser Holds a specific username for SSH Tunneling if the
UseSecureConnection property is set to “SSH”. For VA VistA
servers, the username is typically of the form xxxvista where the
xxx is the station’s three letter abbreviation.

UseSecureConnection Used to specify whether SSH Tunneling is to be used when making
the connection.

RPC Broker 1.1
User Guide 6 May 2020

2.1.3 TRPCBroker Key Methods
This section lists the most important methods of the TRPCBroker component.

 REF: For a complete list of all of Broker methods, see the BDK Online Help
(i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

Table 4: TRPCBroker Component Methods

Method Description
procedure Call; This method executes an RPC on the server and returns

the results in the TRPCBroker component’s Results
property.
Call expects the name of the remote procedure and its
parameters to be set up in the RemoteProcedure and
Param properties respectively. If ClearResults is True,
then the Results property is cleared before the call. If
ClearParameters is True, then the Param property is
cleared after the call finishes.

function strCall: string; This method is a variation of the Call method. Only use
it when the return type is a single string. Instead of
returning results in the TRPCBroker component’s
Results[0] property node, results are returned as the
value of the function call. Unlike the Call method, the
Results property is not affected; no matter the setting of
ClearResults, the value is left unchanged.

procedure lstCall(OutputBuffer:
TStrings);

This method is a variation of the Call method. Instead of
returning results in the TRPCBroker component’s
Results property, it instead returns results in the
TStrings object you specify. Unlike the Call method, the
Results property is not affected; no matter the setting of
ClearResults, the value is left unchanged.

function CreateContext(strContext:
string): boolean;

This method creates a context for your application.
Pass an option name in the strContext parameter. If the
function returns True, a context was created, and your
application can use all RPCs entered in the option’s
RPC multiple.

Examples
For examples of how to use these methods to invoke RPCs, see the “How to Execute an RPC
from a Client Application” section.

RPC Broker 1.1
User Guide 7 May 2020

2.1.4 How to Connect to an M Server
To establish a connection from your application to a Broker server, perform the following
procedure:

1. From the Kernel component palette tab, add a TRPCBroker component to your form.
2. Add code to your application to connect to the server; one likely location is your form’s

OnCreate event handler. The code should:
a. Use the GetServerInfo function to retrieve the run-time server and port to connect to,

and SSHUsername if available.

 NOTE: This function is not a method of the TRPCBroker component; it is
described in the “Other RPC Broker APIs” section.

b. Inside of an exception handler try...except block, set RPCBroker1’s Connected
property to True. This causes an attempt to connect to the Broker server and
authenticates the user.

c. Check if an EBrokerError exception is raised. If this happens, connection failed. You
should inform the user of this and then terminate the application.

RPC Broker 1.1
User Guide 8 May 2020

The code, placed in an OnCreate event handler, should look like Figure 2:
Figure 2: OnCreate Event Handler—Sample Code

procedure TForm1.FormCreate(Sender: TObject);
var ServerStr: String;
 PortStr: String;
begin
 // get the correct port and server from registry
 if GetServerInfo(ServerStr,PortStr,SSHUsernameStr)<>mrCancel then
 begin
 RPCBroker1.Server:=ServerStr;
 RPCBroker1.ListenerPort:=StrToInt(PortStr);
 if SSHUsernameStr <> ‘’ then
 begin
 RPCBroker1.UseSecureConnection := ‘SSH’;
 RPCBroker1.SSHport := ‘‘;
 RPCBroker1.SSHUser := SSHUsernameStr;
 RPCBroker1.SSHpw := ‘‘;
 RPCBroker1.SSHHide := true;
 end;
 end
 else Application.Terminate;

 // establish a connection to the Broker
 try
 RPCBroker1.Connected:=True;
 except
 On EBrokerError do
 begin
 ShowMessage(‘Connection to server could not be established!’);
 Application.Terminate;
 end;
 end;
end;

3. A connection with the Broker M Server is now established. You can use the

CreateContext method of the TRPCBroker component to authorize use of RPCs for your
user, and then use the Call, lstCall, and strCall methods of the TRPCBroker component to
execute RPCs on the M server.

 REF: For information on creating and executing RPCs, see the “Remote
Procedure Calls (RPCs)” section.

RPC Broker 1.1
User Guide 9 May 2020

2.2 TCCOWRPCBroker Component
As of Patch XWB*1.1*40, the TCCOWRPCBroker component was added to Version 1.1 of the
RPC Broker. The TCCOWRPCBroker Delphi component allows VistA application developers to
make their applications CCOW-enabled and Single Sign-On/User Context (SSO/UC)-aware with
all of the client/server-related functionality in one integrated component. Using the
TCCOWRPCBroker component, an application can share User Context stored in the CCOW
Context Vault.
Thus, when a VistA CCOW-enabled application is recompiled with the TCCOWRPCBroker
component and other required code modifications are made, that application would then become
SSO/UC-aware and capable of single sign-on (SSO).

 NOTE: This RPC Broker component is derived from the original TRPCBroker
Component; it inherits the TRPCBroker properties and methods.

2.2.1 Single Signon/User Context (SSO/UC)
The Veterans Health Administration (VHA) information systems user community expressed a
need for a single sign-on (SSO) service with interfaces to VistA, HealtheVet VistA, and non-
VistA systems. This architecture allows users to authenticate and sign on to multiple applications
that are CCOW-enabled and SSO/UC-aware using a single set of credentials, which reduces the
need for multiple ID’s and passwords in the HealtheVet clinician desktop environment. The RPC
Broker software addressed this architectural need by providing a new TCCOWRPCBroker
component in RPC Broker Patch XWB*1.1*40.
The TCCOWRPCBroker component allows VistA application developers to make their
applications CCOW-enabled and Single Sign-On/User Context (SSO/UC)-aware with all of the
client/server-related functionality in one integrated component. Using the TCCOWRPCBroker
component, an application can share User Context stored in the CCOW Context Vault.
Thus, when a VistA CCOW-enabled application is recompiled with the TCCOWRPCBroker
component and other required code modifications are made, that application would then become
SSO/UC-aware and capable of single sign-on (SSO).

 REF: For more information on SSO/UC and making your Broker-based applications
CCOW-enabled and SSO/UC-aware, please consult the Single Sign-On/User Context
(SSO/UC) Installation Guide and Single Sign-On/User Context (SSO/UC) Deployment
Guide on the VA Software Document Library (VDL) at:
https://www.va.gov/vdl/application.asp?appid=162

2.3 TXWBRichEdit Component
As of Patch XWB*1.1*13, the TXWBRichEdit component was added to Version 1.1 of the RPC
Broker. The TXWBRichEdit Delphi component replaces the Introductory Text Memo
component on the Login Form. TXWBRichEdit is a version of the TRichEdit component that
uses Version 2 of Microsoft’s RichEdit Control and adds the ability to detect and respond to a
Uniform Resource Locator (URL) in the text. This component permits us to provide some
requested functionality on the login form. As an XWB namespaced component we are required

https://www.va.gov/vdl/application.asp?appid=162

RPC Broker 1.1
User Guide 10 May 2020

to put it on the Kernel tab of the component palette, however, it rightly belongs on the Win32
tab.

RPC Broker 1.1
User Guide 11 May 2020

2.4 TXWBSSOiToken Component
As of Patch XWB*1.1*65, the TXWBSSOiToken component was added to RPC Broker 1.1. The
TXWBSSOiToken Delphi component is used to authenticate a user into the Identity and Access
Management (IAM) Secure Token Service (STS) and obtain a Security Assertion Markup
Language (SAML) token containing an authenticated user’s identity. The TXWBSSOiToken
component does not need to be specifically added to a RPC Broker application, as authentication
is built into the TRPCBroker Component. However, it is made available as a separate component
for those applications that might need to obtain a SAML token for authentication into non-RPC
Broker applications or servers.

RPC Broker 1.1
User Guide 12 May 2020

3 Remote Procedure Calls (RPCs)
3.1 What is a Remote Procedure Call?
A remote procedure call (RPC) is a defined call to M code that runs on an M server. A client
application, through the RPC Broker, can make a call to the M server and execute an RPC on the
M server. This is the mechanism through which a client application can:

• Send data to an M server.

• Execute code on an M server.

• Retrieve data from an M server.

An RPC can take optional parameters to do some task and then return either a single value or an
array to the client application. RPCs are stored in the REMOTE PROCEDURE (#8994) file.

3.1.1 Relationship between an M Entry Point and an RPC
An RPC can be thought of as a wrapper placed around an M entry point for use with client
applications. Each RPC invokes a single M entry point. The RPC passes data in specific ways to
its corresponding M entry point and expects any return values from the M entry point to be
returned in a pre-determined format. This allows client applications to connect to the RPC
Broker, invoke an RPC, and through the RPC, invoke an M entry point on a server.

3.2 Create Your Own RPCs
3.2.1 Preliminary Considerations
Because creating a Remote Procedure Call (RPC) could introduce security risks, you should
consider your options prior to creating a new one:

1. First, look for an existing RPC that provides the data you need. You may need an
Integration Control Registration (ICR) for permission to use the RPC.

2. If you cannot locate an existing RPC that meets your needs, look for an existing
Application Programming Interface (API) that can be wrapped with a new RPC.

3. If an existing RPC or API provides “almost” what you need, contact the package owners
to see whether there is a modification or alternative that could be provided to meet your
needs. For example, determine whether post-processing of the data in your application
would provide the results you need.

4. You should create a new RPC only as a last result. When creating a new RPC is
necessary, you should carefully consider how general to make the RPC, so that it can
potentially be used by other applications in the future.

RPC Broker 1.1
User Guide 13 May 2020

3.2.2 Process
You can create your own custom RPCs to perform actions on the M server and to retrieve data
from the M server. Then you can call these RPCs from your client application. Creating an RPC
requires you to perform the following steps:

1. Reference the RPC Broker Developers Guide for instructions and examples when
creating a new RPC.

2. Write and test the M entry point that is called by the RPC.
3. Add the RPC entry that invokes your M entry point, in the REMOTE PROCEDURE

(#8994) file. The RPC name should begin with the VistA package namespace that owns
the RPC. For example, “XWB EXAMPLE BIG TEXT” is owned by the RPC Broker
package (namespace: XWB). M Programming Standards and Conventions (SAC) provide
policy on name requirements for new RPCs.

4. Add the RPC to a “B-Broker (Client/Server)” type option in the OPTION (#19) file. The
option should be in your VistA package namespace. M Programming Standards and
Conventions (SAC) provide policy on name requirements for options.

3.3 Writing M Entry Points for RPCs
3.3.1 First Input Parameter for RPCs (Required)

The RPC Broker always passes a variable by reference in the first input parameter to your M
routine. It expects results (one of five types described in Table 5) to be returned in this
parameter. You must always set some return value into that first parameter before your routine
returns.

3.3.2 Return Value Types for RPCs
There are five RETURN VALUE TYPES for RPCs as shown in Table 5. Choose a return value
type that is appropriate to the type of data your RPC needs to return to your client. Your M entry
point should set the return value (in the routine’s first input parameter) accordingly.

http://www.va.gov/vdl/application.asp?appid=23

RPC Broker 1.1
User Guide 14 May 2020

Table 5: RPC Broker Return Value Types

RPC Return
Value Type

How M Entry Point Should Set the
Return Parameter

RPC
WORD
WRAP ON
Setting

Value(s) returned
in Client Results

Single Value Set the return parameter to a single
value.
For example:

TAG(RESULT) ;

 S RESULT=“DOE, JOHN”

 Q

No effect Value of parameter,
in Results[0].

Array Set an array of strings into the return
parameter, each subscripted one level
descendant.
For example:

TAG(RESULT) ;

 S RESULT(1)=“ONE”

 S RESULT(2)=“TWO”

 Q

For large arrays consider using the
GLOBAL ARRAY return value type to
avoid memory allocation errors.

No effect Array values, each
in a Results item.

Word-
processing

Set the return parameter the same as
you set it for the ARRAY type. The only
difference is that the WORD WRAP ON
(#.08) field setting affects the Word-
processing return value type.

True Array values, each
in a Results item.

False Array values
concatenated into
Results[0].

Global Array Set the return parameter to a closed
global reference in ^TMP. The global’s
data nodes are traversed using
$QUERY, and all data values on global
nodes descendant from the global
reference are returned.
This type is especially useful for
returning data from VA FileMan word
processing fields, where each line is on
a 0-subscripted node.

 CAUTION: The global
reference you pass is killed by
the Broker at the end of RPC
Execution as part of RPC
cleanup. Do not pass a global
reference that is not in ^TMP

True Array values, each
in a Results item.

False Array values
concatenated into
Results[0].

RPC Broker 1.1
User Guide 15 May 2020

RPC Return
Value Type

How M Entry Point Should Set the
Return Parameter

RPC
WORD
WRAP ON
Setting

Value(s) returned
in Client Results

or that should not be killed.
This type is useful for returning large
amounts of data to the client, where
using the ARRAY type can exceed the
symbol table limit and crash your RPC.
For example, to return signon
introductory text you could do:

TAG(RESULT);

 M ^TMP(“A6A”,$J)=

^XTV(8989.3,1,”INTRO”)

 ;this node not needed

 K ^TMP(“A6A”,$J,0)

 S RESULT=$NA(^TMP(“A6A”,$J))

 Q

Global
Instance

Set the return parameter to a closed
global reference.
For example, to return the 0th node from
the NEW PERSON (#200) file for the
current user:

TAG(RESULT) ;

 S RESULT=$NA(^VA(200,DUZ,0))

 Q

No effect Value of global
node, in Results[0].

RPC Broker 1.1
User Guide 16 May 2020

3.3.3 Input Parameter Types for RPCs (Optional)
The M entry point for an RPC can optionally have input parameters (i.e., beyond the first
parameter, which is always used to return an output value). The client passes data to your M
entry point through these parameters.
Table 6 lists the three format types that the client can send data to an RPC (and therefore your
entry point).

Table 6: Input Parameter Types

Param PType Param Value
Literal Delphi string value; passed as a string literal to the M server.

Reference Delphi string value; treated on the M Server as an M variable name and
resolved from the symbol table at the time the RPC executes.

 CAUTION: For enhanced security reasons, the reference
parameter type may be deprecated and removed in subsequent
updates to the BDK.

List A single-dimensional array of strings in the Mult subproperty of the Param
property, passed to the M Server where it is placed in an array. String
subscripting can be used.

The type of the input parameters passed in the Param property of the TRPCBroker component
determines the format of the data you must be prepared to receive in your M entry point.

3.3.4 RPC M Entry Point Examples
The following two examples illustrate sample M code that could be used in simple RPCs.

3.3.4.1 Sum of Two Numbers
The example in Figure 3 takes two numbers and returns their sum:

Figure 3: RPC M Entry Point Example—Sum of Two Numbers
SUM(RESULT,A,B) ;add two numbers
 S RESULT=A+B
 Q

3.3.4.2 Sorted Array
The example in Figure 4 receives an array of numbers and returns them as a sorted array to the
client:

Figure 4: RPC M Entry Point Example—Sorted Array
SORT(RESULT,UNSORTED) ;sort numbers
 N I
 S I=““
 F S I=$O(UNSORTED(I)) Q:I=““ S RESULT(UNSORTED(I))=UNSORTED(I)
 Q

RPC Broker 1.1
User Guide 17 May 2020

3.4 RPC Entry in the REMOTE PROCEDURE File
After the M code is complete, you need to create the RPC itself in the REMOTE PROCEDURE
(#8994) file. The following fields in the REMOTE PROCEDURE (#8994) file are key to the
correct operation of an RPC:

Table 7: REMOTE PROCEDURE File Key Field Entries

Field Name Required? Description
NAME (#.01) Yes The name that identifies the RPC (this entry

should be namespaced in the package
namespace).

TAG (#.02) Yes The tag at which the remote procedure call
begins.

ROUTINE (#.03)) Yes The name of the routine that should be invoked
to start the RPC.

WORD WRAP ON (#.08) No Affects Global Array and Word-processing
return value types only:

• If set to False, data is returned in a
single concatenated string in Results[0].

• If set to True, each array node on the M
side is returned as a distinct array item in
Results.

RETURN VALUE TYPE
(#.04)

Yes This indicates to the Broker how to format the
return values. For example, if the RETURN
VALUE TYPE is set as Word-processing, then
each entry in the returning list has a <CR><LF>
(<carriage return><line feed>) appended.

APP PROXY ALLOWED
(#.11)

No This field must be set to Allowed (1) if this RPC
is to be run by an APPLICATION PROXY user.
The default is to not allow access.

 CAUTION: APPLICATION PROXY
users do not meet Health Insurance
Portability and Accounting Act of
1996 (HIPAA) requirements for user
identification and should not be
permitted to access an RPC that
reads or writes Personal Health
Information (PHI).

PARAMETER TYPE
(#8994.02,.02) field of the
INPUT PARAMETER
Multiple (#8994.02)

Yes This field is used to indicate the type (Literal,
List, Reference, or Word Processing entry) of
value passed by this parameter. The Literal,
List, and Reference types correspond to the
TParamType of the same name. A Word

RPC Broker 1.1
User Guide 18 May 2020

Field Name Required? Description
Processing type would also be a List
TParamType.
Currently, this declaration is mandatory for a
reference, but recommended for other types. In
the future the parameter type declaration will be
enforced for all types.

3.5 What Makes a Good Remote Procedure Call?
• Silent calls (no I/O to terminal or screen, no user intervention required).

• Minimal resources required (passes data in brief, controlled increments).

• Discrete calls (requiring as little information as possible from the process environment).

• Generic as possible (different parts of the same package as well as other packages could
use the same RPC).

3.6 How to Execute an RPC from a Client Application
To execute an RPC from a client application, perform the following procedure:

1. If your RPC has any input parameters beyond the mandatory first parameter, set a Param
node in the TRPCBroker’s Param property for each. For each input parameter, set the
following sub properties:

• Value

• PType (Literal, List, or Reference)

If the parameter’s PType is List, however, set a list of values in the Mult subproperty
rather than setting the Value subproperty.

 CAUTION: For enhanced security reasons, the reference parameter type
may be deprecated and removed in subsequent updates to the BDK.

Figure 5 is an example of some settings of the Param property:
Figure 5: Param Property—Sample Settings

RPCBroker1.Param[0].Value := ‘10/31/97’;
RPCBroker1.Param[0].PType := literal;
RPCBroker1.Param[1].Mult[‘“NAME”‘] := ‘XWBUSER, ONE’;
RPCBroker1.Param[1].Mult[‘“SSN”‘] := ‘000-45-6789’;
RPCBroker1.Param[1].PType := list;

2. Set the TRPCBroker’s RemoteProcedure property to the name of the RPC to execute.

RPCBroker1.RemoteProcedure:=‘A6A LIST’;

RPC Broker 1.1
User Guide 19 May 2020

3. Invoke the Call method of the TRPCBroker component to execute the RPC. All calls to the Call

method should be done within an exception handler try...except statement, so that all
communication errors (which trigger the EBrokerError exception) can be trapped and handled.
For example:

Figure 6: Exception Handler—try...except Code—Sample Usage
try
 RPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘A problem was encountered communicating with the server.’);
end;

4. Any results returned by your RPC are returned in the TRPCBroker component’s Results

property. Depending on how you set up your RPC, results are returned either in a single
node of the Results property (Result[0]) or in multiple nodes of the Results property.

 NOTE: You can also use the lstCall and strCall methods to execute an RPC. The
main difference between these methods and the Call method is that lstCall and
strCall do not use the Results property, instead returning results into a location
you specify.

3.7 RPC Security: How to Register an RPC
Security for RPCs is handled through the RPC registration process. Each client application must
create a context for itself, which checks if the application user has access to a “B”-type option in
the Kernel menu system. Only RPCs assigned to that option can be run by the client application.
To enable your application to create a context for itself, perform the following procedure:

1. Create a “B”-type option in the OPTION (#19) file for your application.

 NOTE: The OPTION TYPE “B” represents a Broker client/server type option.
2. In the RPC multiple for this option type, add an entry for each RPC that your application

calls. You can also specify a security key that can lock each RPC (this is a pointer to the
SECURITY KEY [#19.1] file) and M code in the RULES subfield that can also
determine whether to enable access to each RPC.

3. When you export your software using KIDS, export both your RPCs and your software
option.

4. Your application must create a context for itself on the server, which checks access to
RPCs. In the initial code of your client application, make a call to the CreateContext
method of your TRPCBroker component. Pass your application’s “B”-type option’s name
as a parameter. For example:

RPCBroker1.CreateContext(option_name)

RPC Broker 1.1
User Guide 20 May 2020

If the CreateContext method returns True, only those RPCs designated in the RPC
multiple of your application option are permitted to run.
If the CreateContext method returns False, you should terminate your application (if you
do not, your application runs, but you get errors every time you try to access an RPC).

5. End-users of your application must have the “B”-type option assigned to them on one of
their menus, in order for the CreateContext method to return True.

3.7.1 Bypassing RPC Security for Development
Having the XUPROGMODE security key allows you to bypass the Broker security checks. You
can run any RPC without regard to application context (without having to use the CreateContext
method). This is a convenience for application development. When you complete development,
make sure you test your application from an account without the XUPROGMODE key, to ensure
that all RPCs needed are properly registered.

3.7.2 BrokerExample Online Code Example
The BrokerExample sample application (i.e., BROKEREXAMPLE.EXE) provided with the
BDK demonstrates the basic features of developing RPC Broker-based applications, including:

• Connecting to an M server.

• Creating an application context.

• Using the GetServerInfo function.

• Displaying the VistA splash screen.

• Setting the TRPCBroker Param property for each Param PType (literal, reference, and
list).

• Calling RPCs with the Call method.

• Calling RPCs with the lstCall and strCall methods.

• Secure Shell (SSH) connection (from Options menu) methods.

The client source code files for the BrokerExample application are located in the
SAMPLES\RPCBROKER\BROKEREX subdirectory of the main BDK32 directory.

RPC Broker 1.1
User Guide 21 May 2020

Figure 7: RPC Broker Example Application

RPC Broker 1.1
User Guide 22 May 2020

4 Other RPC Broker APIs
4.1 GetServerInfo Function
4.1.1 Overview
The GetServerInfo function retrieves the end-user workstation’s server, port, and SSHUsername
if available. Use this function to set the TRPCBroker component’s Server, ListenerPort, and
SSHUser properties to reflect the end-user workstation’s settings before connecting to the
server.
If there is more than one server/port to choose from, GetServerInfo displays dialogue that allows
users to select a service to connect to, as shown in Figure 8:

Figure 8: Server and Port Configuration Selection Dialogue

If exactly one server and port entry is defined in the Microsoft Windows Registry, GetServerInfo
does not display the dialogue in Figure 8. The values in the single Microsoft Windows Registry
entry are returned, with no user interaction required.
If more than one server and port entry exists in the Microsoft® Windows Registry, the dialogue is
displayed, and the user chooses to which server they want to connect.
If no values for server and port are defined in the Microsoft® Windows Registry, GetServerInfo
does not display the dialogue in Figure 8, and automatic default values are returned
(i.e., BROKERSERVER and 9200).
The values are stored in either of the following registries:

• HKEY_CURRENT_USER (HKCU)

• HKEY_LOCAL_MACHINE (HKLM)

These registries are located under:
\Software\Vista\Broker\Servers

RPC Broker 1.1
User Guide 23 May 2020

Entries are of the format:

• Name: Server,ListenerPort

• Type: REG_SZ

• Data: SSHUser

For example, a connection to server address “r08dhcp017.vha.med.va.gov” using port 19001
and SSHUsername of “xkgvista” would look like:

Figure 9: Sample Registry Information

4.1.2 Syntax
Two versions of the GetServerInfo function are supported:

• Legacy Version—Retrieves the end user’s server and port:
function GetServerInfo(var Server, Port: string): integer;

• New Version—Retrieves the end user’s server and port as well as the SSHUsername
value from the Windows registry:

function GetServerInfo(var Server, Port, SSHUsername: string): integer;

Both versions continue to support specification of SSHUsername at the command line.

 NOTE: The unit is RpcConf1.

4.2 VistA Splash Screen Procedures
Two procedures in SplVista.PAS unit are provided to display a VistA splash screen when an
application loads:

• procedure SplashOpen;

• procedure SplashClose(TimeOut: longint);

It is recommended that the splash screen be opened and closed in the section of Pascal code in an
application’s project file (i.e., .DPR).

RPC Broker 1.1
User Guide 24 May 2020

To use the splash screen in an application, perform the following procedure:
1. Open your application’s project (.DPR) file (in Delphi, choose View | Project Source).
2. Include the SplVista in the uses clause of the project source.
3. Call SplashOpen immediately after the first form of your application is created and call

SplashClose just prior to invoking the Application.Run method.
4. Use the TimeOut parameter to ensure a minimum display time.

Figure 10: VistA Splash Screen

Figure 11: Displaying a VistA Splash Screen: Sample Code

uses
 Forms, Unit1 in ‘Unit1.pas’, SplVista;

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 SplashOpen;
 SplashClose(2000);
 Application.Run;
end.

RPC Broker 1.1
User Guide 25 May 2020

4.3 XWB GET VARIABLE VALUE RPC
You can call the XWB GET VARIABLE VALUE RPC (distributed with the RPC Broker) to
retrieve the value of any M variable in the server environment. Pass the variable name in
Param[0].Value and the type (reference) in Param[0].PType. Also, the current context of your
user must give them permission to execute the XWB GET VARIABLE VALUE RPC (it must
be included in the RPC multiple of the “B”-type option registered with the CreateContext
function). For example:

Figure 12: XWB GET VARIABLE VALUE RPC Usage—Sample Code
RPCBroker1.RemoteProcedure := ‘XWB GET VARIABLE VALUE’;
RPCBroker1.Param[0].Value :=‘DUZ’;
RPCBroker1.Param[0].PType := reference;
try
 RPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
ShowMessage(‘DUZ is ‘+RPCBroker1.Results[0]);

 CAUTION: For enhanced security reasons, the reference parameter type may be
deprecated and removed in subsequent updates to the BDK.

4.4 M Emulation Functions
Piece Function
The Piece function is a scaled down Pascal version of M’s $PIECE function. It is declared in
MFUNSTR.PAS.

function Piece(x: string; del: string; piece: integer) : string;

4.4.1 Translate Function
The Translate function is a scaled down Pascal version of M’s $TRANSLATE function. It is
declared in MFUNSTR.PAS.

function Translate(passedString, identifier, associator: string): string;

RPC Broker 1.1
User Guide 26 May 2020

4.5 Encryption Functions
Kernel and the RPC Broker provide some rudimentary encryption and decryption functions. Data
can be encrypted on the client end and decrypted on the server, and vice-versa.

4.5.1 In Delphi
Include HASH in the “uses” clause of the unit in which you’ll be encrypting or decrypting.
Function prototypes are as follows:

• function Decrypt(EncryptedText: string): string;

• function Encrypt(NormalText: string): string;

4.5.2 On the VistA M Server
4.5.2.1 Encryption
To encrypt:

Figure 13: Encryption in VistA M Server—Sample Code
>S CIPHER=$$ENCRYP^XUSRB1(“Hello world!”) W CIPHER

/U’llTG~TVl&f-

4.5.2.2 Decryption
To decrypt:

Figure 14: Decryption in VistA M Server—Sample Code
>S PLAIN=$$DECRYP^XUSRB1(CIPHER) W PLAIN

Hello world!

4.6 $$BROKER^XWBLIB
Use the $$BROKER^XWBLIB function in the M code called by an RPC to determine if the
Broker is executing the current process. It returns:

• 1—If this is True.

• 0—If False.

RPC Broker 1.1
User Guide 27 May 2020

4.7 $$RTRNFMT^XWBLIB
Use the $$RTRNFMT^XWBLIB function in the M code called by an RPC to change the return
value type that the RPC returns on-the-fly. This allows you to change the return value type to any
valid return value type (Single Value, Array, Word-processing, Global Array, or Global
Instance). It also lets you set WORD WRAP ON (#.08) field to True or False, on-the-fly, for the
RPC.

 REF: For more information about $$RTRNFMT^XWBLIB, see the BDK Online Help
(i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

RPC Broker 1.1
User Guide 28 May 2020

5 Broker Security Enhancement (BSE)
5.1 Introduction
This section describes the mechanism by which the Broker Security Enhancement (BSE) enables
RPC Broker Delphi-based applications to make remote user/visitor connections in a more secure
manner. This BSE-based mechanism subsequently replaces the current Compensation And
Pension Records Interchange (CAPRI)-based mechanism for remote user/visitor access by RPC
Broker Delphi-based client/server applications.
The Veterans Health Administration (VHA) information systems management and user
community has expressed a need to secure access to patient information at remote sites.
Some VistA application users require access to data located at remote sites at which the users:

• Do not have assigned Access and Verify codes.

• Have not been entered into the NEW PERSON (#200) file by system administrators.

• Want to avoid having multiple Access/Verify code pairs.

The Compensation And Pension Records Interchange (CAPRI) application was the first
application with these requirements. This application is used by Veterans Benefits
Administration (VBA) staff to remotely access VistA data related to claims for veterans treated
at any VistA site.
The CAPRI application was the first application to use the modified version of the VistA Remote
Procedure Call (RPC) Broker software, which was based on the Remote Data Views (RDV)
access method, as a means for obtaining such access. This access enters the user's information
into the NEW PERSON (#200) file as a visitor but does not require an Access or Verify code for
the user at the remote site. As a result of the CAPRI application, there has been an increase in the
number of other applications that also require or are requesting this type of remote data access.
The goal of the Broker Security Enhancement (BSE) Project is to accomplish the following:

• Enable RPC Broker Delphi-based applications to access Remote VistA M Servers with
increased security.

• Enhance the RPC Broker method used to connect to Remote VistA M Servers.

• Ensure correct information for user access to prevent the mistaken identification of an
incorrect or non-existent user (spoofing) via unauthorized applications.

• Provide the ability for RPC Broker Delphi-based applications that have implemented
BSE to specify their own context option.

• Allow the VistA Imaging Display Client to pull in images from remote sites without
requiring credentials on the Remote VistA M Servers.

RPC Broker 1.1
User Guide 29 May 2020

5.1.1 Features
The Broker Security Enhancement (BSE) Project provides the following features and
functionality:

• Adds a step to the RPC Broker signon process to authenticate the connecting application.
This also involves passing a secret encoded phrase that is established on the VistA M
Server via a patch and KIDS build.

• Adds a step to the RPC Broker signon process on the Remote VistA M Server to
authenticate the user by connecting back to the Authenticating VistA M Server.

• Provides the capability for remote applications to specify their own context option.

5.1.2 Architectural Scope
The architectural scope of BSE is as follows:

• Use of Kernel Authentication—Kernel is used as the authenticator. Kernel is a valid
means of authenticating on a backend VistA M Server.

• Client/Server-based Application Support—This document only discusses the BSE
functionality provided with VistA RPC Broker Delphi-based client/server applications.

5.2 Process Overview
The overall process to make a remote connection via an RPC Broker Delphi-based client/server
application that has implemented the Broker Security enhancement (BSE) is as follows:

1. The user starts the BSE-enabled application.
2. The BSE-enabled application connects to the Authenticating VistA M Server and

presents the VistA login GUI dialogue to the user.

 NOTE: The Authenticating VistA M Server is identified in the
CALLBACKSERVER (#.03) field in the CALLBACKTYPE (#1) Multiple field
in the REMOTE APPLICATION (#8994.5) file.

3. The user enters their Kernel Access and Verify codes, is authenticated via Kernel, and is
signed onto the BSE-enabled application's Authenticating VistA M Server.

4. The BSE-enabled application gets a Kernel Authentication Token for the authenticated
user from the Authenticating VistA M Server. This token is eventually used by the
Remote VistA M Server to obtain the necessary user information for populating a user as
a "visitor" entry in the remote site's NEW PERSON (#200) file. This ensures the
following:

• The user is not spoofed.

• The data at the remote site is valid.

RPC Broker 1.1
User Guide 30 May 2020

A sample Kernel Authentication Token follows:
XWBHDL977-124367_0

5. The BSE-enabled application completes any other processing necessary to identify the

Remote VistA M Server and gathers any other required information.
6. The BSE-enabled application disconnects from the Authenticating VistA M Server.
7. The BSE-enabled application performs the following tasks:

a. Creates a Security Pass Phrase value that is composed of the following two pieces of
data:

• Security Phrase—A one-way hashed value that is stored in the REMOTE
APPLICATION (#8994.5) file and used to identify the BSE-enabled
application's file entry.

 REF: For more information on the Security Phrase, see the "Security
Phrase" section.

• Kernel Authentication Token

b. Sets the SecurityPhrase property of the RPCBroker login component to the Security
Pass Phrase value (see Step 7a), which is later used by the Remote VistA M Server to
call back the Authenticating VistA M Server.

c. Sets the other appropriate RPCBroker login component properties in order to call the
Remote VistA M Server.

 REF: For more information on the specific RPCBroker login component
property settings, see the "Step-By-Step Procedures to Implement BSE"
section in the RPC Broker Developer’s Guide.

8. The BSE-enabled application connects to the Remote VistA M Server with the
RPCBroker login component passing in the encoded value of the SecurityPhrase property
(see Step 7).

 CAUTION: Remote access is only permitted at sites that have installed
the application's information (including the hashed Security Phrase) into
the REMOTE APPLICATION (#8994.5) file, ensuring that a rogue
application cannot obtain access.

 REF: For more information on the application's Security Phrase, see the "Security
Phrase" section.

RPC Broker 1.1
User Guide 31 May 2020

9. The Kernel software on the Remote VistA M Server performs the following tasks:
a. Identifies and hashes the decoded value of the RPCBroker login component's

SecurityPhrase property (see Steps 7a and 7b).
b. Uses the hashed value of the BSE-enabled application's Security Pass Phrase to

identify the application's entry in the REMOTE APPLICATION (#8994.5) file.

 NOTE: Included in that entry is the mechanisms for contacting the
Authenticating VistA M Server.

c. Connects to the Authenticating VistA M Server passing in the Kernel Authentication
Token that identifies the user.

d. Obtains the user demographic information from the Authenticating VistA M Server.
This user demographic information is used to establish the user as a remote
user/visitor.

e. Disconnects from the Authenticating VistA M Server.
f. Uses the demographic information obtained from the Authenticating VistA M Server

to set up the user as a visitor entry on the Remote VistA M Server. It creates or
matches an entry in the NEW PERSON (#200) file and provides the visitor with the
context option specified for the BSE-enabled application in the REMOTE
APPLICATION (#8994.5) file.

10. The BSE-enabled application is notified by the RPCBroker login component that it

successfully connected and that the user is signed on to the Remote VistA M Server. The
user can then continue with any processing necessary on the Remote VistA M Server. If
for some reason the user signon fails on the Remote VistA M Server, the user is
prompted to enter a valid Access and Verify code on the Remote VistA M Server. If the
user cancels the signon, he/she is prompted with a signon cancellation dialogue box.

 REF: For more information on the REMOTE APPLICATION (#8994.5) file, see
the "REMOTE APPLICATION (#8994.5) File" section.

If any of the following error conditions exist, the user is prompted with a regular GUI signon
dialogue instructing them to enter their Access and Verify codes:

• No entry for the application in the REMOTE APPLICATION (#8994.5) file.

• No match for the Kernel Authentication Token.

• Cannot connect to the Authenticating VistA M Server.

The Remote VistA M Server connects to the Authenticating VistA M Server and passes in the
Kernel Authentication Token identifying the user. The Authenticating VistA M Server responds
back by returning the demographic information necessary to establish the user as a remote user.
The Remote VistA M Server disconnects from the Authenticating VistA M Server and sets up

RPC Broker 1.1
User Guide 32 May 2020

the user's profile as a visitor entry, including the necessary context option specified for the
application in the REMOTE APPLICATION (#8994.5) file.
The BSE-enabled application is notified that the user is signed on and continues processing as
normal.
There are basically two classes of applications that use this BSE authentication mechanism:

Table 8: BSE—Application Authentication Server Class Types

Application Class Description
Single Server
Authentication

Applications that require users to authenticate against a single
VistA M Server and determine the remote locations to be
accessed (e.g., CAPRI).
For those applications where the users all authenticate on a
single VistA M Server, the application only needs to specify the
Uniform Resource Locator (URL) for its VistA M Server and one
or more methods for connecting to it (including port number[s])
in the CALLBACKTYPE Multiple of the REMOTE APPLICATION
(#8994.5) file.

Multiple Server
Authentication

Applications that require users to authenticate at their local
medical center or other site (e.g., VistAWeb or other Web-based
applications).
For those applications where each user authenticates on
multiple/different VistA M Servers, the application needs to
obtain both a Kernel Authentication Token and the demographic
data necessary for identifying or adding a remote user/visitor
during the authentication process on the Authenticating VistA M
Server. The application passes in the Kernel Authentication
Token and application Security Pass Phrase, as described
above (see the "Process Overview" topic). The REMOTE
APPLICATION (#8994.5) file contains an address for the Web-
based application and the Remote VistA M Server returns the
Kernel Authentication Token to the application and expects it to
return the demographic information associated with that Kernel
Authentication Token. This requires the application to keep the
Kernel Authentication Token and demographic data in a location
that is accessible by the application until the demographic data
has been provided to the Remote VistA M Server.

 RECOMMENDATION: VistA Infrastructure (VI) highly
encourages that other non-Web-based applications
use a single server rather than multiple servers for
user authentication.

RPC Broker 1.1
User Guide 33 May 2020

5.2.1 Process Diagrams
Figure 15 illustrates the BSE process sequence flow:

Figure 15: BSE—Process Sequence Flow Diagram
User BSE Application Remote VistA M Server Authenticating VistA M Server

User Authenticates

Get Kernel Authentication Token

Disconnect

User Enters A/V
Codes & Institution

User Starts BSE
Application

Connect

Connect

Pass Kernel Authentication
Token & Security Pass Phrase

Connect

Pass Kernel Authentication
Token & Security Pass Phrase

Get User Demographics

Disconnect
User Signed on as a Remote

User/Visitor

Application Processing

RPC Broker 1.1
User Guide 34 May 2020

Figure 16 illustrates the BSE process overview:
Figure 16: BSE—Process Overview

Authenticating VistA M Server: Remote VistA M Server

Kernel BSE Token
Generation Process

(character string)

8. Returns active
BSE token.

6. Kernel calls BSE
token generator

process.

User

Kernel BSE Token
Verification Process
(checks BSE token to

see if valid & not
expired)

• RPC Broker routines
• Kernel routines
• RPC Broker Delphi-based

application w/ BSE
implemented

• REMOTE APPLICATION
file (#8994.5)

VistA Database
(temp global)

7.
Stores BSE token & token
creation time in the Temp

global.

RPC Broker
App. w/ BSE
Implemented

(Client)

2. User not logged into VistA. Starts the first VistA RPC Broker Delphi-
based application with BSE implemented (a.k.a. BSE App.).

BSE
App.

No BSE token verification
required for initial logon

1. User manually enters
their NT Logon ID:

NT Logon
User name: xxxxxxxx
 Password: xxxxxxxx
 Domain: xxxxxxxx

RPC Broker Delphi-based application w/ BSE implemented on client workstation
software processes

Kernel server routine processes

Application on Remote VistA M Server software processes

Legend
User processes

• RPC Broker routines
• Kernel routines
• RPC Broker Delphi-based

application w/ BSE
implemented

• REMOTE APPLICATION
file (#8994.5)

4. User manually enters
their VistA Logon ID:

VistA Logon
Access Code: xxxxxxxx
Verify Code: xxxxxxxx

9. BSE App.
receives token.

3. BSE App. prompts user to enter their VistA Access & Verify
codes (i.e., VistA logon ID).

10. RPC Broker in BSE
App. Connects to Remote
server, passing Security

Pass Phrase
(i.e., Security Phrase &

Kernel Auth. Token), which is
used to identify Auth. VistA M

Server & user.

11. Remote VistA M Server connects to
Auth server, passing in Kernel

Authentication Token.

12. Remote VistA M Server obtains
user demographics to sign on the user to

the Remote server.

5. RPC Broker in BSE
App. Connects to Auth,

server and logs user into
VistA using the user's
Access & Verify codes
(i.e., VistA logon ID).

• Microsoft Windows 2000/XP
• RPC Broker Delphi-based software

with BSE implemented (e.g., CAPRI)

Cient Workstation:

13. Remote VistA M
Server notifies BSE

app, user is signed on.
User can now perform
tasks on the Remote
server as a remote

user/visitor.

RPC Broker 1.1
User Guide 35 May 2020

5.3 BSE-related VistA Applications and Modules
This section describes the new or modified functionality made to the BSE-related software
applications and modules as listed in Table 9.
An RPC Broker Delphi-based and BSE-enabled VistA application comprises software that has
been re-compiled using the RPC Broker login component, modified for BSE. BSE capability
comes into play when you are using a BSE-enabled application (e.g., Compensation And Pension
Records Interchange [CAPRI] or VistAWeb).

 REF: For information on how to implement BSE in VistA RPC Broker Delphi-based
client/server applications, see the "Implementing BSE in VistA RPC Broker-based
Applications," in RPC Broker Developer’s Guide.

This section discusses in more detail the various software applications and modules that,
together, provide for BSE functionality:

Table 9: BSE—Software Applications and Modules

Application/Module Location Description
VistA M Server VistA M

Server
This is the "backend server" where the Kernel and
RPC Broker software act as the authentication source
for all VistA applications (i.e., client/server, rich client,
Web, and roll-and-scroll applications). The VistA M
Server also executes remote procedure calls (RPCs)
and provides other functions to VistA applications.

 REF: For a list of BSE-related Vista M Server
patches, see the “BSE Installation Instructions
for Developers” section in the RPC Broker
Developer’s Guide.

Client/Server Login
Component: RPC
Broker

Client
(Developer
workstations
only)

The RPCBroker login component allows client/server
applications to authenticate against the VistA M
Server and obtain a persistent connection over which
remote procedure calls (RPCs) are executed. This
component is modified in BSE to be more secure
when accessing data at remote sites.
RPC Broker-based applications using remote or
visitor access (e.g., Compensation And Pension
Records Interchange [CAPRI], VistAWeb) must
invoke this modified RPC Broker login component to
implement the Broker Security Enhancement (BSE).

 REF: For the specific software patches required for the implementation of BSE, see the
“BSE Installation Instructions for Developers” section in the RPC Broker Developer’s
Guide.

RPC Broker 1.1
User Guide 36 May 2020

5.4 Kernel—Authentication Interface to VistA
Authentication is the process of verifying a user identity to ensure that the person requesting
access to a VistA system (e.g., clinical information system) is, in fact, that person to whom entry
is authorized.
Currently, Kernel on the VistA M Server is the approved method to provide both Authentication
and Authorization (AA) services for all VistA applications Kernel was assessed as the most
straightforward and timely approach to also be used for remote signon authentication in BSE. By
using Kernel as the authenticator for BSE, the NEW PERSON (#200) file continues to serve as
the single user data store for VistA and BSE.
Some potential advantages to employing Kernel as the AA source include the following:

• Ease of file maintenance by system administrators.

• Provides a single point of user management for existing and new VistA RPC Broker
Delphi-based applications.

• Allows the use of an existing credential (i.e., the Access and Verify code) for
Authentication and Authorization, rather than introducing a new security credential.

• Ease of coding requirements by application developers.

• Avoids an additional user store, which simplifies the migration to any future AA
solutions.

The BSE functionality for Kernel was introduced with Kernel Patch XU*8.0*404 (server-side).
The BSE functionality includes the creation of a Kernel Authentication Token. The Kernel
Authentication Token is generated once a user has been initially authenticated on the
Authenticating VistA M Server via their Access and Verify codes. This Kernel Authentication
Token can then be used to authenticate a user on a Remote VistA M Server.

5.5 RPC Broker
The RPC Broker software consists of both a client and server software piece.

5.5.1 Client
The RPC Broker login component is embedded in a Embarcadero Delphi-based rich client/server
application (e.g., Compensation And Pension Records Interchange [CAPRI]). The RPCBroker
login component is used to connect the application running on a Microsoft Windows client
workstation to the VistA M Server. This connection allows data retrieval from the VistA M
Server database. The RPCBroker login component uses Kernel's Access and Verify codes to
authenticate a user to VistA.
The BSE functionality for the RPCBroker login component was introduced with RPC Broker
Patch XWB*1.1*45 (client-side) and Kernel Patch XU*8.0*404 (server-side). BSE functionality
includes the addition of a new property to the RPCBroker login component that allows
applications to pass an application's Security Phrase and Kernel Authentication Token, which is
referred to in this documentation as the Security Pass Phrase. Thus, when a VistA RPC Broker
Delphi-based application, such as CAPRI, is recompiled with the BSE-updated RPCBroker login

RPC Broker 1.1
User Guide 37 May 2020

component and other required code modifications are made, that application would then become
capable of accessing Remote VistA M Servers without requiring users to re-enter their Access
and Verify codes.

5.5.2 Server
In order to implement BSE and use the RPC-Broker callback type, the central Authenticating
VistA M server must run the RPC Broker as a TCPIP service. The Non-callback RPC Broker
Listener/TCPIP service is distributed and described with RPC Broker Patch XWB*1.1*35 and
was updated with XWB*1.1*44.

 REF: For more information on the RPC Broker and TCPIP service setup, see the RPC
Broker Patches XWB*1.1*35 and 44 on FORUM and the RPC Broker documentation,
specifically the RPC Broker TCP/IP Supplement, located on the VDL at the following
Web address: http://www.va.gov/vdl/application.asp?appid=23

 REF: For more detailed information on the application developer procedures and code
modifications needed to implement BSE in RPC Broker Delphi-based applications, see
the "Implementing BSE in VistA RPC Broker-based" section in the RPC Broker
Developer’s Guide.

5.6 REMOTE APPLICATION (#8994.5) File
The REMOTE APPLICATION (#8994.5) file was released with RPC Broker Patch
XWB*1.1*45. This file helps better secure remote user/visitor access to Remote VistA M
Servers initiated by RPC Broker Delphi-based GUI applications. Remote user/visitor access
permits applications where users need to access a large number of sites and do so without
requiring separate Access and Verify codes at each target remote site.
The REMOTE APPLICATION (#8994.5) file contains the fields listed in Table 10:

Table 10: Fields in the REMOTE APPLICATION (#8994.5) File

Field Name Field
Number

Description

NAME .01 (required) This is the name for the RPC Broker Delphi-
based application that requires remote user/visitor
access. The name must be from 3 to 30 characters, not
numeric or starting with punctuation.

CONTEXTOPTION .02 (required) This is the name of the context option
(i.e., client/server or "B"-type option) that the application
users need. The name must be from 3 to 45 characters.
The user is signed on as a visitor and given this context
option as a secondary menu option.

APPLICATIONCODE .03 (required) This is the hashed value for an application's
Security Phrase.

 REF: For more information on the Security Phrase,
see the "Security Phrase" section.

http://www.va.gov/vdl/application.asp?appid=23

RPC Broker 1.1
User Guide 38 May 2020

Field Name Field
Number

Description

CALLBACKTYPE 1 (required) This is a Multiple field. It can contain multiple
values describing the mechanisms by which the Remote
VistA M Server can contact the application's
Authenticating VistA M Server to obtain the demographic
information. It consists of the subfields described below.

CALLBACKTYPE
(CALLBACKTYPE
Multiple)

.01 (required) This field indicates the mechanisms by which
the server should contact the Authenticating VistA M
Server to obtain information necessary to sign the current
user onto the current server. The values for this field are:
• R—RPC Broker TCP/IP connection
• M—M-to-M Broker connection
• H—HyperText Transport Protocol (HTTP) connection
• S—Station-number callback

CALLBACKPORT
(CALLBACKTYPE
Multiple)

.02 (required) This is the port number (3 - 5 characters) to be
used for the callback connection to the Authenticating
VistA M Server for the CALLBACKTYPE (#.01) specified.

CALLBACKSERVER
(CALLBACKTYPE
Multiple)

.03 (required) This is the server designation (address) to be
used for the callback to the Authenticating VistA M Server
for the CALLBACKTYPE (#.01) specified. This should be
a Domain Name Service (DNS) name-based address
rather than an Internet Protocol (IP) address, because IP
addresses can change. It should be a server name
ending in MED.VA.GOV or MED.VHA.VA.GOV. The DNS
servers resolve the name, and thus, ensure that the site
is a valid VistA M Server.

URLSTRING
(CALLBACKTYPE
Multiple)

.04 (optional) This field holds the text that should follow the
SERVER ADDRESS (#.03) field for HTTP connections to
obtain the information for the Kernel Authentication Token
passed in for a REMOTE APPLICATION connection.
If the complete Uniform Resource Locator (URL) to be
used for the callback is:

http://myserver.med.va.gov/some/kind/of/location
/
somePage.aspx

The CALLBACKSERVER (#.03) field could be:

myserver.med.va.gov

and the URLSTRING would be:

some/kind/of/location/somePage.aspx

RPC Broker 1.1
User Guide 39 May 2020

Field Name Field
Number

Description

This field is only used if the CALLBACKTYPE filed (#.01)
value is H for HTTP.

 REF: For more information on the REMOTE APPLICATION (#8994.5) file, see the
"Files" section in the RPC Broker Technical Manual.

5.7 Security Phrase
The Security Phrase is an RPC Broker Delphi-based application's entry into the REMOTE
APPLICATION (#8994.5) file. The Security Phrase is a general phrase that is known only to the
application that created it. When it is stored in the REMOTE APPLICATION (#8994.5) file, it
must be hashed. This one-way hashed value, which is the result of a call to the
$$EN^XUSHSH(phrase) API, is entered into the APPLICATIONCODE (#.03) field in the
REMOTE APPLICATION (#8994.5) file for the application.
This Security Phrase is combined with the Kernel Authentication Token to make up the Security
Pass Phrase, which is then stored in the SecurityPhrase property of the RPCBroker login
component.

 CAUTION: It is important to realize that the Security Phrase identifies only those
applications that are authorized to perform remote user/visitor access. Thus, the
stored value of the Security Phrase is a one-way hash so that other rogue
applications cannot mimic an application and access the Remote VistA M
Server.

 RECOMMENDATION: Since the Security Phrase is the application's identifier,
VistA Infrastructure (VI) recommends developers identify the Security Phrase as
a const value in an include file in any RPC Broker Delphi-based program
implementing BSE. A substitute include file containing a phrase similar to the
Security Phrase should then be included with release of the source code.

5.8 Kernel Authentication Token
The Kernel Authentication Token is generated by the same code used to generate handles (i.e., a
unique text string that is used to identify a specific user for which it was generated) for other
purposes used in the RPC Broker software. Once created, the token is stored in the ^XTMP
temporary global. The basic format of the token (handle) is as follows:

XWBHDLnnn-nnnnnn_n

The "XWBHDL" indicates that it is an RPC Broker handle; where "XWB" is the RPC Broker
namespace and "HDL" indicates that it is a handle.

RPC Broker 1.1
User Guide 40 May 2020

The following is an example of a Kernel Authentication Token:
XWBHDL977-124367_0

RPC Broker 1.1
User Guide 41 May 2020

6 Debugging and Troubleshooting
6.1 How to Debug Your Client Application
Beside the normal debugging facilities provided by Delphi, you can also invoke a debug mode,
so that you can step through your code on the client side and your RPC code on the M server side
simultaneously.
To invoke the debug mode, perform the following procedure:

1. On the client side, set the DebugMode property on the TRPCBroker component to True.
2. Switch over to the VistA M Server and set any break points in the routines being called in

order to help isolate the problem.
3. Issue the M debug command (e.g., ZDEBUG) or follow instructions in the InterSystems

Caché documentation on “Debugging with the Caché Debugger.”
4. Start the following VistA M Server process:

>D DEBUG^XWBTCPM

5. Enter a unique Listener port number (i.e., a port number not in general use).
6. Switch over to the client application and connect the client application to the VistA M

Server using the server’s IP address and the port number you entered Step 5.
7. You can now step through the code on your client and simultaneously step through the

code on the VistA M Server side for any RPCs that your client calls.

6.1.1 RPC Error Trapping
M errors on the VistA M Server that occur during RPC execution are trapped by the use of M
and Kernel error handling. In addition, the M error message is sent back to the Delphi client.
Delphi raises an exception EBrokerError and a popup box displaying the error. At this point,
RPC execution terminates and the channel is closed.

6.2 Troubleshooting Connections
6.2.1 Identifying the Listener Process on the Server
On InterSystems Caché systems, where the Broker Listener is running and the System Status
[XUSTATUS] menu option is available, the Listener process name is:

|TCP|####

Where #### is the port number being listened to. This should help quickly locate Listener
processes when troubleshooting any connection problems.

RPC Broker 1.1
User Guide 42 May 2020

On systems with greater security or with listener processes started by Linux xinetd.d scripts, the
following commands can be helpful:

• List all xinetd.d scripts:
>!ls –al /etc/xinetd.d

• List xinetd.d scripts containing string “vis”:
>!ls –al/etc/xinetd.d | grep vis

• Display script “vis_rpct”:
>!cat /etc/xinetd.d/vis_rpct

• Look for listener running on port 2020:

>!netstat –an | grep :2020

6.2.2 Identifying the Handler Process on the Server
On InterSystems Caché systems the name of a Handler process for IPv4 is:

|TCP|nnn.nnn.nnn.nnn: ####

Where nnn.nnn.nnn.nnn is the client IPv4 address and #### is the port number.

Alternatively, for IPv6:

|TCP|hhhh:hhhh::hhhh:####

Where hhhh represents the hexadecimal segments of the client IPv6 address and #### is the port
number.

6.2.3 Testing Your RPC Broker Connection
To test the RPC Broker connection from your workstation to the M Server, use the RPC Broker
Diagnostic Program (rpctest.exe).

 REF: For a complete description of the RPC Broker Diagnostic program, see the
“Troubleshooting” chapter in the RPC Broker Systems Management Guide.

RPC Broker 1.1
User Guide 43 May 2020

7 RPC Broker and Delphi
The following sections highlight changes made to or comments about the RPC Broker to
accommodate a particular version of Delphi.

 RECOMMENDATION: To avoid problems with the BDK, it is recommended for all
Delphi packages that you accept the default directory after compiling the Broker
Development Kit (BDK) on a workstation.

7.1 Delphi 10.3, 10.2, 10.1, 10.0, and XE8 Packages
7.1.1 Delphi Starter Edition—Not Recommended for BDK

Development
Delphi 10.3, 10.2, 10.1, 10.0, and XE8 comes in three flavors:

• Starter

• Professional

• Enterprise

 RECOMMENDATION: It is recommended that you use either the Professional or
Enterprise version of Delphi to develop applications using the RPC Broker.

This version of the BDK requires the Professional or Enterprise Edition. The Starter editions are
targeted mainly at students, and as such, leave out many features. We do not recommend using
any of the Starter editions of Delphi for RPC Broker development at this time. Delphi Starter
Edition does not ship the following:

• OpenHelp help system—Allow easy integration of 3rd party component help with
Delphi’s own internal component help.

• VCL source code unit (i.e., dsgnintf.pas file)—RPCBroker component has a dependency
on a VCL source code unit. Delphi Starter Editions do not ship VCL source code unit in
either .PAS or .DCU form; however, VCL Source code units are available in Delphi
Professional and Enterprise editions.

 NOTE: When installing Delphi Professional or Enterprise editions, make sure
you leave the VCL Source installation option selected.

RPC Broker 1.1
User Guide 44 May 2020

7.1.2 XWB_RXE#.bpl File
This run-time package contains the source code for the standard RPCBroker components and is
found in the following directory after compiling the Broker Development Kit (BDK) on a
workstation. Shown are the default paths for various versions of Delphi, where # represents the
version number. If you have changed any default paths, your files may be in a different location:

• C:\Users\Public\Public Documents\Embarcadero\Studio\16.0\Bpl\XWB_RXE8.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\17.0\Bpl\XWB_RunTime.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\18.0\Bpl\XWB_RunTime.bpl

7.1.3 XWB_DXE#.bpl File
This design-time package contains the installed components for the standard RPCBroker and is
found in the following directory after compiling the Broker Development Kit (BDK) on a
workstation. Shown are the default paths for various versions of Delphi, where # represents the
version number. If you have changed any default paths, your files may be in a different location:

• C:\Users\Public\Public Documents\Embarcadero\Studio\16.0\Bpl\XWB_DXE8.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\17.0\Bpl\XWB_DesignTime.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\18.0\Bpl\XWB_DesignTime.bpl

RPC Broker 1.1
User Guide 45 May 2020

8 RPC Broker Dynamic Link Library (DLL)
8.1 DLL Interface
The RPC Broker provides a Dynamic Link Library (DLL) interface, which acts like a “shell”
around the Delphi TRPCBroker component. The DLL is contained in the BAPI32.DLL file.
The DLL interface enables client applications, written in any language that supports access to
Microsoft Windows DLL functions, to take advantage of all features of the TRPCBroker
component. This allows programming environments other than Embarcadero Delphi to make use
of the TRPCBroker component. All of the communication to the server is handled by the
TRPCBroker component, accessed via the DLL interface.
The DLL interface has not been updated to support Secure Shell (SSH) or IPv4/IPv6 dual-stack
environments.

8.1.1 Exported Functions
The complete list of functions exported in the DLL is provided in the BDK Online Help
(i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide. Functions are provided in the DLL
for:

• Creating and destroying RPC Broker components.

• Setting and retrieving RPC Broker component properties.

• Executing RPC Broker component methods.

8.1.2 Header Files Provided
Table 11 lists the header files that provide correct declarations for DLL functions:

Table 11: Header Files that Provide Correct Declarations for DLL Functions

Language Header File
C BAPI32.H

C++ BAPI32.HPP

Visual Basic BAPI32.BAS

RPC Broker 1.1
User Guide 46 May 2020

8.1.3 Return Values from RPCs
Results from an RPC executed on an M server are returned as a text stream. This text stream may
or may not have embedded <CR><LF> character combinations.
When you call an RPC using the TRPCBroker component for Delphi, the text stream returned
from an RPC is automatically parsed and returned in the TRPCBroker component’s Results
property as follows:

Table 12: TRPCBroker Component’s Results Property

Results stream
contains <CR><LF>
combinations

Location/format of results
(assumes RPC’s WORD WRAP ON field is True if RPC is
Global Array or Word-processing type)

Yes Results nodes; split based on <CR><LF> delimiter

No Results[0]

When you call an RPC using the DLL interface, the return value is the unprocessed text stream,
which may or may not contain <CR><LF> combinations. It is up to you to parse out what would
have been individual Results nodes in Delphi, based on the presence of any <CR><LF>
character combinations in the text stream.

8.1.4 COTS Development and the DLL
The Broker DLL serves as the gateway to the REMOTE PROCEDURE (#8994) file for non-
Delphi client/server applications. In order to use any RPCs not written specifically by the client
application (e.g., CONSULTS FOR A PATIENT, USER SIGN-ON RPCs, or the more generic
VA FileMan RPCs), you must call the RPC Broker DLL with input parameters defined and
results accepted in the formats required by the RPC being called.
Therefore, to use the Broker DLL interface you must determine the following information for
each RPC you plan to use:

• How does the RPC expect input parameters, if any, to be passed to it?

• Will you be able to create any input arrays expected by the RPC in the same format
expected by the RPC?

• What does the results data stream returned by the RPC look like?

RPC Broker 1.1
User Guide 47 May 2020

Glossary

Table 13: Glossary of Terms and Acronyms

Term Definition
BDK Broker Development Kit.

BSE Broker Security Enhancement.

Client A single term used interchangeably to refer to the user, the
workstation, and the portion of the program that runs on the
workstation. In an object-oriented environment, a client is a member
of a group that uses the services of an unrelated group. If the client
is on a local area network (LAN), it can share resources with
another computer (server).

Component An object-oriented term used to describe the building blocks of GUI
applications. A software object that contains data and code. A
component may or may not be visible. These components interact
with other components on a form to create the GUI user application
interface.

DHCP Dynamic Host Configuration Protocol.
DLL Dynamic Link Library. A DLL allows executable routines to be

stored separately as files with a DLL extension. These routines are
only loaded when a program calls for them. DLLs provide several
advantages:

• Help save on computer memory, since memory is only
consumed when a DLL is loaded. They also save disk
space. With static libraries, your application absorbs all the
library code into your application so the size of your
application is greater. Other applications using the same
library also carry this code around. With the DLL, you do not
carry the code itself; you have a pointer to the common
library. All applications using it will then share one image.

• Ease maintenance tasks. Because the DLL is a separate
file, any modifications made to the DLL do not affect the
operation of the calling program or any other DLL.

• Help avoid redundant routines. They provide generic
functions that can be used by a variety of programs.

GUI Graphical User Interface. A type of display format that enables
users to choose commands, initiate programs, and other options by
selecting pictorial representations (icons) via a mouse or a
keyboard.

IAM Identity and Access Management.

RPC Broker 1.1
User Guide 48 May 2020

Term Definition
Icon A picture or symbol that graphically represents an object or a

concept.

PIN Personal Identification Number.

PKI Public Key Encryption.

Remote Procedure Call A remote procedure call (RPC) is essentially M code that can take
optional parameters to do some work and then return either a single
value or an array back to the client application.

SAML Security Assertion Markup Language. An XML-based industry
standard for communicating identities over the Internet.

Server The computer where the data and the Business Rules reside. It
makes resources available to client workstations on the network. In
VistA, it is an entry in the OPTION (#19) file. An automated mail
protocol that is activated by sending a message to a server at
another location with the “S.server” syntax. A server’s activity is
specified in the OPTION (#19) file and can be the running of a
routine or the placement of data into a file.

SSH Secure Shell.

SSO/UC Sign-On/User Context.

STS Secure Token Service.

User Access This term is used to refer to a limited level of access to a computer
system that is sufficient for using/operating software, but does not
allow programming, modification to data dictionaries, or other
operations that require programmer access. Any of VistA’s options
can be locked with a security key (e.g., XUPROGMODE, which
means that invoking that option requires programmer access).
The user’s access level determines the degree of computer use and
the types of computer programs available. The Systems Manager
assigns the user an access level.

User Interface The way the software is presented to the user, such as Graphical
User Interfaces that display option prompts, help messages, and
menu choices. A standard user interface can be achieved by using
Borland’s Delphi Graphical User Interface to display the various
menu option choices, commands, etc.

VistA Veterans Health Information Systems and Technology Architecture.

Window An object on the screen (dialogue) that presents information such
as a document or message.

XML eXtensible Markup Language.

RPC Broker 1.1
User Guide 49 May 2020

 REF: For a list of commonly used terms and definitions, see the OIT Master Glossary
VA Intranet Website.

For a list of commonly used acronyms, see the VA Acronym Lookup Intranet Website.

RPC Broker 1.1
User Guide 50 May 2020

Index

$
$$BROKER^XWBLIB, 26
$$EN^XUSHSH API, 39
$$RTRNFMT^XWBLIB, 27

^
^XTMP Global, 39

A
About this Version of the BDK, 1
Acronyms

Intranet Website, 49
APIs

$$BROKER^XWBLIB, 26
$$EN^XUSHSH, 39
$$RTRNFMT^XWBLIB, 27

APP PROXY ALLOWED (#.11) Field, 17
Application.Run Method, 24
APPLICATIONCODE (#.03) Field, 37, 39
Architectural Scope, 29
Assumptions, xvii
Authentication

Interface to VistA
Kernel, 36

Kernel Authentication Token, 29, 31, 32,
36, 38, 39, 40
Sample, 30

B
Backward Compatibility Issues, 3
BAPI32.BAS File, 45
BAPI32.DLL File, 45
BAPI32.H File, 45
BAPI32.HPP File, 45
Broker

Component, 30, 31, 35, 36, 37, 39
Patches

XWB*1.1*45, 36
BrokerExample, 20
BROKEREXAMPLE.EXE, 20

BSE
Introduction, 28
Project Overview, 28
Scope, 29
VistA Applications/Modules, 35

Bypassing Security for Development, 20

C
C Language, 45
C++ Language, 45
Call Method, 6, 19
CALLBACKPORT (#.02) Field

CALLBACKTYPE (#1) Multiple Field,
38

CALLBACKSERVER (#.03) Field
CALLBACKTYPE (#1) Multiple Field,

29, 38
CALLBACKTYPE (#.01) Field

CALLBACKTYPE (#1) Multiple Field,
38

CALLBACKTYPE (#1) Multiple Field, 29,
38
CALLBACKPORT (#.02) Field, 38
CALLBACKSERVER (#.03) Field, 29,

38
CALLBACKTYPE (#.01) Field, 38
URLSTRING (#.04) Field, 38

Callout Boxes, xv
Calls

Discrete, 18
Silent, 18

CAPRI, 28, 35, 36
ClearParameters Property, 5
ClearResults Property, 5
Commonly Used Terms, xvi
Compatibility Issues, 3
Components

RPC Broker, 30, 31, 35, 36, 37, 39
RPC Broker Components for Delphi, 4
TCCOWRPCBroker, 9
TRPCBroker, 4
TXWBRichEdit, 9
TXWSSOiToken, 11

RPC Broker 1.1
User Guide 51 May 2020

Connect To, 22
Connected Property, 5
Connection

Testing Your RPC Broker Connection, 42
Contents, ix
CONTEXTOPTION (#.02) Field, 37
COTS Development and the DLL, 46
Create Your Own RPCs

Preliminary Considerations, 12
Process, 13

CreateContext Method, 6, 19, 20, 25

D
Data Dictionary

Data Dictionary Utilities Menu, xvii
Listings, xvii

DEBUG^XWBTCPM, 41
Debugging, 41

Error Trapping, 41
How to Debug Your Client Application,

41
Identifying

Handler Process on the Server, 42
Listener Process on the Server, 41

Testing Your RPC Broker Connection, 42
DebugMode Property, 41
DECRYP^XUSRB1, 26
Decrypt Method, 26
Decryption Functions, 26
Delphi, 43

Starter Edition, 43
Delphi Components

RPC Broker, 4
Demographics, 31, 32, 38
DI DDU Menu, xvii
Diagnostic Program, 42
DILIST Option, xvii
Disclaimers, xiv

Software, xiii
Discrete Calls, 18
DLL

COTS Development and the DLL, 46
Exported Functions, 45
Header Files, 45
Interface, 45

Documentation

Revisions, ii
Symbols, xiv

Documentation Conventions, xiv
Documentation Navigation, xvi
Dynamic Link Library (DLL), 45

E
EBrokerError, 41
ENCRYP^XUSRB1, 26
Encrypt Method, 26
Encryption Functions, 26
Entry in the Remote Procedure File, 17
Error Message Handling, 41
Execute an RPC from a Client Application,

How to, 18
Exported

DLL Functions, 45

F
Features, 29
Fields

APP PROXY ALLOWED (#.11), 17
APPLICATIONCODE (#.03), 37, 39
CALLBACKPORT (#.02)

CALLBACKTYPE (#1) Multiple Field,
38

CALLBACKSERVER (#.03)
CALLBACKTYPE (#1) Multiple Field,

29, 38
CALLBACKTYPE (#.01)

CALLBACKTYPE (#1) Multiple Field,
38

CALLBACKTYPE (#1) Multiple, 29, 38
CALLBACKPORT (#.02) Field, 38
CALLBACKSERVER (#.03) Field, 29,

38
CALLBACKTYPE (#.01) Field, 38
URLSTRING (#.04) Field, 38

CONTEXTOPTION (#.02), 37
NAME (#.01), 17, 37
RETURN VALUE TYPE (#.04), 17
ROUTINE (#.03), 17
TAG (#.02), 17
URLSTRING (#.04)

RPC Broker 1.1
User Guide 52 May 2020

CALLBACKTYPE (#1) Multiple Field,
38

WORD WRAP ON (#.08), 14, 17, 27
Figures, xi
Files

BAPI32.BAS, 45
BAPI32.DLL, 45
BAPI32.H, 45
BAPI32.HPP, 45
Header Files, 45
NEW PERSON (#200), 15, 28, 29, 31, 36
OPTION (#19), 13, 19
REMOTE APPLICATION (#8994.5), 29,

30, 31, 32, 37, 38, 39
REMOTE PROCEDURE (#8994), 12, 13,

17, 46
SECURITY KEY (#19.1), 19
XWB_DXE#.bpl, 44
XWB_RXE#.bpl, 44

First Input Parameter for RPCs (Required),
13

Functions
Decryption, 26
Encryption, 26
Exported with DLL, 45
Piece, 25
Translate, 25

G
GetServerInfo Method, 5, 7, 22
Globals

^XTMP, 39
Glossary, 47

Intranet Website, 49

H
HASH, 26
Header Files, 45
Help

At Prompts, xvii
Online, xvii
Question Marks, xvii

History
Revisions, ii

Home Pages

Acronyms Intranet Website, 49
Adobe Website, xix
Glossary Intranet Website, 49
RPC Broker Website, xix
VA Software Document Library (VDL)

RPC Broker Home Page Web Address,
37

VA Software Document Library (VDL)
Website, xix

How to
Connect to an M Server, 7
Debug Your Client Application, 41
Execute an RPC from a Client

Application, 18
Obtain Technical Information Online, xvii
Register an RPC, 19
Use this Manual, xiii

I
Identifying

Handler Process on the Server, 42
Listener Process on the Server, 41

Input Parameter Types for RPCs (Optional),
16

Intended Audience, xiii
Interface

DLL, 45
Introduction, 1, 28
Issues

Backward Compatibility, 3

K
Kernel, 29, 36

Authentication
Interface to VistA, 36
Token, 29, 31, 32, 36, 38, 39, 40

Sample, 30
Patches

XU*8.0*404, 36

L
LAN, 47
List File Attributes Option, xvii
List PType, 16

RPC Broker 1.1
User Guide 53 May 2020

ListenerPort Property, 5, 22
Literal PType, 16
lstCall Method, 6, 19

M
M Emulation Functions, 25
M Entry Points for RPC Examples, 16
Menus

Data Dictionary Utilities, xvii
DI DDU, xvii
System Status Menu, 41
XUSTATUS, 41

Message Handling, Errors, 41
Methods

Application.Run, 24
Call, 6, 19
CreateContext, 6, 19, 20, 25
Decrypt, 26
Encrypt, 26
GetServerInfo, 5, 22
lstCall, 6, 19
SplashClose, 23, 24
SplashOpen, 23, 24
strCall, 6, 19
TRPCBroker Component, 4

MFUNSTR.PAS, 25
Microsoft Windows Registry, 8, 22
Mult Property, 16, 18
Multiple Server Authentication, 32

N
NAME (#.01) Field, 17, 37
NEW PERSON (#200) File, 15, 28, 29, 31,

36

O
Obtaining

Data Dictionary Listings, xvii
Online

Documentation, xvii
Technical Information, How to Obtain,

xvii
Online Code Samples (RPCs), 20
OPTION (#19) File, 13, 19

Options
Data Dictionary Utilities, xvii
DI DDU, xvii
DILIST, xvii
List File Attributes, xvii
System Status Menu, 41
XUSTATUS, 41

Orientation, xiii
Other RPC Broker APIs, 22

P
Param Property, 5, 16, 18
Parameters

TimeOut, 24
Patches

Revisions, viii
XU*8.0*404, 36
XWB*1.1*45, 36

Piece Function, 25
Process

Diagrams, 33
Overview, 29

Product Support (PS)
Anonymous Directories, xix

Programs
BROKEREXAMPLE.EXE, 20

Properties
ClearParameters, 5
ClearResults, 5
Connected, 5
DebugMode, 41
ListenerPort, 5, 22
Mult, 16, 18
Param, 5, 16, 18
RemoteProcedure, 5, 18
Results, 5, 19
SecurityPhrase, 30, 31, 39
Server, 5, 22
SSHPort, 5
SSHPw, 5
SSHUser, 5
SSHUseSecureConnection, 5
TRPCBroker Component, 4
Value, 18

PS
Anonymous Directories, xix

RPC Broker 1.1
User Guide 54 May 2020

PTypes
List, 16
Literal, 16
Reference, 16

Q
Question Mark Help, xvii

R
Reference PType, 16
Registering RPCs, 19
Registry, 8, 22
Relationship between an M Entry Point and

an RPC, 12
REMOTE APPLICATION (#8994.5) File,

29, 30, 31, 32, 37, 38, 39
Remote Data Views, 28
REMOTE PROCEDURE (#8994) File, 12,

13, 17, 46
Remote Procedure Calls (RPCs), 12
RemoteProcedure Property, 5, 18
Results Property, 5, 19
RETURN VALUE TYPE (#.04) Field, 17
Return Value Types for RPCs, 13
Return Values from RPCs, 46
Revision History, ii

Documentation, ii
Patches, viii

ROUTINE (#.03) Field, 17
RPC Broker

Components for Delphi, 4
Delphi, 43
Login Component, 30, 31, 35, 36, 37, 39
Patches

XWB*1.1*45, 36
Website, xix

RPCs, 12
Bypassing Security, 20
Create Your Own RPCs

Preliminary Considerations, 12
Process, 13

Error Trapping, 41
Executing, 18
First Input Parameter (Required), 13
Input Parameter Types (Optional), 16

M Entry Point Examples, 16
Online Code Samples, 20
Registering, 19
Relationship between an M Entry Point

and an RPC, 12
Return Value Types, 13
RPC Entry in the REMOTE

PROCEDURE File, 17
Security, 19
What is a Remote Procedure Call?, 12
Writing M Entry Points for RPCs, 13
XWB GET VARIABLE VALUE, 25

rpctest.exe, 42

S
Security

Bypassing Security for Development, 20
How to Register an RPC, 19
Pass Phrase, 30, 31, 32, 36, 39
Phrase, 37, 39

SECURITY KEY (#19.1) File, 19
Security Keys

XUPROGMODE, 20
SecurityPhrase Property, 30, 31, 39
Server Property, 5, 22
Silent Calls, 18
Single Server Authentication, 32
Single Signon/User Context (SSO/UC), 9
Software Disclaimer, xiii
Splash Screen, 23
SplashClose Method, 23, 24
SplashOpen Method, 23, 24
SplVista.PAS Unit, 23, 24
SSHPort Property, 5
SSHPw Property, 5
SSHUser Property, 5
SSHUseSecureConnection Property, 5
SSO/UC, 9
Starter Edition, 43
strCall Method, 6, 19
Support

Anonymous Directories, xix
Symbols

Found in the Documentation, xiv
Syntax

GetServerInfo Function, 23

RPC Broker 1.1
User Guide 55 May 2020

System Status Menu, 41

T
Table of Contents, ix
TAG (#.02) Field, 17
TCCOWRPCBroker Component, 9
Temporary Globals

^XTMP, 39
Testing Your RPC Broker Connection, 42
TimeOut Parameter, 24
Token, 29, 31, 32, 36, 38, 39, 40

Sample, 30
Translate Function, 25
Trapping RPC Errors, 41
Troubleshooting, 41

Connections, 41
Error Trapping, 41
How to Debug Your Client Application,

41
Identifying

Handler Process on the Server, 42
Listener Process on the Server, 41

Testing Your RPC Broker Connection, 42
TRPCBroker Component, 4

Call Method, 6, 19
Connecting to an M Server, 7
CreateContext Method, 6, 19, 20, 25
Key Properties, 5
lstCall Method, 6
Methods, 6
Properties and Methods, 4
strCall Method, 6

TXWBRichEdit Component, 9
TXWBSSOiToken Component, 11

U
Units

SplVista.PAS, 23, 24
URLs

Acronyms Intranet Website, 49
Adobe Website, xix
Glossary Intranet Website, 49
RPC Broker Website, xix
VA Software Document Library (VDL)

RPC Broker Home Page Web Address,
37

VA Software Document Library (VDL)
Website, xix

URLSTRING (#.04) Field
CALLBACKTYPE (#1) Multiple Field,

38

V
VA Software Document Library (VDL)

RPC Broker Home Page Web Address, 37
Website, xix

Value Property, 18
Version

About this Version of the BDK, 1
VistA M Server, 35, 36
VistA Splash Screen, 23
Visual Basic Language, 45

W
Web Pages

VA Software Document Library (VDL)
RPC Broker Home Page Web Address,

37
Websites

Acronyms Intranet Website, 49
Adobe Website, xix
Glossary Intranet Website, 49
RPC Broker, xix
VA Software Document Library (VDL)

Website, xix
What is a Remote Procedure Call?, 12
What Makes a Good Remote Procedure

Call?, 18
Windows Registry, 8, 22
WORD WRAP ON (#.08) Field, 14, 17, 27
Writing M Entry Points for RPCs, 13

X
XU*8.0*404, 36
XUPROGMODE Security Key, 20
XUSTATUS Menu, 41
XWB GET VARIABLE VALUE RPC, 25
XWB_DXE#.bpl File, 44

RPC Broker 1.1
User Guide 56 May 2020

XWB_RXE#.bpl File, 44
XWBLIB

$$BROKER^XWBLIB, 26
$$RTRNFMT^XWBLIB, 27

	Title Page
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Orientation
	1 Introduction
	1.1 About this Version of the BDK
	1.1.1 Features
	1.1.2 Backward Compatibility Issues

	2 RPC Broker Components for Delphi
	2.1 TRPCBroker Component
	2.1.1 TRPCBroker Properties and Methods
	2.1.2 TRPCBroker Key Properties
	2.1.3 TRPCBroker Key Methods
	2.1.4 How to Connect to an M Server

	2.2 TCCOWRPCBroker Component
	2.2.1 Single Signon/User Context (SSO/UC)

	2.3 TXWBRichEdit Component
	2.4 TXWBSSOiToken Component

	3 Remote Procedure Calls (RPCs)
	3.1 What is a Remote Procedure Call?
	3.1.1 Relationship between an M Entry Point and an RPC

	3.2 Create Your Own RPCs
	3.2.1 Preliminary Considerations
	3.2.2 Process

	3.3 Writing M Entry Points for RPCs
	3.3.1 First Input Parameter for RPCs (Required)
	3.3.2 Return Value Types for RPCs
	3.3.3 Input Parameter Types for RPCs (Optional)
	3.3.4 RPC M Entry Point Examples
	3.3.4.1 Sum of Two Numbers
	3.3.4.2 Sorted Array

	3.4 RPC Entry in the REMOTE PROCEDURE File
	3.5 What Makes a Good Remote Procedure Call?
	3.6 How to Execute an RPC from a Client Application
	3.7 RPC Security: How to Register an RPC
	3.7.1 Bypassing RPC Security for Development
	3.7.2 BrokerExample Online Code Example

	4 Other RPC Broker APIs
	4.1 GetServerInfo Function
	4.1.1 Overview
	4.1.2 Syntax

	4.2 VistA Splash Screen Procedures
	4.3 XWB GET VARIABLE VALUE RPC
	4.4 M Emulation Functions
	4.4.1 Translate Function

	4.5 Encryption Functions
	4.5.1 In Delphi
	4.5.2 On the VistA M Server
	4.5.2.1 Encryption
	4.5.2.2 Decryption

	4.6 $$BROKER^XWBLIB
	4.7 $$RTRNFMT^XWBLIB

	5 Broker Security Enhancement (BSE)
	5.1 Introduction
	5.1.1 Features
	5.1.2 Architectural Scope

	5.2 Process Overview
	5.2.1 Process Diagrams

	5.3 BSE-related VistA Applications and Modules
	5.4 Kernel—Authentication Interface to VistA
	5.5 RPC Broker
	5.5.1 Client
	5.5.2 Server

	5.6 REMOTE APPLICATION (#8994.5) File
	5.7 Security Phrase
	5.8 Kernel Authentication Token

	6 Debugging and Troubleshooting
	6.1 How to Debug Your Client Application
	6.1.1 RPC Error Trapping

	6.2 Troubleshooting Connections
	6.2.1 Identifying the Listener Process on the Server
	6.2.2 Identifying the Handler Process on the Server
	6.2.3 Testing Your RPC Broker Connection

	7 RPC Broker and Delphi
	7.1 Delphi 10.3, 10.2, 10.1, 10.0, and XE8 Packages
	7.1.1 Delphi Starter Edition—Not Recommended for BDK Development
	7.1.2 XWB_RXE#.bpl File
	7.1.3 XWB_DXE#.bpl File

	8 RPC Broker Dynamic Link Library (DLL)
	8.1 DLL Interface
	8.1.1 Exported Functions
	8.1.2 Header Files Provided
	8.1.3 Return Values from RPCs
	8.1.4 COTS Development and the DLL

	Glossary
	Index

