
Medication Order Check Healthcare Application
Server 3.1 (MOCHA Server 3.1)

Installation Guide

October 2020

Department of Veterans Affairs (VA)

Office of Information and Technology (OIT)

MOCHA Server 3.1

Installation Guide i October 2020

Revision History

Date Version Description Author

10/22/2020 2.0 PREM*3*2:

• Updated site information in section 3.2.2

• Updated log4j2 in section 4.8.2

• Updated the sample log4j2.xml file in
section 7.1

• Updated Title page, Revision History, and
Footers

Liberty ITS

3/13/17 1.1 Added Section 4.8.3 ESAPI, Section 7.2
Appendix B, Section 7.3 Appendix C; Updated
Section 5 Back-Out Procedure

REDACTED

1/31/17 1.0 Initial draft of Deployment Plan and Installation
Guide

REDACTED

Artifact Rationale

This document describes the Deployment, Installation, Back-out, and Rollback Plan for new

products going into the VA Enterprise. The plan includes information about system support,

issue tracking, escalation processes, and roles and responsibilities involved in all those activities.

Its purpose is to provide clients, stakeholders, and support personnel with a smooth transition to

the new product or software, and should be structured appropriately, to reflect particulars of

these procedures at a single or at multiple locations.

Per the Veteran-focused Integrated Process (VIP) Guide, the Deployment, Installation, Back-out,

and Rollback Plan is required to be completed prior to Critical Decision Point #2 (CD #2), with

the expectation that it will be updated throughout the lifecycle of the project for each build, as

needed.

MOCHA Server 3.1

Installation Guide ii October 2020

Table of Contents

1 Introduction .. 1

1.1 Purpose ... 1

1.2 Dependencies ... 1

1.3 Constraints ... 1

2 Roles and Responsibilities.. 2

3 Deployment .. 4

3.1 Timeline ... 4

3.2 Site Readiness Assessment .. 4

3.2.1 Deployment Topology (Targeted Architecture) 4

3.2.2 Site Information (Locations, Deployment Recipients) 5

3.2.3 Site Preparation ... 5

3.3 Resources ... 6

3.3.1 Facility Specifics .. 6

3.3.2 Hardware .. 6

3.3.3 Software .. 6

3.3.4 Communications .. 6

4 Installation .. 7

4.1 Pre-installation and System Requirements .. 7

4.2 Platform Installation and Preparation ... 7

4.3 Download and Extract Files ... 8

4.4 Database Creation .. 8

4.5 Installation Scripts ... 8

4.6 Cron Scripts .. 9

4.7 Access Requirements and Skills Needed for the Installation 9

4.8 Installation Procedure .. 9

4.8.1 WebLogic Installation Instructions .. 9

4.8.2 Log4j2 ... 12

4.8.3 ESAPI .. 13

4.8.4 Deploy New MOCHA Server Build .. 13

4.9 Installation Verification Procedure ... 23

4.10 System Configuration .. 24

4.11 Database Tuning ... 25

5 Back-Out Procedure .. 25

5.1 Back-Out Strategy .. 25

5.2 Back-Out Considerations .. 25

MOCHA Server 3.1

Installation Guide iii October 2020

5.2.1 Load Testing .. 25

5.2.2 User Acceptance Testing .. 25

5.3 Back-Out Criteria .. 25

5.4 Back-Out Risks ... 25

5.5 Authority for Back-Out ... 25

5.6 Back-Out Procedure ... 25

5.7 Back-out Verification Procedure ... 25

6 Rollback Procedure ... 25

6.1 Rollback Considerations ... 26

6.2 Rollback Criteria ... 26

6.3 Rollback Risks .. 26

6.4 Authority for Rollback .. 26

6.5 Rollback Procedure .. 26

6.6 Rollback Verification Procedure ... 26

7 Appendix .. 27

7.1 Appendix A: Sample log4j2.xml file .. 27

7.2 Appendix B: Sample ESAPI.properties file .. 28

7.3 Appendix C: Sample validation.properties file .. 39

MOCHA Server 3.1

Installation Guide 1 October 2020

1 Introduction
This document describes how to deploy and install the Pharmacy Reengineering (PRE)

Medication Order Check Healthcare Application (MOCHA) Server 3.1, as well as how to back-

out the product and rollback to a previous version or data set. This document is a companion to

the project charter and management plan for this effort. In cases where a non-developed COTS

product is being installed, the vendor provided User and Installation Guide may be used, but the

Back-Out Recovery strategy still needs to be included in this document.

1.1 Purpose

The purpose of this plan is to provide a single, common document that describes how, when,

where, and to whom the MOCHA Server 3.1 will be deployed and installed, as well as how it is

to be backed out and rolled back, if necessary. The plan also identifies resources,

communications plan, and rollout schedule. Specific instructions for installation, back-out, and

rollback are included in this document.

1.2 Dependencies

MOCHA Server requires the administration of the Oracle FDB-MedKnowledge database and

Oracle WebLogic application server.

Table 1: Dependencies

System Name Location Description Interface

PECS FDB

MedKnowledge
AITC

The FDB MedKnowledge (Formerly known as FDB-DIF)

database contains standard drug data and VA Customization

for pharmaceutical drug concepts. MOCHA Server maintains

its own copy of FDB MedKnowledge that is copy from the

PECS instance.

SQL/JDBC

1.3 Constraints

Not Applicable

MOCHA Server 3.1

Installation Guide 2 October 2020

2 Roles and Responsibilities

Table 2: Deployment, Installation, Back-out, and Rollback Contact List

Type of

Contact

Contact

Name

Department Phone # Email address

Austin

Information

Technology

Center

(AITC)

Operations

PRE

Distribution

List

AITC Build/

Application

Managers

(512) 981-4792 VA IT SDE EO EAS MOC

SUSTAINMENT

REDACTED

AITC

Operations

REDACTED WebLogic

Administratio

n Group

REDACTED REDACTED

AITC

Operations

REDACTED Database

Administratio

n Group

REDACTED

REDACTED

PRE PD

Operations

Team

REDACTED PRE program

WebLogic

Administratio

n Group

REDACTED

REDACTED

PRE PD

Operations

Team

REDACTED PRE program

Database

Administratio

n Group

REDACTED REDACTED

MOCHA

Server

Development

Lead

REDACTED MOCHA

Server

Development

Group

REDACTED REDACTED

Table 3: Deployment, Installation, Back-out, and Rollback Roles and Responsibilities

ID Team
Phase /
Role

Tasks

Project
Phase
(See
Schedule)

MOCHA Server 3.1

Installation Guide 3 October 2020

ID Team
Phase /
Role

Tasks

Project
Phase
(See
Schedule)

 Enterprise Operations/OIT Deployment
Plan and schedule deployment
(including orchestration with
vendors)

 OIT Deployment
 Determine and document the
roles and responsibilities of those
involved in the deployment.

 Enterprise Operations Deployment Test for operational readiness

 Enterprise Operations Deployment Execute deployment

 Enterprise Operations Installation Plan and schedule installation

 OIT Installation
Ensure authority to operate and
that certificate authority security
documentation is in place

 Enterprise Operations Installation

Validate through facility POC to
ensure that IT equipment has
been accepted using asset
inventory processes

 OIT Installations Coordinate training

 OIT Back-out

Confirm availability of back-out
instructions and back-out
strategy (what are the criteria that
trigger a back-out)

 Enterprise Operations/OIT
Post
Deployment

Hardware, Software and System
Support

MOCHA Server 3.1

Installation Guide 4 October 2020

3 Deployment
The deployment is scheduled via AITC on the Enterprise Operation (EO) calendar.

3.1 Timeline

The software release process will take at least 2 hours. This duration includes the time for

deployment and testing to ensure that it is in conformance to the release requirements. There will

not be any interruption of service.

Refer to the Project schedule for scheduling details.

3.2 Site Readiness Assessment

This section discusses the locations that will receive the <product> deployment.

The deployment will be coordinated with AITC in accordance with Veterans Affairs (VA)

standard release procedures. For AITC installation scheduling will be done via the EO release

calendar. Requests for a release will be made through the AITC Request for Change Order

(RFCO) Form and submitted at least 2 days prior to the deployment date. This process will

ensure that resources are available to deploy changes. All changes are deployed and tested in the

lower environments (development, CERT, and PreProd) before being deployed to production.

The next sections discuss the locations that will receive the MOCHA Server 3.1 deployment.

3.2.1 Deployment Topology (Targeted Architecture)

The diagram below shows the target deployment topology of MOCHA Server in the AITC EO

Cloud.

MOCHA Server 3.1

Installation Guide 5 October 2020

3.2.2 Site Information (Locations, Deployment Recipients)

The MOCHA Server 3.1 deployment is planned to take place at the VA Austin Information

Technology Center (AITC) utilizing the Enterprise Operations (EO) Cloud. MOCHA Server will

be tested by the three test sites through the MOCHA application.

Test Sites for the MOCHA Server 3.1 release:

TBD

3.2.3 Site Preparation

Not Applicable

AITC EO

Oracle Materialized View

Replication

Application
WebLogic

Server

Oracle

sFTP

Global Load Balancer

Application
WebLogic Server

WebLogic Admin PITC EO

Application
WebLogic

Server

WebLogic Admin

Oracle

Local Traffic

Manager
Local Traffic

Manager

Oracle

Materialized

View

Replication

KEY

MOCHA Systems

CMOP System

PECS Systems

Authoritative
FDB-DIF
(PECS)

DATUP National
(PECS)

MOCHA Cluster
(6 Virtual Systems,
each with 4 JVMs)

Redundant Server
(capable of 1800 connections each.

16GB application tablespace
2 separate VMs)

Redundant Server
(capable of 1800
connections each.
16GB application

tablespace
2 separate VMs)

MOCHA Cluster
(6 Virtual Systems,
each with 4 JVMs)

Oracle

MOCHA Server 3.1

Installation Guide 6 October 2020

3.3 Resources

The following section describes the hardware, software, facilities required for the deployment

and installation of MOCHA Server.

Additional information may be found in the MOCHA Server Production Operations Manual

(POM) located in the MOCHA Server Documentation stream under the PHARM project area in

RTC.

3.3.1 Facility Specifics

Not Applicable

3.3.2 Hardware

The imbedded spreadsheet contains the detailed hardware configuration for MOCHA Server

PRE_MOCHAServer3
_0-HardwareSpecification.xlsx

3.3.3 Software

The following table describes software specifications required at each site prior to deployment.

Table 2: Software Specifications

Required
Software

Make Version Configuration Manufacturer Other

WebLogic Application
Server

12.1.3 Cluster Oracle

Java Application
Server
Runtime

1.8 N/A Oracle

Oracle
Database

Database 11g Stand-alone Oracle

RHEL Operating
System

6.x OS RedHat

Please see the Roles and Responsibilities table in Section 2 above for details about who is

responsible for preparing the site to meet these software specifications.

3.3.4 Communications

The stakeholders are informed about the successful release of the product or other information

pertaining to the release via an AITC managed Automated Notification Reporting (ANR) email

distribution list. Change Orders and deployment calendars are also updated with the deployment

status.

MOCHA Server 3.1

Installation Guide 7 October 2020

3.3.4.1 Deployment/Installation/Back-Out Checklist

The Deployment/Installation/Back-Out Checklist will be completed and maintained by the AITC

EO team and will align with the EO calendar.

Table 6: 3.3.4.1 Deployment/Installation/Back-Out Checklist

Activity Day Time Individual who

completed task

Deploy

Install

Back-Out

4 Installation

4.1 Pre-installation and System Requirements

The table below details the environment necessary to deploy MOCHA Server.

Software Specifications

Required
Software

Make Version Configuration Manufacturer Other

WebLogic Application
Server

12.1.3 Cluster Oracle

Java Application
Server
Runtime

1.8 N/A Oracle

Oracle
Database

Database 11g Stand-alone Oracle

RHEL Operating
System

6.x OS RedHat

4.2 Platform Installation and Preparation

AITC will follow EO standard operating procedures to install and prepare the environment prior

to the installation of MOCHA Server 3.1

MOCHA Server 3.1

Installation Guide 8 October 2020

4.3 Download and Extract Files

Software configuration and deployment artifacts will be provided by the PD team with the

Request for Change Order (RFCO). The file(s) will be provided electronically copied to an

appropriate location and the path communicated to the EO team.

4.4 Database Creation

The installation of scripts noted in the next section assumes that Oracle 11g Database Server is

configured and running. Proper installation of the Oracle Relational Database Management

System (RDBMS) is one in which the Oracle Universal Installer and DBCA were used to

perform an error-free installation and a general purpose instance was created. A properly

configured Oracle RDBMS is one in which the associated Oracle application development and

configuration tools, namely Structured Query Language (SQL)*Plus, can be used to connect to

the instance through a Transparent Network Substrate alias.

The installation of scripts noted in the next section will create a set of materialized view artifacts

in order to enable FDB data to be read from another database/environment. Prior to this solution

being completely implemented, there must also be a database link created to this database which

houses FDB_DIF schema objects.

Execute the following scripts on the target database which contains the FDB related schema

objects to create the materialized view artifacts and permissions needed by any sourcing

database. After executing the scripts noted below, the FDB data will be accessed via database

link created for that purpose.

On the sourcing database(s) through the database link and its authorized account, you may now

access the FDB data through the aforementioned database link and account.

4.5 Installation Scripts

Create MOCHA Database with Materialized View Replication

To create a MOCHA database, with Materialized View Replication from a PECS database, run the following

scripts in the order listed.

Run Script from an Account with DBA Privileges:

• SYSTEM_Setup_MOCHA_Env.sql

 Run Scripts from MOCHA Schema Owner Account:

• DIFWK33_Tables_Create.sql

• DIFWK33_Create_ctVersion.sql

• DIFWK33_Constraints_Create.sql

• DIFWK33_Constraints_Alter.sql

• MOCHA_Create_DBLink.sql

• MOCHA_Create_MViews.sql

MOCHA Server 3.1

Installation Guide 9 October 2020

The selection of data from the FDB data housed in the database using the authorized account

specified using the database link is now enabled.

4.6 Cron Scripts

Not Applicable

4.7 Access Requirements and Skills Needed for the
Installation

Account Access Requirements Skills needed

*Not applicable

* The installation/deployment is performed by AITC SAs and their MOC application/build managers are

responsible for assigning the appropriate resources based on their review of our RFCO

4.8 Installation Procedure

The installation instructions found within this guide are intended to be performed on a clean

installation of WebLogic 12.1.3, with a separate managed server to act as the Deployment

Server. For details on completing the installation of the following items, please refer to each

item’s installation and configuration documentation supplied by Oracle.

For successful deployment of the MOCHA Server software, the following assumptions must be

met:

• The Deployment Server is configured and running.

• WebLogic is configured to run with the Java™ Standard Edition Development Kit, Version 1.8+.

• Access to the WebLogic console is by means of any valid administrative user name and

password.

• The proper Oracle database driver libraries for the chosen deployment environment are present on

the class path for the respective Deployment Servers.

• Red Hat Enterprise Linux 6.x operating system is properly installed.

• Domain Name Server (DNS) resolution is configured for the MOCHA Server server.

• The installation instructions are followed in the order that the sections are presented within this

Installation Guide.

• A PECS database is available for replication.

4.8.1 WebLogic Installation Instructions

The following sections detail the steps required to configure and deploy MOCHA Server onto

WebLogic.

4.8.1.1 WebLogic Server Startup Configuration

MOCHA Server requires additional arguments added to the WebLogic Server’s Server Start

properties. This section details the steps to add the arguments to the server

MOCHA Server 3.1

Installation Guide 10 October 2020

1. Open and log into the WebLogic console, using an administrative user name and password. The

WebLogic console is located at: http://<Deployment Machine>:7001/console.

2. Within the Domain Structure panel found in the left column of the WebLogic console, click

on the Environment > Servers node.

3. Within the Change Center panel found in the left column of the WebLogic console, click

Lock & Edit.

4. Click on the server name corresponding to the deployment server in the Summary of

Servers panel found in the right column of the WebLogic console. WebLogic will display the

panel Settings for Deployment Server in the right column of the console.

5. Click on the Server Start tab. WebLogic will display the panel Server Start tab in

the Settings for Deployment Server in the right column of the console.

6. Insert the following text in the Arguments box, separated by spaces:

-Xms1024m

-Xmx1024m

-XX:MaxPermSize=256m

-Dweblogic.client.socket.ConnectTimeout=10000

-Dspring.profiles.active=FDBCloud

Also add arguments for Log4j2 file and other Log files. (for reference, see the examples below,

modify path per your server configuration) :-

-
Dlog4j.configuration=file:/u01/app/healthevet/config/mocha_ms01/log4j2.

xml

4. Click the Save Button

5. Within the Change Center panel in the left column of the WebLogic console, click

Activate Changes.

MOCHA Server 3.1

Installation Guide 11 October 2020

4.8.1.2 FDB MedKnowledge Data Source Configuration

MOCHA Server uses a database connection by means of a data source to FDB MedKnowledge.

Complete the following steps to create a new connection pool and data source for FDB

MedKnowledge.

Note: The current MOCHA Server production environment leverages multiple database instances.

This configuration requires a multiple connection datasource.

Creating the MOCHA Server FDB MedKnowledge JNDI:

1. Follow the steps below in the “Creating the individual database connections” for each of the

database instances MOCHA Server will connect.

Example: if MOCHA Server will connect to two separate database instances, two JNDI

connections would be created and names appropriately (datasource/FDB-DIF-1 and

datasource/FDB-DIF-2)

2. As when creating the individual database connections, in the WebLogic Server administration

console, click Lock & Edit to lock the configuration. Then, in the Domain Structure area, click

Data Sources under Services

3. In the Create a New JDBC Multi Data Source area, enter the multi data source Name and JNDI

Name. Below are the values for the JNDI (quotes should be omitted in the entered value)

- Multi Data Source Name: useful label that describes the connection. For example

“MOCHA Server FDB MedKnowledge database connection”.

- JNDI Name: “datasource/FDB-DIF”

4. Select the Algorithm Type as Load-Balancing and click Next

5. Under Select Targets, select the server or servers that the previously created generic data sources

were targeted to. Then click Next.

6. Select the XA driver type for the multi data source. Click Next.

7. Select the data sources that will be part of this multi data source and click the right arrow to move

them from Available to Chosen (datasource/FDB-DIF-1 and datasource/FDB-DIF-2for

example). Click Finish.

8. In the Change Center, click Activate Changes

Creating the individual database connections:

1. Open and log into the WebLogic console, using an administrative user name and password. The

WebLogic console is located at: http://<Deployment Machine>:7001/console.

2. Within the Domain Structure panel found in the left column of the WebLogic console, click

on the Services > JDBC > Data Sources node.

3. Within the Change Center panel found in the left column of the WebLogic console, click

Lock & Edit.

4. Click New – Generic Data Source found in the Summary of JDBC Data

Sources panel found in the right column of the WebLogic console. WebLogic will display the

panel Create a New JDBC Data Source in the right column of the console, where

details of the new data source are set.

MOCHA Server 3.1

Installation Guide 12 October 2020

5. For the Name, type a useful label that describes the connection. For example “FDB-DIF DB

Connection 1”.

6. For the JNDI Name, type datasource/FDB-DIF-(1,2, etc).

7. For the Database Type, select Oracle.

8. Click Next.

9. For the Database Driver, verify that Oracle’s Driver (Thin) for Instance

Connections; Versions:9.0.1 and later is selected.

10. Click Next. WebLogic will now display the panel Transaction Options in the right

column of the console, where the transaction attributes for this data source are set.

11. Click Next. WebLogic will display the panel Connection Properties in the right column

of the console, where the datasource attributes are set.

12. For Database Name, type the name of the Oracle database to which MOCHA Server will

connect.

13. For Host Name, type the name of the machine on which Oracle is running. For example,

exampleappserver.abc.va.gov.

14. For Port, type the port on which Oracle is listening. For example, 1521.

15. For Database User Name, type the user to connect to the FDB database. For example, FDB-

DIF.

16. For Password and Confirm Password, type the password for the user given previously.

17. Click Next. WebLogic will display the panel Test Database Connection in the right

column of the console, where the new data source can be tested.

18. Leave all values as set by default, with the exception of Test Table Name. For this attribute,

type fdb_version.

19. Click Next.

20. WebLogic will now display the panel Select Targets in the right column of the console,

where the target server is selected for the new data source. For reference, see Error! Reference s

ource not found..

21. Select the Deployment Server as the target. For example, mocha_ms01.

22. Click Finish.

23. Click Activate Changes.

24. WebLogic will now display the panel Summary of JDBC Data Sources in the right

column of the console, where the newly created data source is displayed.

4.8.2 Log4j2

MOCHA Server uses Log4j2 to provide debug and error logs. Log4j2 is a dependency of

MOCHA Server and must be configured prior to the deployment of the application.

To install Log4j2, the log4j2 JAR must be placed on the Deployment Server’s class path and the,

log4j2.xml, must be edited to include the MOCHA appenders and loggers. Complete the

following instructions to place the Log4j2 library on the Deployment Server’s class path.

MOCHA Server 3.1

Installation Guide 13 October 2020

1. Copy log4j-api-2.10.0.jar and log4j-core-2.10.0.jar to server/lib folder where WebLogic is

installed, /u01/app/Oracle_Home/wlserver/server/lib, for example.

Note: If log4j2 is already installed, the jar file will already be on the server.

2. Configure WebLogic to include the Log4j2 library in the Deployment Server’s class path. Please

refer to the WebLogic documentation provided by BEA for completing this step.

3. Create the log4j2.xml file that is located in the path specified in the Deployment Server

arguments.

4. Configure the log4j2.xml file using Appendix A as a reference.

5. Restart the Deployment Server to load the Log4j2 configuration.

4.8.3 ESAPI

MOCHA Server uses OWASP ESAPI to provide security for and consistency when

logging incoming MOCHA Server requests. ESAPI is a dependency of MOCHA Server and

must be configured prior to the deployment of the application.

ESAPI is packaged with the MOCHA Server build but must have required configuration files

on the WebLogic classpath for the MOCHA Server service to operate. The specific files needed

are ESAPI.properties and validation.properties. Complete the following instructions to place the

ESAPI properties files on the Deployment Server’s class path.

1. Create the ESAPI.properties and validation.properties files using Appendix B and C as a

reference.

2. Place the ESAPI properties files in the root domain directory of the WebLogic server.

- Note: You can also modify the WebLogic classpath to include the configuration files by

modifying the CLASSPATH in the setDomainEnv file in the DOMAIN_HOME/bin directory

- Note: Ensure the WebLogic server has sufficient privileges to access the esapi properties file.

For example, if coping the file from another server, use the chown Linux command to make

the WebLogic process owner the owner of the esapi properties files.

3. Restart the Deployment Server to load the ESAPI configuration.

4.8.4 Deploy New MOCHA Server Build

The following steps detail the deployment of the MOCHA Server application Build on WebLogic

application Server.

1. Open and log into the WebLogic console. This is located at: http://<Deployment

Machine>:7001/console.

2. Within the Domain Structure panel in the left column of the WebLogic console, click the

Deployments node. For reference, see Figure 4-1.

MOCHA Server 3.1

Installation Guide 14 October 2020

Figure 4-1: Domain Structure

MOCHA Server 3.1

Installation Guide 15 October 2020

3. Within the Change Center panel in the left column of the WebLogic console, click Lock & Edit.

For reference, see Figure 4-2.

Figure 4-2: Change Center

4. Click Install found in the Deployments panel in the right column of the WebLogic console. For

reference, see Figure 4-3.

Figure 4-3: Deployments

MOCHA Server 3.1

Installation Guide 16 October 2020

5. WebLogic will now display the panel Install Application Assistant in the right column of the

console, where the location of the MOCHA Server deployment will be found. For reference, see

Figure 4-4.

REDACTED

Figure 4-4: Install Application Assistant

6. If the MOCHA Server build for deployment has already been transferred to the Deployment

Machine, navigate to the deployment file location using the links and file structure displayed

within the Install Application Assistant window.

7. Select the mocha-server-X.X.XX.XXXX.ear file. (Version number will depend on the current

MOCHA Server version. For example, for MOCHA Server 3.1 build 0000, the ear file is mocha-

server-3.1.00.0000).

8. Once the MOCHA Server build for deployment is located and selected, click Next.

9. WebLogic will now display the panel Choose targeting style within the Install Application

Assistant in the right column of the console. Leave the default value selected, Install this

deployment as an application, and click Next. For reference, see Figure 4-53.

Figure 4-53: Choose Targeting Style

10. Within the Install Application Assistant in the right column of the console, WebLogic will now

display the panel Select deployment targets, where the Deployment Server will be selected as the

target in the next step. For reference, see Figure 4-64.

MOCHA Server 3.1

Installation Guide 17 October 2020

Figure 4-64: Select Deployment Targets

11. For the Target, select the Deployment Server. For example, LocalPharmacyServer.

12. Select Part of the cluster, and select MOCHASrv1, MOCHASrv2, MOCHASrv3.

13. Click Next.

14. Within the Install Application Assistant, WebLogic will now display the panel Optional Settings

in the right column of the console, where the name of the deployment and the copy behavior are

chosen. For reference, see Figure 4-75.

MOCHA Server 3.1

Installation Guide 18 October 2020

Figure 4-75: Optional Settings

15. Enter the Name for the deployment. For example, MOCHA.

16. Verify that the following default option for Security is selected:

DD Only: Use only roles and policies that are defined in the deployment descriptors.

17. Verify that the following default option for Source accessibility is selected:

Use the defaults defined by the deployment's targets.

18. Click Next.

19. Within the Install Application Assistant in the right column of the console WebLogic will now

display the panel Review your choices and click Finish, which summarizes the steps completed

above. For reference, see Figure 4-86. (Version number will depend on the current MOCHA

Server version. For example, for MOCHA Server 3.1 build 0000, the ear file is mocha-server-

3.1.00.0000).

MOCHA Server 3.1

Installation Guide 19 October 2020

Figure 4-86: Review Your Choices and Click Finish

20. Verify that the values match those entered in Steps 7 through 19 and click Finish.

MOCHA Server 3.1

Installation Guide 20 October 2020

21. WebLogic will now display the panel Settings for MOCHA, in the right column of the console,

where the values previously entered are available as well as a setting to change the deployment

order. For reference, see Figure 4-97.

Figure 4-97: Settings for MOCHA

22. Leave all the values as defaulted by WebLogic and click Save.

MOCHA Server 3.1

Installation Guide 21 October 2020

23. Within the Change Center panel in the left column of the WebLogic console, click Activate

Changes. For reference, see Error! Reference source not found.18.

Figure 4-10: Activate Changes

24. Within the Domain Structure panel in the left column of the WebLogic console, click the

Deployments node. For reference, see Error! Reference source not found..

Figure 4-11: Domain Structure

MOCHA Server 3.1

Installation Guide 22 October 2020

25. WebLogic will now display the panel Summary of Deployments in the right column of the

console, where all deployments for the WebLogic domain are listed. For reference, see Figure

4-120.

Figure 4-120: Summary of Deployments

26. Select the previously deployed MOCHA deployment, click Start, and then select

Servicing all requests from the drop-down list box.

27. WebLogic will now display the panel Start Application Assistant in the right column of the

console for confirmation to start servicing requests. For reference, see Figure 4-131.

Figure 4-131: Start Application Assistant

28. Click Yes in the Start Application Assistant panel in the right column of the WebLogic console.

MOCHA Server 3.1

Installation Guide 23 October 2020

29. WebLogic now returns to the Summary of Deployments panel in the right column of the console.

For reference, see Figure 4-142.

Figure 4-14: Summary of Deployments – MOCHA Deployment Active

Verify that the State of the MOCHA deployment is Active

4.9 Installation Verification Procedure

When the MOCHA Server ear file has been deployed successfully, it can be verified by accessing an xml

page from a web browser.

Open a web browser, such as Internet Explorer, and enter the URL in the following format:

http://mochaserverhostname:port/MOCHA/ordercheck, where the mochaserverhostname is the fully-

qualified domain name of the Linux server running MOCHA Server, and port is the port number where

the ear file was deployed in WebLogic. Here is a sample URL for reference:

http://exampleserver.abc.va.gov:8001/MOCHA/ordercheck

If the MOCHA Server app is up, the browser should return xml that looks similar to this:

<?xml version="1.0" encoding="UTF-8"?>

<exception xmlns="gov/va/med/pharmacy/peps/external/common/preencapsulation/vo/exception"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="gov/va/med/pharmacy/peps/external/common/preencapsulation/vo/exception

exception.xsd"><code>PRE</code><message>No XML request was sent. The xmlRequest parameter must be

set with the XML containing the request to process.</message><detailedMessage>

<![CDATA[gov.va.med.pharmacy.peps.common.exception.InterfaceValidationException: No XML request was

sent. The xmlRequest parameter must be set with the XML containing the request to process. at

gov.va.med.pharmacy.peps.external.common.preencapsulation.capability.impl.ProcessOrderChecksCapabilityImpl.

handleRequest(Unknown Source) at

gov.va.med.pharmacy.peps.external.common.preencapsulation.session.impl.OrderCheckServiceImpl.performOrder

Check(Unknown Source) at

gov.va.med.pharmacy.peps.external.common.preencapsulation.session.bean.OrderCheckServiceBean.performOrder

Check(Unknown Source) at sun.reflect.GeneratedMethodAccessor93.invoke(Unknown Source) at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at

http://vaausmocwebdev01.aac.va.gov:8001/MOCHA/ordercheck

MOCHA Server 3.1

Installation Guide 24 October 2020

java.lang.reflect.Method.invoke(Method.java:606) at

com.bea.core.repackaged.springframework.aop.support.AopUtils.invokeJoinpointUsingReflection(AopUtils.java:31

0) at

com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(Reflective

MethodInvocation.java:182) at

com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodI

nvocation.java:149) at

com.oracle.pitchfork.intercept.MethodInvocationInvocationContext.proceed(MethodInvocationInvocationContext.ja

va:103) at com.oracle.pitchfork.intercept.JeeInterceptorInterceptor.invoke(JeeInterceptorInterceptor.java:117) at

com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodI

nvocation.java:171) at

com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionInterceptor.doProceed(DelegatingInt

roductionInterceptor.java:131) at

com.bea.core.repackaged.springframework.aop.support.DelegatingIntroductionInterceptor.invoke(DelegatingIntrod

uctionInterceptor.java:119) at

com.bea.core.repackaged.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodI

nvocation.java:171) at

com.bea.core.repackaged.springframework.aop.framework.JdkDynamicAopProxy.invoke(Unknown Source) at

com.sun.proxy.$Proxy79.performOrderCheck(Unknown Source) at

gov.va.med.pharmacy.peps.external.common.preencapsulation.session.bean.OrderCheckServiceBean_ya2o68_Orde

rCheckServiceImpl.__WL_invoke(Unknown Source) at

weblogic.ejb.container.internal.SessionLocalMethodInvoker.invoke(SessionLocalMethodInvoker.java:33) at

gov.va.med.pharmacy.peps.external.common.preencapsulation.session.bean.OrderCheckServiceBean_ya2o68_Orde

rCheckServiceImpl.performOrderCheck(Unknown Source) at

gov.va.med.pharmacy.peps.external.common.preencapsulation.servlet.OrderCheckServlet.getResponse(Unknown

Source) at gov.va.med.pharmacy.peps.common.servlet.AbstractPepsServlet.doService(Unknown Source) at

gov.va.med.pharmacy.peps.common.servlet.AbstractPepsServlet.doGet(Unknown Source) at

javax.servlet.http.HttpServlet.service(HttpServlet.java:731) at

javax.servlet.http.HttpServlet.service(HttpServlet.java:844) at

weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:280) at

weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:254) at

weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper.java:136) at

weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:341) at

weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:238) at

weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.wrapRun(WebAppServletContext.java:3

363) at

weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3333)

at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321) at

weblogic.security.service.SecurityManager.runAs(SecurityManager.java:120) at

weblogic.servlet.provider.WlsSubjectHandle.run(WlsSubjectHandle.java:57) at

weblogic.servlet.internal.WebAppServletContext.doSecuredExecute(WebAppServletContext.java:2220) at

weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletContext.java:2146) at

weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.java:2124) at

weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1564) at

weblogic.servlet.provider.ContainerSupportProviderImpl$WlsRequestExecutor.run(ContainerSupportProviderImpl.j

ava:254) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:295) at

weblogic.work.ExecuteThread.run(ExecuteThread.java:254)]]>

</detailedMessage></exception>

4.10 System Configuration

Not Applicable

MOCHA Server 3.1

Installation Guide 25 October 2020

4.11 Database Tuning

Not Applicable

5 Back-Out Procedure
Specific back-out procedures for a release are provided in the Request for Change Order (RFCO)

that is submitted to EO.

5.1 Back-Out Strategy

Not Applicable.

5.2 Back-Out Considerations

Not Applicable.

5.2.1 Load Testing

Not Applicable.

5.2.2 User Acceptance Testing

Not Applicable.

5.3 Back-Out Criteria

Not Applicable.

5.4 Back-Out Risks

Not Applicable.

5.5 Authority for Back-Out

Not Applicable.

5.6 Back-Out Procedure

Not Applicable.

5.7 Back-out Verification Procedure

Not Applicable.

6 Rollback Procedure
Enterprise Operations should follow

MOCHA Server 3.1

Installation Guide 26 October 2020

6.1 Rollback Considerations

Not Applicable.

6.2 Rollback Criteria

Not Applicable

6.3 Rollback Risks

Not Applicable

6.4 Authority for Rollback

Not Applicable.

6.5 Rollback Procedure

Not Applicable

6.6 Rollback Verification Procedure

Not Applicable

MOCHA Server 3.1

Installation Guide 27 October 2020

7 Appendix

7.1 Appendix A: Sample log4j2.xml file

<?xml version="1.0" encoding="UTF-8" ?>

<Configuration xmlns="http://logging.apache.org/log4j/2.0/config">

 <!-- Logging Properties -->

 <Properties>

 <Property name="LOG_PATTERN">%d{dd MMM yyyy hh:mm:ss a} %-5p [%c:%M]

%m%n</Property>

 <Property name="APP_LOG_ROOT">logs</Property>

 </Properties>

 <Appenders>

 <!-- Console Appender -->

 <Console name="Console">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 <!-- File Appenders -->

 <RollingFile name="PepsAppender" fileName="${APP_LOG_ROOT}/Mocha.log"

filePattern="${APP_LOG_ROOT}/Mocha-%d{yyyy-MM-dd}.log">

 <PatternLayout pattern="${LOG_PATTERN}"/>

 <Policies>

 <TimeBasedTriggeringPolicy />

 </Policies>

 </RollingFile>

 <RollingFile name="SpringAppender" fileName="${APP_LOG_ROOT}/Spring.log"

filePattern="${APP_LOG_ROOT}/Spring-%d{yyyy-MM-dd}.log">

 <PatternLayout pattern="${LOG_PATTERN}"/>

 <Policies>

 <TimeBasedTriggeringPolicy />

 </Policies>

MOCHA Server 3.1

Installation Guide 28 October 2020

 </RollingFile>

 </Appenders>

 <Loggers>

 <Logger name="org.springframework" level="error" additivity="false">

 <AppenderRef ref="SpringAppender" />

 <AppenderRef ref="Console" />

 </Logger>

 <Logger name="gov.va.med.pharmacy.peps" level="error" additivity="false">

 <AppenderRef ref="PepsAppender" />

 <AppenderRef ref="Console" />

 </Logger>

 <Root level="debug">

 <AppenderRef ref="Console"/>

 </Root>

 </Loggers>

</Configuration>

7.2 Appendix B: Sample ESAPI.properties file

OWASP Enterprise Security API (ESAPI) Properties file -- TEST Version

This file is part of the Open Web Application Security Project (OWASP)

Enterprise Security API (ESAPI) project. For details, please see

http://www.owasp.org/index.php/ESAPI.

Copyright (c) 2008,2009 - The OWASP Foundation

DISCUSS: This may cause a major backwards compatibility issue, etc. but

from a name space perspective, we probably should have prefaced

all the property names with ESAPI or at least OWASP. Otherwise

there could be problems is someone loads this properties file into

the System properties. We could also put this file into the

esapi.jar file (perhaps as a ResourceBundle) and then allow an external

ESAPI properties be defined that would overwrite these defaults.

That keeps the application's properties relatively simple as usually

they will only want to override a few properties. If looks like we

MOCHA Server 3.1

Installation Guide 29 October 2020

already support multiple override levels of this in the

DefaultSecurityConfiguration class, but I'm suggesting placing the

defaults in the esapi.jar itself. That way, if the jar is signed,

we could detect if those properties had been tampered with. (The

code to check the jar signatures is pretty simple... maybe 70-90 LOC,

but off course there is an execution penalty (similar to the way

that the separate sunjce.jar used to be when a class from it was

first loaded). Thoughts?

WARNING: Operating system protection should be used to lock down the .esapi

resources directory and all the files inside and all the directories all the

way up to the root directory of the file system. Note that if you are using

file-based implementations, that some files may need to be read-write as they

get updated dynamically.

Before using, be sure to update the MasterKey and MasterSalt as described below.

N.B.: If you had stored data that you have previously encrypted with ESAPI 1.4,

you *must* FIRST decrypt it using ESAPI 1.4 and then (if so desired)

re-encrypt it with ESAPI 2.0. If you fail to do this, you will NOT be

able to decrypt your data with ESAPI 2.0.

YOU HAVE BEEN WARNED!!! More details are in the ESAPI 2.0 Release Notes.

#===

ESAPI Configuration

If true, then print all the ESAPI properties set here when they are loaded.

If false, they are not printed. Useful to reduce output when running JUnit tests.

If you need to troubleshoot a properties related problem, turning this on may help,

but we leave it off for running JUnit tests. (It will be 'true' in the one delivered

as part of production ESAPI, mostly for backward compatibility.)

ESAPI.printProperties=false

ESAPI is designed to be easily extensible. You can use the reference implementation

or implement your own providers to take advantage of your enterprise's security

infrastructure. The functions in ESAPI are referenced using the ESAPI locator, like:

String ciphertext =

ESAPI.encryptor().encrypt("Secret message"); // Deprecated in 2.0

CipherText cipherText =

ESAPI.encryptor().encrypt(new PlainText("Secret message")); // Preferred

MOCHA Server 3.1

Installation Guide 30 October 2020

Below you can specify the classname for the provider that you wish to use in your

application. The only requirement is that it implement the appropriate ESAPI interface.

This allows you to switch security implementations in the future without rewriting the

entire application.

ExperimentalAccessController requires ESAPI-AccessControlPolicy.xml in .esapi directory

ESAPI.AccessControl=org.owasp.esapi.reference.DefaultAccessController

FileBasedAuthenticator requires users.txt file in .esapi directory

ESAPI.Authenticator=org.owasp.esapi.reference.FileBasedAuthenticator

ESAPI.Encoder=org.owasp.esapi.reference.DefaultEncoder

ESAPI.Encryptor=org.owasp.esapi.reference.crypto.JavaEncryptor

ESAPI.Executor=org.owasp.esapi.reference.DefaultExecutor

ESAPI.HTTPUtilities=org.owasp.esapi.reference.DefaultHTTPUtilities

ESAPI.IntrusionDetector=org.owasp.esapi.reference.DefaultIntrusionDetector

Log4JFactory Requires log4j2.xml or log4j.properties in classpath - http://www.laliluna.de/log4j-tutorial.html

#ESAPI.Logger=org.owasp.esapi.reference.Log4JLogFactory

ESAPI.Logger=org.owasp.esapi.reference.JavaLogFactory

#ESAPI.Logger=org.owasp.esapi.reference.ExampleExtendedLog4JLogFactory

ESAPI.Randomizer=org.owasp.esapi.reference.DefaultRandomizer

ESAPI.Validator=org.owasp.esapi.reference.DefaultValidator

#===

ESAPI Authenticator

Authenticator.AllowedLoginAttempts=3

Authenticator.MaxOldPasswordHashes=13

Authenticator.UsernameParameterName=username

Authenticator.PasswordParameterName=password

RememberTokenDuration (in days)

Authenticator.RememberTokenDuration=14

Session Timeouts (in minutes)

Authenticator.IdleTimeoutDuration=20

Authenticator.AbsoluteTimeoutDuration=120

#===

ESAPI Encoder

ESAPI canonicalizes input before validation to prevent bypassing filters with encoded attacks.

Failure to canonicalize input is a very common mistake when implementing validation schemes.

Canonicalization is automatic when using the ESAPI Validator, but you can also use the

following code to canonicalize data.

MOCHA Server 3.1

Installation Guide 31 October 2020

ESAPI.Encoder().canonicalize("%22hello world"");

Multiple encoding is when a single encoding format is applied multiple times. Allowing

multiple encoding is strongly discouraged.

Encoder.AllowMultipleEncoding=false

Mixed encoding is when multiple different encoding formats are applied, or when

multiple formats are nested. Allowing multiple encoding is strongly discouraged.

Encoder.AllowMixedEncoding=false

The default list of codecs to apply when canonicalizing untrusted data. The list should include the codecs

for all downstream interpreters or decoders. For example, if the data is likely to end up in a URL, HTML, or

inside JavaScript, then the list of codecs below is appropriate. The order of the list is not terribly important.

Encoder.DefaultCodecList=HTMLEntityCodec,PercentCodec,JavaScriptCodec

#===

ESAPI Encryption

The ESAPI Encryptor provides basic cryptographic functions with a simplified API.

To get started, generate a new key using java -classpath esapi.jar org.owasp.esapi.reference.crypto.JavaEncryptor

There is not currently any support for key rotation, so be careful when changing your key and salt as it

will invalidate all signed, encrypted, and hashed data.

WARNING: Not all combinations of algorithms and key lengths are supported.

If you choose to use a key length greater than 128, you MUST download the

unlimited strength policy files and install in the lib directory of your JRE/JDK.

See http://java.sun.com/javase/downloads/index.jsp for more information.

Backward compatibility with ESAPI Java 1.4 is supported by the two deprecated API

methods, Encryptor.encrypt(String) and Encryptor.decrypt(String). However, whenever

possible, these methods should be avoided as they use ECB cipher mode, which in almost

all circumstances a poor choice because of it's weakness. CBC cipher mode is the default

for the new Encryptor encrypt / decrypt methods for ESAPI Java 2.0. In general, you

should only use this compatibility setting if you have persistent data encrypted with

version 1.4 and even then, you should ONLY set this compatibility mode UNTIL

you have decrypted all of your old encrypted data and then re-encrypted it with

ESAPI 2.0 using CBC mode. If you have some reason to mix the deprecated 1.4 mode

with the new 2.0 methods, make sure that you use the same cipher algorithm for both

(256-bit AES was the default for 1.4; 128-bit is the default for 2.0; see below for

more details.) Otherwise, you will have to use the new 2.0 encrypt / decrypt methods

where you can specify a SecretKey. (Note that if you are using the 256-bit AES,

that requires downloading the special jurisdiction policy files mentioned above.)

MOCHA Server 3.1

Installation Guide 32 October 2020

***** IMPORTANT: These are for JUnit testing. Test files may have been

encrypted using these values so do not change these or

those tests will fail. The version under

src/main/resources/.esapi/ESAPI.properties

will be delivered with Encryptor.MasterKey and

Encryptor.MasterSalt set to the empty string.

FINAL NOTE:

If Maven changes these when run, that needs to be fixed.

256-bit key... requires unlimited strength jurisdiction policy files

Encryptor.MasterKey=pJhlri8JbuFYDgkqtHmm9s0Ziug2PE7ovZDyEPm4j14=

128-bit key

Encryptor.MasterKey=a6H9is3hEVGKB4Jut+lOVA==

Encryptor.MasterSalt=SbftnvmEWD5ZHHP+pX3fqugNysc=

Encryptor.MasterSalt=

Provides the default JCE provider that ESAPI will "prefer" for its symmetric

encryption and hashing. (That is it will look to this provider first, but it

will defer to other providers if the requested algorithm is not implemented

by this provider.) If left unset, ESAPI will just use your Java VM's current

preferred JCE provider, which is generally set in the file

"$JAVA_HOME/jre/lib/security/java.security".

The main intent of this is to allow ESAPI symmetric encryption to be

used with a FIPS 140-2 compliant crypto-module. For details, see the section

"Using ESAPI Symmetric Encryption with FIPS 140-2 Cryptographic Modules" in

the ESAPI 2.0 Symmetric Encryption User Guide, at:

http://owasp-esapi-java.googlecode.com/svn/trunk/documentation/esapi4java-core-2.0-symmetric-crypto-user-guide.html

However, this property also allows you to easily use an alternate JCE provider

such as "Bouncy Castle" without having to make changes to "java.security".

See Javadoc for SecurityProviderLoader for further details. If you wish to use

a provider that is not known to SecurityProviderLoader, you may specify the

fully-qualified class name of the JCE provider class that implements

java.security.Provider. If the name contains a '.', this is interpreted as

a fully-qualified class name that implements java.security.Provider.

NOTE: Setting this property has the side-effect of changing it in your application

as well, so if you are using JCE in your application directly rather than

through ESAPI (you wouldn't do that, would you? ;-), it will change the

preferred JCE provider there as well.

Default: Keeps the JCE provider set to whatever JVM sets it to.

MOCHA Server 3.1

Installation Guide 33 October 2020

Encryptor.PreferredJCEProvider=

AES is the most widely used and strongest encryption algorithm. This

should agree with your Encryptor.CipherTransformation property.

By default, ESAPI Java 1.4 uses "PBEWithMD5AndDES" and which is

very weak. It is essentially a password-based encryption key, hashed

with MD5 around 1K times and then encrypted with the weak DES algorithm

(56-bits) using ECB mode and an unspecified padding (it is

JCE provider specific, but most likely "NoPadding"). However, 2.0 uses

"AES/CBC/PKCSPadding". If you want to change these, change them here.

Warning: This property does not control the default reference implementation for

ESAPI 2.0 using JavaEncryptor. Also, this property will be dropped

in the future.

@deprecated

Encryptor.EncryptionAlgorithm=AES

For ESAPI Java 2.0 - New encrypt / decrypt methods use this.

Encryptor.CipherTransformation=AES/CBC/PKCS5Padding

Applies to ESAPI 2.0 and later only!

Comma-separated list of cipher modes that provide *BOTH*

confidentiality *AND* message authenticity. (NIST refers to such cipher

modes as "combined modes" so that's what we shall call them.) If any of these

cipher modes are used then no MAC is calculated and stored

in the CipherText upon encryption. Likewise, if one of these

cipher modes is used with decryption, no attempt will be made

to validate the MAC contained in the CipherText object regardless

of whether it contains one or not. Since the expectation is that

these cipher modes support support message authenticity already,

injecting a MAC in the CipherText object would be at best redundant.

Note that as of JDK 1.5, the SunJCE provider does not support *any*

of these cipher modes. Of these listed, only GCM and CCM are currently

NIST approved. YMMV for other JCE providers. E.g., Bouncy Castle supports

GCM and CCM with "NoPadding" mode, but not with "PKCS5Padding" or other

padding modes.

Encryptor.cipher_modes.combined_modes=GCM,CCM,IAPM,EAX,OCB,CWC

Applies to ESAPI 2.0 and later only!

Additional cipher modes allowed for ESAPI 2.0 encryption. These

cipher modes are in _addition_ to those specified by the property

'Encryptor.cipher_modes.combined_modes'.

Note: We will add support for streaming modes like CFB & OFB once

we add support for 'specified' to the property 'Encryptor.ChooseIVMethod'

MOCHA Server 3.1

Installation Guide 34 October 2020

(probably in ESAPI 2.1).

IMPORTANT NOTE: In the official ESAPI.properties we do *NOT* include ECB

here as this is an extremely weak mode. However, we *must*

allow it here so we can test ECB mode. That is important

since the logic is somewhat different (i.e., ECB mode does

not use an IV).

DISCUSS: Better name?

NOTE: ECB added only for testing purposes. Don't try this at home!

Encryptor.cipher_modes.additional_allowed=CBC,ECB

128-bit is almost always sufficient and appears to be more resistant to

related key attacks than is 256-bit AES. Use '_' to use default key size

for cipher algorithms (where it makes sense because the algorithm supports

a variable key size). Key length must agree to what's provided as the

cipher transformation, otherwise this will be ignored after logging a

warning.

NOTE: This is what applies BOTH ESAPI 1.4 and 2.0. See warning above about mixing!

Encryptor.EncryptionKeyLength=128

Because 2.0 uses CBC mode by default, it requires an initialization vector (IV).

(All cipher modes except ECB require an IV.) There are two choices: we can either

use a fixed IV known to both parties or allow ESAPI to choose a random IV. While

the IV does not need to be hidden from adversaries, it is important that the

adversary not be allowed to choose it. Also, random IVs are generally much more

secure than fixed IVs. (In fact, it is essential that feed-back cipher modes

such as CFB and OFB use a different IV for each encryption with a given key so

in such cases, random IVs are much preferred. By default, ESAPI 2.0 uses random

IVs. If you wish to use 'fixed' IVs, set 'Encryptor.ChooseIVMethod=fixed' and

uncomment the Encryptor.fixedIV.

Valid values: random|fixed|specified 'specified' not yet implemented; planned for 2.1

Encryptor.ChooseIVMethod=random

If you choose to use a fixed IV, then you must place a fixed IV here that

is known to all others who are sharing your secret key. The format should

be a hex string that is the same length as the cipher block size for the

cipher algorithm that you are using. The following is an example for AES

from an AES test vector for AES-128/CBC as described in:

NIST Special Publication 800-38A (2001 Edition)

"Recommendation for Block Cipher Modes of Operation".

(Note that the block size for AES is 16 bytes == 128 bits.)

MOCHA Server 3.1

Installation Guide 35 October 2020

Encryptor.fixedIV=0x000102030405060708090a0b0c0d0e0f

Whether or not CipherText should use a message authentication code (MAC) with it.

This prevents an adversary from altering the IV as well as allowing a more

fool-proof way of determining the decryption failed because of an incorrect

key being supplied. This refers to the "separate" MAC calculated and stored

in CipherText, not part of any MAC that is calculated as a result of a

"combined mode" cipher mode.

If you are using ESAPI with a FIPS 140-2 cryptographic module, you *must* also

set this property to false.

Encryptor.CipherText.useMAC=true

Whether or not the PlainText object may be overwritten and then marked

eligible for garbage collection. If not set, this is still treated as 'true'.

Encryptor.PlainText.overwrite=true

Do not use DES except in a legacy situations. 56-bit is way too small key size.

#Encryptor.EncryptionKeyLength=56

#Encryptor.EncryptionAlgorithm=DES

TripleDES is considered strong enough for most purposes.

Note: There is also a 112-bit version of DESede. Using the 168-bit version

requires downloading the special jurisdiction policy from Sun.

#Encryptor.EncryptionKeyLength=168

#Encryptor.EncryptionAlgorithm=DESede

Encryptor.HashAlgorithm=SHA-512

Encryptor.HashIterations=1024

Encryptor.DigitalSignatureAlgorithm=SHA1withDSA

Encryptor.DigitalSignatureKeyLength=1024

Encryptor.RandomAlgorithm=SHA1PRNG

Encryptor.CharacterEncoding=UTF-8

Currently supported choices for JDK 1.5 and 1.6 are:

HmacSHA1 (160 bits), HmacSHA256 (256 bits), HmacSHA384 (384 bits), and

HmacSHA512 (512 bits).

Note that HmacMD5 is *not* supported for the PRF used by the KDF even though

these JDKs support it.

Encryptor.KDF.PRF=HmacSHA256

#===

ESAPI HttpUtilties

MOCHA Server 3.1

Installation Guide 36 October 2020

The HttpUtilities provide basic protections to HTTP requests and responses. Primarily these methods

protect against malicious data from attackers, such as unprintable characters, escaped characters,

and other simple attacks. The HttpUtilities also provides utility methods for dealing with cookies,

headers, and CSRF tokens.

Default file upload location (remember to escape backslashes with \\)

HttpUtilities.UploadDir=C:\\ESAPI\\testUpload

let this default to java.io.tmpdir for testing

#HttpUtilities.UploadTempDir=C:\\temp

Force flags on cookies, if you use HttpUtilities to set cookies

HttpUtilities.ForceHttpOnlySession=false

HttpUtilities.ForceSecureSession=false

HttpUtilities.ForceHttpOnlyCookies=true

HttpUtilities.ForceSecureCookies=true

Maximum size of HTTP headers

HttpUtilities.MaxHeaderSize=4096

File upload configuration

HttpUtilities.ApprovedUploadExtensions=.zip,.pdf,.doc,.docx,.ppt,.pptx,.tar,.gz,.tgz,.rar,.war,.jar,.ear,.xls,.rtf,.properties,.java,.class,.t
xt,.xml,.jsp,.jsf,.exe,.dll

HttpUtilities.MaxUploadFileBytes=500000000

Using UTF-8 throughout your stack is highly recommended. That includes your database driver,

container, and any other technologies you may be using. Failure to do this may expose you

to Unicode transcoding injection attacks. Use of UTF-8 does not hinder internationalization.

HttpUtilities.ResponseContentType=text/html; charset=UTF-8

This is the name of the cookie used to represent the HTTP session

Typically this will be the default "JSESSIONID"

HttpUtilities.HttpSessionIdName=JSESSIONID

#===

ESAPI Executor

CHECKME - Not sure what this is used for, but surely it should be made OS independent.

Executor.WorkingDirectory=C:\\Windows\\Temp

Executor.ApprovedExecutables=C:\\Windows\\System32\\cmd.exe,C:\\Windows\\System32\\runas.exe

#===

ESAPI Logging

Set the application name if these logs are combined with other applications

Logger.ApplicationName=PRE

If you use an HTML log viewer that does not properly HTML escape log data, you can set LogEncodingRequired to true

Logger.LogEncodingRequired=false

MOCHA Server 3.1

Installation Guide 37 October 2020

Determines whether ESAPI should log the application name. This might be clutter in some single-server/single-app environments.

Logger.LogApplicationName=true

Determines whether ESAPI should log the server IP and port. This might be clutter in some single-server environments.

Logger.LogServerIP=true

LogFileName, the name of the logging file. Provide a full directory path (e.g., C:\\ESAPI\\ESAPI_logging_file) if you

want to place it in a specific directory.

Logger.LogFileName=ESAPI_logging_file

MaxLogFileSize, the max size (in bytes) of a single log file before it cuts over to a new one (default is 10,000,000)

Logger.MaxLogFileSize=10000000

#===

ESAPI Intrusion Detection

Each event has a base to which .count, .interval, and .action are added

The IntrusionException will fire if we receive "count" events within "interval" seconds

The IntrusionDetector is configurable to take the following actions: log, logout, and disable

(multiple actions separated by commas are allowed e.g. event.test.actions=log,disable

Custom Events

Names must start with "event." as the base

Use IntrusionDetector.addEvent("test") in your code to trigger "event.test" here

You can also disable intrusion detection completely by changing

the following parameter to true

IntrusionDetector.Disable=false

IntrusionDetector.event.test.count=2

IntrusionDetector.event.test.interval=10

IntrusionDetector.event.test.actions=disable,log

Exception Events

All EnterpriseSecurityExceptions are registered automatically

Call IntrusionDetector.getInstance().addException(e) for Exceptions that do not extend EnterpriseSecurityException

Use the fully qualified classname of the exception as the base

any intrusion is an attack

IntrusionDetector.org.owasp.esapi.errors.IntrusionException.count=1

IntrusionDetector.org.owasp.esapi.errors.IntrusionException.interval=1

IntrusionDetector.org.owasp.esapi.errors.IntrusionException.actions=log,disable,logout

for test purposes

CHECKME: Shouldn't there be something in the property name itself that designates

MOCHA Server 3.1

Installation Guide 38 October 2020

that these are for testing???

IntrusionDetector.org.owasp.esapi.errors.IntegrityException.count=10

IntrusionDetector.org.owasp.esapi.errors.IntegrityException.interval=5

IntrusionDetector.org.owasp.esapi.errors.IntegrityException.actions=log,disable,logout

rapid validation errors indicate scans or attacks in progress

org.owasp.esapi.errors.ValidationException.count=10

org.owasp.esapi.errors.ValidationException.interval=10

org.owasp.esapi.errors.ValidationException.actions=log,logout

sessions jumping between hosts indicates session hijacking

IntrusionDetector.org.owasp.esapi.errors.AuthenticationHostException.count=2

IntrusionDetector.org.owasp.esapi.errors.AuthenticationHostException.interval=10

IntrusionDetector.org.owasp.esapi.errors.AuthenticationHostException.actions=log,logout

#===

ESAPI Validation

The ESAPI Validator works on regular expressions with defined names. You can define names

either here, or you may define application specific patterns in a separate file defined below.

This allows enterprises to specify both organizational standards as well as application specific

validation rules.

Validator.ConfigurationFile=validation.properties

Validators used by ESAPI

Validator.AccountName=^[a-zA-Z0-9]{3,20}$

Validator.SystemCommand=^[a-zA-Z\\-\\/]{1,64}$

Validator.RoleName=^[a-z]{1,20}$

Validator.Redirect=^\\/PRE.*$

Global HTTP Validation Rules

Values with Base64 encoded data (e.g. encrypted state) will need at least [a-zA-Z0-9\/+=]

Validator.HTTPScheme=^(http|https)$

Validator.HTTPServerName=^[a-zA-Z0-9_.\\-]*$

Validator.HTTPCookieName=^[a-zA-Z0-9\\-_]{1,32}$

Validator.HTTPCookieValue=^[a-zA-Z0-9\\-\\/+=_]*$

Validator.HTTPHeaderName=^[a-zA-Z0-9\\-_]{1,32}$

Validator.HTTPHeaderValue=^[a-zA-Z0-9()\\-=*\\.\\?;,+\\/:&_]*$

Validator.HTTPServletPath=^[a-zA-Z0-9.\\-\\/_]*$

Validator.HTTPPath=^[a-zA-Z0-9.\\-_]*$

Validator.HTTPURL=^.*$

MOCHA Server 3.1

Installation Guide 39 October 2020

Validator.HTTPJSESSIONID=^[A-Z0-9]{10,30}$

Contributed by Fraenku@gmx.ch

Googlecode Issue 116 (http://code.google.com/p/owasp-esapi-java/issues/detail?id=116)

Validator.HTTPParameterName=^[a-zA-Z0-9_\\-\\[\\]\\.]{1,32}$

Validator.HTTPParameterValue=^[\\p{L}\\p{N}.\\-/+=_ !$*?@]{0,1000}$

Validator.HTTPContextPath=^/[a-zA-Z0-9.\\-_]*$

Validator.HTTPQueryString=^([a-zA-Z0-9_\\-]{1,32}=[\\p{L}\\p{N}.\\-/+=_ !$*?@%]*&?)*$

Validator.HTTPURI=^/([a-zA-Z0-9.\\-_]*/?)*$

Validation of file related input

Validator.FileName=^[a-zA-Z0-9!@#$%^&{}\\[\\]()_+\\-=,.~'`]{1,255}$

Validator.DirectoryName=^[a-zA-Z0-9:/\\\\!@#$%^&{}\\[\\]()_+\\-=,.~'`]{1,255}$

Validation of dates. Controls whether or not 'lenient' dates are accepted.

See DataFormat.setLenient(boolean flag) for further details.

Validator.AcceptLenientDates=false

7.3 Appendix C: Sample validation.properties file
The ESAPI validator does many security checks on input, such as canonicalization

and whitelist validation. Note that all of these validation rules are applied *after*

canonicalization. Double-encoded characters (even with different encodings involved,

are never allowed.

To use:

First set up a pattern below. You can choose any name you want, prefixed by the word

"Validation." For example:

Validation.Email=^[A-Za-z0-9._%-]+@[A-Za-z0-9.-]+\\.[a-zA-Z]{2,4}$

Then you can validate in your code against the pattern like this:

ESAPI.validator().isValidInput("User Email", input, "Email", maxLength, allowNull);

Where maxLength and allowNull are set for you needs, respectively.

But note, when you use boolean variants of validation functions, you lose critical

canonicalization. It is preferable to use the "get" methods (which throw exceptions) and

and use the returned user input which is in canonical form. Consider the following:

try {

someObject.setEmail(ESAPI.validator().getValidInput("User Email", input, "Email", maxLength, allowNull));

MOCHA Server 3.1

Installation Guide 40 October 2020

Validator.SafeString=^[.\\p{Alnum}\\p{Space}]{0,1024}$

Validator.Email=^[A-Za-z0-9._%'-]+@[A-Za-z0-9.-]+\\.[a-zA-Z]{2,4}$

Validator.IPAddress=^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

Validator.URL=^(ht|f)tp(s?)\\:\\/\\/[0-9a-zA-Z]([-.\\w]*[0-9a-zA-Z])*(:(0-9)*)*(\\/?)([a-zA-Z0-9\\-\\.\\?\\,\\:\\'\\/\\\\\\+=&%\\$#_]*)?$

Validator.CreditCard=^(\\d{4}[-]?){3}\\d{4}$

Validator.SSN=^(?!000)([0-6]\\d{2}|7([0-6]\\d|7[012]))([-]?)(?!00)\\d\\d\\3(?!0000)\\d{4}$

Validator.accessControlDb=^[^*]*$

Validator.commandInjection=^[^\r\n]*$

Validator.crossSiteScriptingPersistent=^[^\r\n]*$

Validator.crossSiteScriptingReflected=^((?!<script).)*$

Validator.denialOfServiceRegExp=^[^\r\n]*$

Validator.jsonInjection=^[^*]*$

Validator.logForging=^[^\r\n]*$

Validator.openRedirect=^[^\|]*$

Validator.pathManipulation=^[^\r\n]*$

Validator.portabilityFlawFileSeparator=^[^*]*$

Validator.portabilityFlawLocale=^[^\r\n]*$

Validator.privacyViolation=^[^\r\n]*$

Validator.sqlInjection=^[^\r\n]*$

Validator.systemInformationLeakExternal=^[^\r\n]*$

Validator.xmlExtEntityInj=^[^\|]*$

MOCHA Server 3.1

Installation Guide 41 October 2020

Template Revision History

Date Version Description Author

May 2020 3.1 Changed the title from Deployment,
Installation, Back-Out, and Rollback
Guide to Installation.

HPS Clinical
Sustainment Team

March 2016 2.2 Changed the title from Installation, Back-
Out, and Rollback Guide to Deployment
and Installation Guide, with the
understanding that Back-Out and Rollback
belong with Installation.

VIP Team

February 2016 2.1 Changed title from Installation, Back-Out,
and Rollback Plan to Installation, Back-
Out, and Rollback Guide as
recommended by OIT Documentation
Standards Committee

OIT Documentation
Standards Committee

December 2015 2.0 The OIT Documentation Standards
Committee merged the existing
“Installation, Back-Out, Rollback Plan”
template with the content requirements in
the OIT End-user Documentation
Standards for a more comprehensive
Installation Plan.

OIT Documentation
Standards Committee

February 2015 1.0 Initial Draft Lifecycle and Release
Management

The Template Revision History pertains only to the format of the template. It does not apply to

the content of the document or any changes or updates to the content of the document after

distribution. It can be removed at the discretion of the author of the document.

