[bookmark: _GoBack]Kernel 8.0 & Kernel Toolkit 7.3
Developer’s Guide
[image: VA Seal]
August 2016

Department of Veterans Affairs (VA)
Office of Information and Technology (OI&T)
Enterprise Program Management Office (EPMO)

Preface

Kernel 8.0
Developer’s Guide		February 2016
[bookmark: revision_history][bookmark: _Toc458598764]Revision History

	[bookmark: COL001_TBL001]Date
	Revision
	Description
	Author

	08/10/2016
	11.8
	Tech Edits:
Updated VA Directive reference in the “Software Disclaimer” section.
Added VPID caution note to Sections 4.1.1 and 4.1.2.
Updated “Security ID (SECID)” in Section 4.1.3.
Added “IPv6-ready” note to Sections 6.2.16, 6.2.17, 7.1.1, and 7.1.2.
Updated the IPADDRESS variable description in Section 6.2.16.
Added an IPv6 example to Section 7.1.2.
Added reference to Kernel Toolkit patch XT*7.3*138 in Sections 27.4.1, 27.4.3, 27.4.5, and 27.4.6.
Added the .xt8meth input parameter and reference links to Section 27.4.3.
Added reference to Kernel Toolkit patch XT*7.3*138 in Section 27.7.1.
	Developers: H. W.
Technical Writer: T. B.

	07/19/2016
	11.7
	Tech Edits:
Updated the “XML Parser (VistA): Developer Tools” section. Added overview content from the standalone VistA XML Parser Technical and User Documentation (Patches XT*7.3*58 & 67).
Updated the $$PATCH^XPDUTL(): Verify Patch Installation API to correct the example based on NSD Incident I6524269FY16.
Replaced “Integration Agreement (IA)” with “Integration Control Registration (ICR)” throughout the document.
Updated the $$CREATE^XUSAP: Create Application Proxy User API based on feedback from H. W.
Added the “Developing a File Merge Capability” section (content taken from Kernel Toolkit 7.3 User Manual).
Added Caution note regarding modification of Kernel routines in the “Software Disclaimer” section.
Removed all API tables used to format API data for Section 508 conformance.
	Developers: R. D.; H. W.
Technical Writer: T. B.

	10/20/2015
	11.6
	Tech Edits:
Updated the following APIs:
$$GETURL^XTHC10: Return URL Data Using HTTP API.
$$MAKEURL^XTHCURL: Creates a URL from Components API.
$$ENCODE^XTHCURL: Encodes a Query String API.
$$PARSEURL^XTHCURL: Parses a URL API.
$$DECODE^XTHCUTL: Decodes a String API.
Corrected Example 2 in the SAY^XGF(): Screen String API.
Added the “^XTMP Global: Developer Tools” section.
Updated Table 14 in Section 15.2.4.5.
Added “Data Security: Developer Tools” section and APIs based on Kernel patch XU*8.0*655. The following APIS were added:
$$AESDECR^XUSHSH(): Returns Plaintext String Value for AES Encrypted Ciphertext Entry API.
$$AESENCR^XUSHSH(): Returns AES Encrypted Ciphertext for String Entry API.
$$B64DECD ^XUSHSH(): Returns Decoded Value for a Base64 String Entry API.
$$B64ENCD^XUSHSH(): Returns Base64 Encoded Value for a String Entry API.
$$RSADECR^XUSHSH(): Returns Plaintext String Value for RSA Encrypted Ciphertext Entry API.
$$RSAENCR^XUSHSH(): Returns RSA Encrypted Ciphertext for String Entry API.
$$SHAHASH^XUSHSH(): Returns SHA Hash for a String Entry API.
	Developers: H. W.
Technical Writer: T. B.

	06/11/2015
	11.5
	Updated the following:
Merged (and then deleted) the “Toolkit—VistA XML Parser APIs” section into the “XML Parser (VistA): Developer Tools” section, since they had duplicate API content.
Updated document for Kernel Toolkit patch XT*7.3*81. Added the “Toolkit—M Unit” section (H. W.).
Updated document for Kernel Patches XU*8.0*605 and 638. Added the following APIs to the “Application Programming Interface (API)” section in the “XLF Function Library: Developer Tools” section (H. W.):
Added the “$$CONVERT^XLFIPV():" API.
Added the “$$FORCEIP4^XLFIPV(): Convert any IP Address to IPv4" API.
Added the “$$FORCEIP6^XLFIPV(): Convert any IP Address to IPv6" API.
Added the “$$VALIDATE^XLFIPV(): Validate IP Address Format" API.
Added the “$$VERSION^XLFIPV: Show System Settings for IPv6" API.
Updated the $$SCH^XLFDT(): Next Scheduled Runtime API: Added Example 4 (M. A. F.).
Updated the “$$ADDRESS^XLFNSLK(): Convert Domain Name to IP Addresses” API for changes to IPv4 and IPv6 in Kernel patch XU*8.0*638.
· Merged the DELSTAT^XQALBUTL API content with the DELSTAT^XQALBUTL(): API.
· Added the following APIs in this manual to the online HTML APIs:
Toolkit—Duplicate Record Merge
Toolkit—KERMIT APIs
Toolkit—Multi-Term Look-Up (MTLU) APIs
Toolkit—M Unit Utility
Toolkit—Parameter Tools
· Reformatted document to follow latest documentation standards and formatting rules. Also, formatted document for online presentation vs. print presentation (i.e., for double-sided printing). These changes include:
· Revised section page setup.
· Removed section headers.
· Revised document footers.
· Removed blank pages between sections.
· Revised all heading style formatting.
	Developers: M. A. F., H. W.
Technical Writer: T. B.

	09/24/2014
	11.4
	Updated the following:
$$LOOKUP^XUSER(): New Person File Lookup API: minor corrections and used example in this guide to match and scrub examples in online API.
$$NAME^XUSER(): Get Name of User API: fixed index entries.
“$$DEA^XUSER()—Get User’s DEA Number" API: Added ien input parameter and Example 4.
Added statement to Section 15.2.4.4 as per Remedy Ticket #63050.
Changed all references from “OIT” to “OI&T” throughout.
	Developer: R. M.
Technical Writer: T. B.

	04/07/2014
	11.3
	Added a patch reference note and made minor edits/updates to the following APIs:
^%ZIS: Standard Device Call API.
REQ^%ZTLOAD: Requeue a Task API.
SETCLEAN^XULMU(): Register a Cleanup Routine API.
UNCLEAN^XULMU(): Remove Entries from the Housecleaning Stack API.
CLEANUP^XULMU(): Execute the Housecleaning Stack API.
PAT^XULMU(): Get a Standard Set of Patient Identifiers API.
ADDPAT^XULMU(): Add Patient Identifiers for a Computable File Reference API.
Updated the ^%ZOSF(): Operating System-dependent Logic Global API. Changed reference in (“LOAD”) from “DIE” to “DIF”, per C. G.
Added patch release reference note to $$GET^XUA4A72(): Get Specialty and Subspecialty for a User and $$IEN2CODE^XUA4A72(): Get VA Code APIs.
Redacted document for the following information:
Names (replaced with role and initials).
Production IP addresses and ports.
VA Intranet websites.
	Developer: C. G.
Technical Writer: T. B.

	05/31/2013
	11.2
	Updates:
Updated document for Word accessibility issues for Section 508 conformance.
Made general style and format updates as needed.
Added the following APIs released with Kernel Lock Manager (Patch XU*8.0*608) in the new “Lock Manager: Developer Tools” section:
SETCLEAN^XULMU(): Register a Cleanup Routine API.
UNCLEAN^XULMU(): Remove Entries from the Housecleaning Stack API.
CLEANUP^XULMU(): Execute the Housecleaning Stack API.
PAT^XULMU(): Get a Standard Set of Patient Identifiers API.
ADDPAT^XULMU(): Add Patient Identifiers for a Computable File Reference API.
Updated/Corrected all URLs (active and inactive)
Updated document for Section 508 conformance;
Added bookmarks (identifiers) to all tables.
Changed all floating callout boxes to in-line boxes.
Added screen tips to all active URLs.
	Developer: A. C.
Technical Writer: T. B.

	04/30/2013
	11.1
	Updates:
Updated document for Kernel patch XU*8.0*580. Added the following APIs to the “Application Programming Interface (API)” section in the “User: Developer Tools” section:
Updated the “$$DEA^XUSER()—Get User’s DEA Number” API.
Added the “$$DETOX^XUSER()—Get Detox/Maintenance ID Number" API.
Added the “$$SDEA^XUSER()—Check for Prescribing Privileges" API.
Added the “$$VDEA^XUSER()—Check if User Can Sign Controlled Substance Orders" API.
Reformatted document to follow current style guides and standards.
Replaced references from “VA FileMan Getting Started Manual” to “VA FileMan User Manual,” since the next VA FileMan 22.n software version will create a new “VA FileMan Getting Started Manual.”
Updated the ZTCPU input variable description in the ^%ZTLOAD: Queue a Task API, as per email feedback on 10/04/12 from J. Garcia.
HD0000000748766: Updated the following APIs;
$$ID^XUAF4(): Institution Identifier
$$IDX^XUAF4(): Institution IEN (Using Coding System & ID)
$$IEN^XUMF(): Institution IEN (Using IFN, Coding System, & ID)
HD0000000598920: Added documentation for the XPD NO_EPP_DELETE parameter to the new “Key Parameters during Pre- and Post-Install Routines” section, as requested by A. Lashley.
HD0000000389572: Removed the obsolete Section 11.2, “Link to the OBJECT File”, as per email discussion between G. B. and M. T. on 03/23/2010; see Remedy Ticket #HD0000000389572.
· Patch XU*8.0*546: Removed Support for Device Hunt Groups. This includes removal of the *HUNT GROUP (#29) and HUNT GROUP DEVICE (#30) fields in the DEVICE file (#3.5). Sites had to remove any HUNT GROUP devices before installing this patch using VA FileMan to find any existing Hunt Groups. Removed any references to “Hunt Groups” from this document.
Added the following XPDPROT APIs released with Kernel patch XU*8.0*547:
$$ADD^XPDPROT(): Add Child Protocol to Parent Protocol.
$$DELETE^XPDPROT(): Delete Child Protocol from Parent Protocol.
FIND^XPDPROT(): Find All Parents for a Protocol.
$$LKPROT^XPDPROT(): Look Up Protocol IEN.
OUT^XPDPROT(): Edit Protocol’s Out of Order Message.
RENAME^XPDPROT(): Rename Protocol.
$$TYPE^XPDPROT(): Get Protocol Type.
Added blue font highlighting and underline to signify internal links to figures, tables, or sections for ease of use, similar to what one sees to hyperlinks on a Web page.
· Updated document for Section 508 conformance using word’s built-in Accessibility check:
· Added table bookmarks.
· Added screen tips for all URL links.
· Changed all floating callout boxes to in-line, causing reformatting of numerous dialogue screen captures.
	Developers: G. B., J. G., J. I., A. L. J. M., R. Men., R. Met., and M. T.
Technical Writer: T. B.

	07/26/2012
	11.0
	Updates:
$$SETUP1^XQALERT: Send Alerts. Corrected the descriptions for the XQAARCH and XQASUPV variables based on feedback from J. I.
Updated the “OPEN^%ZISUTL(): Open Device with Handle" API. Corrected reference to the CLOSE^%ZISUTL(): Close Device with Handle API, based on feedback from H. W.
Added the “XU USER START-UP Option” section. The XU USER START-UP option was added with Kernel patch XU*8.0*593.
Reordered sections in Section 26, “Toolkit: Developer Tools,” to discuss all APIs before general Toolkit developer tools/options.
Added/Promoted the “XINDEX” section based on the following:
Open Source Electronic Health Record Agent (OSEHRA) software quality certification dashboard review of VistA Freedom of Information Act (FOIA) code using the XINDEX tool by G. W. and R. A.
Code review and updates by R. D. related to Kernel Toolkit patch XT*7.3*132.
Created a new VA Intranet Kernel Toolkit XINDEX website.
Updated the “%Index of Routines Option—XINDEX" based on addition of new XINDEX section and feedback from developer related to Kernel Toolkit patch XT*7.3*132.
Added the TOUCH^XUSCLEAN: Notify Kernel of Tasks that Run 7 Days or Longer API to this document after already being added to VA Intranet online Kernel APIs; based on email from G. B. dated 02/08/11.
Revised all version numbers in the “Revision History” section.
Updated the “Orientation” section.
Updated the overall document for current national documentation standards and style guides. For example:
Changed all Heading n styles to use Arial font.
Changed all Heading n styles to be left justified.
Software Versions:
Kernel 8.0
Toolkit 7.3
	Office of Information Field Office (OIFO):
Maintenance Project Manager: J. Sch
Developers: R. A., G. B., R. D., J. I., H. W., and G. W.
Technical Writer: T. B.

	10/18/2011
	10.1
	Updates:
Updated the “STDNAME^XLFNAME(): Name Standardization Routine" API for Kernel patch XU*8.0*535.
Updated formatting and internal styles.
Software Versions:
Kernel 8.0
Toolkit 7.3
	Office of Information Field Office (OIFO):
Maintenance Project Manager: J. Sch.
Developer: R. Men.
Technical Writer: T. B.

	09/15/2011
	10.0
	Updates:
Made opt parameter optional in the$$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API.
Added Cautionary Note to the $$CREATE^XUSAP: Create Application Proxy User API.
Updated the $$SCH^XLFDT(): Next Scheduled Runtime API examples, as per suggestion by developer via email.
Updated the $$SCREEN^XTID(): Get Screening Condition (Term/Concept) API based on Remedy #HD0000000391324.
Made other minor format, style, grammar, and punctuation updates.
Updated ^%ZTER: Kernel Standard Error Recording Routine API to remove statement about NEWing all variables. This does not apply for this API.
Changed all reference to NEWing variables from “NEW all variables.” to “NEW all non-namespaced variables” and removed follow-up explanation throughout the document.
Updated $$DELETE^XPDMENU(): Delete Menu Item API. Corrected documentation to show this as an extrinsic function.
Updated $$LKOPT^XPDMENU(): Look Up Option IEN API. Corrected documentation to show this as an extrinsic function.
Added the new $$TYPE^XPDMENU(): Get Option Type API.
Added Section 26.5, “Toolkit—HTTP Client APIs.” and the following APIs:
$$GETURL^XTHC10: Return URL Data Using HTTP.
$$ENCODE^XTHCURL: Encodes a Query String.
$$MAKEURL^XTHCURL: Creates a URL from Components.
$$PARSEURL^XTHCURL: Parses a URL.
$$DECODE^XTHCUTL: Decodes a String.
Updates Section 14.2.4.3.2, “Sending Security Codes” to include reference to VA FileMan FILESEC^DDMOD to set security access.
Updated/Clarified Section 14.2.4.3.5, “Partial DD (Some Fields),” and added Figure 54. KIDS—Partial DD: Choosing DD levels (top level and Multiple) to send.
Added NOTE regarding Class 3 and FORCED queuing related to Kernel Patches XU*8.0*546/556 to the top of Section 5, “Device Handler: Developer Tools.”
Updated the “$$LAST^XPDUTL(): Last Software Patch" API based on Kernel patch XU*8.0*559.
Added the XPDNM(“TST”) and XPDNM(“SEQ”) variables to Table 9. KIDS—Key variables during the environment check and Table 14. KIDS—Key variables during the pre- and post-install routines, as per Kernel patch XU*8.0*559.
Software Versions:
Kernel 8.0
Toolkit 7.3
	Office of Information Field Office (OIFO):
Maintenance Project Manager: J. Sch.
Developer: G. B. & R. D.
Technical Writer: T. B.

	03/18/2010
	9.0
	Added the text “Any routine that is specified is automatically sent by KIDS. You do not have to list the routine in the Build Components section.” to the following sections:
14.3.1, “Environment Check Routine.”
14.3.3, “Pre- and Post-Install Routines: Special Features.”
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: R. D.
Technical Writer: T. B.

	11/16/2009
	8.0
	Updates:
Added the SUROFOR^XQALSURO(): Return a Surrogate’s List of Users API.
Deleted SUROLIST^XQALSUR1 API and added the SUROLIST^XQALSURO(): List Surrogates for a User API.
Updated APIs to change input parameter to Input Variable for EN^XQH: Display Help Frames and EN1^XQH: Display Help Frames APIs.
Updated input variable for ^%ZTER: Kernel Standard Error Recording Routine API.
Updated WITNESS^XUVERIFY(): Return IEN of Users with A/V Codes & Security Keys API.
Updated Section 17, “Miscellaneous: Developer Tools.” Added the following sections from the Kernel Systems Management Guide to the Kernel Developer’s Guide, because the functions documented are more developer-related than system management-related:
Programmer Options Menu
^%Z Editor
Updated Section 26, “Toolkit: Developer Tools.” Added the following sections from the Kernel Systems Management Guide to the Kernel Developer’s Guide, because the functions documented are more developer-related than system management-related:
Toolkit—Routine Tools
Toolkit—Verification Tools
Updated the introductory content in Section 29, “XGF Function Library: Developer Tools.” Moved the XGF Function Library content from the Kernel Systems Management Guide to the Kernel Developer’s Guide, because the functions documented are more developer-related than system management-related.
Reviewed and updated all sections for minor format changes (e.g., bulleted lists and tables), style updates, spelling, and grammar fixes.
Added GSEL node to ^%ZOSF(): Operating System-dependent Logic Global API.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: J. I. and W. F.
Technical Writer: T. B.

	07/09/2009
	7.4
	Updates:
After developer re-review, corrected reference type from “Controlled Subscription” back to “Supported” for the $$OS^%ZOSV: Get Operating System Information API and updated the ICR # to 10097. Updated the FORUM ICR.
Added ICR # 10097 to the $$VERSION^%ZOSV(): Get OS Version Number or Name API.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: G. B.
Technical Writer: T. B.

	07/02/2009
	7.3
	Updates:
Corrected reference type from “Supported” to Controlled Subscription” for the $$OS^%ZOSV: Get Operating System Information API.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: G. B.
Technical Writer: T. B.

	06/23/2009
	7.2
	Updates:
Added new section, “Long Running Tasks—Using ^%ZIS" to Section 25.
Renamed “Writing Two-step Tasks” section to “Long Running Tasks—Writing Two-step Tasks" in Section 25.
Reformatted document to add outline numbering.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: G. B.
Technical Writer: T. B.

	05/04/2009
	7.1
	Updates:
Patch XT*7.3*111, released FEB 13, 2009. Included new section titled “Toolkit—Data Standardization APIs" in the Toolkit: Developer Tools section.
Background: Toolkit—Developed Data Standardization APIs to support Data Standardization’s effort to allow the mapping of one term to another term.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: G. B.
Technical Writer: T. B.

	04/27/2009
	7.0
	Updates:
Updated $$SCREEN^XTID(): Get Screening Condition (Term/Concept) API (ICR # 4631) for Kernel Toolkit patch XT*7.3*108.
Updated ^XUWORKDY: Workday Calculation (Obsolete) API.
Added $$EN^XUWORKDY: Number of Workdays Calculation API.
Added $$WORKDAY^XUWORKDY: Workday Validation API.
Added $$WORKPLUS^XUWORKDY: Workday Offset Calculation API.
Updated $$PATCH^XPDUTL(): Verify Patch Installation.
Updated the “Orientation” section.
Updated organizational references.
Minor format updates (e.g., reordered the document Revision History table to display latest to earliest).
Other minor format updates to correspond with the latest standards and style guides.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: G. B., A. C., W. F., J. G., J. I., R. Men., R. Met., S. O., and B. T.
Technical Writer: T. B.

	10/28/2008
	6.3
	Updates:
Table 26: Added “DEV” entity and corrected the OE/RR LIST file number from “101.21” to the correct “100.21” file number.
Updated references to the CHCKSUM^XTSUMBLD direct mode utility and added references to CHECK^XTSUMBLD and CHECK1^XTSUMBLD routines in Table 28 in Section 26, “Toolkit: Developer Tools.”
Minor format updates.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: G. B., A. C., W. F., J. G., J. I., R. Men., R. Met., S. O., and B. T.
Technical Writer: T. B.

	10/01/2008
	6.2
	Updates:
Minor format updates (e.g., reordered document Revision History table to display latest to earliest).
DE^XUSHSHP: Decrypt Data String API.
EN^XUSHSHP: Encrypt Data String API.
HASH^XUSHSHP: Hash Electronic Signature Code.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: G. B., A. C., W. F., J. G., J. I., R. Men., R. Met., S. O., and B. T.
Technical Writer: T. B.

	08/07/2008
	6.1
	Updates:
Made general formatting and organizational reference changes where appropriate.
Changed references from “%INDEX” to “XINDEX” where appropriate.
Updated Table 8, last two entries.
Updated “PRE-TRANSPORTATION ROUTINE field (#900)” section to show use of the XPDGREF variable in Pre-install, Environment Check, and/or Post-install routines.
Removed Appendix A—KIDS Build Checklists (Obsolete).
API Updates:
$$MV^%ZISH(): Rename Host File.
$$NODEV^XUTMDEVQ(): Force Queuing—No Device Selection—Updated input parameters.
$$INSTALDT^XPDUTL(): Return All Install Dates/Times.
UPDATE^XPDID(): Update Install Progress Bar.
Moved INIT^XPDID: Progress Bar Emulator: Initialize Device and Draw Box Borders API to “Miscellaneous: Developer Tools” section.
Moved TITLE^XPDID(): Progress Bar Emulator: Display Title Text API to “Miscellaneous: Developer Tools” section.
Moved EXIT^XPDID(): Progress Bar Emulator: Restore Screen, Clean Up Variables, and Display Text API to “Miscellaneous: Developer Tools” section.
OP^XQCHK(): Current Option Check.
ENDR^%ZISS: Set Up Specific Screen Handling Variables.
$$ASKSTOP^%ZTLOAD: Stop TaskMan Task.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: G. B., A. C., W. F., J. G., J. I., R. Men., R. Met., S. O., and B. T.
Technical Writer: T. B.

	01/07/2008
	6.0
	I Updates:
$$CJ^XLFSTR(): Center Justify String.
$$LJ^XLFSTR(): Left Justify String.
$$RJ^XLFSTR(): Right Justify String.
DELETE^XQALERT: Clear Obsolete Alerts.
DELETEA^XQALERT: Clear Obsolete Alerts.
SETUP^XQALERT: Send Alerts.
$$SETUP1^XQALERT: Send Alerts.
FORWARD^XQALFWD(): Forward Alerts.
REMVSURO^XQALSURO(): Remove Surrogates for Alerts.
SUROLIST^XQALSURO(): List Surrogates for a User.
SETSURO1^XQALSURO(): Establish a Surrogate for Alerts.
GETIREF^XTID(): Get IREF (Term/Concept).
$$GETMASTR^XTID(): Get Master VUID Flag (Term/Concept).
$$GETSTAT^XTID(): Get Status Information (Term/Concept).
$$GETVUID^XTID(): Get VUID (Term/Concept).
$$SCREEN^XTID(): Get Screening Condition (Term/Concept) API (ICR # 4631).
$$SETMASTR^XTID(): Set Master VUID Flag (Term/Concept).
$$SETSTAT^XTID(): Set Status Information (Term/Concept).
$$SETVUID^XTID(): Set VUID (Term/Concept).
$$IEN^XUPS(): Get IEN Using VPID in File #200—Changed references to IENS to IEN.
$$NNT^XUAF4(): Institution Station Name, Number, and Type—Output order was previously incorrect, should be Name, Number, and type not Number, Name, and Type.
$$NODEV^XUTMDEVQ(): Force Queuing—No Device Selection—Updated input parameters.
$$OPTDE^XPDUTL(): Disable/Enable an Option.
^%ZIS: Standard Device Call—Added output parameters.
^%ZOSF(): Operating System-dependent Logic Global.
General Updates:
Updated the “Re-Indexing Files” section based on Remedy Ticket #63087.
Updated references to the VDL.
Updated the “Alpha/Beta Tracking” section in Section 14. Merged information from the Kernel Systems Management Guide into the Kernel Developer’s Guide (this manual) in order to avoid duplication and confusion with instructions/procedures.
Removed all but one reference to HSD&D; kept as a placeholder for now.
Removed obsolete references to MSM, PDP, 486, VAX Alpha, etc. and changed/updated references to DSM for OpenVMS to Caché where appropriate.
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: G. B., A. C., W. F., J. G., J. I., R. Men., R. Met., S. O., and B. T.
Technical Writer: T. B.

	02/08/2007
	5.0
	Merging the Kernel Toolkit documentation set with the Kernel documentation set. Moving all Kernel Toolkit content to the appropriate Kernel manual and section.

In the Kernel Developer’s Guide, the following Kernel Toolkit APIs and Direct Mode Utilities have been added to the new “Toolkit” Section:
Toolkit—Alerts APIs
Toolkit—Duplicate Record Merge APIs
Toolkit—KERMIT APIs
Toolkit—Multi-Term Look-Up (MTLU) APIs
Toolkit—Parameter Tools APIs
Toolkit—VistA XML Parser APIs
Toolkit—VHA Unique ID (VUID) APIs
[image: Note] NOTE: Adding Kernel Toolkit APIs to the Kernel APIs VA Intranet Website in the near future.
Added new National Provider Identifier (NPI)-related APIs section. APIs released with Kernel patch XU*8.0*410:
$$CHKDGT^XUSNPI (ICR # 4532)
$$NPI^XUSNPI (ICR # 4532)
$$QI^XUSNPI (ICR # 4532)
$$TAXIND^XUSTAX (ICR # 4911)
$$TAXORG^XUSTAX (ICR # 4911
Added new Common Services-related APIs section. APIs released with Kernel Patches XU*8.0*309 and 325:
$$VPID^XUPS (ICR # 4574)
$$IEN^XUPS (ICR # 4574)
EN1^XUPSQRY (ICR # 4575)
Changed Kernel document title references to:
Kernel Developer’s Guide (previously known as the Kernel Programmer Manual).
Kernel Systems Management Guide (previously known as the Kernel Systems Manual).
Software Versions:
Kernel 8.0
Toolkit 7.3
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: A. C., W. F., J. G., J. I., M. M., R. Men., R. Met., S. O. and B. T.
Technical Writer: T. B.

	06/20/2006
	4.1
	Updates:
Corrected output array subscript in the F4^XUAF4 API from “STATION NUMER” to “STATION NUMBER (Remedy #HD0000000147298).
Updated document format to follow latest Guidelines and SOP.
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: R. Met.
Technical Writer: T. B.

	01/23/2006
	4.0
	I Updates:
$$QQ^XUTMDEVQ, updated description (XU*8.0*389).
Changed REQQ^XUTMDEVQ to $$REQQ^XUTMDEVQ; updated description (XU*8.0*389).
Updated REQ^%ZTLOAD and ^%ZTLOAD APIs.
Changed $$SENTCASE^XLFSTR to $$SENTENCE^XLFSTR (XU*8.0*400).
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: G. B. and W. F.
Technical Writer: T. B.

	12/15/2005
	3.8
	Added the following APIs (via patches currently not yet released):
$$CREATE^XUSAP (XU*8.0*361)
$$SENTCASE^XLFSTR (XU*8.0*400)
$$TITLE^XLFSTR (XU*8.0*400)
Changed Job^%ZTLOAD to $$JOB^%ZTLOAD
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: W. F.
Technical Writer: T. B.

	10/19/2005
	3.7
	Updated the SETUP^XQALERT API based on feedback from the user community and developers.
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: W. F. and J. I.
Technical Writer: T. B.

	09/28/2005
	3.6
	Added the $$HANDLE^XUSRB4 and REQQ^XUTMDEVQ APIs.
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: W. F.
Technical Writer: T. B.

	09/22/2005
	3.5
	Updated APIs:
SETUP^XQALERT
SETUP^XUSRB
OWNSKEY^XUSRB
DQ^%ZTLOAD
ISQED^%ZTLOAD
KILL^%ZTLOAD
PCLEAR^%ZTLOAD
STAT^%ZTLOAD
Added APIs:
ASKSTOP^%ZTLOAD
DESC^%ZTLOAD
JOB^%ZTLOAD
OPTION^%ZTLOAD
$$PSET^%ZTLOAD
RTN^%ZTLOAD
$$S^%ZTLOAD
ZTSAVE^%ZTLOAD
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: W. F. and J. I.
Technical Writer: T. B.

	04/14/2005
	3.4
	Categorized CRC XLF functions into a new category (i.e., “CRC” vs. “Other”).
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Technical Writer: T. B.

	03/02/2005
	3.3
	Corrected various APIs. Reordered all APIs under each category: 1) by routine name and 2) by tag name.
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Technical Writer: T. B.

	02/10/2005
	3.2
	Updates:
^%ZTLOAD: Queue a Task
REQ^%ZTLOAD: Requeue a Task
Added three new XUTMDEVQ APIs (Kernel patch XU*8.0*275).
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: G. B. and W. F.
Technical Writer—: T. B.

	12/20/2004
	3.1
	Reviewed document and edited for the “Data Scrubbing” and the “PDF 508 Compliance” projects.
Data Scrubbing—Changed all patient/user TEST data to conform to OI&T standards and conventions as indicated below:
The first three digits (prefix) of any Social Security Numbers (SSN) start with “000” or “666.”
Format patient or user names as follows: XUPATIENT,[N] or XUUSER,[N] respectively, where the N is a number written out and incremented with each new entry (e.g., XUPATIENT, ONE, XUPATIENT, TWO, etc.).
Changed other personal demographic-related data (e.g., addresses, phones, IP addresses, etc.) to be generic.
PDF 508 Compliance—The final PDF document was recreated and now supports the minimum requirements to be 508 compliant (i.e., accessibility tags, language selection, alternate text for all images/icons, fully functional Web links, successfully passed Adobe Acrobat Quick Check).
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Technical Writer: T. B.

	12/09/2004
	3.0
	Updated various APIs based on developer feedback. Also, making minor edits as we begin populating the HTML versions of the APIs.
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developer: W. F.
Technical Writer: T. B.

	12/24/2003
	2.0
	Kernel 8.0 documentation reformatting/revision.
This is the initial Kernel Developer’s Guide. Created this manual by extracting all developer-specific content from the Kernel Systems Management Guide (original release date of July 1995).
The Kernel Developer’s Guide Includes added/updated Direct Mode Utilities and Application Programming Interface (API) information (e.g., Reference Type, Category, Integration Control Registration number. etc.). It also includes APIs for previous Kernel APIs never before documented (i.e., includes APIs that were previously only documented in patch descriptions, Integration Control Registrations, or separate supplemental documentation).
[image: Note] NOTE: This manual also includes the Kernel Toolkit APIs.
Due to time constraints, not all released Kernel patches with developer-related content changes have been added at this time. Also, there is known missing information that will be added/updated at a future date. We wanted to get a new baseline document published so that in the future we can more easily update the Kernel Developer’s Guide.
As time allows, we will be updating this manual with all released patch information that affects its content.
Kernel 8.0
	OIFO:
Maintenance Project Manager: J. Sch.
Developers: Kernel Development Team
Technical Writer: T. B.

	07/1995
	1.0
	Initial Kernel 8.0 software and documentation release.
Kernel 8.0
	Office of Information field Office (OIFO):
Project Manager: H. V. B.
Developers: Kernel Development Team
Technical Writer: K. C.

Patch Revisions
For the current patch history related to this software, see the Patch Module on FORUM.
Revision History

Software Release: July 1995	Kernel Developer’s Guide	ii
Document Revised March 2015	Software Version 8.0
xiv	Kernel	July 1995
	Developer’s Guide	Revised March 2015
	Version 8.0
Kernel 8.0 & Kernel Toolkit 7.3
Developer’s Guide		August 2016
Table of Contents

Revision History	ii
List of Figures	liii
List of Tables	lviii
Orientation	lx
1	Introduction	1
2	Address Hygiene: Developer Tools	3
2.1	Application Programming Interface (API)	3
2.1.1	CCODE^XIPUTIL(): FIPS Code Data	3
2.1.1.1	Example	4
2.1.2	$$FIPS^XIPUTIL(): FIPS Code for ZIP Code	4
2.1.2.1	Example	4
2.1.3	$$FIPSCHK^XIPUTIL(): Check for FIPS Code	5
2.1.3.1	Examples	5
2.1.4	POSTAL^XIPUTIL(): ZIP Code Information	5
2.1.4.1	Examples	7
2.1.5	POSTALB^XIPUTIL(): Active ZIP Codes	8
2.1.5.1	Example	9
3	Alerts: Developer Tools	10
3.1	Overview	10
3.2	Package Identifier vs. Alert Identifier	11
3.2.1	Package Identifier	11
3.2.2	Alert Identifier	11
3.3	Package Identifier Conventions	11
3.4	Glossary of Terms for Alerts	12
3.5	Application Programming Interface (API)	13
3.5.1	AHISTORY^XQALBUTL(): Get Alert Tracking File Information	13
3.5.1.1	Example	14
3.5.2	ALERTDAT^XQALBUTL(): Get Alert Tracking File Information	15
3.5.2.1	Example	16
3.5.3	DELSTAT^XQALBUTL():Get Recipient Information and Alert Status	16
3.5.3.1	Example	17
3.5.4	NOTIPURG^XQALBUTL(): Purge Alerts Based on Code	17
3.5.5	$$PENDING^XQALBUTL(): Pending Alerts for a User	18
3.5.5.1	Examples	18
3.5.6	$$PKGPEND^XQALBUTL(): Pending Alerts for a User in Specified Software	19
3.5.6.1	Examples	19
3.5.7	PTPURG^XQALBUTL(): Purge Alerts Based on Patient	20
3.5.8	RECIPURG^XQALBUTL(): Purge User Alerts	20
3.5.9	USERDATA^XQALBUTL(): Get User Information for an Alert	21
3.5.9.1	Example	21
3.5.10	USERLIST^XQALBUTL(): Get Recipient Information for an Alert	22
3.5.10.1	Example	22
3.5.11	ACTION^XQALERT(): Process an Alert	22
3.5.12	DELETE^XQALERT: Clear Obsolete Alerts	23
3.5.13	DELETEA^XQALERT: Clear Obsolete Alerts	24
3.5.14	GETACT^XQALERT(): Return Alert Variables	25
3.5.15	PATIENT^XQALERT(): Get Alerts for a Patient	26
3.5.16	SETUP^XQALERT: Send Alerts	27
3.5.16.1	Details—When the Alert is Processed	30
3.5.16.2	Example	31
3.5.17	$$SETUP1^XQALERT: Send Alerts	31
3.5.17.1	Details—When the Alert is Processed	34
3.5.17.2	Example	35
3.5.18	USER^XQALERT(): Get Alerts for a User	36
3.5.18.1	Example	37
3.5.19	FORWARD^XQALFWD(): Forward Alerts	37
3.5.19.1	Example	38
3.5.20	$$CURRSURO^XQALSURO(): Get Current Surrogate for Alerts	39
3.5.21	$$GETSURO^XQALSURO(): Get Current Surrogate Information	39
3.5.21.1	Example	40
3.5.22	REMVSURO^XQALSURO(): Remove Surrogates for Alerts	40
3.5.23	SETSURO1^XQALSURO(): Establish a Surrogate for Alerts	41
3.5.23.1	Example	42
3.5.24	SUROFOR^XQALSURO(): Return a Surrogate’s List of Users	42
3.5.24.1	Example	43
3.5.25	SUROLIST^XQALSURO(): List Surrogates for a User	43
3.5.25.1	Example	44
4	Common Services: Developer Tools	45
4.1	Application Programming Interface (API)	45
4.1.1	$$IEN^XUPS(): Get IEN Using VPID in File #200	45
4.1.2	$$VPID^XUPS(): Get VPID Using IEN in File #200	45
4.1.3	EN1^XUPSQRY(): Query New Person File	46
5	Data Security: Developer Tools	48
5.1	Overview	48
5.2	Application Programming Interface (API)	48
5.2.1	$$AESDECR^XUSHSH(): Returns Plaintext String Value for AES Encrypted Ciphertext Entry	48
5.2.1.1	Example	49
5.2.2	$$AESENCR^XUSHSH(): Returns AES Encrypted Ciphertext for String Entry	49
5.2.2.1	Example	49
5.2.3	$$B64DECD ^XUSHSH(): Returns Decoded Value for a Base64 String Entry	50
5.2.3.1	Example	50
5.2.4	$$B64ENCD^XUSHSH(): Returns Base64 Encoded Value for a String Entry	50
5.2.4.1	Example	51
5.2.5	$$RSADECR^XUSHSH(): Returns Plaintext String Value for RSA Encrypted Ciphertext Entry	51
5.2.5.1	Example	51
5.2.6	$$RSAENCR^XUSHSH(): Returns RSA Encrypted Ciphertext for String Entry	52
5.2.6.1	Example	53
5.2.7	$$SHAHASH^XUSHSH(): Returns SHA Hash for a String Entry	53
5.2.7.1	Examples	54
6	Device Handler: Developer Tools	55
6.1	Overview	55
6.2	Application Programming Interface (API)	55
6.2.1	DEVICE^XUDHGUI(): GUI Device Lookup	55
6.2.1.1	Examples	56
6.2.2	$$RES^XUDHSET(): Set Up Resource Device	58
6.2.3	^%ZIS: Standard Device Call	58
6.2.3.1	Examples	66
6.2.3.2	Multiple Devices and ^%ZIS	68
6.2.3.3	Host Files and ^%ZIS	68
6.2.4	HLP1^%ZIS: Display Brief Device Help	68
6.2.5	HLP2^%ZIS: Display Device Help Frames	69
6.2.6	HOME^%ZIS: Reset Home Device IO Variables	69
6.2.7	$$REWIND^%ZIS(): Rewind Devices	70
6.2.7.1	Example	70
6.2.8	^%ZISC: Close Device	71
6.2.8.1	Example	71
6.2.9	PKILL^%ZISP: Kill Special Printer Variables	71
6.2.10	PSET^%ZISP: Set Up Special Printer Variables	72
6.2.10.1	Example	72
6.2.11	ENDR^%ZISS: Set Up Specific Screen Handling Variables	73
6.2.12	ENS^%ZISS: Set Up Screen-handling Variables	74
6.2.13	GKILL^%ZISS: KILL Graphic Variables	78
6.2.14	GSET^%ZISS: Set Up Graphic Variables	78
6.2.14.1	Example	79
6.2.15	KILL^%ZISS: KILL Screen Handling Variables	79
6.2.16	CALL^%ZISTCP: Make TCP/IP Connection (Remote System)	79
6.2.17	CLOSE^%ZISTCP: Close TCP/IP Connection (Remote System)	80
6.2.18	CLOSE^%ZISUTL(): Close Device with Handle	81
6.2.19	OPEN^%ZISUTL(): Open Device with Handle	81
6.2.19.1	Example	83
6.2.20	RMDEV^%ZISUTL(): Delete Data Given a Handle	83
6.2.21	SAVDEV^%ZISUTL(): Save Data Given a Handle	84
6.2.22	USE^%ZISUTL(): Use Device Given a Handle	84
6.3	Special Device Issues	84
6.3.1	Form Feeds	85
6.3.1.1	How to Check if Current Device is a CRT	85
6.3.1.2	Guidelines for Form Issuing Form Feeds	85
6.3.2	Resources	87
6.3.2.1	Queuing to a Resource	87
7	Domain Name Service (DNS): Developer Tools	88
7.1	Application Programming Interface (API)	88
7.1.1	$$ADDRESS^XLFNSLK(): Convert Domain Name to IP Addresses	88
7.1.1.1	Examples	88
7.1.2	MAIL^XLFNSLK(): Get IP Addresses for a Domain Name	89
7.1.2.1	Examples	89
8	Electronic Signatures: Developer Tools	90
8.1	Application Programming Interface (API)	90
8.1.1	^XUSESIG: Set Up Electronic Signature Code	90
8.1.2	SIG^XUSESIG(): Verify Electronic Signature Code	90
8.1.3	$$CHKSUM^XUSESIG1(): Build Checksum for Global Root	91
8.1.4	$$CMP^XUSESIG1(): Compare Checksum to $Name_Value	91
8.1.5	$$DE^XUSESIG1(): Decode String	92
8.1.6	$$EN^XUSESIG1(): Encode ESBLOCK	92
8.1.7	$$ESBLOCK^XUSESIG1(): E-Sig Fields Required for Hash	92
8.1.8	DE^XUSHSHP: Decrypt Data String	93
8.1.9	EN^XUSHSHP: Encrypt Data String	94
8.1.10	HASH^XUSHSHP: Hash Electronic Signature Code	94
9	Error Processing: Developer Tools	96
9.1	Direct Mode Utilities	96
9.1.1	>D ^XTER	96
9.1.2	>D ^XTERPUR	96
9.2	Application Programming Interface (API)	96
9.2.1	$$EC^%ZOSV: Get Error Code	96
9.2.1.1	Example	96
9.2.2	^%ZTER: Kernel Standard Error Recording Routine	97
9.2.2.1	Example	98
9.2.3	$$APPERR^%ZTER: Set Application Error Name in Kernel Error Trap Log	99
9.2.3.1	Example	99
9.2.4	$$NEWERR^%ZTER: Verify Support of Standard Error Trapping (Obsolete)	99
9.2.5	UNWIND^%ZTER: Quit Back to Calling Routine	100
9.2.5.1	Example	100
10	Field Monitoring: Developer Tools	101
10.1	Application Programming Interface (API)	101
10.1.1	OPKG^XUHUI(): Monitor New Style Cross-referenced Fields	101
10.1.1.1	Example	101
11	File Access Security: Developer Tools	106
11.1	Overview	106
11.2	Field Level Protection	106
11.3	File Navigation	106
11.4	Use of DLAYGO When Navigating to Files	106
11.5	Use of DLAYGO in ^DIC Calls	107
11.6	Use of DIDEL in ^DIE Calls	107
12	Help Processor: Developer Tools	109
12.1	Entry and Exit Execute Statements	109
12.2	Application Programming Interface (API)	109
12.2.1	EN^XQH: Display Help Frames	109
12.2.2	EN1^XQH: Display Help Frames	109
12.2.3	ACTION^XQH4(): Print Help Frame Tree	110
13	Host Files: Developer Tools	111
13.1	Application Programming Interface (API)	111
13.1.1	CLOSE^%ZISH(): Close Host File	112
13.1.1.1	Example	112
13.1.2	$$DEFDIR^%ZISH(): Get Default Host File Directory	112
13.1.3	$$DEL^%ZISH(): Delete Host File	113
13.1.3.1	Example	113
13.1.4	$$FTG^%ZISH(): Load Host File into Global	114
13.1.4.1	Example	115
13.1.5	$$GATF^%ZISH(): Copy Global to Host File	115
13.1.6	$$GTF^%ZISH(): Copy Global to Host File	116
13.1.6.1	Example	116
13.1.7	$$LIST^%ZISH(): List Directory	116
13.1.7.1	Example	117
13.1.8	$$MV^%ZISH(): Rename Host File	117
13.1.8.1	Example	118
13.1.9	OPEN^%ZISH(): Open Host File	118
13.1.9.1	Example	119
13.1.10	$$PWD^%ZISH: Get Current Directory	119
13.1.10.1	Example	119
13.1.11	$$STATUS^%ZISH: Return End-of-File Status	119
13.1.11.1	Example	120
14	Institution File: Developer Tools	121
14.1	Application Programming Interface (API)	121
14.1.1	$$ACTIVE^XUAF4(): Institution Active Facility (True/False)	121
14.1.2	CDSYS^XUAF4(): Coding System Name	121
14.1.3	CHILDREN^XUAF4(): List of Child Institutions for a Parent	122
14.1.4	$$CIRN^XUAF4(): Institution CIRN-enabled Field Value	122
14.1.5	F4^XUAF4(): Institution Data for a Station Number	123
14.1.5.1	Example	124
14.1.6	$$ID^XUAF4(): Institution Identifier	124
14.1.7	$$IDX^XUAF4(): Institution IEN (Using Coding System & ID)	124
14.1.8	$$IEN^XUAF4(): IEN for Station Number	125
14.1.8.1	Example	125
14.1.9	$$LEGACY^XUAF4(): Institution Realigned/Legacy (True/False)	125
14.1.10	$$LKUP^XUAF4(): Institution Lookup	126
14.1.11	LOOKUP^XUAF4(): Look Up Institution Identifier	126
14.1.11.1	Example	127
14.1.12	$$MADD^XUAF4(): Institution Mailing Address	127
14.1.13	$$NAME^XUAF4(): Institution Official Name	127
14.1.14	$$NNT^XUAF4(): Institution Station Name, Number, and Type	128
14.1.15	$$NS^XUAF4(): Institution Name and Station Number	128
14.1.16	$$O99^XUAF4(): IEN of Merged Station Number	129
14.1.16.1	Example	129
14.1.17	$$PADD^ XUAF4(): Institution Physical Address	129
14.1.18	PARENT^XUAF4(): Parent Institution Lookup	130
14.1.19	$$PRNT^XUAF4(): Institution Parent Facility	130
14.1.20	$$RF^XUAF4(): Realigned From Institution Information	131
14.1.20.1	Example	131
14.1.21	$$RT^XUAF4(): Realigned To Institution Information	131
14.1.21.1	Example	132
14.1.22	SIBLING^XUAF4(): Sibling Institution Lookup	132
14.1.23	$$STA^XUAF4(): Station Number for IEN	133
14.1.23.1	Example	133
14.1.24	$$TF^XUAF4(): Treating Facility (True/False)	133
14.1.24.1	Example	133
14.1.25	$$WHAT^XUAF4(): Institution Single Field Information	134
14.1.26	$$IEN^XUMF(): Institution IEN (Using IFN, Coding System, & ID)	134
14.1.27	MAIN^XUMFI(): HL7 Master File Message Builder	135
14.1.27.1	Details	135
14.1.27.2	Example	135
14.1.28	MAIN^XUMFP(): Master File Parameters	136
14.1.28.1	Details	137
14.1.28.2	Example	140
15	Kernel Installation and Distribution System (KIDS): Developer Tools	142
15.1	KIDS Build-related Options	142
15.2	Creating Builds	143
15.2.1	Build Entries	143
15.2.2	Create a Build Using Namespace	144
15.2.3	Copy Build to Build	145
15.2.4	Edit a Build	146
15.2.4.1	KIDS Build Screens	146
15.2.4.2	Edit a Build: Name & Version, Build Information	147
15.2.4.3	Edit a Build: Files	148
15.2.4.4	Edit a Build: Components	156
15.2.4.5	Edit a Build: Options and Protocols	157
15.2.4.6	Edit a Build: Routines	158
15.2.4.7	Edit a Build: Dialog Entries (DIALOG File [#.84])	159
15.2.4.8	Edit a Build: Forms	159
15.2.4.9	Edit a Build: Templates	160
15.2.5	Transporting a Distribution	160
15.2.5.1	When to Transport More than One Transport Global in a Distribution	162
15.2.5.2	Multi-Package Builds	163
15.2.5.3	Exporting Globals with KIDS	163
15.2.6	Creating Transport Globals that Install Efficiently	164
15.3	Advanced Build Techniques	165
15.3.1	Environment Check Routine	165
15.3.1.1	Self-Contained Routine	165
15.3.1.2	Environment Check is Run Twice	165
15.3.1.3	Key Variables during Environment Check	166
15.3.1.4	Package Version vs. Installing Version	167
15.3.1.5	Telling KIDS to Skip Installing or Delete a Routine	167
15.3.1.6	Verifying Patch Installation	167
15.3.1.7	Aborting Installations During the Environment Check	167
15.3.1.8	Controlling the Queuing of the Install Prompt	168
15.3.1.9	Controlling the Disable Options/Protocols Prompt	168
15.3.1.10	Controlling the Move Routines to Other CPUs Prompt	169
15.3.2	PRE-TRANSPORTATION ROUTINE field (#900)	170
15.3.3	Pre- and Post-Install Routines: Special Features	171
15.3.3.1	Aborting an Installation During the Pre-Install Routine	171
15.3.3.2	Setting a File’s Package Revision Data Node (Post-Install)	172
15.3.3.3	Key Parameters during Pre- and Post-Install Routines	172
15.3.3.4	Key Variables during Pre- and Post-Install Routines	172
15.3.3.5	NEW the DIFROM Variable When Calling MailMan	173
15.3.3.6	Update the Status Bar During Pre- and Post-Install Routines	173
15.3.4	Edit a Build—Screen 4	174
15.3.5	How to Ask Installation Questions	174
15.3.5.1	Question Subscripts	175
15.3.5.2	M Code in Questions	175
15.3.5.3	Skipping Installation Questions	175
15.3.5.4	Accessing Questions and Answers	175
15.3.5.5	Where Questions Are Asked During Installations	176
15.3.6	Using Checkpoints (Pre- and Post-Install Routines)	176
15.3.6.1	Checkpoints with Callbacks	177
15.3.6.2	Checkpoint Parameter Node	178
15.3.6.3	Checkpoints without Callbacks (Data Storage)	180
15.3.7	Required Builds	181
15.3.8	Package File Link	182
15.3.9	Track Package Nationally	183
15.3.10	Alpha/Beta Tracking	184
15.3.10.1	Initiating Alpha/Beta Tracking	185
15.3.10.2	Error Tracking—Alpha/Beta Software Releases	186
15.3.10.3	Monitoring Alpha/Beta Tracking	187
15.3.10.4	Terminating Alpha/Beta Tracking	188
15.4	Application Programming Interface (API)	190
15.4.1	UPDATE^XPDID(): Update Install Progress Bar	190
15.4.1.1	Example	190
15.4.2	EN^XPDIJ(): Task Off KIDS Install	191
15.4.3	$$PKGPAT^XPDIP(): Update Patch History	191
15.4.4	BMES^XPDUTL(): Output a Message with Blank Line	192
15.4.5	$$COMCP^XPDUTL(): Complete Checkpoint	192
15.4.6	$$CURCP^XPDUTL(): Get Current Checkpoint Name/IEN	193
15.4.7	$$INSTALDT^XPDUTL(): Return All Install Dates/Times	193
15.4.7.1	Example	194
15.4.8	$$LAST^XPDUTL(): Last Software Patch	194
15.4.8.1	Examples	195
15.4.9	MES^XPDUTL(): Output a Message	195
15.4.10	$$NEWCP^XPDUTL(): Create Checkpoint	196
15.4.11	$$OPTDE^XPDUTL(): Disable/Enable an Option	197
15.4.11.1	Example	197
15.4.12	$$PARCP^XPDUTL(): Get Checkpoint Parameter	197
15.4.13	$$PATCH^XPDUTL(): Verify Patch Installation	198
15.4.13.1	Example	198
15.4.14	$$PKG^XPDUTL(): Parse Software Name from Build Name	198
15.4.15	$$PRODE^XPDUTL(): Disable/Enable a Protocol	199
15.4.16	$$RTNUP^XPDUTL(): Update Routine Action	199
15.4.17	$$UPCP^XPDUTL(): Update Checkpoint	200
15.4.18	$$VER^XPDUTL(): Parse Version from Build Name	200
15.4.19	$$VERCP^XPDUTL(): Verify Checkpoint	201
15.4.20	$$VERSION^XPDUTL(): Package File Current Version	201
16	Lock Manager: Developer Tools	202
16.1	Application Programming Interface (API)—Housekeeping	202
16.1.1	CLEANUP^XULMU(): Execute the Housecleaning Stack	202
16.1.1.1	Examples	202
16.1.2	SETCLEAN^XULMU(): Register a Cleanup Routine	203
16.1.2.1	Example	203
16.1.3	UNCLEAN^XULMU(): Remove Entries from the Housecleaning Stack	204
16.1.3.1	Examples	204
16.2	Application Programming Interface (API)—Lock Dictionary	205
16.2.1	ADDPAT^XULMU(): Add Patient Identifiers for a Computable File Reference	205
16.2.2	PAT^XULMU(): Get a Standard Set of Patient Identifiers	205
16.2.2.1	Example	206
17	Menu Manager: Developer Tools	207
17.1	Creating Options	207
17.1.1	Option Types	207
17.1.2	Creating Options (Edit Options)	207
17.1.2.1	Options that Should Be Regularly Scheduled	208
17.2	Variables for Developer Use	208
17.2.1	XQUIT: Quit the Option	208
17.2.2	XQMM(“A”): Menu Prompt	208
17.2.3	XQMM(“B”): Default Response	208
17.2.4	XQMM(“J”): The Phantom Jump	209
17.2.5	XQMM(“N”): No Menu Display	209
17.3	Direct Mode Utilities	209
17.3.1	^XQ1: Test an Option	209
17.4	Application Programming Interface (API)	210
17.4.1	$$ADD^XPDMENU(): Add Option to Menu	210
17.4.2	$$DELETE^XPDMENU(): Delete Menu Item	210
17.4.3	$$LKOPT^XPDMENU(): Look Up Option IEN	211
17.4.4	OUT^XPDMENU(): Edit Option’s Out of Order Message	211
17.4.5	RENAME^XPDMENU(): Rename Option	212
17.4.6	$$TYPE^XPDMENU(): Get Option Type	212
17.4.7	$$ADD^XPDPROT(): Add Child Protocol to Parent Protocol	213
17.4.8	$$DELETE^XPDPROT(): Delete Child Protocol from Parent Protocol	214
17.4.9	FIND^XPDPROT(): Find All Parents for a Protocol	214
17.4.10	$$LKPROT^XPDPROT(): Look Up Protocol IEN	215
17.4.11	OUT^XPDPROT(): Edit Protocol’s Out of Order Message	215
17.4.12	RENAME^XPDPROT(): Rename Protocol	216
17.4.13	$$TYPE^XPDPROT(): Get Protocol Type	217
17.4.14	NEXT^XQ92(): Restricted Times Check	218
17.4.15	$$ACCESS^XQCHK(): User Option Access Test	218
17.4.16	OP^XQCHK(): Current Option Check	219
17.4.16.1	Examples	220
18	Miscellaneous: Developer Tools	221
18.1	Direct Mode Utilities	221
18.2	Programmer Options Menu	221
18.2.1	Delete Unreferenced Options	221
18.2.2	Global Block Count Option	221
18.2.3	Listing Globals Option	222
18.2.4	Test an option not in your menu Option	222
18.3	^%Z Editor	222
18.3.1	User Interface	222
18.4	Application Programming Interface (API)	225
18.4.1	Progress Bar Emulator	225
18.4.1.1	INIT^XPDID: Progress Bar Emulator: Initialize Device and Draw Box Borders	225
18.4.1.2	TITLE^XPDID(): Progress Bar Emulator: Display Title Text	225
18.4.1.3	EXIT^XPDID(): Progress Bar Emulator: Restore Screen, Clean Up Variables, and Display Text	226
18.4.2	Lookup Utility	226
18.4.2.1	$$EN^XUA4A71(): Convert String to Soundex	226
18.4.3	Date Conversions and Calculations	227
18.4.3.1	^XQDATE: Convert $H to VA FileMan Format (Obsolete)	227
18.4.3.2	^XUWORKDY: Workday Calculation (Obsolete)	227
18.4.3.3	Example	228
18.4.3.4	$$EN^XUWORKDY: Number of Workdays Calculation	229
18.4.3.5	Example	229
18.4.3.6	$$WORKDAY^XUWORKDY: Workday Validation	230
18.4.3.7	Examples	230
18.4.3.8	$$WORKPLUS^XUWORKDY: Workday Offset Calculation	231
18.4.3.9	Example	231
19	Name Standardization: Developer Tools	232
19.1	Application Programming Interface (API)	232
19.1.1	$$BLDNAME^XLFNAME(): Build Name from Component Parts	232
19.1.1.1	Details	233
19.1.1.2	Examples	233
19.1.2	$$CLEANC^XLFNAME(): Name Component Standardization Routine	234
19.1.2.1	Examples	235
19.1.3	$$FMNAME^XLFNAME(): Convert HL7 Formatted Name to Name	236
19.1.3.1	Details	236
19.1.3.2	Examples	237
19.1.4	$$HLNAME^XLFNAME(): Convert Name to HL7 Formatted Name	238
19.1.4.1	Details	239
19.1.4.2	Examples	239
19.1.5	NAMECOMP^XLFNAME(): Component Parts from Standard Name	240
19.1.5.1	Example	241
19.1.6	$$NAMEFMT^XLFNAME(): Formatted Name from Name Components	241
19.1.6.1	Details	242
19.1.6.2	Examples	243
19.1.7	STDNAME^XLFNAME(): Name Standardization Routine	245
19.1.7.1	Details	248
19.1.7.2	Example	250
19.1.8	DELCOM P^XLFNAME2(): Delete Name Components Entry	250
19.1.8.1	Example	251
19.1.9	UPDCOMP^XLFNAME2(): Update Name Components Entry	251
19.1.9.1	Example	252
20	National Provider Identifier (NPI): Developer Tools	254
20.1	Application Programming Interface (API)	254
20.1.1	$$CHKDGT^XUSNPI(): Validate NPI Format	254
20.1.1.1	Examples	254
20.1.2	$$NPI^XUSNPI(): Get NPI from Files #200 or #4	255
20.1.2.1	Examples	255
20.1.3	$$QI^XUSNPI(): Get Provider Entities	256
20.1.3.1	Examples	256
20.1.4	$$TAXIND^XUSTAX(): Get Taxonomy Code from File #200	257
20.1.4.1	Example	257
20.1.5	$$TAXORG^XUSTAX(): Get Taxonomy Code from File #4	258
20.1.5.1	Example	258
21	Operating System (OS) Interface: Developer Tools	259
21.1	Overview	259
21.2	Direct Mode Utilities	259
21.2.1	>D ^%ZTBKC: Global Block Count	259
21.2.2	>D ^ZTMGRSET: Update ^%ZOSF Nodes	259
21.3	Application Programming Interface (API)	259
21.3.1	^%ZOSF(): Operating System-dependent Logic Global	259
21.3.2	$$ACTJ^%ZOSV: Number of Active Jobs	262
21.3.3	$$AVJ^%ZOSV: Number of Available Jobs	263
21.3.4	DOLRO^%ZOSV: Display Local Variables	263
21.3.4.1	Example	263
21.3.5	GETENV^%ZOSV: Current System Information	264
21.3.6	$$LGR^%ZOSV: Last Global Reference	264
21.3.6.1	Example	264
21.3.7	LOGRSRC^%ZOSV(): Record Resource Usage (RUM)	264
21.3.8	$$OS^%ZOSV: Get Operating System Information	265
21.3.8.1	Example	265
21.3.9	SETENV^%ZOSV: Set VMS Process Name (Caché/OpenVMS Systems)	265
21.3.10	SETNM^%ZOSV(): Set VMS Process Name (Caché/OpenVMS Systems)	266
21.3.11	T0^%ZOSV: Start RT Measure (Obsolete)	266
21.3.12	T1^%ZOSV: Stop RT Measure (Obsolete)	267
21.3.13	$$VERSION^%ZOSV(): Get OS Version Number or Name	268
21.3.13.1	Examples	268
22	Security Keys: Developer Tools	269
22.1	Overview	269
22.2	Key Lookup	269
22.3	Person Lookup	269
22.4	Application Programming Interface (API)	269
22.4.1	DEL^XPDKEY(): Delete Security Key	269
22.4.1.1	Example	269
22.4.2	$$LKUP^XPDKEY(): Look Up Security Key Value	270
22.4.2.1	Example	270
22.4.3	$$RENAME^XPDKEY(): Rename Security Key	270
22.4.4	OWNSKEY^XUSRB(): Verify Security Keys Assigned to a User	271
22.4.4.1	Examples	271
23	Server Options: Developer Tools	273
23.1	Tools for Processing Server Requests	273
23.2	Key Variables When a Server Option is Running	273
23.3	Appending Text to a Server Request Bulletin or Mailman Reply	274
23.4	Customizing a Server Request Bulletin	274
24	Signon/Security: Developer Tools	276
24.1	Overview	276
24.2	Direct Mode Utilities	276
24.2.1	^XUP: Programmer Signon	276
24.2.2	^XUS: User Signon: No Error Trapping	276
24.2.3	H^XUS: Programmer Halt	277
24.2.4	^XUSCLEAN: Programmer Halt	277
24.2.5	^ZU: User Signon	277
24.3	XU USER SIGN-ON Option	277
24.3.1	XU USER SIGN-ON: Package-specific Signon Actions	277
24.3.1.1	Example	278
24.4	XU USER START-UP Option	278
24.4.1	XU USER START-UP: Application-specific Signon Actions	278
24.4.1.1	Example:	279
24.5	XU USER TERMINATE Option	279
24.5.1	Discontinuation of USER TERMINATE ROUTINE	279
24.5.2	Creating a Package-specific User Termination Action	279
24.6	Application Programming Interface (API)	280
24.6.1	$$GET^XUPARAM(): Get Parameters	280
24.6.2	$$KSP^XUPARAM(): Return Kernel Site Parameter	281
24.6.2.1	Examples	281
24.6.3	$$LKUP^XUPARAM(): Look Up Parameters	282
24.6.4	SET^XUPARAM(): Set Parameters	282
24.6.5	$$PROD^XUPROD(): Production Vs. Test Account	283
24.6.6	H^XUS: Programmer Halt	283
24.6.7	SET^XUS1A(): Output Message During Signon	284
24.6.7.1	Details	284
24.6.8	AVHLPTXT^XUS2: Get Help Text	284
24.6.9	$$CREATE^XUSAP: Create Application Proxy User	285
24.6.9.1	Examples	287
24.6.10	KILL^XUSCLEAN: Clear all but Kernel Variables	289
24.6.11	$$ADD^XUSERNEW(): Add New Users	290
24.6.11.1	Examples	291
24.6.12	$$CHECKAV^XUSRB(): Check Access/Verify Codes	291
24.6.12.1	Example	292
24.6.13	CVC^XUSRB: VistALink—Change User’s Verify Code	292
24.6.14	$$INHIBIT^XUSRB: Check if Logons Inhibited	292
24.6.15	INTRO^XUSRB: VistALink—Get Introductory Text	293
24.6.16	LOGOUT^XUSRB: VistALink—Log Out User from M	293
24.6.17	SETUP^XUSR B(): VistALink—Set Up User’s Partition in M	293
24.6.18	VALIDAV^XUSRB(): VistALink—Validate User Credentials	294
24.6.19	$$DECRYP^XUSRB1(): Decrypt String	294
24.6.20	$$ENCRYP^XUSRB1(): Encrypt String	295
24.6.21	$$HANDLE^XUSRB4(): Return Unique Session ID String	295
24.6.21.1	Example	296
24.6.22	^XUVERIFY: Verify Access and Verify Codes	296
24.6.23	$$CHECKAV^XUVERIFY(): Check Access/Verify Codes	297
24.6.23.1	Example	297
24.6.24	WITNESS^XUVERIFY(): Return IEN of Users with A/V Codes & Security Keys	297
24.6.24.1	Example	298
24.6.25	GETPEER^%ZOSV: VistALink—Get IP Address for Current Session	298
25	Spooling: Developer Tools	299
25.1	Overview	299
25.2	Application Programming Interface (API)	300
25.2.1	DSD^ZISPL: Delete Spool Data File Entry	300
25.2.2	DSDOC^ZISPL: Delete Spool Document File Entry	300
26	TaskMan: Developer Tools	301
26.1	Overview	301
26.2	How to Write Code to Queue Tasks	301
26.2.1	Queuers	301
26.2.1.1	Calling EN^XUTMDEVQ to Create Tasks	302
26.2.1.2	Creating Tasks Using Scheduled Options	302
26.2.2	Tasks	303
26.2.2.1	Key Variables and Environment When Task is Running	303
26.2.2.2	Checking for Stop Requests	304
26.2.2.3	Purging the Task Record	305
26.2.2.4	Checking For Background Execution: ZTQUEUED	306
26.2.2.5	Post-Execution Commands: ZTREQ	306
26.2.2.6	Calling ^%ZTLOAD within a Task	307
26.2.2.7	Calling the Device Handler (^%ZIS) within a Task	307
26.2.2.8	Long Running Tasks—Writing Two-step Tasks	307
26.2.2.9	Long Running Tasks—Using ^%ZIS	308
26.2.2.10	Using SYNC FLAGs to Control Sequences of Tasks	310
26.3	Direct Mode Utilities	311
26.3.1	>D ^ZTMB: Start TaskMan	311
26.3.2	>D RESTART^ZTMB: Restart TaskMan	311
26.3.3	>D ^ZTMCHK: Check TaskMan’s Environment	311
26.3.4	>D RUN^ZTMKU: Remove Taskman from WAIT State Option	311
26.3.5	>D STOP^ZTMKU: Stop Task Manager Option	311
26.3.6	>D WAIT^ZTMKU: Place Taskman in a WAIT State Option	311
26.3.7	>D ^ZTMON: Monitor TaskMan Option	311
26.4	Application Programming Interface (API)	312
26.4.1	TOUCH^XUSCLEAN: Notify Kernel of Tasks that Run 7 Days or Longer	312
26.4.2	$$DEV^XUTMDEVQ(): Force Queuing—Ask for Device	312
26.4.2.1	Example	314
26.4.3	EN^XUTMDEVQ(): Run a Task (Directly or Queued)	314
26.4.3.1	Example	316
26.4.4	$$NODEV^XUTMDEVQ(): Force Queuing—No Device Selection	316
26.4.4.1	Example	317
26.4.5	$$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call	318
26.4.5.1	Example	320
26.4.6	$$REQQ^XUTMDEVQ(): Schedule Second Part of a Task	321
26.4.6.1	Example	322
26.4.7	DISP^XUTMOPT(): Display Option Schedule	322
26.4.7.1	Example	323
26.4.8	EDIT^XUTMOPT(): Edit an Option’s Scheduling	323
26.4.9	OPTSTAT^XUTMOPT(): Obtain Option Schedule	323
26.4.9.1	Example	323
26.4.10	RESCH^XUTMOPT(): Set Up Option Schedule	324
26.4.11	EN^XUTMTP(): Display HL7 Task Information	324
26.4.12	^%ZTLOAD: Queue a Task	325
26.4.12.1	Interactive Use of ^%ZTLOAD	328
26.4.12.2	Non-interactive Use of ^%ZTLOAD	329
26.4.12.3	Queuing Tasks without an I/O Device	329
26.4.12.4	Example	330
26.4.12.5	Code Execution	332
26.4.12.6	Output	332
26.4.13	$$ASKSTOP^%ZTLOAD: Stop TaskMan Task	333
26.4.14	DESC^%ZTLOAD(): Find Tasks with a Description	333
26.4.15	DQ^%ZTLOAD: Unschedule a Task	334
26.4.16	ISQED^%ZTLOAD: Return Task Status	334
26.4.17	$$JOB^%ZTLOAD(): Return a Job Number for a Task	336
26.4.18	KILL^%ZTLOAD: Delete a Task	336
26.4.19	OPTION^%ZTLOAD(): Find Tasks for an Option	337
26.4.20	PCLEAR^%ZTLOAD(): Clear Persistent Flag for a Task	337
26.4.21	$$PSET^%ZTLOAD(): Set Task as Persistent	337
26.4.22	REQ^%ZTLOAD: Requeue a Task	338
26.4.22.1	Example	340
26.4.22.2	Code Execution	342
26.4.22.3	Output	342
26.4.23	RTN^%ZTLOAD(): Find Tasks that Call a Routine	342
26.4.24	$$S^%ZTLOAD(): Check for Task Stop Request	343
26.4.25	STAT^%ZTLOAD: Task Status	343
26.4.26	$$TM^%ZTLOAD: Check if TaskMan is Running	345
26.4.27	ZTSAVE^%ZTLOAD(): Build ZTSAVE Array	345
27	Toolkit: Developer Tools	346
27.1	Toolkit—Data Standardization	346
27.1.1	Overview	346
27.1.2	Replacement Relationships	347
27.1.3	Application Programming Interfaces (APIs)	348
27.1.4	$$GETRPLC^XTIDTRM(): Get Mapped Terms (Term/Concept)	348
27.1.4.1	Example	349
27.1.5	$$RPLCLST^XTIDTRM(): Get Replacement Terms, w/Optional Status Date & History (Term/Concept)	349
27.1.5.1	Example	350
27.1.6	$$RPLCMNT^XTIDTRM(): M One Term to Another (Term/Concept)	350
27.1.6.1	Example	351
27.1.7	$$RPLCTRL^XTIDTRM(): Get Replacement Trail, w/ Replaced “BY” & Replacement “FOR” Terms	351
27.1.7.1	Example	352
27.1.8	$$RPLCVALS^XTIDTRM(): Get Field Values of Final Replacement Term (Term/Concept)	352
27.1.8.1	Example	353
27.1.9	$$SETRPLC^XTIDTRM(): Set Replacement Terms (Term/Concept)	353
27.1.9.1	Example	354
27.2	Toolkit—Duplicate Record Merge	355
27.2.1	Overview	355
27.2.1.1	Manner in which data is Merged	355
27.3	Developing a File Merge Capability	356
27.3.1	Step 1	356
27.3.2	Step 2	356
27.3.3	Description of What Occurs during the Merge	357
27.3.4	Entries Needed in the PACKAGE File (#9.4)	358
27.3.5	Step 3	358
27.3.5.1	Explanation of Fields in Logical Order of Entry	359
27.3.6	Special Processing Routine Examples	364
27.3.6.1	Candidate Collection Routine for Patient Merge Example	364
27.3.6.2	Duplicate Test Routine Examples	366
27.3.7	Application Programming Interfaces (APIs)	368
27.3.8	EN^XDRMERG(): Merge File Entries	368
27.3.8.1	Examples	368
27.3.8.2	Problems Related To Data Entry While Merging	369
27.3.9	RESTART^XDRMERG(): Restart Merge	370
27.3.10	SAVEMERG^XDRMERGB(): Save Image of Existing and Merged Data	371
27.4	Toolkit—HTTP Client	371
27.4.1	Overview	371
27.4.2	Application Programming Interfaces (APIs)	372
27.4.3	$$GETURL^XTHC10: Return URL Data Using HTTP	372
27.4.4	$$ENCODE^XTHCURL: Encodes a Query String	374
27.4.4.1	Example	375
27.4.5	$$MAKEURL^XTHCURL: Creates a URL from Components	375
27.4.5.1	Example	376
27.4.6	$$PARSEURL^XTHCURL: Parses a URL	376
27.4.6.1	Example	377
27.4.7	$$DECODE^XTHCUTL: Decodes a String	377
27.4.7.1	Example	377
27.5	Toolkit—KERMIT APIs	378
27.5.1	RFILE^XTKERM4: Add Entries to Kermit Holding File	378
27.5.2	RECEIVE^XTKERMIT: Load a File into the Host	378
27.5.3	SEND^XTKERMIT: Send Data from Host	379
27.6	Toolkit—Multi-Term Look-Up (MTLU) APIs	381
27.6.1	How to Override	381
27.6.2	Application Programming Interfaces (APIs)	381
27.6.2.1	MTLU and VA FileMan Supported Calls	381
27.6.2.2	Kernel Toolkit Enhanced APIs	382
27.6.3	XTLKKWL^XTLKKWL: Perform Supported VA FileMan Calls on Files Configured for MTLU	382
27.6.4	DK^XTLKMGR(): Delete Keywords from the Local Keyword File	383
27.6.5	DLL^XTLKMGR(): Delete an Entry from the Local Lookup File	383
27.6.6	DSH^XTLKMGR(): Delete Shortcuts from the Local Shortcut File	384
27.6.7	DSY^XTLKMGR(): Delete Synonyms from the Local Synonym File	384
27.6.8	K^XTLKMGR(): Add Keywords to the Local Keyword File	385
27.6.9	L^XTLKMGR(): Define a File in the Local Lookup File	385
27.6.10	LKUP^XTLKMGR(): General Lookup Facility for MTLU	386
27.6.10.1	Examples	387
27.6.11	SH^XTLKMGR(): Add Shortcuts to the Local Shortcut File	390
27.6.12	SY^XTLKMGR(): Add Terms and Synonyms to the Local Synonym File	391
27.7	Toolkit—M Unit Utility	392
27.7.1	Overview	392
27.7.2	Introduction to M Unit Testing	392
27.7.3	M Unit Test Definitions	393
27.7.4	Getting Started	393
27.7.5	Application Programming Interfaces (APIs)	393
27.7.6	EN^XTMUNIT(): Run Unit Tests	393
27.7.6.1	STARTUP	394
27.7.6.2	SHUTDOWN	394
27.7.6.3	SETUP	394
27.7.6.4	TEARDOWN	395
27.7.6.5	XTENT: List Unit Test Entry Points	395
27.7.6.6	XTROU: List of Routines Containing Additional Tests	395
27.7.7	CHKEQ^XTMUNIT: Check Two Values for Equivalence	395
27.7.8	CHKLEAKS^XTMUNIT(): Check for Variable Leaks	396
27.7.9	CHKTF^XTMUNIT(): Test Conditional Values	397
27.7.10	FAIL^XTMUNIT(): Generate an Error Message	397
27.7.11	$$ISUTEST^XTMUNIT: Evaluate if Unit Test is Running	397
27.7.12	SUCCEED^XTMUNIT: Increment Test Counter	398
27.7.13	Sample M Unit Utility Output	399
27.8	Toolkit—Parameter Tools	400
27.8.1	Overview	400
27.8.2	Definitions	400
27.8.2.1	Entity	400
27.8.2.2	Parameter	401
27.8.2.3	Value	401
27.8.2.4	Instance	401
27.8.2.5	Parameter Template	401
27.8.3	Application Programming Interfaces (APIs)	401
27.8.4	ADD^XPAR(): Add Parameter Value	401
27.8.4.1	Example:	401
27.8.5	CHG^XPAR(): Change Parameter Value	402
27.8.5.1	Example	402
27.8.6	DEL^XPAR(): Delete Parameter Value	402
27.8.6.1	Example	402
27.8.7	EN^XPAR(): Add, Change, Delete Parameters	403
27.8.7.1	Example	404
27.8.8	ENVAL^XPAR(): Return All Parameter Instances	404
27.8.9	$$GET^XPAR(): Return an Instance of a Parameter	405
27.8.10	GETLST^XPAR(): Return All Instances of a Parameter	406
27.8.10.1	Example:	407
27.8.11	GETWP^XPAR(): Return Word-processing Text	407
27.8.11.1	Example:	408
27.8.12	NDEL^XPAR(): Delete All Instances of a Parameter	408
27.8.12.1	Example	408
27.8.13	PUT^XPAR(): Add/Update Parameter Instance	409
27.8.13.1	Example:	409
27.8.14	REP^XPAR(): Replace Instance Value	409
27.8.15	BLDLST^XPAREDIT(): Return All Entities of a Parameter	410
27.8.16	EDIT^XPAREDIT(): Edit Instance and Value of a Parameter	410
27.8.17	EDITPAR^XPAREDIT(): Edit Single Parameter	410
27.8.18	EN^XPAREDIT: Parameter Edit Prompt	411
27.8.19	GETENT^XPAREDIT(): Prompt for Entity Based on Parameter	411
27.8.20	GETPAR^XPAREDIT(): Select Parameter Definition File	412
27.8.21	TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers)	412
27.8.22	TEDH^XPAREDIT(): Edit Template Parameters (with Dash Dividers)	413
27.9	Toolkit—VHA Unique ID (VUID) APIs	414
27.9.1	GETIREF^XTID(): Get IREF (Term/Concept)	414
27.9.1.1	Examples	415
27.9.2	$$GETMASTR^XTID(): Get Master VUID Flag (Term/Concept)	416
27.9.2.1	Examples	417
27.9.3	$$GETSTAT^XTID(): Get Status Information (Term/Concept)	417
27.9.3.1	Examples	418
27.9.4	$$GETVUID^XTID(): Get VUID (Term/Concept)	419
27.9.4.1	Examples	420
27.9.5	$$SCREEN^XTID(): Get Screening Condition (Term/Concept)	420
27.9.5.1	Examples	421
27.9.6	$$SETMASTR^XTID(): Set Master VUID Flag (Term/Concept)	422
27.9.6.1	Examples	423
27.9.7	$$SETSTAT^XTID(): Set Status Information (Term/Concept)	423
27.9.7.1	Examples	424
27.9.8	$$SETVUID^XTID(): Set VUID (Term/Concept)	425
27.9.8.1	Examples	426
27.10	Toolkit—Routine Tools	427
27.10.1	Direct Mode Utilities	427
27.10.2	Routine Tools Menu	428
27.10.2.1	Analyzing Routines	429
27.10.2.2	Editing Routines	431
27.10.2.3	Printing Routines	432
27.10.2.4	Comparing Routines	433
27.10.2.5	Deleting Routines	434
27.10.2.6	Load and Save Routines	434
27.11	Toolkit—Verification Tools	435
27.11.1	Direct Mode Utilities	435
27.11.2	Verifier Tools Menu	436
27.11.2.1	Update with Current Routines Option	436
27.11.2.2	Routine Compare - Current with Previous Option	437
27.11.3	Programmer Options Menu	437
27.11.3.1	Calculate and Show Checksum Values Option	437
27.11.3.2	Error Processing—Kernel Error Trapping and Reporting	438
27.12	XINDEX	439
27.12.1	Types of XINDEX Findings	441
27.12.2	Running the XINDEX Utility	444
27.12.3	Analysis of XINDEX Error Findings by Category	450
27.12.3.1	Fatal M Errors (Hard MUMPS Error)	450
27.12.3.2	Warning Violation Errors (According to VA Conventions)	453
27.12.3.3	Standards Violation Errors (According to VA Standards)	454
27.12.3.4	Informational Errors	459
27.12.3.5	Marked Items Errors (Manual Check)	460
28	Unwinder: Developer Tools	461
28.1	Application Programming Interface (API)	461
28.1.1	EN^XQOR(): Navigating Protocols	461
28.1.2	EN1^XQOR(): Navigating Protocols	461
28.1.3	MSG^XQOR(): Enable HL7 Messaging	462
28.1.4	EN^XQORM(): Menu Item Display and Selection	462
28.1.5	XREF^XQORM(): Force Menu Recompile	463
28.1.6	DISP^XQORM1(): Display Menu Selections From Help Code	463
29	User: Developer Tools	464
29.1	Application Programming Interface (API)	464
29.1.1	$$CODE2TXT^XUA4A72(): Get HCFA Text	464
29.1.2	$$GET^XUA4A72(): Get Specialty and Subspecialty for a User	464
29.1.3	$$IEN2CODE^XUA4A72(): Get VA Code	465
29.1.4	$$DTIME^XUP(): Reset DTIME for USER	465
29.1.4.1	Examples	466
29.1.5	$$ACTIVE^XUSER(): Status Indicator	467
29.1.5.1	Examples	468
29.1.6	$$DEA^XUSER()—Get User’s DEA Number	468
29.1.6.1	Examples	469
29.1.7	$$DETOX^XUSER()—Get Detox/Maintenance ID Number	471
29.1.8	DIV4^XUSE R(): Get User Divisions	472
29.1.8.1	Example	472
29.1.9	$$LOOKUP^XUSER(): New Person File Lookup	473
29.1.9.1	Examples	474
29.1.10	$$NAME^XUSER(): Get Name of User	475
29.1.10.1	Examples	475
29.1.11	$$PROVIDER^XUSER(): Providers in New Person File	476
29.1.11.1	Examples	476
29.1.12	$$SDEA^XUSER()—Check for Prescribing Privileges	477
29.1.13	$$VDEA^XUSER()—Check if User Can Sign Controlled Substance Orders	479
29.1.14	$$KCHK^XUSRB(): Check If User Holds Security Key	480
29.1.14.1	Examples	480
29.1.15	DIVGET^XUSRB2(): Get Divisions for Current User	481
29.1.16	DIVSET^XUSRB2(): Set Division for Current User	481
29.1.17	USERINFO^XUSRB2(): Get Demographics for Current User	482
30	XGF Function Library: Developer Tools	483
30.1	Overview	483
30.2	Direct Mode Utilities	484
30.2.1	^XGFDEMO: Demo Program	484
30.3	Application Programming Interface (API)	485
30.3.1	CHGA^XGF(): Screen Change Attributes	485
30.3.1.1	Examples	486
30.3.2	CLEAN^XGF: Screen/Keyboard Exit and Cleanup	486
30.3.3	CLEAR^XGF(): Screen Clear Region	487
30.3.3.1	Examples	487
30.3.4	FRAME^XGF(): Screen Frame	488
30.3.4.1	Example	488
30.3.5	INITKB^XGF(): Keyboard Setup Only	489
30.3.6	IOXY^XGF(): Screen Cursor Placement	489
30.3.6.1	Example	490
30.3.7	PREP^XGF(): Screen/Keyboard Setup	490
30.3.8	$$READ^XGF(): Read Using Escape Processing	491
30.3.8.1	Examples	492
30.3.9	RESETKB^XGF: Exit XGF Keyboard	493
30.3.10	RESTORE^XGF(): Screen Restore	493
30.3.10.1	Example	494
30.3.11	SAVE^XGF(): Screen Save	494
30.3.11.1	Example	494
30.3.12	SAY^XGF(): Screen String	495
30.3.12.1	Examples	496
30.3.13	SAYU^XGF(): Screen String with Attributes	496
30.3.13.1	Example	497
30.3.14	SETA^XGF(): Screen Video Attributes	497
30.3.14.1	Example	498
30.3.15	WIN^XGF(): Screen Text Window	498
30.3.15.1	Examples	499
31	XLF Function Library: Developer Tools	500
31.1	Overview	500
31.2	Application Programming Interface (API)	500
31.3	CRC Functions—XLFCRC	500
31.3.1	$$CRC16^XLFCRC(): Cyclic Redundancy Code 16	500
31.3.1.1	Examples	501
31.3.2	$$CRC32^XLFCRC(): Cyclic Redundancy Code 32	502
31.3.2.1	Examples	502
31.4	Date Functions—XLFDT	503
31.4.1	$$%H^XLFDT(): Convert Seconds to $H	503
31.4.1.1	Example	503
31.4.2	$$DOW^XLFDT(): Day of Week	503
31.4.2.1	Examples	504
31.4.3	$$DT^XLFDT: Current Date (VA FileMan Date Format)	504
31.4.3.1	Example	504
31.4.4	$$FMADD^XLFDT(): VA FileMan Date Add	505
31.4.4.1	Example	505
31.4.5	$$FMDIFF^XLFDT(): VA FileMan Date Difference	505
31.4.5.1	Examples	506
31.4.6	$$FMTE^XLFDT(): Convert VA FileMan Date to External Format	506
31.4.6.1	Examples	507
31.4.7	$$FMTH^XLFDT(): Convert VA FileMan Date to $H	511
31.4.7.1	Examples	511
31.4.8	$$FMTHL7^XLFDT(): Convert VA FileMan Date to HL7 Date	511
31.4.8.1	Example	512
31.4.9	$$HADD^XLFDT(): $H Add	512
31.4.9.1	Example	512
31.4.10	$$HDIFF^XLFDT(): $H Difference	512
31.4.10.1	Examples	513
31.4.11	$$HL7TFM^XLFDT(): Convert HL7 Date to VA FileMan Date	513
31.4.11.1	Examples	514
31.4.12	$$HTE^XLFDT(): Convert $H to External Format	515
31.4.12.1	Examples	516
31.4.13	$$HTFM^XLFDT(): Convert $H to VA FileMan Date Format	517
31.4.13.1	Examples	517
31.4.14	$$NOW^XLFDT: Current Date and Time (VA FileMan Format)	517
31.4.14.1	Example	518
31.4.15	$$SCH^XLFDT(): Next Scheduled Runtime	518
31.4.15.1	Examples	520
31.4.16	$$SEC^XLFDT(): Convert $H/VA FileMan date to Seconds	521
31.4.16.1	Examples	521
31.4.17	$$TZ^XLFDT: Time Zone Offset (GMT)	522
31.4.17.1	Example	522
31.4.18	$$WITHIN^XLFDT(): Checks Dates/Times within Schedule	522
31.5	Hyperbolic Trigonometric Functions—XLFHYPER	523
31.5.1	$$ACOSH^XLFHYPER(): Hyperbolic Arc-cosine	523
31.5.1.1	Example	523
31.5.2	$$ACOTH^XLFHYPER(): Hyperbolic Arc-cotangent	524
31.5.2.1	Example	524
31.5.3	$$ACSCH^XLFHYPER(): Hyperbolic Arc-cosecant	524
31.5.3.1	Example	524
31.5.4	$$ASECH^XLFHYPER(): Hyperbolic Arc-secant	525
31.5.4.1	Example	525
31.5.5	$$ASINH^XLFHYPER(): Hyperbolic Arc-sine	525
31.5.5.1	Example	525
31.5.6	$$ATANH^XLFHYPER(): Hyperbolic Arc-tangent	526
31.5.6.1	Example	526
31.5.7	$$COSH ^XLFHYPER(): Hyperbolic Cosine	526
31.5.7.1	Example	526
31.5.8	$$COTH^XLFHYPER(): Hyperbolic Cotangent	527
31.5.8.1	Example	527
31.5.9	$$CSCH^XLFHYPER(): Hyperbolic Cosecant	527
31.5.9.1	Example	527
31.5.10	$$SECH^XLFHYPER(): Hyperbolic Secant	528
31.5.10.1	Example	528
31.5.11	$$SINH^XLFHYPER(): Hyperbolic Sine	528
31.5.11.1	Examples	528
31.5.12	$$TANH^XLFHYPER(): Hyperbolic Tangent	529
31.5.12.1	Example	529
31.6	Mathematical Functions—XLFMTH	529
31.6.1	$$ABS^XLFMTH(): Absolute Value	529
31.6.1.1	Example	530
31.6.2	$$ACOS^XLFMTH(): Arc-cosine (Radians)	530
31.6.2.1	Example	530
31.6.3	$$ACOSDEG^XLFMTH(): Arc-cosine (Degrees)	530
31.6.3.1	Example	531
31.6.4	$$ACOT^XLFMTH(): Arc-cotangent (Radians)	531
31.6.4.1	Example	531
31.6.5	$$ACOTDEG^XLFMTH(): Arc-cotangent (Degrees)	531
31.6.5.1	Example	532
31.6.6	$$ACSC^XLFMTH(): Arc-cosecant (Radians)	532
31.6.6.1	Example	532
31.6.7	$$ACSCDEG^XLFMTH(): Arc-cosecant (Degrees)	532
31.6.7.1	Example	533
31.6.8	$$ASEC^XLFMTH(): Arc-secant (Radians)	533
31.6.8.1	Example	533
31.6.9	$$ASECDEG^XLFMTH(): Arc-secant (Degrees)	533
31.6.9.1	Example	534
31.6.10	$$ASIN^XLFMTH(): Arc-sine (Radians)	534
31.6.10.1	Example	534
31.6.11	$$ASINDEG^XLFMTH(): Arc-sine (Degrees)	534
31.6.11.1	Example	535
31.6.12	$$ATAN^XLFMTH(): Arc-tangent (Radians)	535
31.6.12.1	Example	535
31.6.13	$$ATANDEG^XLFMTH(): Arc-tangent (Degrees)	535
31.6.13.1	Example	536
31.6.14	$$COS^XLFMTH(): Cosine (Radians)	536
31.6.14.1	Example	536
31.6.15	$$COSDEG^XLFMTH(): Cosine (Degrees)	536
31.6.15.1	Example	537
31.6.16	$$COT^XLFMTH(): Cotangent (Radians)	537
31.6.16.1	Example	537
31.6.17	$$COTDEG^XLFMTH(): Cotangent (Degrees)	537
31.6.17.1	Example	538
31.6.18	$$CSC^XLFMTH(): Cosecant (Radians)	538
31.6.18.1	Example	538
31.6.19	$$CSCDEG^XLFMTH(): Cosecant (Degrees)	538
31.6.19.1	Example	539
31.6.20	$$DECDMS^XLFMTH(): Convert Decimals to Degrees:Minutes:Seconds	539
31.6.20.1	Example	539
31.6.21	$$DMSDEC^XLFMTH(): Convert Degrees:Minutes:Seconds to Decimal	539
31.6.21.1	Example	540
31.6.22	$$DTR^XLFMTH(): Convert Degrees to Radians	540
31.6.22.1	Example	540
31.6.23	$$E^XLFMTH(): e—Natural Logarithm	540
31.6.23.1	Example	541
31.6.24	$$EXP^XLFMTH(): e—Natural Logarithm to the Nth Power	541
31.6.24.1	Example	541
31.6.25	$$LN^XLFMTH(): Natural Log (Base e)	541
31.6.25.1	Example	542
31.6.26	$$LOG^XLFMTH(): Logarithm (Base 10)	542
31.6.26.1	Example	542
31.6.27	$$MAX^XLFMTH(): Maximum of Two Numbers	542
31.6.27.1	Example	543
31.6.28	$$MIN^XLFMTH(): Minimum of Two Numbers	543
31.6.28.1	Example	543
31.6.29	$$PI^XLFMTH(): PI	543
31.6.29.1	Example	544
31.6.30	$$PWR^XLFMTH(): X to the Y Power	544
31.6.30.1	Example	544
31.6.31	$$RTD^XLFMTH(): Convert Radians to Degrees	544
31.6.31.1	Example	545
31.6.32	$$SD^XLFMTH(): Standard Deviation	545
31.6.32.1	Example	545
31.6.33	$$SEC^XLFMTH(): Secant (Radians)	545
31.6.33.1	Example	546
31.6.34	$$SECDEG^XLFMTH(): Secant (Degrees)	546
31.6.34.1	Example	546
31.6.35	$$SIN^XLFMTH(): Sine (Radians)	546
31.6.35.1	Example	547
31.6.36	$$SINDEG^XLFMTH(): Sine (Degrees)	547
31.6.36.1	Example	547
31.6.37	$$SQRT^XLFMTH(): Square Root	547
31.6.37.1	Example	548
31.6.38	$$TAN^XLFMTH(): Tangent (Radians)	548
31.6.38.1	Example	548
31.6.39	$$TANDEG^XLFMTH(): Tangent (Degrees)	548
31.6.39.1	Example	549
31.7	Measurement Functions—XLFMSMT	549
31.7.1	$$BSA^XLFMSMT(): Body Surface Area Measurement	549
31.7.1.1	Examples	549
31.7.2	$$LENGTH^XLFMSMT(): Convert Length Measurement	550
31.7.2.1	Examples	550
31.7.3	$$TEMP^XLFMSMT(): Convert Temperature Measurement	551
31.7.3.1	Examples	551
31.7.4	$$VOLUME^XLFMSMT(): Convert Volume Measurement	552
31.7.4.1	Examples	552
31.7.5	$$WEIGHT^XLFMSMT(): Convert Weight Measurement	553
31.7.5.1	Examples	553
31.8	String Functions—XLFSTR	554
31.8.1	$$CJ^XLFSTR(): Center Justify String	554
31.8.1.1	Examples	554
31.8.2	$$INVERT^XLFSTR(): Invert String	555
31.8.2.1	Example	555
31.8.3	$$LJ^XLFSTR(): Left Justify String	555
31.8.3.1	Examples	556
31.8.4	$$LOW^XLFSTR(): Convert String to Lowercase	556
31.8.4.1	Example	556
31.8.5	$$REPEAT^XLFSTR(): Repeat String	557
31.8.5.1	Examples	557
31.8.6	$$REPLACE^XLFSTR(): Replace Strings	557
31.8.6.1	Examples	558
31.8.7	$$RJ^XLFSTR(): Right Justify String	558
31.8.7.1	Examples	558
31.8.8	$$SENTENCE^XLFSTR(): Convert String to Sentence Case	559
31.8.8.1	Example	559
31.8.9	$$STRIP^XLFSTR(): Strip a String	559
31.8.9.1	Examples	560
31.8.10	$$TITLE^XLFSTR(): Convert String to Title Case	560
31.8.10.1	Example	560
31.8.11	$$TRIM^XLFSTR(): Trim String	561
31.8.11.1	Examples	561
31.8.12	$$UP^XLFSTR(): Convert String to Uppercase	562
31.8.12.1	Example	562
31.9	Utility Functions—XLFUTL	563
31.9.1	$$BASE^XLFUTL(): Convert Between Two Bases	563
31.9.1.1	Examples	563
31.9.2	$$CCD^XLFUTL(): Append Check Digit	564
31.9.2.1	Examples	564
31.9.3	$$CNV^XLFUTL(): Convert Base 10 to Another Base	564
31.9.3.1	Examples	565
31.9.4	$$DEC^XLFUTL(): Convert Another Base to Base 10	565
31.9.4.1	Example	565
31.9.5	$$VCD^XLFUTL(): Verify Integrity	566
31.9.5.1	Examples	566
31.10	IP Address Functions—XLFIPV	567
31.10.1	$$CONVERT^XLFIPV():Convert any IP Address to Standardized IP Address Format	567
31.10.1.1	Examples	567
31.10.2	$$FORCEIP4^XLFIPV(): Convert any IP Address to IPv4	568
31.10.2.1	Examples	568
31.10.3	$$FORCEIP6^XLFIPV(): Convert any IP Address to IPv6	569
31.10.3.1	Examples	570
31.10.4	$$VALIDATE^XLFIPV(): Validate IP Address Format	570
31.10.4.1	Examples	571
31.10.5	$$VERSION^XLFIPV: Show System Settings for IPv6	571
31.10.5.1	Examples	572
32	XML Parser (VistA): Developer Tools	573
32.1	Overview	573
32.1.1	Event-driven Interface	573
32.1.2	World Wide Web Consortium Document Object Model Specification	573
32.1.3	Entity Catalog	574
32.1.4	Term Definitions and XML Parser Concept	574
32.1.5	Known Issues	575
32.1.5.1	Unsupported Character Encodings	575
32.1.5.2	Retrieval of External Entities Using Non-Standard File Access Protocols	575
32.1.5.3	File Access	575
32.1.5.4	Entity Substitutions Text	575
32.1.5.5	Enforcing Whitespace	576
32.2	Application Programming Interface (API)	576
32.2.1	$$ATTRIB^MXMLDOM(): XML—Get First or Next Node Attribute Name	576
32.2.2	$$CHILD^MXMLDOM(): XML—Get Parent Node’s First or Next Child	577
32.2.3	$$CMNT^MXMLDOM(): XML—Extract Comment Text (True/False)	577
32.2.4	CMNT^MXMLDOM(): XML—Extract Comment Text (True/False)	578
32.2.5	DELETE^MXMLDOM(): XML—Delete Document Instance	578
32.2.6	$$EN^MXMLDOM(): XML—Initial Processing of XML Document, Build In-memory Image	579
32.2.7	$$NAME^MXMLDOM(): XML—Get Element Name	580
32.2.8	$$PARENT^MXMLDOM(): XML—Get Parent Node	580
32.2.9	$$SIBLING^MXMLDOM(): XML—Get Sibling Node	581
32.2.10	$$TEXT^MXMLDOM(): XML—Extract Non-markup Text (True/False)	581
32.2.11	TEXT^MXMLDOM(): XML—Extract Non-markup Text (True/False)	582
32.2.12	$$VALUE^MXMLDOM(): XML—Get Attribute Value	582
32.2.13	EN^MXMLPRSE(): XML—Event Driven API	583
32.2.13.1	Details	584
32.2.13.2	Example	586
32.2.14	$$SYMENC^MXMLUTL(): XML—Replace XML Symbols with XML Encoding	588
32.2.14.1	Example	588
32.2.15	$$XMLHDR^MXMLUTL: XML—Get XML Message Header	588
32.2.15.1	Example	589
33	^XTMP Global: Developer Tools	590
33.1	Overview	590
33.2	Rules for Use of the ^XTMP Global	590
33.3	SAC Exemptions	591
Glossary	592
Index	598

[bookmark: _Toc458598765]List of Figures

Figure 1: CCODE^XIPUTIL API—Example	4
Figure 2: POSTAL^XIPUTIL API—Example 1	7
Figure 3: POSTAL^XIPUTIL API—Example 2	7
Figure 4: POSTALB^XIPUTIL API—Example	9
Figure 5: Alerts—Creating an alert for a user (e.g., #14)	10
Figure 6: Alerts—Checking that the alert was sent	10
Figure 7: AHISTORY^XQALBUTL API—Example: Sample use and format of data returned	14
Figure 8: AHISTORY^XQALBUTL API—Example: Basic structure of the nodes taken from the global for this entry as seen via a global map view of the ALERT TRACKING file (#8992.1)	14
Figure 9: ALERTDAT^XQALBUTL API—Example	16
Figure 10: DELSTAT^XQALBUTL API—Example: Sample VALUE array	17
Figure 11: USERDATA^XQALBUTL API—Example	21
Figure 12: SETUP^XQALERT API—Call to send an alert sample	31
Figure 13: SETUP^XQALERT API—Resulting alert, from View Alerts option	31
Figure 14: $$SETUP1^XQALERT API—Call to send an alert sample	35
Figure 15: $$SETUP1^XQALERT API—Resulting alert, from View Alerts option	35
Figure 16: USER^XQALERT API—Example	37
Figure 17: FORWARD^XQALFWD API—Example	38
Figure 18: SUROFOR^XQALSURO API—Example	43
Figure 19: SUROLIST^XQALSURO API—Example	44
Figure 20: DEVICE^XUDHGUI API—Example 1: DEVICES array displaying sample results	56
Figure 21: DEVICE^XUDHGUI API—Example 2: DEVICES array displaying sample results	56
Figure 22: DEVICE^XUDHGUI API—Example 3: DEVICES array displaying sample results	57
Figure 23: DEVICE^XUDHGUI API—Example 4: DEVICES array displaying sample results	57
Figure 24: ^%ZIS API—Example	66
Figure 25: GSET^%ZISS API—Example	79
Figure 26: OPEN^%ZISUTL API—Example	83
Figure 27: Device Handler—Issuing form feeds following current guidelines	86
Figure 28: Device Handler—Alternate approach following current guidelines	87
Figure 29: Error Trap—Example	98
Figure 30: UNWIND^%ZTER API—Main code example	100
Figure 31: UNWIND^%ZTER API—Usage	100
Figure 32: OPKG^XUHUI API—Example of creating New Style Cross-references	102
Figure 33: OPKG^XUHUI API—Sample scenario	102
Figure 34: OPKG^XUHUI API—Example of internal results	104
Figure 35: File Access Security—Setting DLAYGO in a template	107
Figure 36: Host Files—Opening a Host file using the ^%ZIS API	111
Figure 37: CLOSE^%ZISH API—Example	112
Figure 38: Host Files—Overflow lines in a Host file sample	114
Figure 39: OPEN^%ZISH API—Example	119
Figure 40: $$STATUS^%ZISH API—Example	120
Figure 41: F4^XUAF4 API—Example	124
Figure 42: LOOKUP^XUAF4 API—Example	127
Figure 43: MAIN^XUMFI API—Sample output	135
Figure 44: MAIN^XUMFP API—Displaying ^TMP global for PARAM values	140
Figure 45: KIDS—Edits and Distribution menu options	142
Figure 46: KIDS—Choosing a build type sample	144
Figure 47: KIDS—Populating a build entry by namespace	145
Figure 48: KIDS—Copying a build entry	145
Figure 49: KIDS—Screen 1 of Edit a Build sample	148
Figure 50: KIDS—Screen 2 of Edit a Build: Selecting files	149
Figure 51: KIDS—Data dictionary and data settings	149
Figure 52: KIDS—Data dictionary settings screen—DD Export Options	151
Figure 53: KIDS—Partial DD: Choosing DD levels (top level and Multiple) to send; Data Dictionary Number level	151
Figure 54: KIDS—Partial DD: Choosing DD levels (top level and Multiple) to send; Field Number level	152
Figure 55: KIDS—Settings for sending data	153
Figure 56: KIDS—Screen 3 of Edit a Build: Components	156
Figure 57: KIDS—Choosing routines	159
Figure 58: KIDS—Selecting templates	160
Figure 59: KIDS—Transport a Distribution option: Creating a distribution sample user dialogue	161
Figure 60: KIDS—Transport a Distribution option: Sending via network (PackMan message) sample user dialogue	162
Figure 61: KIDS—Multi-package builds sample	163
Figure 62: KIDS—Exporting global distributions sample	164
Figure 63: KIDS—Dialogue when the XPDNOQUE variable is set to disable queuing	168
Figure 64: KIDS—”DISABLE” default prompt during installations	168
Figure 65: KIDS—”MOVE routines” default prompt during installations	169
Figure 66: KIDS—Environment Check routine sample	170
Figure 67: KIDS—PRE-TRANSPORTATION ROUTINE field sample	171
Figure 68: KIDS—Screen 4 of Edit a Build sample	174
Figure 69: KIDS—Pre-install question (setting up) sample	176
Figure 70: KIDS—Appearance of question during installation	176
Figure 71: KIDS—Using checkpoints with callbacks: combined pre- and post-install routine	179
Figure 72: KIDS—Required builds sample	181
Figure 73: KIDS—Patch Application History sample	183
Figure 74: KIDS—Errors Logged in Alpha/Beta Test (QUEUED) option	186
Figure 75: Alpha/Beta Test Option Usage Menu options	187
Figure 76: Actual Usage of Alpha/Beta Test Options option—Sample Option Usage report	187
Figure 77: Enter/Edit Kernel Site Parameters—Sample user dialogue	189
Figure 78: Menu Manager—Edit options [XUEDITOPT]	207
Figure 79: Programmer Options menu options—Toolkit miscellaneous tools	221
Figure 80: Calling the ^%Z Editor—Sample user entries	222
Figure 81: ^%Z Editor—Displaying a routine using the ZP command	223
Figure 82: ^%Z Editor—Listing edit commands	223
Figure 83: ^%Z Editor—Line mode help information	224
Figure 84: ^%Z Editor—Replace mode editing help information	224
Figure 85: ACTION menu—Sample user entries	224
Figure 86: $$FMNAME^XLFNAME API—Example: Converting an HL7 formatted name to a standard name, and returning the components in an array	237
Figure 87: NAMECOMP^XLFNAME API—Example	241
Figure 88: STDNAME^XLFNAME API—Example	250
Figure 89: UPDCOMP^XLFNAME2 API—Example	253
Figure 90: OWNSKEY^XUSRB API—Example	272
Figure 91: XQSERVER—Default bulletin	274
Figure 92: XU USER SIGN-ON—Sample ZZTALK Protocol	278
Figure 93: XU USER START-UP option—Sample signon action-type option	279
Figure 94: Application Proxy Example (Good)	287
Figure 95: Application Proxy Example (Good)—Displayed using Proxy User List option	287
Figure 96: Application Proxy Example (Bad) (1 of 2)	288
Figure 97: Application Proxy Example (Bad) (2 of 2)	288
Figure 98: $$ADD^XUSERNEW API—Example of adding a new user	291
Figure 99: Spooling—Sending output to the spooler (and pre-defining ZTIO)	299
Figure 100: Spooling—Allowing output to go the spooler (without pre-defining ZTIO)	299
Figure 101: TaskMan—Sample code allowing users to select whether a job is queued or not and the output device to use	309
Figure 102: TaskMan—Sample code printing to a device using saved variables	309
Figure 103: $$DEV^XUTMDEVQ API—Example: Sample code	314
Figure 104: EN^XUTMDEVQ API—Sample report	316
Figure 105: $$NODEV^XUTMDEVQ API—Sample code	317
Figure 106: $$QQ^XUTMDEVQ API—Sample code	320
Figure 107: $$REQQ^XUTMDEVQ API—Sample code	322
Figure 108: ^%ZTLOAD API—Print queuer sample code	328
Figure 109: ^%ZTLOAD API—Sample code	330
Figure 110: ^%ZTLOAD API—Sample code execution	332
Figure 111: ^%ZTLOAD API—Sample output	332
Figure 112: REQ^%ZTLOAD API—Sample code	340
Figure 113: ^%ZTLOAD API—Sample code execution	342
Figure 114: ^%ZTLOAD API—Sample output	342
Figure 115: Toolkit—Replacement relationships: Data standardization	347
Figure 116: .03 DUPLICATE TEST ROUTINE—Variables passed to the test routine	360
Figure 117: Special Processing Routine Examples—Candidate Collection Routine for Patient Merge	364
Figure 118: Special Processing Routine Examples—Name Test Routine for a Patient Merge	366
Figure 119: Special Processing Routine Examples—Date of Birth test Routine for a Patient Merge	367
Figure 120: $$MAKEURL^XTHCURL API—Example	376
Figure 121: LKUP^XTLKMGR API—Example 1: Standard Lookup; Single term entered	387
Figure 122: LKUP^XTLKMGR API—Example 2: Standard Lookup; Multiple terms entered	388
Figure 123: LKUP^XTLKMGR API—Example 3: Display minimized by setting the 3rd parameter = 0	389
Figure 124: LKUP^XTLKMGR API—Example 4: MTLU with screen display turned off	390
Figure 125: XTENT: List Unit Test Entry Points	395
Figure 126: XTROU: List of Routines Containing Additional Tests	395
Figure 127: Sample output from the M Unit test tool—Verbose	399
Figure 128: GETIREF^XTID API—Example 1	415
Figure 129: Routine Tools—Menu options	428
Figure 130: %Index of Routines option—Sample user entries	430
Figure 131: Verifier Tools—Menu options	436
Figure 132: Programmer Options—Menu options: Toolkit verification tools	437
Figure 133: XINDEX—Direct mode utilities sample user entries: Specifying a routine name only (1 of 3)	445
Figure 134: XINDEX—Direct mode utilities sample user entries: Specifying a build name (2 of 3)	447
Figure 135: XINDEX—Direct mode utilities sample user entries: Specifying a package name (3 of 3)	448
Figure 136: F - Block structure mismatch—Sample code error	450
Figure 137: F - GO or DO mismatch from block structure (M45)—Sample code error	451
Figure 138: F - Label is not valid—Sample code error	451
Figure 139: API - Star our pound READ used—Syntactic variation (1 of 2)	459
Figure 140: API - Star our pound READ used—Syntactic variation (2 of 2)	459
Figure 141: $$LOOKUP^XUSER API—Example 1: Showing confirmation prompt	474
Figure 142: $$LOOKUP^XUSER API—Example 2: Suppressing confirmation prompt	474
Figure 143: $$LOOKUP^XUSER API—Example 3: Terminated user	474
Figure 144: SAY^XGF API—Example 1: READ a name	492
Figure 145: $$READ^XGF API—Example 2: Accept only Up-Arrow (“↑”) and Down-Arrow (“↓”) keys	492
Figure 146: $$CRC16^XLFCRC API—Example 1: Calculating a checksum over multiple strings (1 of 2)	501
Figure 147: $$CRC16^XLFCRC API—Example 1: Calculating a checksum over multiple strings (2 of 2)	501
Figure 148: $$CRC16^XLFCRC API—Example 2	501
Figure 149: $$CRC32^XLFCRC API—Example 1: Calculating a checksum over multiple strings (1 of 2)	502
Figure 150: $$CRC32^XLFCRC API—Example 1: Calculating a checksum over multiple strings (2 of 2)	502
Figure 151: $$CRC32^XLFCRC API—Example 2	503
Figure 152: XML Document (left)—Tree structure Diagram (right)	574
Figure 153: VistA XML Parser Use—Example: Create XML file	587
Figure 154: VistA XML Parser Use Example—Invoke SAX Interface	587
Figure 155: VistA XML Parser Use Example—Check DOM Interface	587
Figure 156: VistA XML Parser Use Example—List All Sibling Nodes	588

[bookmark: _Toc458598766]List of Tables

Table 1: Documentation symbol descriptions	lxi
Table 2: Alerts—Related terms and definitions	12
Table 3: Host file APIs—Definitions	111
Table 4: MAIN^XUMFP(): Master File Parameters API—QRD: Query Definition	137
Table 5: MAIN^XUMFP(): Master File Parameters API—XCN Data Type of QRD WHO Parameter	137
Table 6: MAIN^XUMFP(): Master File Parameters API—CE Data Type of QRD WHAT Parameter	138
Table 7: MAIN^XUMFP(): Master File Parameters API—MFI: Master File Identification	138
Table 8: MAIN^XUMFP(): Master File Parameters API—MFE: Master File Entry	138
Table 9: MAIN^XUMFP(): Master File Parameters API—[Z...] Segments Parameters	138
Table 10: MAIN^XUMFP(): Master File Parameters API—Files Involving Sub-records and Extended Reference	139
Table 11: KIDS—Options supporting software application builds and exports	143
Table 12: KIDS—Functional layout, Edit a Build	146
Table 13: KIDS—Data installation actions	153
Table 14: KIDS—Option and protocol installation actions	157
Table 15: KIDS—Key variables during the environment check	166
Table 16: KIDS—Actions based on environment check conclusions	168
Table 17: KIDS—Installation: XPDDIQ array sample	169
Table 18: KIDS—Environment Check—XPDDIQ array sample	169
Table 19: KIDS—Key parameters during the pre- and post-install routines	172
Table 20: KIDS—Key variables during the pre- and post-install routines	172
Table 21: KIDS—DIR input values for KIDS install questions	174
Table 22: KIDS—Functions using checkpoints with callbacks	177
Table 23: KIDS—Functions using checkpoints without callbacks	180
Table 24: KIDS—Required builds installation actions	181
Table 25: KIDS—National PACKAGE file field updates	182
Table 26: Alpha/Beta Tracking—KERNEL SYSTEM PARAMETERS file (#8989.3) field setup for KIDS	184
Table 27: Alpha/Beta Tracking—BUILD file (#9.6) field setup for KIDS	185
Table 28: Miscellaneous Tools—Direct Mode Utilities	221
Table 29: ^%ZOSF API—Global nodes	260
Table 30: Key variable setup—Server options	273
Table 31: TaskMan—ZTREQ piece and equivalent REQ^ZTLOAD variable	306
Table 32: $$GETURL^XTHC10—Common HTTP Status Codes Returned	374
Table 33: Parameter Tool—Parameter entity levels	400
Table 34: Routine Tools—Direct Mode Utilities	427
Table 35: Verification Tools—Direct Mode Utilities	435
Table 36: XINDEX—Types of findings (category codes or flags)	441
Table 37: XINDEX—List of the error conditions (messages) flagged: Grouped by category and listed alphabetically); messages are stored in XINDX1 routine	442
Table 38: XGF Function Library—Minimum M implementation features required	483
Table 39: XGF Function Library—Demo functional division	484
Table 40: XGF Function Library—Mnemonics for keys that terminate READs	491
Table 41: $$LENGTH^XLFMSMT API—Valid units	550
Table 42: $$TEMP^XLFMSMT API—Valid units	551
Table 43: $$VOLUME^XLFMSMT API—Valid units	552
Table 44: $$WEIGHT^XLFMSMT API—Valid units	553
Table 45: XML ENTITY CATALOG file (#950)—Stores external entities and assoc public identifiers	574
Table 46: XML Parser—Event types	584

Figures and Tables

[bookmark: _Hlt412359042][bookmark: _Ref38421374][bookmark: _Toc234301877][bookmark: _Toc236534525][bookmark: orientation][bookmark: _Toc311811085][bookmark: _Toc322612052][bookmark: _Toc458598767]Orientation
[bookmark: _Toc336755501][bookmark: _Toc336755634][bookmark: _Toc336755787][bookmark: _Toc336756084][bookmark: _Toc336756187][bookmark: _Toc336760251][bookmark: _Toc336940172][bookmark: _Toc337531822][bookmark: _Toc337542598][bookmark: _Toc337626310][bookmark: _Toc337626513][bookmark: _Toc337966589][bookmark: _Toc338036333][bookmark: _Toc338036629][bookmark: _Toc338036784][bookmark: _Toc338129956][bookmark: _Toc338740693][bookmark: _Toc338834078][bookmark: _Toc339260909][bookmark: _Toc339260978][bookmark: _Toc339418576][bookmark: _Toc339707965][bookmark: _Toc339783046][bookmark: _Toc345918859][bookmark: how_to_use_this_manual]How to Use this Manual
This manual provides advice and instruction about Kernel 8.0 and Kernel Toolkit 7.3 Application Programming Interfaces (APIs), Direct Mode Utilities, and other information for Veterans Health Information Systems and Technology Architecture (VistA) application developers.
[bookmark: intended_audience]Intended Audience
The intended audience of this manual is the following stakeholders:
Enterprise Program Management Office (EPMO)—VistA legacy development teams.
System Administrators—System administrators at Department of Veterans Affairs (VA) regional sites who are responsible for computer management and system security on the VistA M Servers.
Information Security Officers (ISOs)—Personnel at VA sites responsible for system security.
Product Support (PS).
[bookmark: disclaimers]Disclaimers
[bookmark: software_disclaimer]Software Disclaimer
 This software was developed at the Department of Veterans Affairs (VA) by employees of the Federal Government in the course of their official duties. Pursuant to title 17 Section 105 of the United States Code this software is not subject to copyright protection and is in the public domain. VA assumes no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any other characteristic. We would appreciate acknowledgement if the software is used. This software can be redistributed freely provided that any derivative works bear some notice that they are derived from it.
[image: Caution]	CAUTION: Kernel routines should never be modified at the site. If there is an immediate national requirement, the changes should be made by emergency Kernel patch. Kernel software is subject to FDA regulations requiring Blood Bank Review, among other limitations. Line 3 of all Kernel routines states:

 Per VA Directive 6402 (pending signature), this routine should not be modified.
[image: Caution]	CAUTION: To protect the security of VistA systems, distribution of this software for use on any other computer system by VistA sites is prohibited. All requests for copies of Kernel for non-VistA use should be referred to the VistA site’s local Office of Information Field Office (OIFO).
[bookmark: documentation_disclaimer]Documentation Disclaimer
This manual provides an overall explanation of using kernel; however, no attempt is made to explain how the overall VistA programming system is integrated and maintained. Such methods and procedures are documented elsewhere. We suggest you look at the various VA Internet and Intranet SharePoint sites and websites for a general orientation to VistA. For example, visit the Office of Information and Technology (OI&T) Enterprise Program Management Office (EPMO) Intranet Website.
[image: Caution]	DISCLAIMER: The appearance of any external hyperlink references in this manual does not constitute endorsement by the Department of Veterans Affairs (VA) of this Website or the information, products, or services contained therein. The VA does not exercise any editorial control over the information you find at these locations. Such links are provided and are consistent with the stated purpose of this VA Intranet Service.
[bookmark: documentation_conventions]Documentation Conventions
This manual uses several methods to highlight different aspects of the material:
Various symbols are used throughout the documentation to alert the reader to special information. Table 1 gives a description of each of these symbols:
[bookmark: _Ref431821080][bookmark: _Toc458599996]Table 1: Documentation symbol descriptions
	[bookmark: COL001_TBL002]Symbol
	Description

	[image: Note]
	NOTE / REF: Used to inform the reader of general information including references to additional reading material.

	[image: Caution]
	CAUTION / RECOMMENDATION / DISCLAIMER: Used to caution the reader to take special notice of critical information.

Descriptive text is presented in a proportional font (as represented by this font).
Conventions for displaying TEST data in this document are as follows:
The first three digits (prefix) of any Social Security Numbers (SSN) begin with either “000” or “666”.
Patient and user names are formatted as follows:
<Application Name/Abbreviation/Namespace>PATIENT,<N>
<Application Name/Abbreviation/Namespace>USER,<N>
Where:
<Application Name/Abbreviation/Namespace> is defined in the Approved Application Abbreviations document.
<N> represents the first name as a number spelled out and incremented with each new entry.
For example, in Kernel (XU or KRN) test patient and user names would be documented as follows:
KRNPATIENT,ONE; KRNPATIENT,TWO; KRNPATIENT,THREE; … KRNPATIENT,14; etc.
KRNUSER,ONE; KRNUSE,TWO; KRNUSE,THREE; … KRNUSE,14; etc.
 “Snapshots” of computer online displays (i.e., screen captures/dialogues) and computer source code is shown in a non-proportional font and may be enclosed within a box.
User’s responses to online prompts are boldface and (optionally) highlighted in yellow (e.g., <Enter>).
Emphasis within a dialogue box is boldface and (optionally) highlighted in blue (e.g., STANDARD LISTENER: RUNNING).
Some software code reserved/key words are boldface with alternate color font.
References to “<Enter>” within these snapshots indicate that the user should press the Enter key on the keyboard. Other special keys are represented within < > angle brackets. For example, pressing the PF1 key can be represented as pressing <PF1>.
Author’s comments are displayed in italics or as “callout” boxes.
[image: Note]	NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box, which point to specific areas of a displayed image.
This manual refers to the M programming language. Under the 1995 American National Standards Institute (ANSI) standard, M is the primary name of the MUMPS programming language, and MUMPS is considered an alternate name. This manual uses the name M.
Descriptions of direct mode utilities are prefaced with the standard M “>” prompt to emphasize that the call is to be used only in direct mode. They also include the M command used to invoke the utility. The following is an example:
>D ^XUP
The following conventions are used with regards to APIs:
Headings for developer API descriptions (e.g., supported for use in applications and on the Database Integration Committee [DBIC] list) include the routine tag (if any), the caret (“^”) used when calling the routine, and the routine name. The following is an example:
EN1^XQH
For APIs that take input parameter, the input parameter is labeled “required” when it is a required input parameter and labeled “optional” when it is an optional input parameter.
For APIs that take parameters, parameters are shown in lowercase and variables are shown in uppercase. This is to convey that the parameter name is merely a placeholder; M allows you to pass a variable of any name as the parameter or even a string literal (if the parameter is not being passed by reference). The following is an example of the formatting for input parameters:
XGLMSG^XGLMSG(msg_type,[.]var[,timeout])
Rectangular brackets [] around a parameter are used to indicate that passing the parameter is optional. Rectangular brackets around a leading period [.] in front of a parameter indicate that you can optionally pass that parameter by reference.
All APIs are categorized by function. This categorization is subjective and subject to change based on feedback from the development community. In addition, some APIs could fall under multiple categories; however, they are only listed once under a chosen category.

APIs within a category are first sorted alphabetically by Routine name and then within routine name are sorted alphabetically by Tag reference. The “$$”, “^”, or “^%” prefixes on APIs is ignored when alphabetizing.
· All uppercase is reserved for the representation of M code, variable names, or the formal name of options, field/file names, and security keys (e.g., the XUPROGMODE security key).
[image: Note]	NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and file/folder names can be written in lower or mixed case (e.g., CamelCase).
[bookmark: navigation][bookmark: _Toc321921658]Documentation Navigation
This document uses Microsoft® Word’s built-in navigation for internal hyperlinks. To add Back and Forward navigation buttons to the toolbar, do the following:
Right-click anywhere on the customizable Toolbar in Word (not the Ribbon section).
Select Customize Quick Access Toolbar from the secondary menu.
Select the drop-down arrow in the “Choose commands from:” box.
Select All Commands from the displayed list.
Scroll through the command list in the left column until you see the Back command (circle with arrow pointing left).
Select/Highlight the Back command and select Add to add it to your customized toolbar.
Scroll through the command list in the left column until you see the Forward command (circle with arrow pointing right).
Select/Highlight the Forward command and select Add to add it to the customized toolbar.
Select OK.
You can now use these Back and Forward command buttons in the Toolbar to navigate back and forth in the Word document when selecting hyperlinks within the document.
[image: Note]	NOTE: This is a one-time setup and is automatically available in any other Word document once you install it on the Toolbar.
[bookmark: _Toc397138030][bookmark: _Toc485620882][bookmark: _Toc4315558][bookmark: _Toc8096545][bookmark: _Toc15257683][bookmark: _Toc18284795][bookmark: Obtain_Technical_Information_Online]How to Obtain Technical Information Online
Exported VistA M Server-based software file, routine, and global documentation can be generated using Kernel, MailMan, and VA FileMan utilities.
[image: Note]	NOTE: Methods of obtaining specific technical information online is indicated where applicable under the appropriate section.

REF: For further information, see the Kernel Technical Manual.
[bookmark: Help_at_Prompts]Help at Prompts
VistA M Server-based software provides online help and commonly used system default prompts. Users are encouraged to enter question marks at any response prompt. At the end of the help display, you are immediately returned to the point from which you started. This is an easy way to learn about any aspect of VistA M Server-based software.
[bookmark: Obtaining_Data_Dictionary_Listings]Obtaining Data Dictionary Listings
Technical information about VistA M Server-based files and the fields in files is stored in data dictionaries (DD). You can use the List File Attributes option [DILIST] on the Data Dictionary Utilities menu [DI DDU] in VA FileMan to print formatted data dictionaries.
[image: Note]	REF: For details about obtaining data dictionaries and about the formats available, see the “List File Attributes” section in the “File Management” section in the VA FileMan Advanced User Manual.
[bookmark: Assumptions_about_the_Reader]Assumptions
This manual is written with the assumption that the reader is familiar with the following:
VistA computing environment:
Kernel—VistA M Server software
VA FileMan data structures and terminology—VistA M Server software
Microsoft® Windows environment
M programming language
[bookmark: _Toc397138035][bookmark: _Toc485620884][bookmark: _Toc4315560][bookmark: _Toc8096547][bookmark: _Toc15257685][bookmark: _Toc18284796][bookmark: Reference_Materials]Reference Materials
Readers who wish to learn more about Kernel should consult the following:
Kernel Release Notes
Kernel Installation Guide
Kernel Systems Management Guide
Kernel Developer’s Guide (this manual)
Kernel Technical Manual
Kernel Security Tools Manual
Kernel VA Intranet Website.
This site contains other information and provides links to additional documentation.
VistA documentation is made available online in Microsoft® Word format and in Adobe® Acrobat Portable Document Format (PDF). The PDF documents must be read using the Adobe® Acrobat Reader, which is freely distributed by Adobe® Systems Incorporated at: http://www.adobe.com/
VistA documentation can be downloaded from the VA Software Document Library (VDL): http://www.va.gov/vdl/
[image: Note]	REF: Kernel manuals are located on the VDL at: http://www.va.gov/vdl/application.asp?appid=10
VistA documentation and software can also be downloaded from the Product Support (PS) Anonymous Directories.

Orientation

[bookmark: _Toc458598768]Introduction
This manual provides descriptive information about Kernel for use by application developers. Kernel provides developers with a number of tools. These tools include Application Programming Interfaces (APIs) and direct-mode utilities. These tools let you create applications that are fully integrated with Kernel and that take advantage of Kernel’s features.
This manual assumes that the reader is familiar with the computing environment of the VA’s Veterans Health Information Systems and Technology Architecture (VistA), and understands VA FileMan data structures and terminology. Understanding of the M programming language is required for this manual. No attempt is made to explain how the overall VistA programming system is integrated and maintained; such methods and procedures are documented elsewhere.
You can find developer information in the sections and sub-sections of this manual that contain “Developer Tools” in their titles. You might want to concentrate on those sections in this manual that could affect your project. For example, if you are working on a project requiring tasking a job, you should familiarize yourself with the information in the “TaskMan: Developer Tools” section.
Kernel provides developers with a number of tools. These tools include Application Programming Interfaces (APIs), and direct-mode utilities. These tools let you create applications that are fully integrated with Kernel and that take advantage of Kernel’s features.
The Kernel Developer’s Guide is divided into sections, based on the following functional API/Direct Mode Utility categories within Kernel (listed alphabetically):
Address Hygiene: Developer Tools
Alerts: Developer Tools
Common Services: Developer Tools
Device Handler: Developer Tools
Domain Name Service (DNS): Developer Tools
Electronic Signatures: Developer Tools
Error Processing: Developer Tools
Field Monitoring: Developer Tools
File Access Security: Developer Tools
Help Processor: Developer Tools
Host Files: Developer Tools
Institution File: Developer Tools
Kernel Installation and Distribution System (KIDS): Developer Tools
Lock Manager: Developer Tools
Toolkit—M Unit
Menu Manager: Developer Tools
Miscellaneous: Developer Tools
Name Standardization: Developer Tools
National Provider Identifier (NPI): Developer Tools
Operating System (OS) Interface: Developer Tools
Security Keys: Developer Tools
Server Options: Developer Tools
Signon/Security: Developer Tools
Spooling: Developer Tools
TaskMan: Developer Tools
Toolkit: Developer Tools
Unwinder: Developer Tools
User: Developer Tools
XGF Function Library: Developer Tools
XLF Function Library: Developer Tools
Date Functions—XLFDT
Hyperbolic Trigonometric Functions—XLFHYPER
IP Address Functions—XLFIPV
Mathematical Functions—XLFMTH
Measurement Functions—XLFMSMT
String Functions—XLFSTR
Utility Functions—XLFUTL
XML Parser (VistA): Developer Tools
[image: Note]	REF: For general user information and system manager information, see the Kernel Systems Management Guide.

Instructions for installing Kernel are provided in the Kernel Installation Guide. This guide also includes information about software application management (e.g., recommended settings for site parameters and scheduling time frames for tasked options).

Information on recommended system configuration and setting Kernel’s site parameters, as well as lists of files, routines, options, and other components are documented in the Kernel Technical Manual.

Information about managing computer security, which includes a detailed description of techniques that can be used to monitor and audit computing activity, is presented in the Kernel Security Tools Manual.

Introduction

[bookmark: _Ref303842618][bookmark: _Toc458598769]Address Hygiene: Developer Tools
[bookmark: _Toc458598770]Application Programming Interface (API)
Several APIs are available for developers to work with address hygiene. These APIs are described below.
[bookmark: _Toc458598771]CCODE^XIPUTIL(): FIPS Code Data
Reference Type:	Supported
Category:	Address Hygiene
ICR #:	3618
Description:	This API returns all the data associated for a FIPS code.
Format:	CCODE^XIPUTIL(fips,.xipc)
Input Parameters:	fips:	(required) FIPS Code.
Output Parameters:	xipc:	An array containing the following:
XIPC(“COUNTY”)—County associated with this FIPS code
XIPC(“FIPS CODE”)—5-digit FIPS county code
XIPC(“INACTIVE DATE”)—Date the FIPS code was inactivated
XIPC(“LATITUDE”)—Estimated Latitude of the county
XIPC(“LONGITUDE”)—Estimated Longitude of the county
XIPC(“STATE”)—State associated with this FIPS code
XIPC(“STATE POINTER”)—Pointer to the state in the STATE file (#5)
XIPC(“ERROR”)—Errors encountered during lookup
[bookmark: _Toc458598772]Example
[bookmark: _Toc458599840]Figure 1: CCODE^XIPUTIL API—Example
>S ZFIPS=54041

>S ZTMP=“”

>D CCODE^XIPUTIL(ZFIPS,.ZTMP)

>ZW ZTMP,ZFIPS
ZFIPS=54041
ZTMP=
ZTMP(“COUNTY”)=LEWIS
ZTMP(“FIPS CODE”)=54041
ZTMP(“INACTIVE DATE”)=
ZTMP(“LATITUDE”)=39:00N
ZTMP(“LONGITUDE”)=80:28W
ZTMP(“STATE”)=WEST VIRGINIA
ZTMP(“STATE POINTER”)=54

[bookmark: _Toc458598773]$$FIPS^XIPUTIL(): FIPS Code for ZIP Code
Reference Type:	Supported
Category:	Address Hygiene
ICR #:	3618
Description:	This extrinsic function returns the Federal Information Processing Standard (FIPS) Code associated with the Postal Code.
Format:	$$FIPS^XIPUTIL(pcode)
Input Parameters:	pcode:	(required) Postal Code for which the FIPS Code is returned.
Output:	returns:	Returns the FIPS Code.

[bookmark: _Toc458598774]Example
>S X=$$FIPS^XIPUTIL(“26452”)

>W X
54041

[bookmark: _Toc458598775]$$FIPSCHK^XIPUTIL(): Check for FIPS Code
Reference Type:	Supported
Category:	Address Hygiene
ICR #:	3618
Description:	This extrinsic function answers the question as to whether or not a Federal Information Processing Standard (FIPS) code exists. It returns the following:
IEN—Internal Entry Number, if the FIPS code exists.
Zero (0)—FIPS Code does not exist.
Format:	$$FIPSCHK^XIPUTIL(fips)
Input Parameters:	fips:	(required) FIPS Code.
Output:	returns:	Returns:
IEN—Internal Entry Number, if the FIPS code exists.
Zero (0)—FIPS Code does not exist.

[bookmark: _Toc458598776]Examples
Example 1
>S X=$$FIPSCHK^XIPUTIL(“54041”)

>W X
335

Example 2
>S X=$$FIPSCHK^XIPUTIL(“54999”)

>W X
0

[bookmark: _Toc458598777]POSTAL^XIPUTIL(): ZIP Code Information
Reference Type:	Supported
Category:	Address Hygiene
ICR #:	3618
Description:	This API returns United States Postal Service (USPS)-related data/information in an output array (see “Output Parameters”) for the preferred (default) ZIP Code.
Format:	POSTAL^XIPUTIL(pcode,.xip)
Input Parameters:	pcode:	(required) Postal Code for which data is returned.
Output Parameters:	.xip:	An array containing the following:
XIP(“CITY”)—City that the United States Postal Service (USPS) assigned to this PCODE.
XIP(“CITY ABBREVIATION”)—USPS assigned abbreviation.
XIP(“CITY KEY”)—USPS assigned city key.
XIP(“COUNTY”)—County associated with this PCODE.
XIP(“COUNTY POINTER”)—Pointer to the county in the COUNTY CODE file (#5.13).
XIP(“FIPS CODE”)—5-digit FIPS code associated with the county.
XIP(“INACTIVE DATE”)—Date FIPS Code inactive.
XIP(“LATITUDE”)—Latitude.
XIP(“LONGITUDE”)—Longitude.
XIP(“POSTAL CODE”)—Value used to look up postal data.
XIP(“PREFERRED CITY KEY”)—USPS preferred (DEFAULT) city key.
XIP(“STATE”)—State associated with this PCODE.
XIP(“STATE POINTER”)—Pointer to the state in the STATE file (#5).
XIP(“UNIQUE KEY”)—Unique lookup value.
XIP(“ERROR”)—Errors encountered during lookup.
[bookmark: _Toc458598778]Examples
Example 1
[bookmark: _Toc458599841]Figure 2: POSTAL^XIPUTIL API—Example 1
>S ZCODE=99991

>S ZTMP=“”

>D POSTAL^XIPUTIL(ZCODE,.ZTMP)

>ZW ZTMP,ZCODE
ZCODE=99991
ZTMP=
ZTMP(“CITY”)=ANYCITY1
ZTMP(“CITY ABBREVIATION”)=
ZTMP(“CITY KEY”)=Z22802
ZTMP(“COUNTY”)=ANYCOUNTY1
ZTMP(“COUNTY POINTER”)=2910
ZTMP(“FIPS CODE”)=06075
ZTMP(“INACTIVE DATE”)=
ZTMP(“LATITUDE”)=39:00N
ZTMP(“LONGITUDE”)=80:28W
ZTMP(“POSTAL CODE”)=99991
ZTMP(“PREFERRED CITY KEY”)=Z22802
ZTMP(“STATE”)=ANYSTATE1
ZTMP(“STATE POINTER”)=6
ZTMP(“UNIQUE KEY”)=999919Z22802

Example 2
[bookmark: _Toc458599842]Figure 3: POSTAL^XIPUTIL API—Example 2
>S ZCODE=99992

>S ZTMP=“”

>D POSTAL^XIPUTIL(ZCODE,.ZTMP)

>ZW ZTMP,ZCODE
ZCODE=99992
ZTMP=
ZTMP(“CITY”)=ANYCITY2
ZTMP(“CITY ABBREVIATION”)=
ZTMP(“CITY KEY”)=Z22296
ZTMP(“COUNTY”)=ANYCOUNTY2
ZTMP(“COUNTY POINTER”)=2912
ZTMP(“FIPS CODE”)=06001
ZTMP(“INACTIVE DATE”)=
ZTMP(“POSTAL CODE”)=99992
ZTMP(“PREFERRED CITY KEY”)=Z22296
ZTMP(“STATE”)=ANYSTATE2
ZTMP(“STATE POINTER”)=6
ZTMP(“UNIQUE KEY”)=999929Z22296

[bookmark: _Toc458598779]POSTALB^XIPUTIL(): Active ZIP Codes
Reference Type:	Supported
Category:	Address Hygiene
ICR #:	3618
Description:	This API returns all of the active ZIP Codes for a single ZIP Code.
Format:	POSTALB^XIPUTIL(pcode,.xip)
Input Parameters:	pcode:	(required) Postal Code for which the data is being requested.
Output Parameters:	.xip(n):	The number of primary subscripts in an array:
XIP(n,“CITY”)—City that the USPS assigned to this PCODE. An asterisk “*” indicates which city is PREFERRED (DEFAULT).
XIP(n,“CITY KEY”)—USPS’s assigned city key.
XIP(n, “CITY ABBREVIATION”)—USPS’s assigned abbreviation.
XIP(n,“COUNTY”)—County associated with this PCODE.
XIP(n,“COUNTY POINTER”)—Pointer to the county in COUNTY CODE file (#5.13).
XIP(n,“FIPS CODE”)—5-digit FIPS code associated with the county
XIP(n,“POSTAL CODE”)—Value used to look up postal data
XIP(n,“PREFERRED CITY KEY”)—USPS preferred (DEFAULT) city key.
XIP(n,“STATE”)—State associated with this PCODE.
XIP(n,“STATE POINTER”)—Pointer to the state in the STATE file (#5).
XIP(n,“UNIQUE KEY”)—Unique lookup value.
XIP(“ERROR”)—Errors encountered during lookup.
[bookmark: _Toc458598780]Example
[bookmark: _Toc458599843]Figure 4: POSTALB^XIPUTIL API—Example
>S ZCODE=26452

>S ZTMP=“”

>D POSTALB^XIPUTIL(ZCODE,.ZTMP)

>ZW ZTMP,ZCODE
ZCODE=26452
ZTMP=2
ZTMP(1,“CITY”)=WESTON*
ZTMP(1,“CITY ABBREVIATION”)=
ZTMP(1,“CITY KEY”)=X29362
ZTMP(1,“COUNTY”)=LEWIS
ZTMP(1,“COUNTY POINTER”)=335
ZTMP(1,“FIPS CODE”)=54041
ZTMP(1,“POSTAL CODE”)=26452
ZTMP(1,“PREFERRED CITY KEY”)=X29362
ZTMP(1,“STATE”)=WEST VIRGINIA
ZTMP(1,“STATE POINTER”)=54
ZTMP(1,“UNIQUE KEY”)=26452X29362
ZTMP(2,“CITY”)=VALLEY CHEL
ZTMP(2,“CITY ABBREVIATION”)=
ZTMP(2,“CITY KEY”)=X2A444
ZTMP(2,“COUNTY”)=LEWIS
ZTMP(2,“COUNTY POINTER”)=335
ZTMP(2,“FIPS CODE”)=54041
ZTMP(2,“POSTAL CODE”)=26452
ZTMP(2,“PREFERRED CITY KEY”)=X29362
ZTMP(2,“STATE”)=WEST VIRGINIA
ZTMP(2,“STATE POINTER”)=54
ZTMP(2,“UNIQUE KEY”)=26452X2A444

Address Hygiene: Developer Tools

[bookmark: _Ref303842619][bookmark: _Toc458598781][bookmark: _Ref20099511]Alerts: Developer Tools
[bookmark: _Toc458598782]Overview
An application might want to issue an alert to one or more users when certain conditions are met, such as depleted stock levels or abnormal lab test results.
Alerts are usually generated through APIs. The SETUP^XQALERT API creates an alert.
You may want to send alerts from within an application program or as part of a trigger in a VA FileMan file. Developers and system administrators are invited to discover imaginative ways to integrate alerts within local and national programming. Remember, however, not to overwhelm the user with alerts.
Once you have sent an alert, one way you can confirm that the alert was sent is to use the VA FileMan Inquire option, and examine the entry in the ALERT file (#8992) for the users to whom you sent the alert.
[bookmark: _Toc458599844]Figure 5: Alerts—Creating an alert for a user (e.g., #14)
; send alert
S XQA(14)=“”,XQAMSG=“Enter progress note”,XQAOPT=“ZZNOTES”
D SETUP^XQALERT

[bookmark: _Toc200269954][bookmark: _Toc458599845]Figure 6: Alerts—Checking that the alert was sent
>D Q^DI

Select OPTION: INQ <Enter> UIRE TO FILE ENTRIES

OUTPUT FROM WHAT FILE: ALERT
Select ALERT RECIPIENT: `14 <Enter> XUUSER,14
ANOTHER ONE: <Enter>
STANDARD CAPTIONED OUTPUT? YES// <Enter>
Include COMPUTED fields: (N/Y/R/B): NO// <Enter> - No record number (IEN), no Computed Fields

RECIPIENT: XUUSER,15
ALERT DATE/TIME: DEC 01, 1994@08:02:21
ALERT ID: NO-ID;161;2941201.080221
 MESSAGE TEXT: Enter Progress Note NEW ALERT FLAG: NEW
 ACTION FLAG: RUN ROUTINE ENTRY POINT: ZZOPT

[bookmark: _Ref20099592][bookmark: _Toc458598783]Package Identifier vs. Alert Identifier
[bookmark: _Toc458598784]Package Identifier
The software application identifier for an alert is defined as the original value of the XQAID input variable when the alert is created via the SETUP^XQALERT: Send Alerts API. Typically, the software application identifier should begin with the software application namespace.
[bookmark: _Toc458598785]Alert Identifier
The alert identifier consists of three semicolon pieces:
pkgid_”;”_duz_”;”_time
Where pkgid is the original software application identifier, duz is the DUZ of the user who created the alert, and time is the time the alert was created (in VA FileMan format). The alert identifier uniquely identifies a particular alert (it is used as the value of the .01 field in the ALERT TRACKING file [#8992.1]).
The distinction between software application identifier and alert identifier is important. More than one alert can share the same software application identifier, but the alert identifier is unique. Some Alert Handler APIs ask for a software application identifier (and act on multiple alerts), while other APIs ask for an alert identifier (and act on a single alert).
[bookmark: _Toc458598786]Package Identifier Conventions
The Computerized Patient Record System (CPRS) software uses a convention for the format of the software application identifier consisting of three comma-delimited pieces:
namespace_“,”_dfn_“,”_notificationcode
Where namespace is the software application namespace, DFN is the internal entry number of the patient whom the alert concerns in the PATIENT file (#2), and notification code is a code maintained by the CPRS software describing the type of alert.
[image: Note]	NOTE: This three-comma-piece software application identifier is still only the first semicolon piece of an alert identifier.
Several Alert Handler APIs make use of these software application identifier conventions:
PATIENT^XQALERT returns an array of alerts for a particular patient, based on the second comma-piece of alerts’ software application identifiers.
PTPURG^XQALBUTL purges alerts for a particular patient, based on the second comma-piece of alerts’ software application identifiers.
NOTIPURG^XQALBUTL purges alerts with a particular notification code, based on the third comma-piece of alerts’ software application identifiers.
[bookmark: _Toc458598787]Glossary of Terms for Alerts

[bookmark: _Toc458599997]Table 2: Alerts—Related terms and definitions
	[bookmark: COL001_TBL003]Term
	Definition

	ALERTS
	An alert notifies one or more users of a matter requiring immediate attention. Alerts function as brief notices that are distinct from mail messages or triggered bulletins.

Alerts are designed to provide interactive notification of pending computing activities (e.g., the need to reorder supplies or review a patient’s clinical test results). Along with the alert message is an indication that the View Alerts common option should be chosen to take further action.

An alert includes any specifications made by the developer when designing the alert. This minimally includes the alert message and the list of recipients (an information-only alert). It can also include an alert action, software application identifier, alert flag, and alert data. Alerts are stored in the ALERT file (#8992).

	ALERT ACTION
	The computing activity that can be associated with an alert (i.e., an option [XQAOPT input variable] or routine [XQAROU input variable]).

	ALERT DATA
	An optional string that the developer can define when creating the alert. This string is restored in the XQADATA input variable when the alert action is taken.

	ALERT FLAG
	An optional tool currently controlled by the Alert Handler to indicate how the alert should be processed (XQAFLG input variable).

	ALERT HANDLER
	The name of the mechanism by which alerts are stored, presented to the user, processed, and deleted. The Alert Handler is a part of Kernel, in the XQAL namespace.

	ALERT IDENTIFIER
	A three-semicolon piece identifier; composed of the original Package Identifier (described below) as the first piece; the DUZ of the alert creator as the second piece; and the date and time (in VA FileMan format) when the alert was created as the third piece. The Alert Identifier is created by the Alert Handler and uniquely identifies an alert.

	ALERT MESSAGE
	One line of text that is displayed to the user (the XQAMSG input variable).

	PACKAGE IDENTIFIER
	An optional identifier that the developer can use to identify the alert for such purposes as subsequent lookup and deletion (XQAID input variable).

	PURGE INDICATOR
	Checked by the Alert Handler (in the XQAKILL input variable) to determine whether an alert should be deleted, and whether deletion should be for the current user or for all users who might receive the alert.

[bookmark: _Toc458598788]Application Programming Interface (API)
Several APIs are available for developers to work with alerts. These APIs are described below.
[bookmark: _Toc458598789]AHISTORY^XQALBUTL(): Get Alert Tracking File Information
Reference Type:	Supported
Category:	Alerts
ICR #:	2788
Description:	This API returns information from the ALERT TRACKING file (#8992.1) for alerts with the xqaid input parameter as its alert ID. The data is returned descendent from the closed root passed in the root input parameter. Usually, xqaid is known based on alert processing.
Format:	AHISTORY^XQALBUTL(xqaid,root)
Input Parameters:	xqaid:	(required) This is the value of the alert identifier. It is passed to the routine or option that is run when the alert is selected. It can also be obtained from a listing of all of the xqaid values for a specified user and/or patient.
	root:	(required) This parameter is a closed reference to a local or global root. The information associated with the desired entry in the ALERT TRACKING file (#8992.1) is returned descendent from the specified root.
[image: Note]	NOTE: A more user (developer) friendly call would be the ALERTDAT^XQALBUTL(): Get Alert Tracking File Information API, which returns the data in an array with the field numbers and names as the subscripts and the internal and external (if different) values as the value.
Output:	returns:	The data returned reflects the global structure of the ALERT TRACKING file (#8992.1).

[bookmark: _Toc458598790]Example
The following example illustrates the use of this API and the format of the data returned.
[bookmark: _Toc458599846]Figure 7: AHISTORY^XQALBUTL API—Example: Sample use and format of data returned
>S XQAID=“NO-ID;20;2990212.11294719”

>D AHISTORY^XQALBUTL(XQAID,“XXXROOT”)

>ZW XXXROOT

XXXROOT(0)=NO-ID;20;2990212.11294719^2990212.112947^NO-ID^^20
XXXROOT(1)=TEST MESSAGE (ROUTINE) 20^^^XM
XXXROOT(20,0)=^8992.11^20^1
XXXROOT(20,1,0)=20^2990212.112954^2990212.145609^2990212.145621^2990212.145621
XXXROOT(20,“B”,20,1)=

This is in the basic structure of the nodes taken from the global for this entry, which can be seen from a global map view of the ALERT TRACKING file (#8992.1):
[bookmark: _Toc458599847]Figure 8: AHISTORY^XQALBUTL API—Example: Basic structure of the nodes taken from the global for this entry as seen via a global map view of the ALERT TRACKING file (#8992.1)
^XTV(8992.1,D0,0)= (#.01) NAME [1F] ^ (#.02) DATE CREATED [2D]^ (#.03) PKG
 ==>ID [3F] ^ (#.04) PATIENT [4P] ^ (#.05)
GENERATED BY [5P] ^
 ==>(#.06) GENERATED WHILE QUEUED [6S] ^ (#.07)
STATUS [7S] ^
 ==>(#.08) RETENTION DATE [8D] ^

^XTV(8992.1,D0,1)= (#1.01) DISPLAY TEXT [1F] ^ (#1.02) OPTION FOR PROCESSING
 ==>[2F] ^ (#1.03) ROUTINE TAG [3F] ^ (#1.04)
ROUTINE FOR
 ==>PROCESSING [4F] ^

^XTV(8992.1,D0,2)= (#2) DATA FOR PROCESSING [E1,245F] ^

^XTV(8992.1,D0,20,0)=^8992.11PA^^ (#20) RECIPIENT

^XTV(8992.1,D0,20,D1,0)= (#.01) RECIPIENT [1P] ^ (#.02) ALERT FIRST DISPLAYED
 ==>[2D] ^ (#.03) FIRST SELECTED ALERT [3D] ^ (#.04)
 ==>PROCESSED ALERT [4D] ^ (#.05) DELETED ON [5D] ^
 ==>(#.06) AUTO DELETED [6D] ^ (#.07) FORWARDED BY [7P]
 ==>^ (#.08) DATE/TIME FORWARDED [8D] ^ (#.09) DELETED
 ==>BY USER [9P] ^

[image: Note]	NOTE: A more user (developer) friendly API would be the ALERTDAT^XQALBUTL(): Get Alert Tracking File Information API, which returns the data in an array with the field numbers and names as the subscripts and the internal and external (if different) values as the value.
[bookmark: _Ref59951578][bookmark: _Ref357672926][bookmark: _Toc458598791]ALERTDAT^XQALBUTL(): Get Alert Tracking File Information
Reference Type:	Supported
Category:	Alerts
ICR #:	2788
Description:	This API returns information from the ALERT TRACKING file (#8992.1) for alerts with the xqaid input parameter as its alert ID in the array specified by the root input parameter. If root is not specified, then the data is returned in an XQALERTD array. If the specified alert is not present, the root array is returned with a NULL value.
Format:	ALERTDAT^XQALBUTL(xqaid[,root])
Input Parameters:	xqaid:	(required) This is the value of the alert identifier. It is passed to the routine or option that is run when the alert is selected. It can also be obtained from a listing of all of the xqaid values for a specified user and/or patient.
	root:	(optional) This parameter is a closed reference to a local or global root. If root is not specified, then the data is returned in an XQALERTD array.
Output:	returns:	Returns:
ALERT TRACKING File Entry—The information associated with the desired entry in the ALERT TRACKING file (#8992.1) descendent from the specified root.
NULL—If the specified alert is not present, the array root is returned with a NULL value.

[bookmark: _Toc458598792]Example
[bookmark: _Toc458599848]Figure 9: ALERTDAT^XQALBUTL API—Example
>S XQAID=“NO-ID;20;2990212.11294719”

>D ALERTDAT^XQALBUTL(XQAID,$NA(^TMP($J,“A”)))

>D ^%G Global ^TMP($J,“A”
 TMP($J,“A”
^TMP(000056198,“A”,.01) = NO-ID;20;2990212.11294719
^TMP(000056198,“A”,.01,“NAME”) =
^TMP(000056198,“A”,.02) = 2990212.112947^FEB 12, 1999@11:29:47
^TMP(000056198,“A”,.02,“DATE CREATED”) =
^TMP(000056198,“A”,.03) = NO-ID ^TMP(000056198,“A”,.03,“PKG ID”) = ^TMP(000056198,“A”,.04) =
^TMP(000056198,“A”,.04,“PATIENT”) = ^TMP(000056198,“A”,.05) = 20^USER,XXX ^TMP(000056198,“A”,.05,“GENERATED BY”) =
^TMP(000056198,“A”,.06) = ^TMP(000056198,“A”,.06,“GENERATED WHILE QUEUED”) = ^TMP(000056198,“A”,.07) =
^TMP(000056198,“A”,.07,“STATUS”) =
^TMP(000056198,“A”,.08) =
^TMP(000056198,“A”,.08,“RETENTION DATE”) =
^TMP(000056198,“A”,1.01) = TEST MESSAGE (ROUTINE) 20
^TMP(000056198,“A”,1.01,“DISPLAY TEXT”) =
^TMP(000056198,“A”,1.02) = ^TMP(000056198,“A”,1.02,“OPTION FOR PROCESSING”) = ^TMP(000056198,“A”,1.03) =
^TMP(000056198,“A”,1.03,“ROUTINE TAG”) =
^TMP(000056198,“A”,1.04) = XM ^TMP(000056198,“A”,1.04,“ROUTINE FOR PROCESSING”) = ^TMP(000056198,“A”,2) =
^TMP(000056198,“A”,2,“DATA FOR PROCESSING”) =

The data elements at the top level of the ACTIVITY TRACKING file are returned subscripted by the field numbers. This subscript is sufficient to obtain the data. The values are shown as internal^external if the internal and external forms are different. The next subscript after the field number provides the field names if they are desired.
[bookmark: _Ref421017948][bookmark: _Toc458598793]DELSTAT^XQALBUTL():Get Recipient Information and Alert Status
Reference Type:	Supported
Category:	Alerts
ICR #:	3197
Description:	This API obtains information on the recipients of the most recent alert with a specified alert ID and the status of whether the alert has been deleted or not for those recipients.
Format:	DELSTAT^XQALBUTL(xqaidval,.values)
Input Parameters:	xqaidval:	(required) This input parameter is a value that has been used as the xqaid value for generating an alert by a software application. This value identifies the most recent alert generated with this xqaid value and that alert generates the responses in terms of recipients and deletion status of the alert for each of the recipients.
Output Parameters:	.values:	This parameter is passed by reference and is returned as an array. The value of the values array indicates the number of entries in the array. The entries are then ordered in numerical order in the values array. The array contains the DUZ for users along with an indicator of whether or not the alert has been deleted.
[image: Note]	NOTE: The contents of the array are KILLed prior to building the list.
For example:
DUZ^1—If alert deleted.
DUZ^0—If alert not deleted.
[bookmark: _Toc458598794]Example
>D DELSTAT^XQALBUTL(“OR;14765;23”,.VALUE)
The value of VALUE indicates the number of entries in the array. The entries are then ordered in numerical order in the VALUE array:
[bookmark: _Toc458599849]Figure 10: DELSTAT^XQALBUTL API—Example: Sample VALUE array
VALUE = 3
VALUE(1) = “146^0” User 146 - not deleted
VALUE(2) = “297^1” User 297 - deleted
VALUE(3) = “673^0” User 673 - not deleted

[bookmark: _Toc458598795]NOTIPURG^XQALBUTL(): Purge Alerts Based on Code
Reference Type:	Supported
Category:	Alerts
ICR #:	3010
Description:	This API deletes all alerts that have the specified NOTIFNUM notification number as the third comma-piece of the alert’s Package Identifier (the original value of XQAID when the alert was created).
Format:	NOTIPURG^XQALBUTL(notifnum)
Input Parameters:	notifnum:	(required) The notification number for which all alerts should be deleted. Alerts are deleted if the value of this parameter matches the third comma-piece in the alert’s Package Identifier.
Output:	none.

[bookmark: _Toc458598796]$$PENDING^XQALBUTL(): Pending Alerts for a User
Reference Type:	Supported
Category:	Alerts
ICR #:	2788
Description:	This extrinsic function returns whether or not the user specified has the alert indicated by the xqaid input parameter as pending. It returns either of the following:
1—YES, alert is pending.
0—NO, alert is not pending.
Format:	$$PENDING^XQALBUTL(xqauser,xqaid)
Input Parameters:	xqauser:	(required) This is the Internal Entry Number (IEN, DUZ value) in the NEW PERSON file (#200) for the desired user.
	xqaid:	(required) This is the value of the alert identifier. It is passed to the routine or option that is run when the alert is selected. It can also be obtained from a listing of all of the xqaid values for a specified user and/or patient.
Output:	returns:	Returns:
1—YES, alert is pending.
0—NO, alert is not pending.

[bookmark: _Toc458598797]Examples
Example 1
The following is an example of an alert not pending:
>S XQAID=“NO-ID;20;2990212.11294719”

>W $$PENDING^XQALBUTL(20,XQAID)
0

Example 2
The following is an example of an alert pending:
>S XQAID=“NO-ID;20;2990212.15540723”

>W $$PENDING^XQALBUTL(20,XQAID)
1

[bookmark: _Toc458598798]$$PKGPEND^XQALBUTL(): Pending Alerts for a User in Specified Software
Reference Type:	Supported
Category:	Alerts
ICR #:	2788
Description:	This extrinsic function returns whether or not the user specified has an alert with XQAID containing the first “;”-piece (software/package identifier) indicated by the xqkg input parameter pending. It returns either of the following:
1—YES, indicates one or more alerts pending for the specified user containing the software/package identifier.
0—NO, alerts not pending.
Format:	$$PENDING^XQALBUTL(xqauser,xqkg)
Input Parameters:	xqauser:	(required) This is the Internal Entry Number (IEN, DUZ value) in the NEW PERSON file (#200) for the desired user.
	xqkg: 	(required) This is the software/package identifier portion of the alert identifier (XQAID). It is a textual identifier for the software that created the alert and is the first “;”-piece of XQAID. It can be used in this context to determine whether the user specified by xqauser has any alerts pending containing the specified software identifier. The software identifier used can be a complete software identifier (e.g., XU-TSK) or more general (e.g., XU) to find users with any XU software alerts.
Output:	returns:	Returns:
1—YES, indicates one or more alerts pending for the specified user containing the software/package identifier string in the package part of XQAID.
0—NO, alerts not pending.

[bookmark: _Toc458598799]Examples
Example 1
The following is an example of an alert not pending:
>S XQKG=“XU”

>W $$PKGPEND^XQALBUTL(20,XQKG)
0

Example 2
The following is an example of an alert pending (one or more):
>S XQKG=“XU”

>W $$PKGPEND^XQALBUTL(20,XQKG)
1

[bookmark: _Toc458598800]PTPURG^XQALBUTL(): Purge Alerts Based on Patient
Reference Type:	Supported
Category:	Alerts
ICR #:	3010
Description:	This API deletes all alerts that have the specified patient internal entry number (DFN) as the second comma-piece of the alert’s Package Identifier (the original value of XQAID when the alert was created).
Format:	PTPURG^XQALBUTL(dfn)
Input Parameters:	dfn:	(required) Internal entry number (DFN in the PATIENT file [#2]) for which alerts are deleted.
Output:	none.

[bookmark: _Toc458598801]RECIPURG^XQALBUTL(): Purge User Alerts
Reference Type:	Supported
Category:	Alerts
ICR #:	3010
Description:	This API deletes all alerts that have been sent to the user in the NEW PERSON file (#200), as indicated by the duz parameter.
Format:	RECIPURG^XQALBUTL(duz)
Input Parameters:	duz:	(required) Internal Entry Number (IEN in the NEW PERSON file [#200]) of the user who received alerts is deleted.
Output:	none.

[bookmark: _Toc458598802]USERDATA^XQALBUTL(): Get User Information for an Alert
Reference Type:	Supported
Category:	Alerts
ICR #:	2788
Description:	This API returns recipients of the alert with the xqaid input parameter as its alert ID from the ALERT TRACKING file (#8992.1) in the array specified by the root input parameter. If root is not specified, then the data is returned in the XQALUSER array. If the specified alert is not present, the root array is returned with a NULL value.
Format:	USERDATA^XQALBUTL(xqaid,xqauser,root)
Input Parameters:	xqaid:	(required) This is the value of the alert identifier. It is passed to the routine or option that is run when the alert is selected. It can also be obtained from a listing of all of the xqaid values for a specified user and/or patient.
	xqauser:	(required) This is the Internal Entry Number (IEN, DUZ value) in the NEW PERSON file (#200) for the desired user.
	root:	(optional) This parameter is a closed reference to a local or global root. If root is not specified, then the data is returned in the XQALUSER array.
Output:	returns:	Returns:
ALERT TRACKING File Entry—The information associated with the desired entry in the ALERT TRACKING file (#8992.1) descendent from the specified root.
NULL—If the specified alert is not present, the array root is returned with a NULL value.

[bookmark: _Toc458598803]Example
[bookmark: _Toc458599850]Figure 11: USERDATA^XQALBUTL API—Example
>D USERDATA^XQALBUTL(XQAID,20,”XXX”)

>ZW XXX

XXX(.01)=20^USER,XXX XXX(.01,“RECIPIENT”)=
XXX(.02)=2990212.112954^FEB 12, 1999@11:29:54 XXX(.02,“ALERT FIRST DISPLAYED”)=
XXX(.03)=2990212.145609^FEB 12, 1999@14:56:09 XXX(.03,“FIRST SELECTED ALERT”)=
XXX(.04)=2990212.145621^FEB 12, 1999@14:56:21 XXX(.04,“PROCESSED ALERT”)=
XXX(.05)=2990212.145621^FEB 12, 1999@14:56:21 XXX(.05,“DELETED ON”)=
XXX(.06)= XXX(.06,“AUTODELETED”)=
XXX(.07)= XXX(.07,“FORWARDED BY”)=
XXX(.08)= XXX(.08,“DATE/TIME FORWARDED”)=
XXX(.09)= XXX(.09,“DELETED BY USER”)=

[bookmark: _Toc458598804]USERLIST^XQALBUTL(): Get Recipient Information for an Alert
Reference Type:	Supported
Category:	Alerts
ICR #:	2788
Description:	This API returns recipients of the alert with the xqaid input parameter as its alert ID from the ALERT TRACKING file (#8992.1) in the array specified by the root input parameter. If root is not specified, then the data is returned in the XQALUSRS array. If the specified alert is not present, the root array is returned with a NULL value.
Format:	USERLIST^XQALBUTL(xqaid,root)
Input Parameters:	xqaid:	(required) This is the value of the alert identifier. It is passed to the routine or option that is run when the alert is selected. It can also be obtained from a listing of all of the xqaid values for a specified user and/or patient.
	root:	(optional) This parameter is a closed reference to a local or global root. If root is not specified, then the data is returned in the XQALUSRS array.
Output:	returns:	Returns:
ALERT TRACKING File Entry—The information associated with the desired entry in the ALERT TRACKING file (#8992.1) descendent from the specified root.
NULL—If the specified alert is not present, the array root is returned with a NULL value.

[bookmark: _Toc458598805]Example
>D USERLIST^XQALBUTL(XQAID)

>ZW XQALUSRS XQALUSRS(1)=20^USER,XXX

[bookmark: _Toc458598806]ACTION^XQALERT(): Process an Alert
[bookmark: _Ref181006760]Reference Type:	Supported
Category:	Alerts
ICR #:	10081
Description:	This API processes an alert for a user, if that user is the current user. Processing of the alert happens exactly as if the user had chosen to process the alert from the View Alerts menu.
Format:	ACTION^XQALERT(alertid)
Input Parameters:	alertid:	(required) Alert Identifier of the alert to process (same as ALERT ID field in ALERT file [#8992]). This contains three semicolon-delimited pieces, the first being the original software application identifier, the second being the DUZ of the alert creator, and the third being the VA FileMan date and time the alert was created.
Output:	none.

[bookmark: _Toc458598807]DELETE^XQALERT: Clear Obsolete Alerts
[bookmark: _Ref181006777][bookmark: _Ref262723953]Reference Type:	Supported
Category:	Alerts
ICR #:	10081
Description:	This API deletes (clears) a single alert, for the current user (XQAKILL=1) or all recipients (XQAKILL=0 or XQAKILL undefined). The current user (as identified by the value of DUZ) does not need to be a recipient of an alert; however, in that case, only a value of zero (0 or undefined) for XQAKILL makes sense.
DELETE^XQALERT, unlike DELETEA^XQALERT, deletes only a single alert whose alert identifier matches the complete Alert Identifier.
[image: Note]	REF: For more information on alert identifiers, see the “Package Identifier vs. Alert Identifier” section in this section.
Format:	DELETE^XQALERT
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	XQAID:	(required) Alert Identifier of the alert to delete. It must be a complete Alert Identifier, containing all three semicolon pieces:
The first semicolon piece (Package Identifier) must be in the same form as the alert creator defined it.
The second piece being the DUZ of the user who created the alert.
The third piece being the time the alert was created.
[image: Note]	NOTE: The second and third pieces are defined by the Alert Handler.
	XQAKILL:	(optional) XQAKILL determines how the alert is deleted. If XQAKILL is undefined or zero (0), the Alert Handler deletes the alert for all recipients. If XQAKILL is set to 1, Alert Handler only purges the alert for the current user, as identified by DUZ (using a value of 1 only makes sense if the current user is a recipient of the alert, however).
If the software application identifier portion of the alert identifier is “NO-ID”, however, the alert is treated as if XQAKILL were set to 1 (i.e., the alert is deleted only from one user), regardless of how it is actually set.
Output:	none.

[bookmark: _Toc458598808]DELETEA^XQALERT: Clear Obsolete Alerts
Reference Type:	Supported
Category:	Alerts
ICR #:	10081
Description:	This API deletes (clears) all alerts with the same software application identifier, for the current user (XQAKILL=1) or all recipients (XQAKILL=0 or XQAKILL undefined). The current user (as identified by the value of DUZ) does not need to be a recipient of an alert; however, in that case, only a value of zero (0 or undefined) for XQAKILL makes sense.
One example of the use of DELETEA^XQALERT is when a troublesome condition has been resolved. You can use this API to delete any unprocessed alerts associated with the condition. It deletes all alerts whose software application identifiers match the software application identifier you pass in the xqaid input parameter (multiple alerts can potentially share the same software application identifier).
[image: Note]	REF: For more information on software application identifiers, see the “Package Identifier vs. Alert Identifier” section in this section.
Format:	DELETEA^XQALERT
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	XQAID:	(required) All alerts whose software application identifier matches the value of this input parameter is deleted, for the alert recipients designated by the xqakill input parameter.
The form of XQAID can be exactly as initially set when creating the alert. Alternatively, it can contain the two additional semicolon pieces added by the Alert Handler (the full alert identifier). The two additional semicolon pieces are ignored, however; this API only requires the original software application identifier.
If the alert identifier you specify is “NO-ID”, however, (the generic software application ID assigned to alerts with no original software application identifier), this API does not delete matching alerts.
	XQAKILL:	(optional) XQAKILL determines how the alert is deleted. If XQAKILL is undefined or zero (0), the Alert Handler deletes matching alerts for all recipients. If XQAKILL is set to 1, Alert Handler deletes matching alerts for the current user, as identified by DUZ (using a value of 1 only makes sense if the current user is also a recipient of the alert, however).
Output:	none.

[bookmark: _Toc458598809]GETACT^XQALERT(): Return Alert Variables
Reference Type:	Supported
Category:	Alerts
ICR #:	10081
Description:	This API returns to the calling routine the required variables to act on a specific alert.
Format:	GETACT^XQALERT(alertid)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	alertid:	(required) This is the alert identifier in the ALERT TRACKING file (#8992.1).
Output Variables:	XQAID:	This is the full alert identifier.
	XQADATA:	The XQADATA variable stores any software application-specific data string that was passed at the time the alert was generated.
	XQAOPT:	Indicates a non-menu type option on the user’s primary, secondary or common menu to be run if not null.
	XQAROU:	Indicates the routine or tag^routine to run when the alert is processed. It can have three values:
Null—A null value indicates no routine to be used (XQAOPT contains option name to be run).
^<space>—A value of ^<space> indicates that the alert is information only (no routine or option action involved).
^ROUTINE or TAG^ROUTINE—The name of the routine as ^ROUTINE or TAG^ROUTINE.

[bookmark: _Toc458598810]PATIENT^XQALERT(): Get Alerts for a Patient
[bookmark: _Ref59331621]Reference Type:	Supported
Category:	Alerts
ICR #:	10081
Description:	This API allows you to return an array of all alerts for a particular patient that are either:
Open.
Within a given time range (both open and closed).
The association of an alert with a patient is based on the conventions used by the CPRS software application for the Package Identifier (original value of XQAID input variable when creating the alert), where the second comma-piece is a pointer to the PATIENT file (#2).
[image: Note]	REF: For information on CPRS conventions for the format of the Package Identifier, see the “Package Identifier vs. Alert Identifier” section in this section.
Format:	PATIENT^XQALERT(root,dfn[,startdate][,enddate])
Input Parameters:	root:	(required) Fully resolved global or local reference in which to return a list of matching alerts.
	dfn:	(required) Internal entry number (DFN in the PATIENT file [#2]) of the patient for whom alerts are returned.
	startdate:	(optional) Starting date to check for alerts. If you pass this parameter, all alerts are returned, open or closed, from the startdate until the enddate (if no enddate is specified, all alerts beyond the startdate are returned). If you omit this parameter (and enddate), only currently open alerts are returned.
	enddate:	(optional) Ending date to check for alerts. If you omit this parameter, but pass a startdate, all alerts are returned beyond the startdate.
Output Parameters:	root:	All alerts matching the request are returned in the input parameter you specified in root, in the following format:
root=number of matching alerts
root(1)= “I “_messagetext_”^”_alertid
root(2)=...
Where the first three characters are either:
 “I “: if the alert is informational
 “ “: if the alert runs a routine
In addition, where alertid (Alert Identifier) contains three semicolon-delimited pieces:
1. The original software application identifier (value of XQAID).
The DUZ of the alert creator.
The VA FileMan date and time the alert was created.
[bookmark: _Toc458598811]SETUP^XQALERT: Send Alerts
Reference Type:	Supported
Category:	Alerts
ICR #:	10081
Description:	This API sends alerts to users; however, the preferred API to use is $$SETUP1^XQALERT: Send Alerts.
To send an information-only alert, make sure that XQAOPT and XQAROU input variables are not defined. To send an alert that takes an action, specify either the XQAOPT (to run an option) or XQAROU (to run a routine) input variables.
Format:	SETUP^XQALERT
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	XQA:	(required) Array defining at least one user to receive the alert. Subscript the array with users’ DUZ numbers to send to individual users; subscript the array with mail group names to send to users in mail groups:
>S XQA(USERDUZ)=“”
>S XQA(“G.MAILGROUP”)=“”
	XQAARCH:	(optional) Number of days that alert tracking information for this alert should be retained in the ALERT TRACKING file (#8992.1). Default time period is 30 days. Users can specify a different number of days using this input variable. To retain information forever, a value of 100000 is recommended (good for proximately 220 years).
	XQACNDEL:	(optional) Setting a value in the XQACNDEL variable prior to calling this API causes the CAN DELETE WITHOUT PROCESSING field (#.1) in the ALERT file (#8992) to be set. A value in this field indicates that the alert can be deleted by the user without having processed it.
	XQADATA:	(optional) Use this to store a software application-specific data string, in any format. It is restored in the XQADATA input variable when the user processes the alert, and is therefore, available to the routine or option that processes the alert.
You can use any delimiter in the input variable, including the caret. You can use it to make data such as patient number, lab accession, or cost center available to your software application-specific routine or option without needing to query the user when they process the alert. It is up to your routine or option to know what format is used for data in this string.
	XQAFLG:	(optional) Alert flag to regulate processing (currently not supported). The values are:
D—To delete an information-only alert after it has been processed (the default for information-only alerts).
R—To run the alert action immediately upon invocation (the default for alerts that have associated alert actions).
This input variable currently has no effect, however.
	XQAGUID:	(optional) As of Kernel patch XU*8.0*207, the GUID FOR GUI adds an interface GUID (a 32-character string containing hexadecimal digits in a specific format within curly braces) to permit a program on the client to process the alert. The presence of a GUID in the variable indicates that the alert can be processed within a GUI environment, and opens the correct application to process the alert within the GUI environment.
[image: Note]	NOTE: This functionality has never been implemented by CPRS or other GUI applications.
	XQAID:	(optional) Package identifier for the alert, typically a software application namespace followed by a short character string. Must not contain carets (“^”) or semicolons (“;”). If you do not set XQAID, you are not able to identify the alert in the future, either during alert processing, to delete the alert, or to perform other actions with the alert.
[image: Note]	REF: For information on CPRS conventions for the format of the Package Identifier, see the “Package Identifier vs. Alert Identifier” section.
	XQAMSG:	(required) Contains the text of the alert. 80 characters can be displayed in the original alert. 70 characters can be displayed in the View Alert listing. The string cannot contain a caret (“^”).
	XQAOPT:	(optional) Name of a non-menu type option on the user’s primary, secondary or common menu. The phantom jump navigates to the destination option, checking pathway restrictions in so doing. An error results if the specified option is not in the user’s menu pathway.
	XQAROU:	(optional) Indicates a routine or tag^routine to run when the alert is processed. If both XQAOPT and XQAROU are defined, XQAOPT is used and XQAROU is ignored.
	XQASUPV:	(optional) Number of days to wait before Delete Old (>14d) Alerts option forwards alert to recipient’s supervisor based on Service/Section, if alert is unprocessed by recipient. Can be a number from 1 to 30.
	XQASURO:	(optional) Number of days to wait before Delete Old (>14d) Alerts option forwards alert to recipient’s MailMan surrogates (if any), if alert is unprocessed by recipient. Can be a number from 1 to 30.
	XQATEXT:	(optional) As of Kernel patch XU*8.0*207, this variable permits informational text of any length to be passed with an alert. When the alert is selected, the contents of this variable is displayed in a ScreenMan form within the roll and scroll environment.
[image: Note]	NOTE: It was also intended to be displayed within a text display box within the GUI environment. However, CPRS has never implemented this functionality, so it can only be viewed in the roll and scroll environment.
Output:	none.

[bookmark: _Toc458598812]Details—When the Alert is Processed
Once the alert is created, the user is then able to receive and process the alert from their View Alerts listing. When this occurs, Alert Handler executes the following four steps for the alert:
1. Alert Handler sets up the following input variables:
XQADATA—If originally set when alert was created.
XQAID—If originally set when alert was created.
XQAKILL—The purge indicator. It is always set to 1 by the Alert Handler.
If you associated a software application identifier, XQAID, with the alert, it is restored along with two additional semicolon pieces:
Current user number.
Current date/time.
With the two additional semicolon pieces, the software application identifier becomes the alert identifier. If you did not define XQAID when creating the alert, Alert Handler sets XQAID input variable to “NO-ID” followed by the two additional semicolon pieces.
2. Alert Handler runs the routine or any option specified in the XQAOPT or XQAROU input variables.
3. You can refer to the three input variables listed above (i.e., XQADATA, XQAID, and XQAKILL) in the option or routine that processes the alert.
4. Once the routine or option finishes, Alert Handler deletes the alert, under the following conditions:
If XQAKILL remains at the value of 1 as it was set in Step #1 above, the alert is deleted for the current user only.
To prevent the alert from being deleted, KILL XQAKILL during Step #2 above. You may not want the alert to be deleted if processing, such as entering an electronic signature, was not completed.
To delete the alert for all recipients of the alert, not just the current user, set XQAKILL to zero (0) during Step #2 above. When XQAKILL is set to 0, Alert Handler searches for any alerts with a matching Alert Identifier, all three semicolon pieces:
Original Package Identifier.
Alert sender.
Date/Time the alert was sent.
It purges them so that other users need not be notified of an obsolete alert.
[image: Note]	NOTE: To delete an alert for all recipients, you must define XQAID with appropriate specificity when creating the alert.
5. Finally, the Alert Handler cleans up by KILLing XQADATA, XQAID, and XQAKILL. Alert Handler returns the user to the View Alerts listing if pending alerts remain. Otherwise, Alert Handler returns the user to their last menu prompt.
[bookmark: _Toc458598813]Example
[bookmark: _Toc200269956][bookmark: _Toc458599851]Figure 12: SETUP^XQALERT API—Call to send an alert sample
;send an alert
;assume DFN is for patient XUPATIENT,ONE
N XQA,XQAARCH,XQADATA,XQAFLG,XQAGUID,XQAID,XQAMSG,XQAOPT,XQAROU,XQASUPV,XQASURO,
XQATEXT,XQALERR
S XQA(161)=“” ; recipient is user `161
S XQAMSG=“Elevated CEA for “_$$GET1^DIQ(2,DFN_”,“,.01)_” (“_$E($$GET1^DIQ(2,DFN_”,“,9),6,9)_”) Schedule follow-up exam in Surgical Clinic.”
D SETUP^XQALERT
Q

[bookmark: _Toc200269957][bookmark: _Toc458599852]Figure 13: SETUP^XQALERT API—Resulting alert, from View Alerts option
Select Systems Manager Menu Option: “VA

 1.I Elevated CEA for XUPATIENT,ONE (5345). Schedule follow-up exam in Surgical Clinic.
 Select from 1 to 1
 or enter ?, A, I, P, M, R, or ^ to exit:

[bookmark: _Ref103053854][bookmark: _Ref59331959][bookmark: _Toc458598814]$$SETUP1^XQALERT: Send Alerts
Reference Type:	Supported
Category:	Alerts
ICR #:	10081
Description:	This API sends alerts to users. This is the preferred API rather than SETUP^XQALERT: Send Alerts.
To send an information-only alert, make sure that XQAOPT and XQAROU input variables are not defined. To send an alert that takes an action, specify either the XQAOPT (to run an option) or XQAROU (to run a routine) input variables.
Format:	$$SETUP1^XQALERT
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	XQA:	(required) Array defining at least one user to receive the alert. Subscript the array with users’ DUZ numbers to send to individual users; subscript the array with mail group names to send to users in mail groups:
>S XQA(USERDUZ)=“”
>S XQA(“G.MAILGROUP”)=“”
	XQAARCH:	(optional) Number of days that alert tracking information for this alert should be retained in the ALERT TRACKING file (#8992.1). Default time period is 30 days. Users can specify a different number of days using this input variable.
[image: Note]	NOTE: Critical patient data, as part of medical records, should be retained for at least 65 years, which is 23,725 days. To retain information forever, a value of 100000 is recommended (good for about 273+ years). Sites may not have sufficient disk storage space to accommodate this need, however.
	XQACNDEL:	(optional) Setting a value in the XQACNDEL variable prior to calling this API causes the CAN DELETE WITHOUT PROCESSING field (#.1) in the ALERT file (#8992) to be set. A value in this field indicates that the alert can be deleted by the user without having processed it.
	XQADATA:	(optional) Use this to store a software application-specific data string, in any format. It is restored in the XQADATA input variable when the user processes the alert and is therefore available to the routine or option that processes the alert.
You can use any delimiter in the input variable, including the caret. You can use it to make data such as patient number, lab accession, or cost center available to your software application-specific routine or option without needing to query the user when they process the alert. It is up to your routine or option to know what format is used for data in this string.
	XQAFLG:	(optional) Alert flag to regulate processing (currently not supported). The values are:
D—To delete an information-only alert after it has been processed (the default for information-only alerts).
R—To run the alert action immediately upon invocation (the default for alerts that have associated alert actions).
This input variable currently has no effect, however.
	XQAGUID:	(optional) As of Kernel patch XU*8.0*207, the GUID FOR GUI adds an interface GUID (a 32 character string containing hexadecimal digits in a specific format within curly braces) to permit a program on the client to process the alert. The presence of a GUID in the variable indicates that the alert can be processed within a GUI environment, and opens the correct application to process the alert within the GUI environment.
[image: Note]	NOTE: Currently, this functionality has not been implemented by CPRS or other GUI applications.
	XQAID:	(optional) Package identifier for the alert, typically a software application namespace followed by a short character string. Must not contain carets (“^”) or semicolons (“;”). If you do not set XQAID, you are not able to identify the alert in the future, either during alert processing, to delete the alert, or to perform other actions with the alert.
[image: Note]	REF: For information on CPRS conventions for the format of the Package Identifier, see the “Package Identifier vs. Alert Identifier” section.
	XQAMSG:	(required) Contains the text of the alert. 80 characters can be displayed in the original alert. 70 characters can be displayed in the View Alert listing. The string cannot contain a caret (“^”).
	XQAOPT:	(optional) Name of a non-menu type option on the user’s primary, secondary or common menu. The phantom jump navigates to the destination option, checking pathway restrictions in so doing. An error results if the specified option is not in the user’s menu pathway.
	XQAREVUE:	(optional) This variable sets the DAYS FOR BACKUP REVIEWER field (#.15) in the ALERTS file (#8992). It must be an integer from 1 to 15.
	XQAROU:	(optional) Indicates a routine or tag^routine to run when the alert is processed. If both XQAOPT and XQAROU are defined, XQAOPT is used and XQAROU is ignored.
	XQASUPV:	(optional) Supervisor forwarding. Number of days to wait before Delete Old (>14d) Alerts option forwards alert to recipient’s supervisor, if unprocessed by recipient. Can be a number from 1 to 30. Supervisor is determined from the recipient’s NEW PERSON file (#200) entry pointer to the SERVICE/SECTION file (#49), and then the entry (if any) in the pointed-to Service/Section’s CHIEF field.
	XQASURO:	(optional) Number of days to wait before Delete Old (>14d) Alerts option forwards alert to recipient’s MailMan surrogates (if any), if alert is unprocessed by recipient. Can be a number from 1 to 30.
	XQATEXT:	(optional) As of Kernel patch XU*8.0*207, this variable permits informational text of any length to be passed with an alert. When the alert is selected, the contents of this variable are displayed in a ScreenMan form within the roll and scroll environment.
[image: Note]	NOTE: It was also intended to be displayed within a text display box within the GUI environment. Currently, CPRS has not implemented this functionality, so it can only be viewed in the roll and scroll environment.
Output:	returns:	Returns:
1—The alert was sent successfully.
0—The alert was not sent successfully, in which case the XQALERR variable contains a text string indicating the reason that the alert was not sent.
Output Variables:	XQALERR:	Returns:
NULL—It the alert was sent successfully, this variable is null.
Text String—If the alert was not sent successfully, this variable contains a text string that indicates the reason that the alert was not sent.

[bookmark: _Toc458598815]Details—When the Alert is Processed
Once the alert is created, the user is then able to receive and process the alert from their View Alerts listing. When this occurs, Alert Handler executes the following four steps for the alert:
1. Alert Handler sets up the following input variables:
XQADATA—If originally set when alert was created.
XQAID—If originally set when alert was created.
XQAKILL—The purge indicator. It is always set to 1 by the Alert Handler.
If you associated a software application identifier, XQAID, with the alert, it is restored along with two additional semicolon pieces:
Current user number.
Current date/time.
With the two additional semicolon pieces, the software application identifier becomes the alert identifier. If you did not define XQAID when creating the alert, Alert Handler sets XQAID input variable to “NO-ID” followed by the two additional semicolon pieces.
1. Alert Handler runs the routine or any option specified in the XQAOPT or XQAROU input variables.
You can refer to the three input variables listed above (i.e., XQADATA, XQAID, and XQAKILL) in the option or routine that processes the alert.
1. Once the routine or option finishes, Alert Handler deletes the alert, under the following conditions:
If XQAKILL remains at the value of 1 as it was set in Step 1, the alert is deleted for the current user only.
To prevent the alert from being deleted, KILL XQAKILL during Step 2. You may not want the alert to be deleted if processing, such as entering an electronic signature, was not completed.
To delete the alert for all recipients of the alert, not just the current user, set XQAKILL to zero (0) during Step #2 above. When XQAKILL is set to 0, Alert Handler searches for any alerts with a matching Alert Identifier, all three semicolon pieces:
Original Package Identifier.
Alert sender.
Date/Time the alert was sent.
It purges them so that other users need not be notified of an obsolete alert.
[image: Note]	NOTE: To delete an alert for all recipients, you must define XQAID with appropriate specificity when creating the alert.
1. Finally, the Alert Handler cleans up by KILLing XQADATA, XQAID, and XQAKILL. Alert Handler returns the user to the View Alerts listing if pending alerts remain. Otherwise, Alert Handler returns the user to their last menu prompt.
[bookmark: _Toc458598816]Example
[bookmark: _Toc200269958][bookmark: _Toc458599853]Figure 14: $$SETUP1^XQALERT API—Call to send an alert sample
;send an alert
;assume DFN is for patient XUPATIENT,ONE
N XQA,XQAARCH,XQADATA,XQAFLG,XQAGUID,XQAID,XQAMSG,XQAOPT,XQAROU,XQASUPV,XQASURO,XQATEXT,XQALERR
S XQA(161)=“” ; recipient is user `161
S XQAMSG=“Elevated CEA for ”_$$GET1^DIQ(2,DFN_“,”,.01)_“ (”_$E($$GET1^DIQ(2,DFN_“,”,9),6,9)_“) Schedule follow-up exam in Surgical Clinic.”
S VAR=$$SETUP1^XQALERT I ‘XQALERR W !,“ERROR IN ALERT: ”,XQALERR
Q

[bookmark: _Toc200269959][bookmark: _Toc458599854]Figure 15: $$SETUP1^XQALERT API—Resulting alert, from View Alerts option
Select Systems Manager Menu Option: “VA

 1.I Elevated CEA for XUPATIENT,ONE (5345). Schedule follow-up exam in Surgical Clinic.
 Select from 1 to 1
 or enter ?, A, I, P, M, R, or ^ to exit:

[bookmark: _Toc458598817]USER^XQALERT(): Get Alerts for a User
Reference Type:	Supported
Category:	Alerts
ICR #:	10081
Description:	This API returns a list of alerts for a given user. You can return a list of all alerts for a particular user that are either:
Open.
Within a given time range (open and closed).
Format:	USER^XQALERT(root[,duz][,startdate][,enddate])
Input Parameters:	root:	(required) Fully resolved global or local reference in which to return a list of matching alerts.
	duz:	(optional) DUZ number of the user for whom the alert list is returned. If you do not pass a number, it uses the current user’s DUZ.
	startdate:	(optional) Starting date to check for alerts. If you pass this parameter, all alerts are returned, open or closed, from the startdate until the enddate (if no enddate is specified, all alerts beyond the startdate are returned). If you omit the startdate parameter (and enddate), only currently open alerts are returned.
	enddate:	(optional) Ending date to check for alerts. If you omit this parameter, but pass a startdate, all alerts are returned beyond the startdate.
Output Parameters:	root:	All alerts matching the request are returned in the input parameter you specified in root, in the following format:
root=number of matching alerts
root(1)= “I “_messagetext_”^”_alertid
root(2)=...
Where the first three characters are either:
 “I “: if the alert is informational
 “ “: if the alert runs a routine
In addition, where alertid (Alert Identifier) contains three semicolon-delimited pieces:
1. The original software application identifier (value of XQAID).
The DUZ of the alert creator.
The VA FileMan date and time the alert was created.
[bookmark: _Toc458598818]Example
[bookmark: _Toc458599855]Figure 16: USER^XQALERT API—Example
>D USER^XQALERT(“ZZALRT”,ZZDUZ,2900101)

>ZW ZZALRT
ZZALRT=1
ZZLART(1)=“I Test Message^NO-ID;92;2940729.10312”

[bookmark: _Ref180984262][bookmark: _Ref241384192][bookmark: _Toc458598819]FORWARD^XQALFWD(): Forward Alerts
Reference Type:	Supported
Category:	Alerts
ICR #:	3009
Description:	This API can be used to forward alerts (in most cases, for the current user only). It is a silent (no screen input or output) API, and so can be used for windowed applications.
Format:	FORWARD^XQALFWD([.]alerts,[.]users,type[,comment])
[bookmark: _Toc103414180]Input Parameters:	[.]alerts:	(required) Array of alerts to be forwarded, each identified by its full alert identifier (the value of the ALERT ID field in the ALERT DATE/TIME multiple of the current user’s entry in the ALERT file [#8992]). Use the $$SETUP1^XQALERT: Send Alerts API to obtain alert identifiers for a user’s current open alerts.
If only a single alert is to be forwarded, only the top node must be set (set it to the alert identifier of the alert to forward, and pass by value). If there are multiple alerts to forward, the value of each entry in the array should be one of the desired alert identifier. For example:
A6AALRT(1)=“NO-ID;92;2941215.100432”
A6AALRT(2)=“NO-ID;161;2941220.111907”
A6AALRT(3)=“NO-ID;161;2941220.132401”
If using an array, the array must be passed by reference in the parameter list.
	[.]users:	(required) Users to forward alert to. For forwarding as an alert or as a mail message (when the type parameter is A or M), the input parameter can specify one or more users, and/or mail groups. For users, specify by IEN (in the NEW PERSON file [#200]). You do not need to precede the user’s IEN with an accent grave (`). For mail groups, specify in format G.MAILGROUP.
If there is only a single user or mail group, just set the top node of the array to that value, and pass it by value. If there are multiple values to be passed, pass them as the values of numerically subscripted array nodes (and pass the array by reference). For example:
A6AUSER(1)=“G.MAS CLERKS”
A6AUSER(2)=“G.MAS OVERNIGHT”
For forwarding to a printer (when the type parameter is P), there should be only a single value specifying the desired entry in the DEVICE file (#3.5). You can specify the device either by name or by Internal Entry Number (IEN). If specifying by IEN, precede the IEN with an accent grave (e.g., `202).
	type:	(required) Indicates the method of forwarding desired. The options are the single characters:
 “A”—Forward as an Alert.
“M”—Forward as a Mail Message.
“P”—Print a copy of the alert.
If the value passed is not A, M, or P, then no action is taken.
	comment:	(optional) A character string to use as a comment to accompany the alert when it is forwarded.
Output:	none.

[bookmark: _Toc458598820]Example
[bookmark: _Toc200269960][bookmark: _Toc458599856]Figure 17: FORWARD^XQALFWD API—Example
; get open alerts for current user
K A6AALRT D USER^XQALERT(“A6AALRT”)
;
I +A6AALRT D ; if any current alerts...
.; loop through A6AALRT array, parse alert id for each open alert
.K A6AALRT1 S A6ASUB=“”,A6AI=0
.F S A6ASUB=$O(A6AALRT(A6ASUB)) Q:’$L(A6ASUB) D
..S A6AI=A6AI+1,A6AALRT1(A6AI)=$P(A6AALRT(A6ASUB),“^”,2)
.;
.;forward open alerts of current user to MAS CLERKS mail group
.K A6AUSER S A6AUSER=“G.MAS CLERKS”
.D FORWARD^XQALFWD(.A6AALRT1,A6AUSER,“A”,“Forwarded Alert”)
Q

[bookmark: _Toc458598821]$$CURRSURO^XQALSURO(): Get Current Surrogate for Alerts
Reference Type:	Supported
Category:	Alerts
ICR #:	2790
Description:	This extrinsic function obtains the current surrogate for alerts (if any for the user with DUZ specified by the xqauser input parameter.
Format:	$$CURRSURO^XQALSURO(xqauser)
Input Parameters:	xqauser:	(required) This is the Internal Entry Number (IEN, DUZ value) in the NEW PERSON file (#200) for the specified user with the surrogate.
Output:	returns:	Returns:
DUZ—Internal Entry Number (IEN) of the surrogate.
-1—If there is no surrogate specified.

[bookmark: _Toc458598822]$$GETSURO^XQALSURO(): Get Current Surrogate Information
Reference Type:	Supported
Category:	Alerts
ICR #:	3213
Description:	This extrinsic function returns the following string of information on the current surrogate for the user with XQAUSER as his or her Internal Entry Number (IEN) in the NEW PERSON file (#200):
ien^NAME^FM_STARTDATE^FM_ENDDATE
If there is no surrogate, the result is:
^^^
If either of the start or end dates and times is not specified, a null value is returned for that piece of the return string.
[image: Note]	REF: For a description of each piece of information separated by the caret (“^”), see the “Output” section below.
Format:	$$GETSURO^XQALSURO(xqauser)
Input Parameters:	xqauser:	(required) This is the Internal Entry Number (IEN) in the NEW PERSON file (#200) of the user for whom the alert surrogate information is to be returned.
Output:	returns:	Returns the following string of information, each piece separated by a caret (“^”):
IEN^NAME^FM_STARTDATE^FM_ENDDATE
IEN—Internal Entry Number (IEN) of the SURROGATE in the NEW PERSON file (#200).
NAME—Contents of the .01 field for the SURROGATE.
FM_STARTDATE—Starting date/time for the SURROGATE in internal VA FileMan format.
FM_ENDDATE—Ending date/time for the SURROGATE in internal VA FileMan format.

[bookmark: _Toc458598823]Example
>S X=$$GETSURO^XQALSURO(124)

>W X

2327^XUUSER,FOUR^3000929.1630^3001006.0800

This indicates that user #2327 (Four Xuuser) becomes active as surrogate at 4:30 PM 9/29/00 and remains surrogate until 8:00 am on 10/06/00.
[bookmark: _Ref187463144][bookmark: _Toc458598824]REMVSURO^XQALSURO(): Remove Surrogates for Alerts
[bookmark: _Ref182816618]Reference Type:	Supported
Category:	Alerts
ICR #:	2790
Description:	This API removes any surrogates for alerts for the specified user.
Format:	REMVSURO^XQALSURO(xqauser[,.xqalsuro][,.xqalstrt])
Input Parameters:	xqauser:	(required) This is the Internal Entry Number (IEN, DUZ value) in the NEW PERSON file (#200) for the specified user.
	xqalsuro:	(optional) IEN of user in NEW PERSON file (#200). If passed, only the user who is passed is removed from the list of surrogates. If not passed, only the current surrogate is removed (if any).
	xqalstrt:	(optional) If passed, the surrogate is removed only from the start date indicated. If not passed, the surrogate is removed starting from the date of the current surrogate (if any). If there is no current surrogate, no entries are removed.
Output:	none.

[bookmark: _Toc458598825]SETSURO1^XQALSURO(): Establish a Surrogate for Alerts
Reference Type:	Supported
Category:	Alerts
ICR #:	3213
Description:	This API establishes a surrogate for alerts. It should be used instead of the SETSURO^XQALSURO API. The SETSURO1^XQALSURO API also tests for cyclic relationships (such that the user eventually would become the surrogate). SETSURO1 does these tests and therefore has the possibility of failure. It returns either of the following values:
IEN (value > 0; True)—Surrogate was created successfully.
Text String (False)—Text explaining why the surrogate was not created.
Previously, the SETSURO^XQALSURO API returned no value and, as long as both a user and surrogate were specified, would simply store the values. This left open the possibility that the user was specified as the surrogate or that a chain of surrogates ended up pointing again at the user, cases that could result in a very tight, non-ending, loop being generated if an alert was sent. These possibilities have been tested for in the interactive specification of surrogates, and is tested for non-interactive usage in the SETSURO1^XQALSURO API.
[image: Note]	NOTE: The SETSURO1^XQALSURO API should be used instead of the SETSURO^XQALSURO API (i.e., ICR # 2790).
Format:	SETSURO1^XQALSURO(xqauser,xqalsuro[,xqalstrt][,xqalend])
Input Parameters:	xqauser:	(required) User’s DUZ number (i.e., Internal Entry Number in the NEW PERSON file [#200]) for which the surrogate should act in receiving alerts.
	xqalsuro:	(required) Surrogate’s DUZ number (i.e., Internal Entry Number in the NEW PERSON file [#200]) for the user who receives and processes alerts for XQAUSER.
	xqalstrt:	(optional) The start date/time or the surrogate activity, in VA FileMan internal format. If the start date/time is not specified, the surrogate relationship begins immediately.
	xqalend:	(optional) The end date/time for the end of the surrogate relationship, in VA FileMan internal format. If the end date/time is not specified, the surrogate remains active until another surrogate is specified or the surrogate is deleted.
Output:	returns:	Returns:
IEN (value > 0; True)—Surrogate was created successfully.
Text String (False)—Text explaining why the surrogate was not created.

[bookmark: _Toc458598826]Example
>S XQAUSER=DUZ

>S XQASURRO=45

>S XQASTART=3001004.1630

>S XQAEND=3001008.1630

>S X=$$SETSURO1^XQALSURO(XQAUSER,XQASURRO,XQASTART,XQAEND)

>I ‘X W !,“Could not activate surrogate”,!,?5,X Q

[bookmark: _Ref236553834][bookmark: _Ref236642400][bookmark: _Toc458598827]SUROFOR^XQALSURO(): Return a Surrogate’s List of Users
Reference Type:	Supported
Category:	Alerts
ICR #:	3213
Description:	This API returns a list of users for which the user, as defined by the xqauser input parameter, is acting as a surrogate.
Format:	SUROFOR^XQALSURO(xqauser,.xqalist)
Input Parameters:	xqauser:	(required) User’s DUZ number (i.e., Internal Entry Number in the NEW PERSON file [#200]) for which the surrogate should act in receiving alerts.
	xqalist:	(required) Passed by reference; it contains the name of the output array.
Output:	xqalist:	The output contains the list of users for whom the specified user is currently acting as a surrogate. The data in the list includes the:
User’s internal entry number (DUZ).
User’s name.
Start and end dates for the surrogate period.
Set to a number equal to the count of the total number of surrogates returned in the list:
XQALIST(n)
Where n is a sequential integer starting with 1. Each entry in the array contains:
IEN^Name^Start Date/Time^End Date/Time

[bookmark: _Toc458598828]Example
>S XQAUSER=DUZ
>D SUROFOR^XQALSURO(XQAUSER,.USERLIST)
Returns:
[bookmark: _Toc458599857]Figure 18: SUROFOR^XQALSURO API—Example
USERLIST=count
USERLIST(1)=IEN2^NEWPERSON,USER2^STARTDATETIME^ENDDATETIME
USERLIST(2)=3^NAME,USER3^3050407.1227^3050406

>ZW USERLIST
OUTPUT=2
OUTPUT(1)=“5206652^PERSON,FIRST^3071113.141547^3071113.142”
OUTPUT(2)=“5206656^PERSON,SECOND^3071114^3071114.08”

[bookmark: _Ref182899934][bookmark: _Toc458598829]SUROLIST^XQALSURO(): List Surrogates for a User
Reference Type:	Supported
Category:	Alerts
ICR #:	3213
Description:	This API returns a list of current or future surrogates for the user that is defined by the xqauser input parameter. It also sets the following surrogate fields in the ALERT file (#8992) if there is a current surrogate for this user:
SURROGATE FOR ALERTS (#.02)
SURROGATE START DATE/TIME (#.03)
SURROGATE END DATE/TIME (#.04)
Format:	SUROLIST^XQALSURO(xqauser,.xqalist)
Input Parameters:	xqauser:	(required) This is the Internal Entry Number (IEN, DUZ value) in the NEW PERSON file (#200) for the specified user.
	xqalist:	(required) Passed by reference; it contains the name of the output array.
Output:	xqalist:	The output contains the list of current and future surrogates for the specified user. The data in the list includes the following:
User’s internal entry number (DUZ).
User’s name.
Start and end dates for the surrogate period.
Set to a number equal to the count of the total number of surrogates returned in the list:
XQALIST(n)
Where n is a sequential integer starting with 1. Each entry in the array contains:
IEN^Name^Start Date/Time^End Date/Time

[bookmark: _Toc458598830]Example
[bookmark: _Toc458599858]Figure 19: SUROLIST^XQALSURO API—Example
>D SUROLIST^XQALSURO(duz,.output)

>ZW OUTPUT
OUTPUT=2
OUTPUT(1)=“5206652^PERSON,FIRST^3071113.141547^3071113.142”
OUTPUT(2)=“5206656^PERSON,SECOND^3071114^3071114.08”

Alerts: Developer Tools

[bookmark: _Ref303842647][bookmark: _Ref20101722][bookmark: _Toc458598831]Common Services: Developer Tools
[bookmark: _Toc458598832]Application Programming Interface (API)
The following are Common Services APIs available for developers. These APIs are described below.
[bookmark: _Ref178039349][bookmark: _Toc458598833]$$IEN^XUPS(): Get IEN Using VPID in File #200
Reference Type:	Supported
Category:	Common Services
ICR #:	4574
Description:	This extrinsic function accepts the VA Person ID (VPID) of an entry in the NEW PERSON file (#200) and returns the Internal Entry Number (IEN)/DUZ. This API was added with Kernel patch XU*8.0*309.
[image: Caution]	CAUTION: VPID has not been fully implemented in the VA. VPID was the user identifier within the canceled Enterprise Single Sign-On (ESSO) project. The current Identity and Access Management (IAM) 2-factor authentication project uses Security ID (SecID) as the unique identifier. VPID APIs and fields will be deprecated in a future Kernel patch. Developers are encouraged to remove all references to these APIs in their code.
Format:	$$IEN^XUPS(vpid)
Input Parameters:	vpid:	(required) The VA Person ID (VPID).
Output:	returns:	Returns the Internal Entry Number (IEN)/DUZ of the NEW PERSON file (#200).

[bookmark: _Ref458593070][bookmark: _Toc458598834]$$VPID^XUPS(): Get VPID Using IEN in File #200
Reference Type:	Supported
Category:	Common Services
ICR #:	4574
Description:	This extrinsic function accepts the internal entry number (IEN)/DUZ of an entry in the NEW PERSON file (#200) and returns the VA Person ID (VPID) for the selected user. This API was added with Kernel patch XU*8.0*309.
[image: Caution]	CAUTION: VPID has not been fully implemented in the VA. VPID was the user identifier within the canceled Enterprise Single Sign-On (ESSO) project. The current Identity and Access Management (IAM) 2-factor authentication project uses Security ID (SecID) as the unique identifier. VPID APIs and fields will be deprecated in a future Kernel patch. Developers are encouraged to remove all references to these APIs in their code.
Format:	$$VPID^XUPS(duz)
Input Parameters:	duz:	(required) The Internal Entry Number (IEN) in the NEW PERSON file (#200).
Output:	returns:	Returns the VA Person ID (VPID) for the entry found in the NEW PERSON file (#200).

[bookmark: _Ref458593307][bookmark: _Toc458598835]EN1^XUPSQRY(): Query New Person File
Reference Type:	Controlled Subscription
Category:	Common Services
ICR #:	4575
Description:	The XUPS PERSONQUERY RPC uses this API. This API provides the functionality to query the NEW PERSON file (#200). The calling application can query the NEW PERSON file (#200) by using either the Security ID (SECID) of the requested entry or part/all of a last name. Other optional parameters can be passed to the call as additional filters. This API was added with Kernel patch XU*8.0*325.
Format:
	EN1^XUPSQRY(result,xupsecid,xupslnam[,xupsfnam][,xupsssn][,xupsprov][,xupsstn][,xupsmnm][,xupsdate])
Input Parameters:	result:	(required) Name of the subscripted return array. In every API that is used as an RPC, the first parameter is the return array.
	xupsecid:	(required) This parameter contains the SECID for the requested user. Either the SECID or last name is required.
	xupslnam:	(required) This parameter contains all or part of a last name. A last name or SECID are required input variables.
	xupsfnam:	(optional) This parameter is set to null or the full or partial first name.
	xupsssn:	(optional) This parameter is set to null or contains the 9 digits of the Social Security Number (SSN).
	xupsprov:	(optional) This parameter is set to null or “P”. If set to “P”, it screens for providers (person with active user class).
	xupsstn:	(optional) This parameter is set to null or the Station Number.
	xupsmnm:	(optional) This parameter is set to the maximum number of entries (1-50) to be returned. Defaults to 50.
	xupsdate:	(optional) This parameter contains the date used to determine if person class is active. Defaults to current date.
Output Parameters:	result():	Returns a subscripted output array of the input value/subscripted array (i.e., list) with the following possible values shown:
^TMP($J,“XUPSQRY”,1)—1 if found, 0 if not found
^TMP($J,“XUPSQRY”,n,0)—VPID^IEN^LastName~First Name~Middle Name^SSN^DOB^SEX^
^TMP($J,“XUPSQRY”,n,1)—Provider Type^
^TMP($J,“XUPSQRY”,n,2)—Provider Classification^
^TMP($J,“XUPSQRY”,n,3)—Provider Area of Specialization^
^TMP($J,“XUPSQRY”,n,4)—VA CODE^X12 CODE^Specialty Code^end-of-record character “|”|

Common Services: Developer Tools

[bookmark: _Ref433039093][bookmark: _Ref174867117][bookmark: _Toc458598836]Data Security: Developer Tools
[bookmark: _Toc458598837]Overview
Developers can use data security tools to protect information from unauthorized viewing.
Released with Kernel patch XU*8.0*655, the Secure Hash Algorithm is a family of one-way cryptographic hash functions. The input data is often called the message, and the hash value is often called the message digest. Cryptographic hash functions are used in the following:
Digital signatures.
Message authentication codes.
Other forms of authentication.
They can also be used to:
Detect duplicate data.
Uniquely identify files.
Detect accidental data corruption as checksums.
In information security contexts, cryptographic hash values are sometimes called digital fingerprints.
Encryption is the process of using a mathematical algorithm to transform information so that it becomes unreadable. The information is then available only to those who possess the key that can be used for decryption.
Binary-to-text encoding schemes are used to represent binary data in an ASCII string format. They are commonly used when there is a need to store or transfer data over media that is designed to deal with textual data to ensure that the data remains intact without modification during transport.
[bookmark: _Toc458598838]Application Programming Interface (API)
Several APIs for hashing, encoding/decoding, or encryption/decryption of input of various formats are available for developers to work with data security. These APIs are supported under Integration Control Registration (ICR) #6189 and are described below.
[bookmark: _Ref433090635][bookmark: _Toc458598839]$$AESDECR^XUSHSH(): Returns Plaintext String Value for AES Encrypted Ciphertext Entry
Reference Type:	Supported
Category:	Data Security
ICR #:	6189
Description:	This extrinsic function returns the string value of an Advanced Encryption Standard (AES) encrypted ciphertext entry. AES is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*655.
Format:	$$AESDECR^XUSHSH(text,key[,iv])
Input Parameters:	text:	(required) The ciphertext string to be decrypted.
	key:	(required) The input key material 16, 24, or 32 characters long.
	iv:	(optional) The initialization vector. If this argument is present, it must be 16 characters long.
Output:	returns:	Returns the plaintext value of the AES encrypted ciphertext entry in the text input parameter.

[bookmark: _Toc458598840]Example
>W $$AESDECR^XUSHSH($$B64DECD^XUSHSH("STbvalBtOxy754eRo15Bkg=="),"Encr4pt10
nK3y")
This is a test

[bookmark: _Ref433090648][bookmark: _Toc458598841]$$AESENCR^XUSHSH(): Returns AES Encrypted Ciphertext for String Entry
Reference Type:	Supported
Category:	Data Security
ICR #:	6189
Description:	This extrinsic function returns the Advanced Encryption Standard (AES) encrypted ciphertext for a string entry. AES is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*655.
Format:	$$AESENCR^XUSHSH(text,key[,iv])
Input Parameters:	text:	(required) The plaintext string to be encrypted.
	key:	(required) The input key material 16, 24, or 32 characters long.
	iv:	(optional) The initialization vector. If this argument is present, it must be 16 characters long.
Output:	returns:	Returns the AES encrypted ciphertext for the string entry in the text input parameter.

[bookmark: _Toc458598842]Example
[image: Note]	NOTE: The AES encryption API returns Unicode ciphertext, which does not properly display on an ASCII roll-and-scroll terminal; so the example demonstrated output is Base 64 encoded before display.
>W $$B64ENCD^XUSHSH($$AESENCR^XUSHSH("This is a test","Encr4pt10nK3y"))
STbvalBtOxy754eRo15Bkg==

[bookmark: _Ref433090659][bookmark: _Toc458598843]$$B64DECD ^XUSHSH(): Returns Decoded Value for a Base64 String Entry
Reference Type:	Supported
Category:	Data Security
ICR #:	6189
Description:	This extrinsic function returns the decoded value for a Base64 string entry. Base64 is a binary-to-text encoding scheme that represents binary data in an ASCII string format by translating it into a radix-64 representation. Base64 encoding is commonly used when there is a need to encode binary data that needs to be stored and transferred over media that is designed to deal with textual data.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*655.
Format:	$$B64DECD^XUSHSH(x)
Input Parameters:	x:	(required) The string to be decoded.
Output:	returns:	Returns the decoded value for the Base64 input parameter.

[bookmark: _Toc458598844]Example
>W $$B64DECD^XUSHSH("VGhpcyBpcyBhIHRlc3Q=")
This is a test

[bookmark: _Ref433090670][bookmark: _Toc458598845]$$B64ENCD^XUSHSH(): Returns Base64 Encoded Value for a String Entry
Reference Type:	Supported
Category:	Data Security
ICR #:	6189
Description:	This extrinsic function returns the Base64 encoded value for a string entry. Base64 is a binary-to-text encoding scheme that represents binary data in an ASCII string format by translating it into a radix-64 representation. Base64 encoding is commonly used when there is a need to encode binary data that needs to be stored and transferred over media that is designed to deal with textual data.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*655.
Format:	$$B64ENCD^XUSHSH(x)
Input Parameters:	x:	(required) The string to be encoded.
Output:	returns:	Returns the Base64 encoded value of the input parameter.

[bookmark: _Toc458598846]Example
>W $$B64ENCD^XUSHSH("This is a test")
VGhpcyBpcyBhIHRlc3Q=

[bookmark: _Ref433090680][bookmark: _Toc458598847]$$RSADECR^XUSHSH(): Returns Plaintext String Value for RSA Encrypted Ciphertext Entry
Reference Type:	Supported
Category:	Data Security
ICR #:	6189
Description:	This extrinsic function returns the plaintext string value for an RSA encrypted ciphertext entry. RSA is a public-key encryption system that is widely used for secure data transmission. The encryption key is public and differs from the decryption key, which is kept secret.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*655.
Format:	$$RSADECR^XUSHSH(text,key[,pwd][,enc])
Input Parameters:	text:	(required) The RSA encrypted ciphertext string to be decrypted.
	key:	(required) The RSA private key corresponding to the RSA public key that was used for encryption, Privacy Enhanced Mail (PEM) encoded.
	pwd:	(optional) The private key password.
	enc:	(optional) Encoding - Public-Key Cryptography Standards (PKCS) #1 v2.1 encoding method:
1—Optimal Asymmetric Encryption Padding (OAEP; default).
2—PKCS 1-v1_5.
Output:	returns:	Returns the plaintext string value for the RSA encrypted ciphertext input parameter.

[bookmark: _Toc458598848]Example
[image: Note]	NOTE: "hgwds" is the alias of a certificate installed in Caché through the management portal for demonstration purposes. The private key used to decrypt the ciphertext was not available, so that function is not demonstrated here.
[bookmark: _Ref433090685][bookmark: _Toc458598849]$$RSAENCR^XUSHSH(): Returns RSA Encrypted Ciphertext for String Entry
Reference Type:	Supported
Category:	Data Security
ICR #:	6189
Description:	This extrinsic function returns the RSA encrypted ciphertext for a string entry. RSA is a public-key encryption system that is widely used for secure data transmission. The encryption key is public and differs from the decryption key, which is kept secret.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*655.
Format:	$$RSAENCR^XUSHSH(text,cert[,cafile][,crlfile][,enc])
Input Parameters:	text:	(required) The plaintext string to be encrypted.
	cert:	(required) An X.509 certificate containing the RSA public key to be used for encryption, in PEM encoded or binary Distinguished Encoding Rules (DER) format. The length of the plaintext cannot be greater than the length of the modulus of the RSA public key contained in the certificate minus 42 bytes.
	cafile:	(optional) The name of a file containing the trusted Certificate Authority X.509 Certificates in PEM-encoded format, one of which was used to sign the certificate.
	crlfile:	(optional) The name of a file containing X.509 Certificate Revocation Lists in PEM-encoded format that should be checked to verify the status of the certificate.
	enc:	(optional) Encoding - PKCS #1 v2.1 encoding method:
1—OAEP (default).
2—PKCS 1-v1_5.
Output:	returns:	Returns the RSA encrypted ciphertext value of the text input parameter.

[bookmark: _Toc458598850]Example
[image: Note]	NOTE: The RSA encryption API returns Unicode ciphertext, which does not properly display on an ASCII roll-and-scroll terminal; so the example demonstrated output is Base 64 encoded before display.
>S TEXT="This is a test"

>S CREDSET=##class(%SYS.X509Credentials).GetByAlias("hgwds")

>S CERT=CREDSET.Certificate

>W $$B64ENCD^XUSHSH($$RSAENCR^XUSHSH(TEXT,CERT,,,1))
PbFxIUBA+Mu5F4rtFHVJOusYfqFOm99eyhp3jYTBBIteSMYE1J+dHFqSePGtGXInBIy2f6gVxTvf
WQyy8Le92tbqADftPsGKlBISaA1O3v2r0oxYQkwR6FPub3y/r92b6l/StwAzImMF9EP6vqLt/IOK
1eu4UD+sT5qesGB9zgAmEfQgitT3qhXZJZUAbIi//NZbLiWVtGF+99GSa77VyMXkWqKiSVZZHCLG
yUGgPn8SwFXEsZNs+STuFaQn6jialrn04NOuaqXEDSZu1qGpn5WE3fNcWeLZE5sXJX8rG0uW5R/O
lx/Xlk3L2GhqELELsgzJY0RG5fp8wT58cJKqwQ==

[bookmark: _Ref433090689][bookmark: _Toc458598851]$$SHAHASH^XUSHSH(): Returns SHA Hash for a String Entry
Reference Type:	Supported
Category:	Data Security
ICR #:	6189
Description:	This extrinsic function returns the Secure Hash Algorithm (SHA) hash for a string entry. It uses an input variable to specify the length in bits of the desired hash.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*655.
Format:	$$SHAHASH^XUSHSH(n,x[,flag])
Input Parameters:	n:	(required) Length in bits of the desired hash:
160 (SHA-1)
224 (SHA-224)
256 (SHA-256)
384 (SHA-384)
512 (SHA-512)
	x:	(required) String to be hashed.
	flag:	(optional) Flag to control format of hash:
"H"—Hexadecimal (default)
"B"—Base64 Encoded
Output:	returns:	Returns SHA hash for a string entry.

[bookmark: _Toc458598852]Examples
Example 1
>W $$SHAHASH^XUSHSH(256,"This is a test")
C7BE1ED902FB8DD4D48997C6452F5D7E509FBCDBE2808B16BCF4EDCE4C07D14E
>

Example 2
>W $$SHAHASH^XUSHSH(256,"This is a test","B")
x74e2QL7jdTUiZfGRS9dflCfvNvigIsWvPTtzkwH0U4=
>

Device Handler: Developer Tools

[bookmark: _Toc458598853]Device Handler: Developer Tools
[bookmark: _Toc458598854]Overview
The Device Handler provides a common user interface and developer API for using output devices. This section describes the Device Handler’s developer API.
The ZIS* series of routines becomes the Device Handler when the Kernel installation process (the ZTMGRSET routine) saves them in the Manager’s account as %ZIS* routines. A separate set of ZIS* routines is distributed for each operating system.
[image: Note]	NOTE: As of Kernel patch XU*8.0*546 (and Informational Patch XU*8.0*556), Class 3 routines that are not written to permit queuing no longer output to devices where the QUEUING field (#5.5) in the DEVICE file (#3.5) is set to FORCED. Sites that have completed the Linux upgrade checklist, should have already addressed this issue.

REF: For more specific details, see Kernel Patches XU*8.0*546 and 556.
[bookmark: _Toc458598855]Application Programming Interface (API)
Several APIs are available for developers to work with devices. These APIs are described below.
[bookmark: _Toc37662441][bookmark: _Ref20101689][bookmark: _Toc458598856]DEVICE^XUDHGUI(): GUI Device Lookup
Reference Type:	Supported
Category:	Device Handler
ICR #:	3771
Description:	This API allows VistA Graphical User Interface (GUI)-based applications to look up devices. This API retrieves the first 20 devices that meet the specifications passed. This API was made available with Kernel patch XU*8.0*220.
Format:	DEVICE^XUDHGUI(.list,starting_point[,direction]
[,right_margin_range])
Input Parameters:	.list:	(required) Named array to store output.
	starting_point:	(required) This parameter indicates where to start the $ORDERing of the Global. “P” only returns devices whose name starts with “P”; “P*” returns up to 20 devices the first starting with “P”.
	direction:	(optional) This parameter indicates whether to $ORDER up or down from the starting_point parameter. The acceptable values are 1 and -1:
1—Up.
-1—Down.
	right_margin_range:	(optional) This parameter specifies a width range of devices:
Exact Width (e.g., ”132-132”)
At Least Width (e.g., ”132”)
Range (e.g., ”80-132”)
Output Parameters:	.list:	The data is returned in this named array. Data is returned in the following format:
IEN^NAME^DISPLAY NAME^LOCATION^RIGHT MARGIN^PAGE LENGTH
[bookmark: _Toc458598857]Examples
Example 1
This example stores/displays a list of all devices that begin with “P” in an array (e.g., DEVICES), without passing a direction or right margin range parameter:
>K DEVICES
>D DEVICE^XUDHGUI(.DEVICES,“P”)

The DEVICES array displays the following results:
[bookmark: _Toc458599859]Figure 20: DEVICE^XUDHGUI API—Example 1: DEVICES array displaying sample results
>ZW DEVICES
DEVICES(1)=358^P-MESSAGE-HFS^P-MESSAGE-HFS^HFS FILE=>MESSAGE^255^256
DEVICES(2)=348^P-MESSAGE-HFS-ONT^P-MESSAGE-HFS-ONT^HFS FILE==> MESSAGE^80^999
DEVICES(3)=274^P-MESSAGE-HFS-VXD^P-MESSAGE-HFS-VXD^HFS FILE==> MESSAGE^80^256
DEVICES(4)=292^P-RESMON^P-RESMON^IRM^132^64
DEVICES(5)=310^P-WINDOC^P-WINDOC^MWI WINDOW DOCUMENT BOX^80^256

Example 2
This example stores/displays a list of all devices that begin with “P” in an array (e.g., DEVICES), without passing a direction parameter but including those devices with a right margin of an exact width of 80:
>K DEVICES
>D DEVICE^XUDHGUI(.DEVICES,“P”,,“80-80”)

The DEVICES array displays the following results:
[bookmark: _Toc458599860]Figure 21: DEVICE^XUDHGUI API—Example 2: DEVICES array displaying sample results
>ZW DEVICES
DEVICES(1)=348^P-MESSAGE-HFS-ONT^P-MESSAGE-HFS-ONT^HFS FILE==> MESSAGE^80^999
DEVICES(2)=274^P-MESSAGE-HFS-VXD^P-MESSAGE-HFS-VXD^HFS FILE==> MESSAGE^80^256
DEVICES(3)=310^P-WINDOC^P-WINDOC^MWI WINDOW DOCUMENT BOX^80^256

Example 3
This example stores/displays a list of all devices that begin with “P” in an array (e.g., DEVICES), without passing a direction parameter but including those devices with a right margin width range of 80-132:
>K DEVICES
>D DEVICE^XUDHGUI(.DEVICES,“P”,,“80-132”)

The DEVICES array displays the following results:
[bookmark: _Toc458599861]Figure 22: DEVICE^XUDHGUI API—Example 3: DEVICES array displaying sample results
>ZW DEVICES
DEVICES(1)=348^P-MESSAGE-HFS-ONT^P-MESSAGE-HFS-ONT^HFS FILE==> MESSAGE^80^999
DEVICES(2)=274^P-MESSAGE-HFS-VXD^P-MESSAGE-HFS-VXD^HFS FILE==> MESSAGE^80^256
DEVICES(3)=292^P-RESMON^P-RESMON^IRM^132^64
DEVICES(4)=310^P-WINDOC^P-WINDOC^MWI WINDOW DOCUMENT BOX^80^256

Example 4
This example stores/displays a list of up to 20 devices, the first of which starts with “P,” in an array (e.g., DEVICES), without passing a direction or right margin range parameter:
>K DEVICES
>D DEVICE^XUDHGUI(.DEVICES,“P*”)

The DEVICES array displays the following results:
[bookmark: _Toc458599862]Figure 23: DEVICE^XUDHGUI API—Example 4: DEVICES array displaying sample results
>ZW DEVICES
DEVICES(1)=358^P-MESSAGE-HFS^P-MESSAGE-HFS^HFS FILE=>MESSAGE^255^256
DEVICES(2)=348^P-MESSAGE-HFS-ONT^P-MESSAGE-HFS-ONT^HFS FILE==> MESSAGE^80^999
DEVICES(3)=274^P-MESSAGE-HFS-VXD^P-MESSAGE-HFS-VXD^HFS FILE==> MESSAGE^80^256
DEVICES(4)=292^P-RESMON^P-RESMON^IRM^132^64
DEVICES(5)=310^P-WINDOC^P-WINDOC^MWI WINDOW DOCUMENT BOX^80^256
DEVICES(6)=202^C6_SDD_MX3 ROUTINE^ROUTINE <C6_SDD_MX3 ROUTINE>^Next to Jean’s Office^80^59
DEVICES(7)=428^SDD DUPLEX P10^SDD DUPLEX P10^SSD DUPLEX PRINTER NEXT TO JACK^80^60
DEVICES(8)=429^SDD P10^SDD P10^Printer next to Jack.^80^60
DEVICES(9)=329^C6_SDD_MX3 P10^SS10 <C6_SDD_MX3 P10>^Near Jean’s Office^80^59
DEVICES(10)=330^C6_SDD_MX3 P12^SS12 <C6_SDD_MX3 P12>^Near Jean’s Office^96^57
DEVICES(11)=331^C6_SDD_MX3 P16^SS16 <C6_SDD_MX3 P16>^Near Jean’s Office^255^58
DEVICES(12)=349^C6_SDD_MX3 P16P8L^SS16P8L <C6_SDD_MX3 P16P8L>^Near Jean’s Office^117^79
DEVICES(13)=202^C6_SDD_MX3 ROUTINE^SSR <C6_SDD_MX3 ROUTINE>^Next to Jean’s Office^80^59
DEVICES(14)=427^SUP$PRT TEST^SUP$PRT TEST^DISK FILE^132^58
DEVICES(15)=283^SYS$INPUT^SYS$INPUT^SYS$INPUT;^132^64
DEVICES(16)=198^VMS FILE^VMS FILE^DISK^80^64
DEVICES(17)=349^C6_SDD_MX3 P16P8L^VPM <C6_SDD_MX3 P16P8L>^Near Jean’s Office^117^79
DEVICES(18)=291^VTB255^VTB255^RMS FILE^255^99999
DEVICES(19)=288^ZBROWSE^ZBROWSE^RMS FILE^255^99999

[bookmark: _Toc458598858]$$RES^XUDHSET(): Set Up Resource Device
[bookmark: _Ref59250821][bookmark: _Ref59347676][bookmark: _Ref59347715][bookmark: _Ref59347750]Reference Type:	Supported
Category:	Device Handler
ICR #:	2232
Description:	This extrinsic function sets up a Resource device. It returns:
Error: -1^text
Successful: IEN^device name
Format:	$$RES^XUDHSET(device_name[,resource_name],slot_count,description,
subtype)
Input Parameters:	device_name:	(required) The name of the resource device.
	resource_name:	(optional) The resource name if not the same as the device name.
	slot_count:	(required) The number of concurrent jobs that can use this device. It defaults to 1.
	description:	(required) The device description. It defaults to “Resource Device”.
	subtype:	(required) The subtype to use. It defaults to P-OTHER.
Output:	returns:	Returns:
Error: -1^text
Successful: IEN^device name
[bookmark: _Ref413237024]
[bookmark: _Ref454962425][bookmark: _Toc458598859]^%ZIS: Standard Device Call
Reference Type:	Supported
Category:	Device Handler
ICR #:	10086
Description:	This API allows you to select a device.
All input variables are optional. Non-namespaced variables that are defined and later KILLed by ^%ZIS include: %A, %E, %H, %X, and %Y.
If device selection is successful, characteristics of the output device are returned in a number of different variables. If selection is unsuccessful, ^%ZIS returns the POP output variable with a positive number. So, checks for an unsuccessful device selection should be based on the POP input variable as a positive number.
Device selection can be done as shown in the example that follows.
[image: Note]	REF: For a discussion of form feeds, see the “Form Feeds” section in the “Special Device Issues” section.
Format:	^%ZIS
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variable:	%ZIS:	(optional) The %ZIS input variable is defined as a string containing one or more single-character flags that act as input specifications. The functions of each of the flags that can be included in the string are described below. If the %ZIS input variable contains:
M—RIGHT MARGIN: The user is prompted with the right margin query.
N—NO OPENING: The Device Handler returns the characteristics of the selected device without issuing the OPEN command to open the device.
P (obsolete)—CLOSEST PRINTER: The closest printer, if one has been defined in the DEVICE file (#3.5), is presented at the default response to the device prompt.
Q—QUEUING ALLOWED: The job can be queued to run later. There is no automatic link between the Device Handler and TaskMan. If queuing is allowed, just before the Device Handler is called, the application routine must set the %ZIS input variable to a string that includes the letter “Q”. For example:
>S %ZIS=“MQ” D ^%ZIS
If the user selects queuing, the Device Handler defines the IO(“Q”) input variable as an output variable, to indicate that queuing was selected. If queuing is selected, the application should set the needed TaskMan variables and call the TaskMan interface routine ^%ZTLOAD.
[image: Note]	REF: For further details on how to call the TaskMan interface, see the “TaskMan: Developer Tools” section.
0—DON’T USE IO(0): The Device Handler does not attempt to use IO(0), the home device at the time of the call to ^%ZIS.
D—DIRECT PRINTING: If the selected device is unavailable, it returns a positive number in POP.
L—RESET IO(“ZIO”): If %ZIS contains L, the IO(“ZIO”) output variable is reset with the static physical port name (e.g., the port name from a Terminal Server). It is useful when the $I of the M implementation does not represent a physical port name.
	%ZIS(“A”):	(optional) Use to replace the default device prompt.
	%ZIS(“B”):	(optional) If %ZIS is defined, HOME is presented as the default response to the device prompt. Use %ZIS(“B”) to replace this default with another response.
>S %ZIS(“B”)=“”
(If you do not want to display any default response.)
	%ZIS(“HFSMODE”):	(optional) Use to pass the Host file access mode to %ZIS. The possible values are:
“RW” (which may not work in all environments)—READ/WRITE access.
“R”—READ Only access.
“W”—WRITE access.
“A”—Append mode.
For example:
>S %ZIS(“HFSMODE”)=“R”
	%ZIS(“HFSNAME”):	(optional) Use to pass the name of a Host file to %ZIS. For example:
>S %ZIS(“HFSNAME”)=“MYFILE.DAT”
	%ZIS(“IOPAR”):	(optional) Use this input variable to pass open command variables to the Device Handler. If defined, the value of this input variable is used instead of any value specified in the OPEN PARAMETERS field of the DEVICE file (#3.5). The Device Handler uses the data from either this input variable or from the OPEN PARAMETERS field whether or not the device type is TRM.
On some M systems, Right Margin is an OPEN PARAMETERS. Therefore, any value for Right Margin in the DEVICE file (#3.5), TERMINAL TYPE file (#3.2), or user response can be ignored when this input variable is used.
To set OPEN PARAMETERS for the tape drive device, a device with $I=47 and device name of MAGTAPE, the following code could be used:
>S %ZIS(“IOPAR”)=“(”“VAL4”“:0:2048)”
>S IOP=“MAGTAPE” D ^%ZIS
[image: Note]	NOTE: The specific variables you pass may not be functional for all operating systems. Use of this feature should be limited to local development efforts.
	%ZIS(“IOUPAR”):	(optional) Use this input variable in the same way as %ZIS(“IOPAR”), but for variables to the USE (rather than OPEN) command. Any USE PARAMETERS specified in the DEVICE file (#3.5) is overridden. For example:
>S %ZIS(“IOUPAR”)=“NOECHO”
>S IOP=“C72” D ^%ZIS
	%ZIS(“S”):	(optional) Use this input variable to specify a device selection screen. The string of M code this input variable is set to should contain an IF statement to set the value of $T. Those entries that the IF sets as $T=0 are not displayed or selectable. Like comparable VA FileMan screens, %ZIS(“S”) should be set to sort on nodes and pieces, without using input variables like ION or IOT. As with VA FileMan, the variable “Y” can be used in the screen to refer to the Internal Entry Number (IEN) of the device. Also, the M naked indicator is at the global level ^%ZIS(1,Y,0).
An example to limit device selection to spool device types (SPL) only might be coded as follows:
>S %ZIS(“S”)=“I $G(^(”“TYPE”“))=”“SPL”“”
[bookmark: iop_zis]	IOP:	(optional) Use IOP to specify the output device. There is no user interaction when IOP is defined to specify an output device; the device name (.01 field) is the usual value of IOP. You can also set IOP to Q and P. (The value of IOP must not be $I).
[image: Note]	NOTE: If IOP is set to NULL, the device handler defaults to the HOME device.
You can request queuing by setting IOP=“Q”. The user is then asked to specify a device for queuing. To pre-select the device, set IOP=“Q;device”; the device specified after the semicolon is selected and IO(“Q”) is set.
You can request the closest printer, as specified in the DEVICE file (#3.5), by setting IOP=“P” or IOP=“p”. If there is not a closest printer associated with the home device at the time of the call, device selection fails and POP is returned with a positive value.
You can also pass the Internal Entry Number (IEN) of the desired device through IOP. For instance, to select a device with an IEN of 202, you can set IOP to an accent grave character (`) followed by the IEN value of 202 before the call to ^%ZIS. The following example illustrates the above call:
>S IOP=“`202” D ^%ZIS
Using the IEN rather than device name can be useful when applications have the desired device stored as a pointer to the DEVICE file (#3.5) rather than as FREE TEXT.
Output Variables:	IO:	If a device is successfully opened, IO is returned with the device $I value of the selected device. If an abnormal exit occurs, POP is returned with a positive numeric value and IO is returned as NULL.
[image: Caution]	CAUTION: Because the returned value of IO can be changed, since December 1990, developers have been advised to check for a positive value in POP rather for IO equal to NULL when determining if an abnormal exit occurred.
	IO(0):	HOME DEVICE—Contains the $I value of the home device at the time of the call to the Device Handler. Since it is defined at the time of the call, there is obviously no restoration after the call.
	IO(1,$I):	OPENED DEVICES—This array contains a list of devices opened for the current job by the Device Handler. The first subscript of this array is “1”. The second subscript is the $I value of the device opened. The data value is NULL. The Device Handler sets, KILLs, and checks the existence of IO(1,IO).
[image: Note]	NOTE: This array should not be altered by applications outside of Kernel.
	IO(“CLNM”):	This variable holds the name of the remote system. It is defined via the RPC Broker.
	IO(“CLOSE”):	Device closed.
	IO(“DOC”):	SPOOL DOCUMENT NAME—If output has been sent to the spool device, this output variable holds the name of the spool document that was selected.
[image: Note]	NOTE: This variable is KILLed when a call is made to ^%ZIS or HOME^%ZIS: Reset Home Device IO Variables APIs.
[bookmark: hfsio_zis]	IO(“HFSIO”):	HOST FILE DEVICE IO—This is defined by the Device Handler when a user queues to a file at the host operating system level (of a layered system) and selects a file name other than the default. This Host file system device input variable should have the same value as that stored in the IO output variable. If IO(“HFSIO”) exists when the TaskMan interface is called, the interface saves IO(“HFSIO”) and IOPAR so that the scheduled task opens the appropriate Host file.
[image: Note]	NOTE: This variable is KILLed when a call is made to ^%ZIS or HOME^%ZIS: Reset Home Device IO Variables APIs.
	IO(“IP”):	This variable holds the Internet Protocol (IP) of the remote system.
	IO(“P”):	This variable holds data about the new syntax requested.
	IO(“Q”):	OUTPUT WAS QUEUED—If queuing is allowed (%ZIS[“Q”) and an output device for queuing is selected, this output variable is returned with a value of 1: IO(“Q”)=1. Otherwise, it is undefined.
[image: Note]	NOTE: This variable is KILLed when a call is made to ^%ZIS or HOME^%ZIS: Reset Home Device IO Variables APIs.
	IO(“S”):	SLAVED DEVICE—When a slaved printer is selected, the Device Handler uses this output variable to save the subtype specification for the home device so that the appropriate close printer logic can be executed with X ^%ZIS(“C”).
	IO(“SPOOL”):	SPOOLER WAS USED—The existence of this output variable indicates that output was sent to the spool device. It exists temporarily, during spooling, and is KILLed upon normal exit.
[image: Note]	NOTE: This variable is KILLed when a call is made to ^%ZIS or HOME^%ZIS: Reset Home Device IO Variables APIs.
	IO(“T”):	TaskMan call.
	IO(“ZIO”):	TERMINAL SERVER PORT—If %ZIS[“L”, both physical port and server names are returned in IO(“ZIO”) under Caché. This information is useful on M implementations where the value of $I does not represent a port on a Terminal Server.
	IOBS:	BACKSPACE—The code for backspace, usually $C(8), is returned in this output variable. This code WRITEs a backspace with W @IOBS.
	IOCPU:	CPU INDICATOR—If the selected device is on another CPU, this output variable is returned with the other CPU reference, obtained from the VOLUME SET (CPU) field in the DEVICE file (#3.5). TaskMan uses the IOCPU input variable as an indicator of where the job should ultimately be run.
	IOF:	FORM FEED—This output variable issues a form feed when writing its value with indirection; that is, W @IOF.
	IOM:	RIGHT MARGIN—The right margin is commonly set to either 80 or 132 columns.
	ION:	DEVICE NAME—This variable returns the device NAME (.01 field) as recorded in the DEVICE file (#3.5).
[bookmark: iopar_zis]	IOPAR:	OPEN PARAMETERS—This variable returns any OPEN PARAMETERS that may have been defined for the selected device, for example, a magnetic tape drive. If the OPEN PARAMETERS input variable has not been defined, IOPAR is returned as NULL.
[image: Note]	NOTE: When a device is closed, this variable gets set to NULL.
	IOUPAR:	USE PARAMETERS—This variable returns any USE PARAMETERS that may have been defined for the selected device. If the USE PARAMETERS input variable has not been defined, IOUPAR is returned as NULL.
[image: Note]	NOTE: When a device is closed, this variable gets set to NULL.
	IOS:	DEVICE NUMBER—The DEVICE file (#3.5) Internal Entry Number (IEN) for the selected device.
	IOSL:	SCREEN/PAGE LENGTH—The number of lines per screen or page is defined with this variable. The page length of a printing device is usually 66 lines. The screen length of a display terminal is usually 24 lines.
	IOST:	SUBTYPE NAME—This variable returns the NAME (.01 field) of the selected device’s subtype as recorded in the TERMINAL TYPE file (#3.2).
	IOST(0):	SUBTYPE NUMBER—This variable returns the Internal Entry Number (IEN) of the selected device’s subtype as recorded in the TERMINAL TYPE file (#3.2).
	IOT:	TYPE OF DEVICE—The DEVICE file (#3.5) holds an indication of Type for all devices. IOT returns the value of the device type (e.g., TRM for terminal, VTRM for virtual terminal, and HFS for Host File Server).
	IOXY:	CURSOR POSITIONING—This output variable returns the executable M code that allows cursor positioning, given the input variables DX and DY. The column position is passed in DX and the row position is passed in DY.
[image: Note]	NOTE: The system special variables $X and $Y are not necessarily updated.
	POP:	EXIT STATUS—When the Device Handler is called, POP is the output variable that indicates the outcome status. If device selection is successful, POP is returned with a value of zero (POP=0). Abnormal exit returns a positive number in the POP variable.
There are three general conditions for abnormal exit upon which the POP output variable is returned as positive:
The first case is one in which a device is not selected.
The second concerns unavailable devices.
The third situation arises when a device is identified but is unknown to the system.
The first condition of no device selection is met if the user types a caret (“^”) or times out at the device prompt. Exceeding the TIMED READ at the right margin or address/variables prompts has the same result.
The second condition, unavailability, is met if the Device Handler cannot open the selected device. The selected device may also have existed on another computer but queuing was not requested or perhaps not permitted (%ZIS had not contained Q).
Finally, the selected device may not exist in the DEVICE file (#3.5). A device name may have been used that is not found as a .01 field entry. If the device is selected with P for the closest printer, the CLOSEST PRINTER field in the DEVICE file (#3.5) may be NULL.
If the exit is abnormal, returning POP with a positive value, the following output variables are restored with their values before the call to the Device Handler (before D ^%ZIS): ION, IOF, IOSL, IOBS, IOST(0), IOST, IOPAR, IOUPAR, IOS, and IOCPU.
[image: Note]	NOTE: If IOF had been NULL before the call, it is returned with the pound sign as its value (IOF=“#”). For backward compatibility, IO is currently returned as NULL (IO=“”). However, the returned value of IO may change in future Kernel versions.
[bookmark: _Toc458598860]Examples
Example 1
This following is a simplified example; the process of issuing form feeds is not shown.
[bookmark: _Toc200269961][bookmark: _Toc458599863]Figure 24: ^%ZIS API—Example
SAMPLE ;SAMPLE ROUTINE
 ;
 S %ZIS=“QM” D ^%ZIS G EXIT:POP
 I $D(IO(“Q”)) D Q
 .S ZTRTN=“DQ^SAMPLE”,ZTDESC=“Sample Test routine”
 .D ^%ZTLOAD D HOME^%ZIS K IO(“Q”) Q
DQ U IO W !,“THIS IS YOUR REPORT”
 W !,“LINE 2”
 W !,“LINE 3”
 D ^%ZISC
EXIT S:$D(ZTQUEUED) ZTREQ=“@” K VAR1,VAR2,VAR3 Q

Example 2
The IOP variable can be defined to pass a string to the Device Handler so that no user interaction is required for device selection information. The following is the general format for defining IOP:
>S IOP=[Q[;]][DEVICE NAME][;SUBTYPE][;SPOOL DOCUMENT NAME][;RIGHT MARGIN[;PAGE LENGTH]]

Example 3
If the SPOOL DOCUMENT NAME is included, then the RIGHT MARGIN and PAGE LENGTH are ignored. Therefore, use the following format if a spool device is desired:
>S IOP=[Q[;]][DEVICE NAME][;SUBTYPE][;SPOOL DOCUMENT NAME]

Example 4
The following shows how a device named “RXPRINTER” in the DEVICE file (#3.5) can be opened without user interaction:
>S IOP=“RXPRINTER” D ^%ZIS Q:POP

Example 5
When setting the IOP variable, you can include the right margin:
>S IOP=ION_”;”_IOM or S IOP=“;120”

Or:
>S IOP=“RXPRINTER;120”

In this example, ION is the local variable that contains the name of the device to be opened and the IOM variable contains the value of the desired right margin.
Example 6
The IOP variable can be set to FORCED queuing by starting the string with “Q”:
>SET IOP=“Q;”_ION_”;”_IOM ... etc.

In order to force queuing and prompt the user for a device:
>SET IOP=“Q” D ^%ZIS Q:POP

Example 7
A spool document name can be passed to the Device Handler:
>S IOP=DEVNAM_”;”_IO(“DOC”) D ^%ZIS Q:POP

Or:
>S IOP=“SPOOL;”_IO(“DOC”)

Or:
>S IOP=DEVNAM_”;”_IOST_”;”_IO(“DOC”)

Or:
>S IOP=“SPOOL;P-OTHER;MYDOC”
[image: Note]	REF: For more information, see the “Spooling” section in the Kernel Systems Management Guide.
In this example, DEVNAM contains the name of the device to be opened. IO(“DOC”) contains the spool document name, and IOST contains the name of the desired subtype. “SPOOL” is the actual name of a device entry that corresponds to the spool device, “P-OTHER” is the desired subtype, and “MYDOC” is the name of the spool document.
Example 8
Finally, the IOP variable can be used to select a device by the device’s Internal Entry Number (IEN). To select a device with an IEN of 202, set IOP to an accent grave character followed by the IEN value of 202:
>S IOP=“`202” D ^%ZIS

[bookmark: _Toc458598861]Multiple Devices and ^%ZIS
Beyond the home device, the ^%ZIS API is not designed to open more than one additional device at a time.
For interactive users, the home device should already be open and defined in the Kernel environment. ^%ZIS should only be used to open one additional device at a time for interactive users. For a task, you can use ^%ZIS to open one additional device beyond the task’s assigned device.
Beginning with Kernel 8.0, there are three APIs to support using more than one additional device simultaneously:
OPEN^%ZISUTL(): Open Device with Handle
USE^%ZISUTL(): Use Device Given a Handle
CLOSE^%ZISUTL(): Close Device with Handle
These “multiple device” APIs are described later in this section.
[bookmark: _Toc458598862]Host Files and ^%ZIS
Although it is possible to use the ^%ZIS API to manipulate Host files, the Host file API (in ^%ZISH) offers more robust Host file functionality.
[image: Note]	REF: For more information on using the Host file API, see the “Host Files” section.
[bookmark: _Toc458598863]HLP1^%ZIS: Display Brief Device Help
Reference Type:	Supported
Category:	Device Handler
ICR #:	10086
Description:	This API displays brief help about device selection. There are no input parameters.
While invoking the Help Processor involves a straightforward call in the production account (the EN^XQH or EN1^XQH calls), it is a more complex matter in the Manager account where ^%ZIS resides. Hence, this call is provided.
Format:	HLP1^%ZIS
Input Parameters:	none.
Output:	none.

[bookmark: _Toc458598864]HLP2^%ZIS: Display Device Help Frames
[bookmark: _Ref36968569][bookmark: _Ref36968600][bookmark: _Ref36968645]Reference Type:	Supported
Category:	Device Handler
ICR #:	10086
Description:	This API allows you to display extended help about device selection. The Help Processor is invoked to display a series of help frames. There are no input parameters.
While invoking the Help Processor involves a straightforward call in the production account (the ACTION^XQH4(): Print Help Frame Tree or EN1^XQH: Display Help Frames APIs), it is a more complex matter in the Manager account where ^%ZIS resides. Hence, this call is provided.
Format:	HLP2^%ZIS
Input Parameters:	none.
Output:	none.
[bookmark: _Ref421609204]
[bookmark: _Toc458598865][bookmark: _Ref458603848]HOME^%ZIS: Reset Home Device IO Variables
Reference Type:	Supported
Category:	Device Handler
ICR #:	10086
Description:	This API sets the key IO variables to match the characteristics of the home device. The HOME^%ZIS API performs the same function as the obsolete CURRENT^%ZIS API. Developers have been advised that Kernel 8.0 is the last version of Kernel to support CURRENT^%ZIS.
HOME^%ZIS, beyond updating the set of variables for the home device, also updates the active right margin system setting for the home device, by executing ^%ZOSF(“RM”) based on the home device’s IOM value.
Format:	HOME^%ZIS
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	none.
Output Variables:	IO:	Device $I.
	IO(0):	Home device at the time of the call to ^%ZIS.
	IOBS:	Backspace code.
	IOF:	Form Feed code.
	IOM:	Right Margin length.
	ION:	Name of last selected input/output device from the DEVICE file (#3.5).
	IOS:	Internal Entry Number (IEN) of last selected input/output device from the DEVICE file (#3.5).
	IOSL:	Screen or page length.
	IOST:	Subtype of the selected device.
	IOST(0):	Subtype Internal Entry Number (IEN).
	IOT:	Type of device, such as TRM for terminal.
	IOXY:	Executable M code for cursor control.

[bookmark: _Toc458598866]$$REWIND^%ZIS(): Rewind Devices
[bookmark: _Ref59250918][bookmark: _Ref59348188]Reference Type:	Supported
Category:	Device Handler
ICR #:	10086
Description:	This extrinsic function rewinds special devices. These devices may be of the following types:
Magtape
Sequential Disk Processor
Host File Server
Format:	$$REWIND^%ZIS(io,iot,iopar)
Input Parameters:	io:	(required) The $IO representation of the device to be rewound, in the same format as IO, which is returned by ^%ZIS.
	iot:	(required) The “Type” of device to be rewound, in the same format as IOT, which is returned by ^%ZIS.
	iopar:	(required) The “Open Parameters” for the selected device, in the same format as IOPAR which is returned by ^%ZIS.
Output:	returns:	Returns:
1—Device was rewound successfully.
0—Device was not rewound successfully.

[bookmark: _Toc458598867]Example
>S Y=$$REWIND^%ZIS(IO,IOT,IOPAR)

[bookmark: _Toc458598868]^%ZISC: Close Device
Reference Type:	Supported
Category:	Device Handler
ICR #:	10089
Description:	This API closes a device opened with a call to the ^%ZIS API and restores the home device.
Do not issue a form feed when calling ^%ZISC. The Device Handler takes care of issuing a form feed if necessary (i.e., if $Y>0, indicating the cursor or print head is not at the top of form). To prevent the Device Handler from issuing this form feed, as appropriate for continuous printing of labels, for example, define the IONOFF input variable before calling ^%ZISC.
Before the ^%ZISC API existed, close logic was executed with the command X ^%ZIS(“C”). Developers have been advised that X ^%ZIS(“C”) is no longer supported and that the ^%ZISC API should be used instead. In the current version of Kernel, the ^%ZIS(“C”) node only holds a call to the ^%ZISC routine. Kernel versions beyond Kernel 8.0 will not export ^%ZIS(“C”).
Format:	^%ZISC
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	See ^%ZIS:	For a list of input variables, see the normal device output variables from the ^%ZIS: Standard Device Call API.
Output Variables:	See ^%ZIS:	For a list of output variables, see the normal device output variables from the ^%ZIS: Standard Device Call API.

[bookmark: _Toc458598869]Example
>D ^%ZISC

[bookmark: _Ref38248121][bookmark: _Ref59250954][bookmark: _Ref36527618][bookmark: _Ref36527700][bookmark: _Toc458598870]PKILL^%ZISP: Kill Special Printer Variables
[bookmark: _Ref59347849]Reference Type:	Supported
Category:	Device Handler
ICR #:	3172
Description:	This API KILLs printer-specific Device Handler variables. All output parameters defined by the PSET^%ZISP: Set Up Special Printer Variables API are KILLed.
Format:	PKILL^%ZISP
Input Parameters:	none.
Output:	none.

[bookmark: _Toc458598871]PSET^%ZISP: Set Up Special Printer Variables
Reference Type:	Supported
Category:	Device Handler
ICR #:	3172
Description:	This API defines a set of variables that toggle special printer modes. The corresponding fields in the TERMINAL TYPE file (#3.2) entry for the terminal type in question must be correctly set up, however; that is where PSET^%ZISP retrieves its output values.
Format:	PSET^%ZISP
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	IOST(0):	(required) Pointer to the TERMINAL TYPE entry for the printer in question, as set up by the Device Handler.
Output Variables:	IOBAROFF:	Bar code off.
	IOBARON:	Bar code on.
	IOCLROFF:	Color off.
	IOCLRON:	Color on.
	IODPLXL:	Duplex, long edge binding.
	IODPLXS:	Duplex, short edge binding.
	IOITLOFF:	Italics off.
	IOITLON:	Italics on.
	IOSMPLX:	Simplex.
	IOSPROFF:	Superscript off.
	IOSPRON:	Superscript on.
	IOSUBOFF:	Subscript off.
	IOSUBON:	Subscript on.

[bookmark: _Toc458598872]Example
To toggle a printer mode with one of PSET^%ZISP’s output variables, WRITE the variable to the printer using indirection, as follows:
>D PSET^%ZISP
>W @IOBARON

[bookmark: _Ref36527469][bookmark: _Toc458598873]ENDR^%ZISS: Set Up Specific Screen Handling Variables
[bookmark: _Ref36527279][bookmark: _Ref36527441][bookmark: _Ref36528711]Reference Type:	Supported
Category:	Device Handler
ICR #:	10088
Description:	This API sets up specific screen-handling variables and other terminal type attributes. Unlike the ENS^%ZISS: Set Up Screen-handling Variables API, which sets up all screen-handling variables, you specify which ones to set up with ENDR^%ZISS.
Format:	ENDR^%ZISS
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	IOST(0):	(required) Internal entry number (IEN) of the selected device’s subtype as recorded in the TERMINAL TYPE file (#3.2).
	X:	(required) Use this input variable to select the ENS^%ZISS screen-handling variables to define. It should be a semicolon-delimited list of the variables to define. For example:
>S X=“IORVON;IORVOFF;IOUON;IOUOFF”
If more than 255 characters are needed to define the X variable, make two or more calls to ENDR^%ZISS, each with a partial list of the variable settings for X.
	%ZIS:	(optional) If you define %ZIS=“I”, the output array IOIS is created. The format of IOIS is as follows:
IOIS(ASCII value of first character followed by remaining characters)=output variable
For example:
IOIS(“27[C”)=IOCUF
Not every screen-handling variable has a corresponding IOIS node. Also, only the nodes in the IOIS array that correspond to screen-handling variables specified in the X input variable are created.
Output Variables:	See ENS^%ZISS:	A subset of the output variables returned by ENS^%ZISS: Set Up Screen-handling Variables API are returned by ENDR^%ZISS, depending on what screen-handling variables are requested in the x input variable.

[bookmark: _Toc458598874]ENS^%ZISS: Set Up Screen-handling Variables
Reference Type:	Supported
Category:	Device Handler
ICR #:	10088
Description:	This is a screen management API. It sets up screen handling variables and other terminal type attributes.
Format:	ENS^%ZISS
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	IOST(0):	(required) Internal entry number of the selected device’s subtype as recorded in the TERMINAL TYPE file (#3.2).
	%ZIS:	(optional) If you define %ZIS = “I”, the output array IOIS (mapping escape codes sent by input keys to input keys) is created.
[image: Note]	REF: For a description of the IOIS nodes created, see the “Output Variables” section below.
[image: Note]	NOTE: Not all characteristics are possible on all terminal types for all output variables. The IOEFLD and IOSTBM variables are used with indirection. Also, IOSTBM requires the setting of IOTM and IOBM as input variables for the top and bottom margins.
Output Variables:	IOARM0:	Auto repeat mode off.
	IOARM1:	Auto repeat mode on.
	IOAWM0:	Auto wrap mode off.
	IOAWM1:	Auto wrap mode on.
	IOBOFF:	Blink off.
	IOBON:	Blink on.
	IOCOMMA:	Keypad’s comma.
	IOCUB:	Cursor backward.
	IOCUD:	Cursor down.
	IOCUF:	Cursor forward.
	IOCUON:	Cursor on.
	IOCUOFF:	Cursor off.
	IOCUU:	Cursor up.
	IODCH:	Delete character.
	IODHLB:	Double-high/wide bottom.
	IODHLT:	Double-high/wide top.
	IODL:	Delete line.
	IODWl:	Doublewide length.
	IOECH:	Erase character.
	IOEDALL:	Erase in display entire page.
	IOEDBOP:	Erase in display from beginning of page to cursor.
	IOEDEOP:	Erase in display from cursor to end of page.
	IOEFLD:	Erase field (*use through indirection, such as, W @IOEFLD).
	IOELALL:	Erase in line entire line.
	IOELBOL:	Erase in line from beginning of line to cursor.
	IOELEOL:	Erase in line from cursor to end of line.
	IOENTER:	Keypad’s Enter.
	IOFIND:	Find key.
	IOHDWN:	Half down.
	IOHOME:	Home cursor.
	IOHTS:	Horizontal tab set.
	IOHUP:	Half up.
	IOICH:	Insert character.
	IOIL:	Insert line.
	IOIND:	Index.
	IOINHI:	High intensity.
	IOINLOW:	Low intensity.
	IOINORM:	Normal intensity.
	IOINSERT:	Insert key.
	IOKP0:	Keypad 0.
	IOKP1:	Keypad 1.
	IOKP2:	Keypad 2.
	IOKP3:	Keypad 3.
	IOKP4:	Keypad 4.
	IOKP5:	Keypad 5.
	IOKP6:	Keypad 6.
	IOKP7:	Keypad 7.
	IOKP8:	Keypad 8.
	IOKP9:	Keypad 9.
	IOIRM0:	Replace mode.
	IOIRM1:	Insert mode.
	IOKPAM:	Keypad application mode on.
	IOKPNM:	Keypad numeric mode on.
	IOMC:	Print screen.
	IOMINUS:	Keypad’s minus.
	IONEL:	Next line.
	IONEXTSC:	Next screen.
	IOPERIOD:	Keypad’s period.
	IOPF1:	Function key 1.
	IOPF2:	Function key 2.
	IOPF3:	Function key 3.
	IOPF4:	Function key 4.
	IOPREVSC:	Previous screen.
	IOPROP:	Proportional spacing.
	IOPTCH10:	10 Pitch.
	IOPTCH12:	12 Pitch.
	IOPTCH16:	16 Pitch.
	IORC:	Restore cursor.
	IOREMOVE:	Keypad’s Remove.
	IORESET:	Reset.
	IORI:	Reverse index.
	IORLF:	Reverse line feed.
	IORVOFF:	Reverse video off.
	IORVON:	Reverse video on.
	IOSC:	Save cursor.
	IOSGR0:	Turn off select graphic rendition attributes.
	IOSELECT:	Keypad’s Select.
	IOSTBM:	Set top and bottom margins (*use through indirection, such as, W @IOSTBM; IOTM and IOBM must be defined as the top and bottom margins).
	IOSWL:	Singlewide length.
	IOTBC:	Tab clear.
	IOTBCALL:	Clear all tabs.
	IOUOFF:	Underline off.
	IOUON:	Underline on.
	IOIS:	This array is created as follows:
IOIS(escape_code)=KEYNAME
Where escape_code is the escape code generated by pressing the key KEYNAME on the selected terminal, and KEYNAME can be one of the following:
COMMA
DO
ENTER
FIND
HELP
INSERT
IOCUB
IOCUD
IOCUF
IOCUU
KP0
KP1
KP2
KP3
KP4
KP5
KP6
KP7
KP8
KP9
MINUS
NEXTSCRN
PERIOD
PF1
PF2
PF3
PF4
PREVSCRN
REMOVE
SELECT

[bookmark: _Toc458598875]GKILL^%ZISS: KILL Graphic Variables
[bookmark: _Ref59346833]Reference Type:	Supported
Category:	Device Handler
ICR #:	10088
Description:	This is a screen management API. It KILLs graphic variables used in screen handling. All output parameters set up by the GSET^%ZISS: Set Up Graphic Variables API are KILLed.
Format:	GKILL^%ZISS
Input Parameters:	none.
Output:	none.

[bookmark: _Toc458598876]GSET^%ZISS: Set Up Graphic Variables
Reference Type:	Supported
Category:	Device Handler
ICR #:	10088
Description:	This is a screen management API. It sets up graphic variables for screen handling. Graphics on/off is a toggle that remaps characters for use as graphics. Not all terminals need remapping, since they already have the high range of ASCII codes.
Format:	GSET^%ZISS
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	IOST(0):	(required) Terminal Type.
Output Variables:	IOBLC:	Bottom left corner.
	IOBRC:	Bottom right corner.
	IOBT:	Bottom “T”.
	IOG1:	Graphics on.
	IOG0:	Graphics off.
	IOHL:	Horizontal line.
	IOLT:	Left “T”.
	IOMT:	Middle “T”, or cross hair (“+”).
	IORT:	Right “T”.
	IOTLC:	Top left corner.
	IOTRC:	Top right corner.
	IOTT:	Top “T”.
	IOVL:	Vertical line.

[bookmark: _Toc458598877]Example
[bookmark: _Toc200269962][bookmark: _Toc458599864]Figure 25: GSET^%ZISS API—Example
; write a horizontal line
D GSET^%ZISS
W IOG1
F I=1:1:20 W IOHL
W IOG0
D GKILL^%ZISS

[bookmark: _Toc458598878]KILL^%ZISS: KILL Screen Handling Variables
[bookmark: _Ref97637179]Reference Type:	Supported
Category:	Device Handler
ICR #:	10088
Description:	This is a screen management API. It KILLs graphic variables used in screen handling. Only the output parameters set up by the ENS^%ZISS: Set Up Screen-handling Variables and ENDR^%ZISS: Set Up Specific Screen Handling Variables APIs are KILLed by this call.
Format:	KILL^%ZISS
Input Parameters:	none.
Output:	none.

[bookmark: _Ref458598401][bookmark: _Toc458598879]CALL^%ZISTCP: Make TCP/IP Connection (Remote System)
[bookmark: _Ref38247838][bookmark: _Ref38247860][bookmark: _Ref61679636][bookmark: _Ref61679637]Reference Type:	Supported
Category:	Device Handler
ICR #:	2118
Description:	This API makes a TCP/IP connection to a remote system.
[image: Note]	NOTE: This API is IPv6 compliant.
Format:	CALL^%ZISTCP
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	IPADDRESS:	(required) This is the Internet Protocol (IP) address of the Host system to which it connects. It must be in the IPv4 format of four numbers separated by dots (e.g., 99.99.9.999) or IPv6 format (e.g., fe80::206a:b21b:fbd5:c93).
	SOCKET:	(required) This is the socket to connect to on the remote host. It is an integer from 1-65535. Values below 5000 are reserved for standard Internet services (e.g., SMTP mail).
	TIMEOUT:	(optional) This is the timeout to apply to the Open.
Output Variables:	IO:	If the connection is made then the IO variable holds the implementation value that references the connection.
	POP:	This output variable reports the connection status:
Successful—A value of zero (0) means the connection was successful.
Unsuccessful—A positive value means the connection failed.
It works the same as a call to the ^%ZIS: Standard Device Call API.

[bookmark: _Ref458598634][bookmark: _Toc458598880]CLOSE^%ZISTCP: Close TCP/IP Connection (Remote System)
[bookmark: _Ref59343582][bookmark: _Ref36527542][bookmark: _Ref36527686]Reference Type:	Supported
Category:	Device Handler
ICR #:	2118
Description:	This API closes the connection opened with the CALL^%ZISTCP: Make TCP/IP Connection (Remote System) API. It works like a call to the ^%ZISC: Close Device API.
[image: Note]	NOTE: This API is IPv6 compliant.
Format:	CLOSE^%ZISTCP
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	See CALL^%ZISTCP:	For a list of input variables, see CALL^%ZISTCP: Make TCP/IP Connection (Remote System) API.
Output Variables:	See CALL^%ZISTCP:	For a list of output variables, see CALL^%ZISTCP: Make TCP/IP Connection (Remote System) API.

[bookmark: _Toc458598881]CLOSE^%ZISUTL(): Close Device with Handle
[bookmark: _Ref97637177][bookmark: _Ref97637178][bookmark: _Ref97637180]Reference Type:	Supported
Category:	Device Handler
ICR #:	2119
Description:	This API closes a device opened with the OPEN^%ZISUTL(): Open Device with Handle API. When you close a device with CLOSE^%ZISUTL, the IO variables are set back to the home device’s and the home device is made the current device. One of three functions that support using multiple devices at the same time.
[image: Note]	REF: See also OPEN^%ZISUTL(): Open Device with Handle and USE^%ZISUTL(): Use Device Given a Handle APIs.
Format:	CLOSE^%ZISUTL(handle)
Input Parameters:	handle:	(required) The handle of a device opened with the OPEN^%ZISUTL(): Open Device with Handle API.
Output:	none.

[bookmark: _Toc458598882]OPEN^%ZISUTL(): Open Device with Handle
Reference Type:	Supported
Category:	Device Handler
ICR #:	2119
Description:	Use this API when you expect to be using multiple output devices. This API, as well as its two companion APIs: RMDEV^%ZISUTL(): Delete Data Given a Handle and CLOSE^%ZISUTL(): Close Device with Handle, makes use of handles to refer to a device. A handle is a unique string identifying the device.
The three ^%ZISUTL APIs are essentially wrappers around the ^%ZIS API. They provide enhanced management of IO variables and the current device, especially when working with multiple open devices. One of three functions that support using multiple devices at the same time.
[image: Note]	REF: See also RMDEV^%ZISUTL(): Delete Data Given a Handle and CLOSE^%ZISUTL(): Close Device with Handle APIs.
Format:	OPEN^%ZISUTL(handle[,valiop][,.valzis])
Input Parameters:	handle:	(required) A unique FREE TEXT name to associate with a device you want to open.
	valiop:	(optional) Output device specification, in the same format as the IOP input variable for the ^%ZIS: Standard Device Call API. The one exception to this is passing a value of NULL; this is like leaving IOP undefined. With ^%ZIS, on the other hand, setting IOP to NULL specifies the home device. To request the home device, pass a value of “HOME” instead.
	.valzis:	(optional) Input specification array, in the same format (and with the same meanings) as the %ZIS input specification array for the ^%ZIS: Standard Device Call API. Must be passed by reference.
[image: Note]	REF: For more information, see the ^%ZIS function documentation.
Output Variables:	IOF:	OPEN^%ZISUTL returns all the same output variables as the ^%ZIS: Standard Device Call API. OPEN^%ZISUTL serves as a “wrapper” around the ^%ZIS: Standard Device Call API, providing additional management of IO output variables that ^%ZIS does not (principally to support opening multiple devices simultaneously).
[image: Note]	REF: For more information on these variables, see the ^%ZIS documentation.
	IOM
	IOSL
	IO
	IO(0)
	IO(“Q”)
	IO(“S”)
	IO(“DOC”)
	IO(“SPOOL”)
	IO(“ZIO”)
	IO(“HFSIO”)
	IO(1,$I)
	IOST
	IOST(0)
	IOT
	ION
	IOBS
	IOPAR
	IOUPAR
	IOS
	IOHG
	IOXY
	POP

[bookmark: _Toc458598883]Example
[bookmark: _Toc200269963][bookmark: _Toc458599865]Figure 26: OPEN^%ZISUTL API—Example
ZXGTMP ; ISC-SF/doc %ZISUTL sample ;11-oct-94
 ;;1.0;;
EN ;
 K A6AZIS S A6AZIS(“A”)=“Enter the printer to output first 40 chars in each line: ”
 D OPEN^%ZISUTL(“PRT1”,“”,.A6AZIS) Q:POP
 K A6AZIS S A6AZIS(“A”)=“Enter the printer to output chars 41
to end of line: ”
 D OPEN^%ZISUTL(“PRT2”,“”,.A6AZIS) I POP D CLOSE^%ZISUTL(“PRT1”) Q
 S I=“” F S I=$O(^TMP($J,“DOC”,I)) Q:I’]“” S X=^(I) D
 .D USE^%ZISUTL(“PRT1”) U IO W $E(X,1,40),!
 .D USE^%ZISUTL(“PRT2”) U IO W $E(X,41,$L(X)),!
 D CLOSE^%ZISUTL(“PRT1”),CLOSE^%ZISUTL(“PRT2”)
 Q

[bookmark: _Ref38247802][bookmark: _Ref38247881][bookmark: _Ref61679635][bookmark: _Ref61679638][bookmark: _Ref36527597][bookmark: _Toc458598884]RMDEV^%ZISUTL(): Delete Data Given a Handle
[bookmark: _Ref59252442]Reference Type:	Supported
Category:	Device Handler
ICR #:	2119
Description:	This API deletes the data associated with the handle. It does not change any of the IO* variables.
Format:	RMDEV^%ZISUTL(handle)
Input Parameters:	handle:	(required) A unique Free Text name to associate with a device that you want to delete.
Output:	none.

[bookmark: _Toc458598885]SAVDEV^%ZISUTL(): Save Data Given a Handle
[bookmark: _Ref59343566][bookmark: _Ref59343761]Reference Type:	Supported
Category:	Device Handler
ICR #:	2119
Description:	This API saves the current device IO* variables under the handle name.
Format:	SAVDEV^%ZISUTL(handle)
Input Parameters:	handle:	(required) A unique Free Text name to associate with a device that you want to save.
Output:	none.

[bookmark: _Toc458598886]USE^%ZISUTL(): Use Device Given a Handle
[bookmark: _Ref20100559][bookmark: _Ref20101057][bookmark: _Ref20101597]Reference Type:	Supported
Category:	Device Handler
ICR #:	2119
Description:	This API restores the IO variables for a device saved with the OPEN^%ZISUTL(): Open Device with Handle or SAVDEV^%ZISUTL(): Save Data Given a Handle APIs. It then does a USE of the device if it is open. The same as:
>DO USE^%ZISUTL(handle) U IO
[bookmark: _Toc97636623][image: Note]	REF: See also OPEN^%ZISUTL(): Open Device with Handle and CALL^%ZISTCP: Make TCP/IP Connection (Remote System) APIs.
Format:	USE^%ZISUTL(handle)
Input Parameters:	handle:	(required) A unique Free Text name to associate with the device that was opened with the OPEN^%ZISUTL(): Open Device with Handle API.
Output Variables:	IO*:	Standard IO variables.

[bookmark: _Toc458598887]Special Device Issues
This section discusses the following special devices and device issues:
Form Feeds
Resources
[bookmark: _Ref20101038][bookmark: _Ref20101555][bookmark: _Toc458598888]Form Feeds
The Device Handler has a method for issuing a form feed at the point when it closes the device. The purpose for this utility is to eliminate unnecessary page feeds at the beginning or end of a report. Extra page feeds result when an application issues its own form feed at the beginning of a report and then VA FileMan issues another pair, one at the beginning and one at the end. An additional problem is laser printers that also generate an extra form feed to clear the print buffer.
When closing a device, ^%ZISC checks the value of $Y to determine the cursor or print head’s vertical line location. If $Y is greater than zero, the Device Handler WRITEs a form feed (W @IOF) to reset the value of $Y to zero. Therefore, applications should not issue any form feeds when calling the Device Handler to open or close a device.
VA FileMan has already removed its initial form feed. For the benefit of those who use VA FileMan without Kernel and its Device Handler, VA FileMan continues to issue a form feed at the end when the device is closed. Since this procedure resets the $Y special variable to zero, the Device Handler does not send an additional form feed when VA FileMan is used with Kernel.
Device Handler also checks for the existence of the IONOFF variable when closing the device. Thus, application developers can use the IONOFF variable to suppress form feeds by setting it just before calling ^%ZISC: Close Device API to close the device.
[bookmark: _Toc458598889]How to Check if Current Device is a CRT
You should use the following code to test if the current device is a CRT (if it returns false, the current device is a CRT; if it returns true, you should assume that the current device is a printer):
>I $E(IOST,1,2)’=“C-”
[bookmark: _Toc458598890]Guidelines for Form Issuing Form Feeds
In most cases, a form feed before the first page is only needed for reports to CRTs. When directing reports to a printer, do not issue an initial form feed before the first page; it is not needed. However, you should print the heading (if used) on the first page. You do need to issue a form feed between pages, regardless of whether the report is directed to a CRT or to a printer.
The following summarizes the current guidelines for issuing form feeds for CRTs and printers:
CRTs
1. Issue the initial form feed before the first page of a report as before.
Print a heading on the first page if headings are used.
Print the lines of the report while checking the value of the vertical position ($Y).
If there is no more data to process, then GO TO STEP #9.
If the value of the vertical position plus a predetermined number to serve as a buffer exceeds the screen length, prompt the user to press <Enter> to continue.
A time-out at the READ or a caret (“^”) response to the continue prompt represents a request to terminate the display. GO TO STEP 9.
If the user presses <Enter> in response to the prompt, issue a form feed followed by a heading (if used).
GO TO STEP 3.
The application should terminate the display of the report.
END.
Printers
1. Do not issue a form feed before the first page of a report.
Print a heading on the first page if headings are used.
Print the lines of the report while checking the value of the vertical position ($Y).
If there is no more data to process, then GO TO STEP 7.
If the value of the vertical position plus a predetermined number to serve as a buffer exceeds the page line limit, issue a form feed.
GO TO STEP 3.
The application should terminate the printout of the report.
END.
The sample routines Figure 27 and Figure 28 provide two examples of how to output a report following current guidelines for form feeds. In the examples, a series of three vertical dots indicates omitted information.
[bookmark: _Ref410971290][bookmark: _Toc200269964][bookmark: _Toc458599866]Figure 27: Device Handler—Issuing form feeds following current guidelines
ROU ;SAMPLE ROUTINE
 S IOP=“DEVNAM” D ^%ZIS G EXIT:POP
 I $D(IO(“Q”)) S ZTRTN=“DQ^ROU”,ZTDESC=“SAMPLE REPORT” D ^%ZTLOAD,HOME^%ZIS Q
.
.
.
DQ ;SAMPLE REPORT
 S (END,PAGE)=0
 U IO D @(“HDR”_(2-($E(IOST,1,2)=“C-”))) F Q:END D
 .W !,....
 .W !,...
 .D HDR:$Y+5>IOSL Q
 .
 .
 .
 D ^%ZISC Q
HDR ;SAMPLE HEADER
 I $E(IOST,1,2)=“C-” W !,“Press RETURN to continue or ‘^’ to exit: ” R X:DTIME S END=‘$T!(X=“^”) Q:END
HDR1 W @IOF
HDR2 S PAGE=PAGE+1 W ?20,“SAMPLE HEADING”,?(IOM-10),“PAGE: ”,$J(PAGE,3)

[bookmark: _Ref410971301][bookmark: _Toc200269965][bookmark: _Toc458599867]Figure 28: Device Handler—Alternate approach following current guidelines
ROU ;SAMPLE ROUTINE
 S IOP=“DEVNAM” D ^%ZIS G EXIT:POP
 I $D(IO(“Q”)) S ZTRTN=“DQ^ROU”,ZTDESC=“SAMPLE REPORT” D ^%ZTLOAD,HOME^%ZIS Q
.
.
.
DQ ;SAMPLE REPORT
 S (END,PAGE)=0
 U IO F Q:END D
 .D HDR:$Y+5>IOSL Q
 .W !,....
 .W !,...
 .
 .
 .
 D ^%ZISC Q
HDR ;SAMPLE HEADER
 I PAGE,$E(IOST,1,2)=“C-” W !,“Press RETURN to continue or ‘^’ to exit: ” R X:DTIME S END=‘$T!(X=“^”) Q:END
HDR1 W:’($E(IOST,1,2)’=“C-”&’PAGE) @IOF
HDR2 S PAGE=PAGE+1 W ?20,“SAMPLE HEADING”,?(IOM-10),“PAGE: ”,$J(PAGE,3)

[bookmark: _Toc458598891]Resources
[bookmark: _Ref282581397][bookmark: _Ref282581424][bookmark: _Toc458598892]Queuing to a Resource
You can only use resources through calls to ^%ZTLOAD. They cannot be directly manipulated (except by TaskMan). To use a resource, you need to set the ZTIO input variable to the name of the resource. For example:
>S ZTIO=“ZZRES”,ZTRTN=“tag^routine”,ZTDTH=$H
>S ZTDESC=“First task in a series”
>D ^%ZTLOAD

Since the name of the resource is part of the call, application developers must include installation procedures so that system administrators are able to create the resources using the correct names and other attributes.
You can optionally use a SYNC FLAG when queuing to a Resource type device. Using a SYNC FLAG helps to ensure that sequential tasks queued to a resource only run if the preceding task in the series has completed successfully.
[image: Note]	REF: For more information on using SYNC FLAGs, see the “TaskMan: Developer Tools” section.

[bookmark: _Ref303842664][bookmark: _Toc458598893]Domain Name Service (DNS): Developer Tools
[bookmark: _Toc458598894]Application Programming Interface (API)
Several APIs are available for developers to work with Domain Name Service (DNS). These APIs are described below.
[bookmark: _Ref413140902][bookmark: _Toc458598895]$$ADDRESS^XLFNSLK(): Convert Domain Name to IP Addresses
Reference Type:	Supported
Category:	Domain Name Service (DNS)
ICR #:	3056
Description:	This extrinsic function calls the Domain Name Service (DNS) to convert a domain name into its IP addresses. The IP addresses of the DNS being called are in the DNS IP field (#8989.3,51) in the KERNEL SYSTEM PARAMETERS file (#8989.3).
[image: Note]	NOTE: This API is IPv6 compliant.
Format:	$$ADDRESS^XLFNSLK(domain_name[,type])
Input Parameters:	domain_name:	(required) This is the fully qualified domain name (e.g., FORUM.VA.GOV).
	type:	(optional) This input parameter is from the set A: IPv4 address (the default), AAAA: IPv6 address, CNAME: alias.
Output:	returns:	Returns a comma-separated list of IP addresses that are associated with the input domain.

[bookmark: _Toc458598896]Examples
>S X=$$ADDRESS^XLFNSLK(“FORUM.VA.GOV”)

>W X
99.9.99.999

>S X=$$ADDRESS^XLFNSLK(“www.google.com”,“AAAA”)

>W X
2607:F8B0:400E:0C02:0000:0000:0000:0067

[bookmark: _Ref458598073][bookmark: _Toc458598897]MAIL^XLFNSLK(): Get IP Addresses for a Domain Name
Reference Type:	Supported
Category:	Domain Name Service (DNS)
ICR #:	3056
Description:	This API calls the Domain Name Service (DNS) to get the MX records for a domain name with its IP addresses.
[image: Note]	NOTE: This API is IPv6 compliant.
Format:	MAIL^XLFNSLK(.return,domain_name)
Input Parameters:	.return:	(required) A local variable passed by reference to hold the return array.
	domain_name:	(required) This parameter is a fully qualified domain name (e.g., FORUM.VA.GOV).
Output Parameters:	.return:	Returns data in the array passed in by reference. The data is subscripted by priority. The domain_name parameter is a fully qualified domain name (e.g., FORUM.VA.GOV).
[bookmark: _Toc458598898]Examples
IPv4 Example
>K ZX D MAIL^XLFNSLK(.ZX,“ISC-SF.MED.VA.GOV”) ZW ZX
ZX=2
ZX(5)=a2.ISC-SF.MED.VA.GOV.^99.9.99.99
ZX(10)=a1.ISC-SF.MED.VA.GOV.^99.9.99.99
IPv6 Example
>K ZX D MAIL^XLFNSLK(.ZX,"GMAIL.COM") ZW ZX
ZX=5
ZX(5)="gmail-smtp-in.l.google.COM.^2607:F8B0:4001:0C0E:0000:0000:0000:001A"
ZX(10)="alt1.gmail-smtp-in.l.google.COM.^2607:F8B0:400D:0C0C:0000:0000:0000:001B"
ZX(20)="alt2.gmail-smtp-in.l.google.COM.^2607:F8B0:400C:0C0A:0000:0000:0000:001B"
ZX(30)="alt3.gmail-smtp-in.l.google.COM.^2A00:1450:400C:0C08:0000:0000:0000:001B"
ZX(40)="alt4.gmail-smtp-in.l.google.COM.^2A00:1450:400B:0C03:0000:0000:0000:001B"

Domain Name Service (DNS): Developer Tools

[bookmark: _Ref303842680][bookmark: _Toc458598899]Electronic Signatures: Developer Tools
[bookmark: _Toc458598900]Application Programming Interface (API)
Several APIs are available for developers to work with electronic signatures. These APIs are described below.
[bookmark: _Ref55627653][bookmark: _Toc458598901]^XUSESIG: Set Up Electronic Signature Code
Reference Type:	Controlled Subscription
Category:	Electronic Signatures
ICR #:	936
Description:	This API, when called from the top, allows the user to set up a personal electronic signature code. It is used within application code to allow the user immediate on-the-fly access to set up the electronic signature, rather than force the user to leave the application and enter a different option to do the same.
Format:	^XUSESIG
Input Parameters:	none.
Output:	none.

[bookmark: _Toc458598902]SIG^XUSESIG(): Verify Electronic Signature Code
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	10050
Description:	This API requests and verifies the electronic signature code of the current user.
Format:	SIG^XUSESIG(duz,x1)
Input Parameters:	duz:	(required) User number.
Output Parameters:	x1:	If the user entered the correct electronic signature code, the encrypted electronic signature code as stored in the NEW PERSON file (#200) is returned in x1. Otherwise, x1 is returned as NULL.
[bookmark: _Ref97637692][bookmark: _Ref97637695][bookmark: _Toc458598903]$$CHKSUM^XUSESIG1(): Build Checksum for Global Root
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	1557
Description:	This extrinsic function takes a global root ($name_value) and builds a checksum for all data in the root.
[image: Note]	NOTE: The flag input parameter is no longer used. Previously, It was used when there was more than one checksum algorithm.
Format:	$$CHKSUM^XUSESIG1($name_value[,flag])
Input Parameters:	$name_value:	(required) This is a global root as would be returned from $NAME.
	flag:	(obsolete) Not used at this time.
Output:	returns:	Returns the checksum for the global root.

[bookmark: _Toc458598904]$$CMP^XUSESIG1(): Compare Checksum to $Name_Value
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	1557
Description:	This extrinsic function compares the checksum passed in to the calculated value from the $NAME_VALUE. It Returns the following:
1—Match.
0—No match.
Format:	$$CMP^XUSESIG1(checksum,$name_value)
Input Parameters:	checksum:	(required) The output from the $$CHKSUM^XUSESIG1(): Build Checksum for Global Root API.
	$name_value:	(required) This is a global root as would be returned from $NAME.
Output:	returns:	Returns:
1—Match.
0—No match.

[bookmark: _Toc458598905]$$DE^XUSESIG1(): Decode String
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	1557
Description:	This extrinsic function decodes the input string using the checksum as the key.
Format:	$$DE^XUSESIG1(checksum,encoded_string)
Input Parameters:	checksum:	(required) The output from the $$CHKSUM^XUSESIG1(): Build Checksum for Global Root API.
	encoded_string:	(required) The output from the $$EN^XUSESIG1(): Encode ESBLOCK API.
Output:	returns:	Returns the decoded string.
[bookmark: _Ref55627834]
[bookmark: _Toc458598906]$$EN^XUSESIG1(): Encode ESBLOCK
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	1557
Description:	This extrinsic function encodes the ESBLOCK using the checksum as the key.
Format:	$$EN^XUSESIG1(checksum,esblock)
Input Parameters:	checksum:	(required) A number that reveals if the data in the root has been changed.
	esblock:	(optional) This should be the data returned from the $$ESBLOCK^XUSESIG1(): E-Sig Fields Required for Hash API.
[bookmark: _Ref55627466]Output:	returns:	Returns encoded ESBLOCK.
[bookmark: _Toc458598907]$$ESBLOCK^XUSESIG1(): E-Sig Fields Required for Hash
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	1557
Description:	This extrinsic function returns the set of fields from the NEW PERSON file (#200) that are needed as part of the hash for an acceptable electronic signature (E-Sig). These fields include the following:
E-Sig Block
E-Sig Title
Degree
Current Date/Time
If the Internal Entry Number (IEN) is not passed in, then it uses the DUZ.
Format:	$$ESBLOCK^XUSESIG1([ien])
Input Parameters:	ien:	(optional) This is the Internal Entry Number (IEN) of the NEW PERSON file (#200) entry for which data is requested. The default is to use the DUZ of the current user.
Output:	returns:	Returns the following fields:
E-Sig Block
E-Sig Title
Degree
Current Date/Time
[bookmark: _Ref61686880][bookmark: _Toc458598908]DE^XUSHSHP: Decrypt Data String
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	10045
Description:	This API decrypts a string encrypted by a call to the EN^XUSHSHP: ENCRYPT Data String API. Typically, this API would be used to decrypt strings when printing a document containing encrypted strings.
Format:	DE^XUSHSHP
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
1. Set all input variables.
1. Call the API.
Input Variables:	X:	(required) Encrypted string generated by a call to the EN^XUSHSHP: Encrypt Data String API.
	X1:	(required) Identification number used as the X1 input variable in the EN^XUSHSHP: Encrypt Data String API.
	X2:	(required) Number used as the X2 input variable in the EN^XUSHSHP: Encrypt Data String API.
Output Variables:	X:	The decrypted string (can be printed).
[bookmark: _Ref59348477][bookmark: _Ref59348545][bookmark: _Ref59348576]
[bookmark: _Toc458598909]EN^XUSHSHP: Encrypt Data String
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	10045
Description:	This API encrypts a string, and associates the encrypted string with an identification number and a document number. To decrypt the string, a call must be made to the DE^XUSHSHP: Decrypt Data String API, with the encrypted string, identification number, and document number as input variables. Typically, this API would be used to encrypt strings within a document.
Format:	EN^XUSHSHP
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
1. Set all input variables.
1. Call the API.
Input Variables:	X:	(required) The string to be encrypted (e.g., the contents of the SIGNATURE BLOCK PRINTED NAME field in the NEW PERSON file [#200]).
	X1:	(required) An identification number (e.g., DUZ).
	X2:	(required) A document number (or the number one).
Output Variables:	X:	Encrypted string.

[bookmark: _Ref61686529][bookmark: _Toc458598910]HASH^XUSHSHP: Hash Electronic Signature Code
Reference Type:	Supported
Category:	Electronic Signatures
ICR #:	10045
Description:	This API uses as input the text string (signature) entered by the user. The routine then hashes the string. The hashed result can then be used to verify the user’s identity by comparison with the stored electronic signature code (in the NEW PERSON file [#200]).
Format:	HASH^XUSHSHP
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
1. Set all input variables.
1. Call the API.
Input Variables:	X:	(required) Electronic Signature code as entered by the user.
Output Variables:	X:	Hashed form of the electronic signature code submitted as input to function.

Electronic Signatures: Developer Tools

[bookmark: _Ref20098019]
[bookmark: _Ref303842688][bookmark: _Toc458598911]Error Processing: Developer Tools
[bookmark: _Toc21752692][bookmark: _Toc152468216][bookmark: _Toc458598912]Direct Mode Utilities
These direct mode utilities can be run from Programmer mode. They are not, however, APIs; instead, they are provided for convenience.
[bookmark: _Toc458598913]>D ^XTER
You can call the ^XTER direct mode utility from Programmer mode. It is the same as using the Error Trap Display option.
[bookmark: _Toc458598914]>D ^XTERPUR
You can call the ^XTERPUR direct mode utility from Programmer mode. It is the same as using the Clean Error Trap option.
[bookmark: _Toc458598915]Application Programming Interface (API)
Several APIs are available for developers to work with error processing. These APIs are described below.
[bookmark: _Toc458598916]$$EC^%ZOSV: Get Error Code
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This extrinsic function returns the most recent error message recorded by the operating system.
Format:	$$EC^%ZOSV
Input Parameters:	none.
Output:	returns:	Returns the most recent error code/message.
[bookmark: _Toc458598917]Example
>S X=$$EC^%ZOSV

[bookmark: _Ref237844153][bookmark: _Toc458598918]^%ZTER: Kernel Standard Error Recording Routine
Reference Type:	Supported
Category:	Error Processing
ICR #:	1621
Description:	Kernel sets the Error Trap in ZU so that all user errors are trapped. In this context, when an error occurs, the optional %ZT input array is set to indicate the user’s location in the menu system. Then ^%ZTER is called to record this information in the ERROR LOG file (#3.075).
The application-specific Error Trap routine, when it is called as a result of an error, can then use the ^%ZTER API to record error information in the ERROR LOG file (#3.075) if it decides that it needs to. ^%ZTER gathers all available information such as local symbols and last global reference and stores that information in an entry in the ERROR LOG file (#3.075).
The simple example below shows an application that replaces the standard Kernel Error Trap with its own Error Trap. When an error occurs, and the application’s Error Trap routine is called, it calls $$EC^%ZOSV to see what type of error occurred. If an end-of-file (EOF) error occurs, it lets the application continue. Otherwise, it calls ^%ZTER to record the error, and then quits to terminate the application.
[image: Note]	NOTE: The recording mechanism of ^%ZTER also functions in the absence of an error. In a debug mode, this would enable a developer to record local symbols and global structures at predetermined places within code execution for later checking.
Format:	^%ZTER
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	%ZT:	(optional) The %ZT array can be used to identify a global node whose descendants should be recorded in the error log. When called within the standard Kernel Error Trap, %ZT is set to record the user’s location in the menu system:
>S %ZT(“^TMP($J)”)=“”
>D ^%ZTER
Output Variables:	%ZTERROR:	Calls to the error recorder always return this variable. It has the error name and error type as its first and second caret-delimited (“^”) pieces, for example, %ZTERROR=UNDEF^P. While the first piece is always defined since it is retrieved from the operating system, the second piece could be missing if unavailable from the ERROR MESSAGES file (#3.076).

[bookmark: _Toc458598919]Example
Figure 29 is an example of the Error Trap:
[bookmark: _Ref454198444][bookmark: _Toc200269966][bookmark: _Toc458599868]Figure 29: Error Trap—Example
ZXGP ; 999/NV - sample routine ; 23-FEB-95
 ;;1.0;;
 ;
FILEOPEN	;
 ;
 ; This code resets the error trap routine that is stepped to
 ; when an error occurs.
 ;
 N $ESTACK,$ETRAP S $ETRAP=“D ERR^ZXGP”
 ;
 ; Open a file, and read lines from it until End-of-file (EOF)
 ; is reached.
 ;
 K %ZIS S %ZIS=“”
 S %ZIS(“HFSNAME”)=“MYFILE.DAT”,%ZIS(“HFSMODE”)=“RW”
 D ^%ZIS Q:POP
 F U IO R LINE:DTIME U IO(0) W !,LINE
 ;
FILECLOS	;
 ;
 D ^%ZISC Q
 ;
ERR ;
 ; This is the application specific error trap.
 ;
 I $$EC^%ZOSV[“ENDOFILE” S $ECODE=“” G FILECLOS ; continue if EOF error
 D ^%ZTER ; record the error if anything other than EOF
 D UNWIND^%ZTER ; unwind the stack, return to caller.
 Q
 ;

[bookmark: _Toc458598920]$$APPERR^%ZTER: Set Application Error Name in Kernel Error Trap Log
Reference Type:	Supported
Category:	Error Processing
ICR #:	1621
Description:	This API was added with Kernel patch XU*8.0*431. It sets the "application error" text passed in as the error name in the Kernel error trap log (i.e., ERROR LOG file [#3.075]).
[image: Note]	NOTE: This API replaces the need to set $ZE before calling the ^%ZTER: Kernel Standard Error Recording Routine API:
Before:
>S $ZE=”application error” D ^%ZTER
After:
>D APPERROR^%ZTER(“application error”)
Format:	APPERROR^%ZTER("application error")
Input Parameters:	“application error”:	This input parameter is the "application error" name that gets displayed in the Kernel error trap log (i.e., ERROR LOG file [#3.075]).
Output:	returns:	Displays the "application error" text passed in as the error name in the Kernel error trap log (i.e., ERROR LOG file [#3.075]).
[bookmark: _Toc458598921]Example
>DO APPERROR^%ZTER("My Application Error")
Check the Kernel error trap and see if there is an error called "My Application Error".
[bookmark: _Toc458598922]$$NEWERR^%ZTER: Verify Support of Standard Error Trapping (Obsolete)
[image: Note]	NOTE: This API is obsolete, because all VA systems support the standard error trapping.
Reference Type:	Supported
Category:	Error Processing
ICR #:	1621
Description:	This extrinsic function reports if the current platform supports the standard error trapping. It returns:
1—If the standard error trapping is supported.
0—For all other cases.
Format:	$$NEWERR^%ZTER
Input Parameters:	none.
Output:	returns:	Returns:
1—If the standard error trapping is supported.
0—For all other cases.
[bookmark: _Toc458598923]UNWIND^%ZTER: Quit Back to Calling Routine
Reference Type:	Supported
Category:	Error Processing
ICR #:	1621
Description:	Use this API after a package Error Trap to quit back to the calling routine. Control returns to the level above the one that NEWED $ESTACK.
Format:	UNWIND^%ZTER
Input Parameters:	none.
Output:	none.
[bookmark: _Toc458598924]Example
Main:
[bookmark: _Toc200269967][bookmark: _Toc458599869]Figure 30: UNWIND^%ZTER API—Main code example
S X=1 D SUB
W X
Q SUB N $ESTACK,$ETRAP S $ETR=“D ERROR”
S X=1/0
Q

Usage:
[bookmark: _Toc200269968][bookmark: _Toc458599870]Figure 31: UNWIND^%ZTER API—Usage
D ^%ZTER ;This will record the error info and clear $ECODE
S ^XXX=“Incomplete record”
G UNWIND^%ZTER

Error Processing: Developer Tools

[bookmark: _Ref303842698][bookmark: _Toc458598925]Field Monitoring: Developer Tools
[bookmark: _Toc458598926]Application Programming Interface (API)
One API is available for developers to work with field monitoring. This API is described below.
[bookmark: _Toc458598927]OPKG^XUHUI(): Monitor New Style Cross-referenced Fields
Reference Type:	Supported
Category:	Field Monitoring
ICR #:	3589
Description:	This API allows other packages to task an Option or Protocol from a New Style cross-reference. This API can be used to monitor any field or fields in any file using a New Style cross-reference.
Format:	OPKG^XUHUI([xuhuiop,]xuhuinm[,xuhuia],xuhuixr)
Input Parameters:	xuhuiop:	(optional) This parameter is a set of Numeric codes that tells the Unwinder to use the PROTOCOL file (#101) or the OPTION file (#19). If this parameter is null, the default value is used (i.e., “101”):
101 (default)—PROTOCOL file (#101) is used.
19—The OPTION file (#19) is used.
	xuhuinm:	(required) This parameter is the NAME (#.01) value of the Protocol or Option that is to be launched.
	xuhuia:	(optional) This parameter is a Set of Codes. If this input parameter is null, the default value is used (i.e., “S”):
S (default)—The data being passed is from the SETting of the cross-reference.
K—The data being passed is from the KILLing of the cross-reference.
	xuhuixr: 	(required) This parameter is the name of the cross-reference.
Output:	See Example:	Monitored fields with a New Style cross-reference.
[bookmark: _Ref454199213][bookmark: _Toc458598928]Example
The Hui Project needs to monitor the following fields at the top level of the NEW PERSON file (#200) for changes in value, in the order listed:
NAME (#.01)
TERMINATION DATE (#9.2)
DOB (#5)
SSN (#9)
Create New Style Cross-references
Create a MUMPS New Style cross-reference for the fields that are to be monitored for value changes, as shown below:
[bookmark: _Toc200269969][bookmark: _Toc458599871]Figure 32: OPKG^XUHUI API—Example of creating New Style Cross-references
Index Name: AXUHUI (#n)

Short Description: Hui Project Top File Cross-reference

 Description: This MUMPS New Style cross-reference is on non-multiple
 fields in the NEW PERSON file (#200) that the Hui Project
 needs to monitor for changes in value. The following fields
 are being monitored in the order listed:

 .01 (NAME)
 9.2 (TERMINATION DATE)
 5 (DOB)
 9 (SSN)
 For details on how this cross-reference processes changes,
 please refer to the patch description for Kernel Patch XU*8*236.
 For more detailed information about the MUMPS New Style
 cross-reference, please refer to the “VA FileMan V. 22.0 Key
 and Index Tutorial” (see Lessons #5 and #6)

 Type: MUMPS

 EXECUTION: RECORD

 Use: ACTION

 Set Logic: D OPKG^XUHUI(“”,“XUHUI FIELD CHANGE EVENT”,“”,“AXUHUI”) Q
 Kill Logic: Q
 Whole Kill: Q
 X(1): NAME (200,.01) (forwards)
 X(2): TERMINATION DATE (200,9.2) (forwards)
 X(3): DOB (200,5) (forwards)
 X(4): SSN (200,9) (forwards)

Sample Scenario
Change a monitored (cross-referenced) field value in the NEW PERSON file (#200), as shown below:
[bookmark: _Toc200269970][bookmark: _Toc458599872]Figure 33: OPKG^XUHUI API—Sample scenario
INPUT TO WHAT FILE: NEW PERSON// <Enter>
EDIT WHICH FIELD: ALL// DOB
THEN EDIT FIELD: SSN
THEN EDIT FIELD: <Enter>

Select NEW PERSON NAME: XUUSER <Enter> XUUSER,ONE OX
DOB: JUL 4,1950// 12.24.49 <Enter> (DEC 24, 1949)
SSN: 000220000// 000558888

In this example, the ONE XUUSER’s Date of Birth (DOB) was changed from 07/04/50 to 12/24/49 and also changed the Social Security Number (SSN) from 000-22-0000 to 000-55-8888. Since these fields are being monitored (i.e., MUMPS New Style cross-reference, see the “Create Cross-references” previous section), you should see this data passed to the “XUHUI FIELD CHANGE EVENT” protocol (see the “Internal Results for Developers” section that follows).
Internal Results for Developers
The following data is passed to the “XUHUI FIELD CHANGE EVENT” Protocol via the Kernel OPKG^XUHUI API that is called in the AXUHUI cross-reference (see the “Create Cross-references” previous section).
[bookmark: _Toc200269971][bookmark: _Toc458599873]Figure 34: OPKG^XUHUI API—Example of internal results

If executing the Kill logic, then the ‘X’ array will be equal to the ‘X1’
array. If executing the Set logic, then the ‘X’ array will be equal to
the ‘X2’ array.

X=XUUSER,ONE
X(1)=XUUSER,ONE
X(2)=
X(3)=2491224
X(4)=000558888

Old values are in this array.

X1=XUUSER,ONE
X1(1)=XUUSER,ONE
X1(2)=
X1(3)=2500704
X1(4)=000220000

New values are in this array.

X2=XUUSER,ONE
X2(1)=XUUSER,ONE
X2(2)=
X2(3)=2491224
X2(4)=000558888

“S” = Set Logic is being executed, “K” = Kill logic being executed.

XUHUIA=S
XUHUIDA=70
XUHUIFIL=200
XUHUIFLD=
“DA” array, File number, and Field numbers if available.

XUHUINM=XUHUI FIELD CHANGE EVENT
Name of Extended Action entry in File #101 or in File #19.

XUHUIOP=101
File number of where to find the Extended Action.

The “X” array.

XUHUIX=XUUSER,ONE
XUHUIX(1)=XUUSER,ONE
XUHUIX(2)=
XUHUIX(3)=2491224
XUHUIX(4)=000558888
The “X1” array.

XUHUIX1=XUUSER,ONE
XUHUIX1(1)=XUUSER,ONE
XUHUIX1(2)=
XUHUIX1(3)=2500704
XUHUIX1(4)=000220000
The “X2” array.

XUHUIX2=XUUSER,ONE
XUHUIX2(1)=XUUSER,ONE
XUHUIX2(2)=
XUHUIX2(3)=2491224
XUHUIX2(4)=000558888
XUHUIXR=AXUHUI
Name of cross-reference being executed by DIK.

Field Monitoring: Developer Tools

[bookmark: _Ref303842710][bookmark: _Toc458598929]File Access Security: Developer Tools
[bookmark: _Toc458598930]Overview
The File Access Security system is an optional Kernel module. It provides an enhanced security mechanism for controlling user access to VA FileMan files.
[image: Note]	REF: For an overview of the functionality provided by the File Access Security system, see the “File Access Security” section in the Kernel Systems Management Guide.
[bookmark: _Toc458598931]Field Level Protection
As before, the DUZ(0) check is not performed when a user traverses fields in a DR string or in a template; field-level protection is checked during the template-building process, but not subsequently when the template is invoked by a user. If you want to make the presentation of fields conditional, based on a user’s DUZ(0), branching logic may be used as described in the VA FileMan Programmers Manual.
[bookmark: _Toc458598932]File Navigation
Edit-type options that navigate to a second file do so by calling VA FileMan and, hence, depending on the type of navigation and the existing file protection, requires that the user have WRITE access to change data in the pointed-to file, DELETE access to delete an entry, and perhaps LAYGO access to add a new entry.
Adding new entries when navigating to a file is controlled by LAYGO access. If a pointing field allows LAYGO, as specified in the data dictionary, and the pointed-to file also allows LAYGO, the user does not need explicit file access to add entries. If the pointed-to file is protected, however, the user needs explicit LAYGO access to the file. DELETE access is checked at the moment the user tries to delete a file entry.
When coding calls, if DIC(0) contains “L”, DIC allows the user to add a new entry if one of three conditions is met:
The user has been granted LAYGO access to the file.
The user’s DUZ(0) is equal to “@”.
The DLAYGO variable is defined equal to the file number.
[bookmark: _Toc458598933]Use of DLAYGO When Navigating to Files
Use of input templates or ^DIE calls as part of edit-type options permits user access to the first file. However, if navigation to a second file is involved, LAYGO is not automatically granted. One of the three conditions mentioned above must be met to allow navigation to the second file:
LAYGO access is granted.
DUZ(0)=@.
DLAYGO variable is set.
Providing LAYGO access by using the DLAYGO variable obviates the need for system administrators to grant LAYGO file access to the pointed-to file via the File Access system. An example of setting DLAYGO in a template is shown below:
[bookmark: _Toc200269972][bookmark: _Toc458599874]Figure 35: File Access Security—Setting DLAYGO in a template
A file pointed-to by the Line Item file.

INPUT TO WHAT FILE: RENTAL
EDIT WHICH FIELD: TRANSACTION NUMBER
THEN EDIT FIELD: DATE RENTED
THEN EDIT FIELD: S DLAYGO=800265
Set DLAYGO to the number of the file to be navigated-to via backward pointing.

THEN EDIT FIELD: LINE ITEM:
 By ‘LINE ITEM’, do you mean the LINE ITEM File,
 pointing via its ‘RENTAL TRANSACTION’ Field? YES// Y <Enter> (YES)
WILL TERMINAL USER BE ALLOWED TO SELECT PROPER ENTRY IN ‘LINE ITEM’ FILE? YES// <Enter> (YES)
DO YOU WANT TO PERMIT ADDING A NEW ‘LINE ITEM’ ENTRY? NO// Y <Enter> (YES)
WELL THEN, DO YOU WANT TO **FORCE** ADDING A NEW ENTRY EVERY TIME? NO// <Enter> (NO)
DO YOU WANT AN ‘ADDING A NEW LINE ITEM’ MESSAGE? NO// N <Enter> (NO)
 EDIT WHICH LINE ITEM FIELD: LINE ITEM
 THEN EDIT LINE ITEM FIELD: RENTAL TRANSACTION
 THEN EDIT LINE ITEM FIELD: K DLAYGO
KILL DLAYGO upon exit.

 THEN EDIT LINE ITEM FIELD:

[bookmark: _Toc458598934]Use of DLAYGO in ^DIC Calls
When a user attempts to add an entry at the top level of a file in a ^DIC call, their file access security is checked for LAYGO access to the file. Developers can override this check (and save the site from having to grant explicit LAYGO access) by setting DLAYGO to the file number in question.
[image: Note]	REF: For more information on DLAYGO as used in ^DIC calls, see the VA FileMan Developer’s Guide.
[bookmark: _Toc458598935]Use of DIDEL in ^DIE Calls
When a user attempts to delete an entry at the top level of a file in a ^DIE call, their file access security is checked for DELETE access to the file. Developers can override this check (and save the site from having to grant explicit DELETE access) by setting DIDEL to the file number in question. Use of DIDEL does not override a file’s “DEL” nodes, however.
[image: Note]	REF: For more information on DIDEL as used in ^DIE calls, see the VA FileMan Developer’s Guide.

File Access Security: Developer Tools

[bookmark: _Ref303842720][bookmark: _Ref20098928][bookmark: _Toc458598936]Help Processor: Developer Tools
[bookmark: _Toc458598937]Entry and Exit Execute Statements
The HELP FRAME file (#9.2) contains two fields for the entry of M code. Code in the Entry Execute Statement is executed just before the help frame is displayed. Code in the Exit Execute Statement is executed afterwards.
[bookmark: _Toc458598938]Application Programming Interface (API)
Several APIs are available for developers to work with help processing. These APIs are described below.
[bookmark: _Ref36526682][bookmark: _Ref36527120][bookmark: _Toc458598939]EN^XQH: Display Help Frames
Reference Type:	Supported
Category:	Help Processor
ICR #:	10074
Description:	This API displays a help frame. It immediately clears the screen and displays the help frame (unlike the EN1^XQH: Display Help Frames API, which does not clear the screen and offers the user a choice of whether to load the help frame).
Format:	EN^XQH
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
1. Set all input variables.
1. Call the API.
Input Variables:	XQH:	(required) Help Frame name (the .01 value from the HELP FRAME file [#9.2]).
Output:	none.
[bookmark: _Ref36526707][bookmark: _Ref36527134][bookmark: _Toc458598940]EN1^XQH: Display Help Frames
Reference Type:	Supported
Category:	Help Processor
ICR #:	10074
Description:	This API displays a help frame as ACTION^XQH4(): Print Help Frame Tree does, except that it does not clear the screen beforehand, and prior to loading the help frame, EN1^XQH invokes end of page handling (i.e., prompting the user “Enter return to continue or ‘^’ to quit”). If the user enters an “^”, the help frame is not displayed. If they press <Enter>, the help frame is displayed.
Format:	EN1^XQH
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
1. Set all input variables.
1. Call the API.
Input Variable:	XQH:	(required) Help Frame name (the .01 value from the HELP FRAME file [#9.2]).
Output:	none.
[bookmark: _Ref37753594][bookmark: _Ref37755725][bookmark: _Toc458598941]ACTION^XQH4(): Print Help Frame Tree
Reference Type:	Supported
Category:	Help Processor
ICR #:	10080
Description:	This API prints out all the help frames in a help frame tree, including a table of contents showing the relationships between help frames and the page of the printout where each help frame is found. Since help frames can be referenced by more than one help frame, any help frame referenced multiple times appears in the table of contents in each appropriate location, but the help text itself is printed only once. You can alter the format of the output with the xqfmt input parameter.
Format:	ACTION^XQH4(xqhfy[,xqfmt])
Input Parameters:	xqhfy:	(required) Help frame name, equal to the .01 field of the desired entry in the HELP FRAME file (#9.2). Should be set to the NAME of the top-level help frame for which a listing is desired.
	xqfmt:	(optional) Specifies the output format. Value of xqfmt can be:
T—Text of help frames only (default).
R—Text of help frames, plus a table of related frames and keywords (if any) for each help frame.
C—Complete listing (text of help frames, table of related frames for each help frame, and internal help frame names).
Output:	none.

Help Processor: Developer Tools

[bookmark: _Ref20100586][bookmark: _Ref20101134][bookmark: _Ref303842731][bookmark: _Toc458598942]Host Files: Developer Tools
[bookmark: _Toc458598943]Application Programming Interface (API)
Several APIs are available for developers to work with Host files. These APIs are described below.
The traditional method of working with Host File System (HFS) files prior to Kernel 8.0 was to use the Device Handler API (^%ZIS). Using several input parameters, you could open a Host file (given a Host file device entry in the DEVICE file [#3.5]). For example:
[bookmark: _Toc200269973][bookmark: _Toc458599875]Figure 36: Host Files—Opening a Host file using the ^%ZIS API
S %ZIS(“HFSNAME”)=“ARCHIVE.DAT”
S %ZIS(“HFSMODE”)=“W”
S IOP=“HFS” D ^%ZIS Q:POP
U IO D...

Kernel 8.0 provides a set of APIs for working with Host files. The Host file APIs are:
CLOSE^%ZISH	Close Host file opened by OPEN^%ZISH.
$$DEL^%ZISH	Delete Host file.
$$FTG^%ZISH	Copy lines from a Host file into a global.
$$GATF^%ZISH	pend records from a global to a Host file.
$$GTF^%ZISH	Copy records from a global into a Host file.
$$LIST^%ZISH	Get a list of files in a directory.
$$MV^%ZISH	Rename Host file.
OPEN^%ZISH	Open Host file (bypass Device Handler).
$$PWD^%ZISH	Get name of current directory.
$$STATUS^%ZISH	Return end-of-file status.
Table 3 lists definitions that apply for the Host file APIs:
[bookmark: _Ref454199809][bookmark: _Toc458599998]Table 3: Host file APIs—Definitions
	Term
	Definition

	Path:
	Full path specification up to, but not including, the filename. This includes any trailing slashes or brackets. If the operating system allows shortcuts, you can use them. Examples of valid paths include:
DOS	c:\scratch\
UNIX	/home/scratch/
VMS	USER$:[SCRATCH]
To specify the current directory, use a path of NULL (“”).

	Filename:
	Filename of the file only. Do not include device or directory specifications.

	Access mode:
	Access mode when opening files. It can be one of the following codes:
R—READ; use the file for READs only.
W—WRITE; use the file for writing. If the file exists, it is truncated to a length of zero (0) first. If the file does not exist, it is created.
A—PEND; use the file for writing but start writing at the end of the current file. If the file does not exist, it is created.
B—BINARY file.

[bookmark: _Toc458598944]CLOSE^%ZISH(): Close Host File
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This API closes a Host file that was opened with the OPEN^%ZISH(): Open Host File API.
Format:	CLOSE^%ZISH(handle)
Input Parameters:	handle:	(required) Handle used when file was opened with the OPEN^%ZISH(): Open Host File API.
Output:	none.

[bookmark: _Toc458598945]Example
[bookmark: _Toc200269974][bookmark: _Toc458599876]Figure 37: CLOSE^%ZISH API—Example
D OPEN^%ZISH(“OUTFILE”,“USER$:[ANONYMOUS]”,“ARCHIVE.DAT”,“W”)
Q:POP
U IO F I=1:1:100 W I,“: ”,ARRAY(I),!
D CLOSE^%ZISH(“OUTFILE”)

[bookmark: _Toc458598946]$$DEFDIR^%ZISH(): Get Default Host File Directory
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function gets the default Host file directory. It has two modes:
NULL/Missing Parameter—If it is called with a NULL/missing parameter, it returns the “default directory for HFS files” from the KERNEL SYSTEM PARAMETERS file (#8989.3).
Directory Parameter—If it is called with a parameter, it must be the directory for a file. This parameter is checked to see that it is in the correct format for the operating system in question.
Format:	$$DEFDIR^%ZISH([df])
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
1. Set all input variables.
1. Call the API.
Input Parameters:	df:	(optional) This is the directory path upon which a simple format check is made. For the NT operating system it changes “/” to “\” and makes sure that there is a trailing “\”. There is no error response.
Output:	returns:	Returns the default Host file directory.

[bookmark: _Toc458598947]$$DEL^%ZISH(): Delete Host File
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function deletes Host files. You can delete one or many Host files, depending on how you set up the array whose name you pass as the second input parameter.
Format:	$$DEL^%ZISH(path,arrname)
Input Parameters:	path:	(required) Full path, up to but not including the filename.
	arrname:	(required) Fully resolved array name containing the files to delete as subscripts at the next descendent subscript level. For example, to delete two files, FILE1.DAT and FILE2.DAT, set up the array as:
ARRAY(“FILE1.DAT”)=“”
ARRAY(“FILE2.DAT”)=“”
Pass the array name “ARRAY” as the arrname parameter. Wildcard specifications cannot be used with this function.
Output:	returns:	Returns:
1—Success for all deletions.
0—Failure on at least one deletion.

[bookmark: _Toc458598948]Example
>K FILESPEC
>S FILESPEC(“TMP.DAT”)=“”
>S Y=$$DEL^%ZISH(“\MYDIR\”,$NA(FILESPEC))

[bookmark: _Toc458598949]$$FTG^%ZISH(): Load Host File into Global
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function loads a Host file into a global. Each line of the Host file becomes the value of one node in the global. You do not need to open the Host file before making this call; it is opened and closed by $$FTG^%ZISH.
If a line from a Host file exceeds 255 characters in length, the overflows are stored in overflow nodes for that line, as follows:
[bookmark: _Toc200269975][bookmark: _Toc458599877]Figure 38: Host Files—Overflow lines in a Host file sample

Format:	$$FTG^%ZISH(path,filename,global_ref,inc_subscr[,ovfsub])
Input Parameters:	path:	(required) Full path, up to but not including the filename.
	filename:	(required) Name of the file to open.
	global_ref:	(required) Global reference to WRITE Host file to, in fully resolved (closed root) format. This function does not KILL the global before writing to it.
At least one subscript must be numeric. This is the incrementing subscript (i.e., the subscript that $$FTG^%ZISH increments to store each new global node). This subscript need not be the final subscript. For example, to load into a WORD PROCESSING field, the incrementing node is the second-to-last subscript; the final subscript is always zero.
	inc_subscr:	(required) Identifies the incrementing subscript level. For example, if you pass ^TMP(115,1,1,0) as the global_ref parameter and pass 3 as the inc_subscr parameter, $$FTG^%ZISH increments the third subscript, such as ^TMP(115,1,x), but WRITEs nodes at the full global reference, such as ^TMP(115,1,x,0).
	ovfsub:	(optional) Name of subscript level at which overflow nodes for lines (if any) should be stored. Overflows occur if a line is greater than 255 characters. Further overflows occur for every additional 255 characters. The default subscript name at which overflows are stored for a line is “OVF”.
Output:	returns:	Returns:
1—Success.
0—Failure.

[bookmark: _Toc458598950]Example
>S Y=$$FTG^%ZISH(“USER$:[COMMON]”,“MYFILE.DAT”,$NA(^MYGLOBAL(612,1,0)),2)

[bookmark: _Toc458598951]$$GATF^%ZISH(): Copy Global to Host File
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function is used in the same way as the $$GTF^%ZISH(): Copy Global to Host File API. The one difference is that if the file already exists, $$GATF^%ZISH appends global nodes to the existing file rather than truncating the existing file first.
[image: Note]	REF: For more information, see the $$GTF^%ZISH(): Copy Global to Host File API description.
Format:	$$GATF^%ZISH(global_ref,inc_subscr,path,filename)
Input Parameters:	global_ref:	(required) Global to READ lines from, fully resolved in closed root form.
	inc_subscr:	(required) Identifies the incrementing subscript level. For example, if you pass ^TMP(115,1,1,0) as the global_ref parameter, and pass 3 as the inc_subscr parameter, $$GATF increments the third subscript (e.g., ^TMP[115,1,x]), but READs nodes at the full global reference (e.g., ^TMP[115,1,x,0]).
	path: 	(required) Full path, up to but not including the filename.
	filename:	(required) Name of the file to open.
Output:	returns:	Returns:
1—Success.
0—Failure.

[bookmark: _Ref20101369][bookmark: _Toc458598952]$$GTF^%ZISH(): Copy Global to Host File
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function WRITEs the values of nodes in a global (at the subscript level you specify) to a Host file. If the Host file already exists, it is truncated to length zero (0) before the copy. You do not need to open the Host file before making this call. The Host file is opened (in WRITE mode) and closed by $$GTF^%ZISH.
Format:	$$GTF^%ZISH(global_ref,inc_subscr,path,filename)
Input Parameters:	global_ref:	(required) Global to READ lines from, fully resolved in closed root form.
	inc_subscr:	(required) Identifies the incrementing subscript level. For example, if you pass ^TMP(115,1,1,0) as the global_ref parameter, and pass 3 as the inc_subscr parameter, $$GTF increments the third subscript (e.g., ^TMP[115,1,x]), but READs nodes at the full global reference (e.g., ^TMP[115,1,x,0]).
	path:	(required) Full path, up to but not including the filename.
	filename:	(required) Name of the file to open.
Output:	returns:	Returns:
1—Success.
0—Failure.

[bookmark: _Toc458598953]Example
>S Y=$$GTF^%ZISH($NA(^MYGLOBAL(612,1,0)),2,“USER$:[COMMON]”,“MYFILE.DAT”)

[bookmark: _Toc458598954]$$LIST^%ZISH(): List Directory
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function returns a list of file names in the current directory. The list is returned in an array in the variable named by the third parameter.
Format:	$$LIST^%ZISH(path,arrname,retarrnam)
Input Parameters:	path:	(required) Full path, up to but not including any filename. For current directory, pass the NULL string.
	arrname:	(required) Fully resolved array name containing file specifications to list at the next descendent subscript level.
For example, to list all files, set one node in the named array, at subscript “*”, equal to NULL. To list all files beginning with “E” and “L”, using the ARRAY array, set the nodes:
ARRAY(“E*”)=“”
ARRAY(“L*”)=“”
Pass the name “ARRAY” as the arrname parameter. You can use the asterisk wildcard in the file specification.
	retarrnam:	(required) Fully resolved array name to return the list of matching filenames. You should ordinarily KILL this array first (it is not purged by LIST^%ZISH).
Output Parameters:	retarrnam:	$$LIST^%ZISH populates the array named in the third input parameter with all matching files it finds in the directory you specify. It populates the array in the format:
ARRAY(“filename1”)=“”
ARRAY(“filename2”)=“”
(etc.)
Output:	returns:	Returns:
1—Success.
0—Failure.

[bookmark: _Toc458598955]Example
>K FILESPEC,FILE
>S FILESPEC(“L*”)=“”,FILESPEC(“P*”)=“”
>S Y=$$LIST^%ZISH(“”,“FILESPEC”,“FILE”)

[bookmark: _Ref191970777][bookmark: _Toc458598956]$$MV^%ZISH(): Rename Host File
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function renames a Host file. The function performs the renaming, regardless of the underlying operating system, by first copying the file to the new name/location and then deleting the original file at the old name/location.
Format:	$$MV^%ZISH([path1,]filename1[,path2],filename2)
Input Parameters:	path1:	(optional) Full path of the original file, up to but not including the filename. If null, it defaults to $$DEFDIR^%ZOSV.
	filename1:	(required) Name of the original file.
	path2:	(optional) Full path of renamed file, up to but not including the filename. If null, it defaults to $$DEFDIR^%ZOSV.
	filename2:	(required) Name of the renamed file.
Output:	returns:	Returns:
1—Success.
0—Failure.

[bookmark: _Toc458598957]Example
>S Y=$$MV^%ZISH(“”,“TMP.DAT”,“”,“ZXG”_I_“.DAT”)

[bookmark: _Ref38249081][bookmark: _Ref38249129][bookmark: _Ref36527754][bookmark: _Toc458598958]OPEN^%ZISH(): Open Host File
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This API opens a Host file without using the Device Handler. You can USE the device name returned in IO. You can then READ and WRITE from the opened Host file (depending on what access mode you used to open the file).
To close the Host file, use the CLOSE^%ZISH API with the handle you used to open the file.
Format:	OPEN^%ZISH([handle][,path,]filename,mode[,max][,subtype])
Input Parameters:	handle:	(optional) Unique name you supply to identify the opened device.
	path:	(optional) Full directory path, up to but not including the filename. If not supplied, the default HFS directory is used.
	filename:	(required) Name of the file to open.
	mode:	(required) Mode to open file:
W—WRITE.
R—READ.
A—PEND.
B—BLOCK (fixed record size).
	max:	(optional) Maximum record size for a new file.
	subtype:	(optional) File subtype.
Output Variables:	POP:	A value of zero (0) means the file was opened successfully; a positive value means the file was not opened.
	IO:	Name of the opened file in the format to use for M USE and CLOSE commands.

[bookmark: _Toc458598959]Example
[bookmark: _Toc200269977][bookmark: _Toc458599878]Figure 39: OPEN^%ZISH API—Example
D OPEN^%ZISH(“FILE1”,“USER$:[ANONYMOUS]”,“ARCHIVE.DAT”,“A”)
Q:POP
U IO F I=1:1:100 W I,“: ”,ARRAY(I),!
D CLOSE^%ZISH(“FILE1”)

[bookmark: _Toc458598960]$$PWD^%ZISH: Get Current Directory
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function returns the name of the current working directory.
Format:	$$PWD^%ZISH
Input Parameters:	none.
		
Output:	returns:	Returns:
String—The string representing the current directory specification, including device if any.
NULL—If a problem occurs while retrieving the current directory.

[bookmark: _Toc458598961]Example
>S Y=$$PWD^%ZISH()

[bookmark: _Toc458598962]$$STATUS^%ZISH: Return End-of-File Status
Reference Type:	Supported
Category:	Host Files
ICR #:	2320
Description:	This extrinsic function returns the current end-of-file status. If end-of-file has been reached, $$STATUS^%ZISH returns:
1—End-of-file (EOF) has been reached.
0—End-of-file (EOF) has not been reached.
Format:	$$STATUS^%ZISH
Input Parameters:	none.
Output:	returns:	Returns:
1—End-of-file (EOF) has been reached.
0—End-of-file (EOF) has not been reached.

[bookmark: _Toc458598963]Example
[bookmark: _Toc200269978][bookmark: _Toc458599879]Figure 40: $$STATUS^%ZISH API—Example
D OPEN^%ZISH(“INFILE”,“USER$:[ANONYMOUS]”,“ZXG.DAT”,“R”)
Q:POP
U IO F I=1:1 R X:DTIME Q:$$STATUS^%ZISH S ^TMP($J,“ZXG”,I)=X
D CLOSE^%ZISH(“INFILE”)

Host Files: Developer Tools

[bookmark: _Ref303842744][bookmark: _Toc458598964]Institution File: Developer Tools
[bookmark: _Toc458598965]Application Programming Interface (API)
Several APIs are available for developers to work with the INSTITUTION file (#4). These APIs are described below.
[bookmark: _Toc458598966]$$ACTIVE^XUAF4(): Institution Active Facility (True/False)
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function, given the Internal Entry Number (IEN) in the INSTITUTION file (#4), returns the Boolean value for the question—is this an active facility? It checks to see if the INACTIVE FACILITY FLAG field (#101) is not set.
Format:	$$ACTIVE^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns a Boolean value:
True (non-zero)—Station Number is an active facility.
False (zero)—Station Number is not an active facility. The INACTIVE FACILITY FLAG field (#101) has a value indicating it is inactive.

[bookmark: _Toc458598967]CDSYS^XUAF4(): Coding System Name
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This API returns the Coding System name.
Format:	CDSYS^XUAF4(y)
Input Parameters:	y:	(required) Pass by reference, returns:
Y(coding_system) =
$D_of_local_system^ coding_system name
Output Parameters:	y:	Passed by reference, returns:
Y(coding_system) =
$D_of_local_system^ coding_system name

[bookmark: _Toc458598968]CHILDREN^XUAF4(): List of Child Institutions for a Parent
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This API returns a list of all institutions that make up a given Veterans Integrated Service Network (VISN), parent institution entered in the “parent” input parameter.
Format:	CHILDREN^XUAF4(array,parent)
Input Parameters:	array:	(required) $NAME reference to store the list of institutions that make up the parent VISN institution for the “parent” input parameter.
	parent:	(required) Parent (VISN) institution lookup value, any of the following:
Internal Entry Number (IEN); has the ` in front of it.
Station Number.
Station Name.
Output:	returns:	Returns the array populated with the list of institutions that make up the parent VISN.
Variable array (“c”,ien)=station_name^station_number

[bookmark: _Toc458598969]$$CIRN^XUAF4(): Institution CIRN-enabled Field Value
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the value of the CIRN-enabled field from the INSTITUTION file (#4).
Format:	$$CIRN^XUAF4(inst[,value])
Input Parameters:	inst:	(required) Institution lookup value, any of the following:
Internal Entry Number (IEN); has the ` in front of it.
Station Number.
Station Name.
	value:	(optional) Restricted to use by CIRN. This input parameter allows the setting of the field to a new value.
Output:	returns:	Returns the CIRN-enabled field value.

[bookmark: _Toc458598970]F4^XUAF4(): Institution Data for a Station Number
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This API returns the Internal Entry Number (IEN) and other institution data, including historical information, for a given STATION NUMBER (#99) in the INSTITUTION file (#4).
Format:	F4^XUAF4(sta,[.]array[,flag][,date])
Input Parameters:	sta:	(required) Station Number.
	[.]array:	(required) $NAME reference for return values.
	flag:	(optional) Flags that represent the Station Number Status. Possible values are:
A—Active entries only.
M—Medical treating facilities only.
	date:	(optional) Return name on this VA FileMan internal date.
Output:	array:	IEN or “0^error message”.
	array(“NAME”):	Name.
	array(“VA NAME”):	Official VA Name.
	array(“STATION NUMBER”):	Station Number.
	array(“TYPE”):	Facility Type Name.
	array(“INACTIVE”):	Inactive Date (0=not inactive).
[image: Note]	NOTE: If inactive date not available, then 1.
	array(“REALIGNED TO”):	IEN^station number^date.
	array(“REALIGNED FROM”):	IEN^station number^date.
	array(“MERGE”,IEN”):	Merged Records.

[bookmark: _Toc458598971]Example
[bookmark: _Toc458599880]Figure 41: F4^XUAF4 API—Example
>D F4^XUAF4(“528A8”,.ARRAY)

>ZW ARRAY
ARRAY=7020
ARRAY(“INACTIVE”)=0
ARRAY(“NAME”)=ALBANY
ARRAY(“REALIGNED FROM”)=500^500^3000701
ARRAY(“STATION NUMBER”)=528A8
ARRAY(“TYPE”)=VAMC
ARRAY(“VA NAME”)=VA HEALTHCARE NETWORK UPSTATE NEW YORK SYSTEM VISN 2 - ALBANY DIVISION

[bookmark: _Ref335061278][bookmark: _Toc458598972]$$ID^XUAF4(): Institution Identifier
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the Identifier (ID) of an INSTITUTION file (#4) entry for a given Coding System and Internal Entry Number (IEN).
Format:	$$ID^XUAF4(cdsys,ien)
Input Parameters:	cdsys:	(required) CDSYS is an existing coding system of the INSTITUTION file (#4). To see the existing coding system in the file:
>D CDSYS^XUAF4(.Y)
	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the INSTITUTION file (#4) Identifier (ID) associated with the given Coding System and IEN.

[bookmark: _Ref335061319][bookmark: _Toc458598973]$$IDX^XUAF4(): Institution IEN (Using Coding System & ID)
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the Internal Entry Number (IEN) of an INSTITUTION file (#4) entry for a given Coding System and Identifier (ID) pair.
Format:	$$IDX^XUAF4(cdsys,id)
Input Parameters:	cdsys:	(required) CDSYS is an existing coding system of the INSTITUTION file (#4). To see the existing coding system in the file:
>D CDSYS^XUAF4(.Y)
	id:	(required) ID is the identifier associated with the coding system. The station number, for example, is the identifier for the VASTANUM coding system and NPI number is the ID for the NPI coding system.
Output:	returns:	Returns the INSTITUTION file (#4) Internal Entry Number (IEN) associated with the given Coding System and Identifier (ID).

[bookmark: _Ref335061887][bookmark: _Toc458598974]$$IEN^XUAF4(): IEN for Station Number
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the Internal Entry Number (IEN) of the entry for a given STATION NUMBER field (#99) in the INSTITUTION file (#4).
Format:	$$IEN^XUAF4(sta)
Input Parameters:	sta:	(required) Station Number.
Output:	returns:	Returns:
IEN—Internal Entry Number.
NULL—Error.

[bookmark: _Toc458598975]Example
>S X=$$IEN^XUAF4(“528A5”)

>W X
532

[bookmark: _Toc458598976]$$LEGACY^XUAF4(): Institution Realigned/Legacy (True/False)
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function, given the STATION NUMBER field (#99) in the INSTITUTION file (#4), returns the Boolean value for the question—has this station number been realigned? Is it a legacy Station Number?
Format:	$$LEGACY^XUAF4(sta)
Input Parameters:	sta:	(required) The STATION NUMBER field (#99) value in the INSTITUTION file (#4) for the Station Number in question
Output:	returns:	Returns a Boolean value:
True (non-zero)—Station Number has been realigned; it is a legacy Station Number.
False (zero)—Station Number has not been realigned; it is not a legacy Station Number.

[bookmark: _Toc458598977]$$LKUP^XUAF4(): Institution Lookup
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the IEN or zero when doing a lookup on the INSTITUTION file (#4).
Format:	$$LKUP^XUAF4(inst)
Input Parameters:	inst:	(required) Institution lookup value, any of the following:
Internal Entry Number (IEN); has the ` in front of it.
Station Number.
Station Name.
Output:	returns:	Returns:
IEN—Internal Entry Number.
Zero (0).

[bookmark: _Toc458598978]LOOKUP^XUAF4(): Look Up Institution Identifier
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This API lookup utility allows a user to select an Institution by Coding System and ID. It prompts a user for a Coding System and then prompts for an Identifier—it’s an IX^DIC API call on a New Style cross-reference of the ID field (#.02) of the IDENTIFIER field (#9999) multiple in the INSTITUTION file (#4).
Format:	LOOKUP^XUAF4()
Input Parameters:	See IX^DIC	For input information, see the IX^DIC documentation in the VA FileMan Developer’s Guide.
Output:	See IX^DIC	For output information, see the IX^DIC documentation in the VA FileMan Developer’s Guide.

[bookmark: _Toc458598979]Example
[bookmark: _Toc458599881]Figure 42: LOOKUP^XUAF4 API—Example
 Select INSTITUTION CODING SYSTEM: DMIS
 ID: 0037
 DMIS 0037 WALTER REED DC USAH 688CN

[bookmark: _Toc458598980]$$MADD^XUAF4(): Institution Mailing Address
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the mailing address information for an institution in a caret-delimited string (i.e., streetaddr^city^state^zip) for a given Internal Entry Number (IEN) in the INSTITUTION file (#4).
Format:	$$MADD^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the institution mailing address in a caret-delimited string:
streetaddr^city^state^zip

[bookmark: _Toc458598981]$$NAME^XUAF4(): Institution Official Name
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the OFFICIAL NAME field (#100) value in the INSTITUTION file (#4) for an institution given its Internal Entry Number (IEN). However, If Field #100 is null, the NAME field (#.01) in the INSTITUTION file (#4) is returned.
Format:	$$NAME^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns either of the following:
OFFICIAL NAME field (#100) value in the INSTITUTION file (#4)—If Field #100 is not null.
NAME field (#.01) value in the INSTITUTION file (#4)—If Field #100 is null.

[bookmark: _Ref178039300][bookmark: _Toc458598982]$$NNT^XUAF4(): Institution Station Name, Number, and Type
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the station information for an institution in a caret-delimited string (i.e., station_name^station_number^station_type) for a given Internal Entry Number (IEN) in the INSTITUTION file (#4).
Format:	$$NNT^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the institution station information in a caret-delimited string:
station_name^station_number^station_type

[bookmark: _Toc458598983]$$NS^XUAF4(): Institution Name and Station Number
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the institution information in a caret-delimited string (i.e., institution_name^station_number) for a given Internal Entry Number (IEN) in the INSTITUTION file (#4).
Format:	$$NS^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the institution information in a caret-delimited string:
institution_name^station_number

[bookmark: _Toc458598984]$$O99^XUAF4(): IEN of Merged Station Number
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the Internal Entry Number (IEN) of the valid STATION NUMBER in the INSTITUTION file (#4), if this entry was merged during the INSTITUTION file (#4) cleanup process (e.g., due to a duplicate STATION NUMBER field [#99]). This function may be used by application developers to re-point their INSTITUTION file (#4) references to a valid entry complete with Station Number.
Format:	$$O99^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the Internal Entry Number (IEN) of the INSTITUTION file (#4) entry with a valid STATION NUMBER filed (#99)—the Station Number deleted from the input IEN during the cleanup process (i.e., Kernel patch XU*8.0*206).

[bookmark: _Toc458598985]Example
>S NEWIEN=$$O99^XUAF4(6538)

>W NEWIEN
6164
>W ^DIC(4,6164,99)
519HB^^^

[bookmark: _Toc458598986]$$PADD^ XUAF4(): Institution Physical Address
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the physical address information for an institution in a caret-delimited string (streetaddr^city^state^zip) for a given Internal Entry Number (IEN) in the INSTITUTION file (#4).
Format:	$$PADD^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the institution physical address in a caret-delimited string:
streetaddr^city^state^zip

[bookmark: _Toc458598987]PARENT^XUAF4(): Parent Institution Lookup
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This API returns a list of all institutions that make up a given Veterans Integrated Service Network (VISN), parent institution entered in the “lookup” input parameter.
Format:	PARENT^XUAF4(array,lookup[,type])
Input Parameters:	array:	(required) $NAME reference to store the list of the parent (VISN) institution for the “lookup” input parameter institution.
	lookup:	(required) Parent (VISN) institution lookup value, any of the following:
Internal Entry Number (IEN); has the ` in front of it.
Station Number.
Station Name.
	type:	(optional) Type of institution from the INSTITUTION ASSOCIATION TYPES file (#4.05, default is VISN).
Output:	returns:	Returns the array populated with the list of parent (VISN) institutions.
Variable array (“P”,PIEN)=STATION_NAME^STATION_NUMBER
[image: Note]	NOTE: With the business rule that institutions can only have one parent per type, if you specify the input parameter type, you get an array that only has one PIEN in it. If the type parameter is left blank, it finds all parents for the institution and lists then in the array.

[bookmark: _Toc458598988]$$PRNT^XUAF4(): Institution Parent Facility
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the parent facility institution information in a caret-delimited string (ien^station_number^name) for a given child facility STATION NUMBER field (#99) in the INSTITUTION file (#4).
Format:	$$PRNT^XUAF4(sta)
Input Parameters:	sta:	(required) The STATION NUMBER field (#99) value in the INSTITUTION file (#4) for the child facility whose parent facility information is being requested.
Output:	returns:	Returns the parent facility institution information in a caret-delimited string:
ien^station_number^name

[bookmark: _Toc458598989]$$RF^XUAF4(): Realigned From Institution Information
Reference Type:	Supported
Category:	Institution File
ICR #:	
Description:	This extrinsic function returns the information that is pointed to in the REALIGNED FROM field (#.06) in the HISTORY field (#999) multiple in a caret-delimited string (ien^station_number^effective_date) for a given Internal Entry Number (IEN) in the INSTITUTION file (#4).
Format:	$$RF^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the realigned from institution information in a caret-delimited string:
ien^station_number^effective_date

[bookmark: _Toc458598990]Example
>S IEN=$$RF^XUAF4(7020)

>W IEN
500^500^3000701

[bookmark: _Toc458598991]$$RT^XUAF4(): Realigned To Institution Information
Reference Type:	Supported
Category:	Institution File
ICR #:	
Description:	This extrinsic function returns the information that is pointed to in the REALIGNED TO field (#.05) in the HISTORY field (#999) multiple in a caret-delimited string (ien^station_number^effective_date) for a given Internal Entry Number (IEN) in the INSTITUTION file (#4).
Format:	$$RT^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the realigned to institution information in a caret-delimited string:
ien^station_number^effective_date

[bookmark: _Toc458598992]Example
>S IEN=$$RT^XUAF4(500)

>W IEN
7020^528A8^3000701

[bookmark: _Toc458598993]SIBLING^XUAF4(): Sibling Institution Lookup
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This API returns a list of all institutions that make up a given Veterans Integrated Service Network (VISN), parent institution entered in the “child” input parameter.
Format:	SIBLING^XUAF4(array,child[,type])
Input Parameters:	array:	(required) $NAME reference to store the list of all institutions of a parent (VISN) institution for the “child” input parameter institution.
	child:	(required) Child institution lookup value, any of the following:
Internal Entry Number (IEN); has the ` in front of it.
Station Number.
Station Name.
	type:	(optional) Type of institution from the INSTITUTION ASSOCIATION TYPES file (#4.05, default is VISN).
Output:	returns:	Returns the array populated with the list of all institutions of the parent (VISN) institution.
Variable array
(“P”,PIEN, “C”,CIEN)=STATION_NAME^STATION_NUMBER
[image: Note]	NOTE: With the business rule that institutions can only have one parent per type, if you specify the input parameter type, you get an array that only has one PIEN in it. If the type parameter is left blank, it finds all parents for the institution and lists then in the array. Also, the input site (i.e., ”child” input parameter) is included in the list.
[bookmark: _Toc458598994]$$STA^XUAF4(): Station Number for IEN
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the STATION NUMBER field (#99) for the entry of a given Internal Entry Number (IEN) in the INSTITUTION file (#4).
Format:	$$STA^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns the Station Number.

[bookmark: _Toc458598995]Example
>S STA=$$STA^XUAF4(7020)

>W STA
528A8

[bookmark: _Toc458598996]$$TF^XUAF4(): Treating Facility (True/False)
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function, given the Internal Entry Number (IEN) in the INSTITUTION file (#4), returns the Boolean value for the question—is this a medical treating facility?
Format:	$$TF^XUAF4(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question.
Output:	returns:	Returns a Boolean value:
True (non-zero)—Treating facility.
False (zero)—Not a Treating facility.

[bookmark: _Toc458598997]Example
>S TF=$$TF^XUAF4(7020)

>W TF
1

[bookmark: _Toc458598998]$$WHAT^XUAF4(): Institution Single Field Information
Reference Type:	Supported
Category:	Institution File
ICR #:	2171
Description:	This extrinsic function returns the data from a single field given the Internal Entry Number (IEN) and the specific field requested in the INSTITUTION file (#4).
Format:	$$WHAT^XUAF4(ien,field)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the institution in question (pointer value to the INSTITUTION file (#4).
	field:	(required) field number of the field in question.
Output:	returns:	Returns the value in the specified field.

[bookmark: _Ref335062021][bookmark: _Toc458598999]$$IEN^XUMF(): Institution IEN (Using IFN, Coding System, & ID)
Reference Type:	Supported
Category:	Institution File
ICR #:	3795
Description:	This extrinsic function returns the Internal Entry Number (IEN) for a given Internal File Number (IFN), Coding System, and Identifier (ID).
Format:	$$IEN^XUMF(ifn,cdsys,id)
Input Parameters:	ifn:	(required) Internal File Number (IFN).
	cdsys:	(required) CDSYS is an existing coding system of the INSTITUTION file (#4). To see the existing coding system in the file:
>D CDSYS^XUAF4(.Y)
	id:	(required) ID is the identifier associated with the coding system. The station number, for example, is the identifier for the VASTANUM coding system and NPI number is the ID for the NPI coding system.
Output:	returns:	Returns the Internal Entry Number (IEN) of the institution requested.

[bookmark: _Toc458599000]MAIN^XUMFI(): HL7 Master File Message Builder
Reference Type:	Controlled Subscription
Category:	Institution File
ICR #:	2171
Description:	This API implements an HL7 Master File Message Builder Interface that dynamically maps a VA FileMan field to an HL7 Master File sequence within a segment. The interface implements functionality to build Master File Notification (MFN), Master File Query (MFQ), and Master File Response (MFR) segments. The interface calls applicable VISTA HL7 GENERATE and GENACK interfaces to send/reply/broadcast an appropriate HL7 Master File message.
Format:	MAIN^XUMFI(ifn,ien,type,param,error)
Input Parameters:	See MAIN^XUMFP	For a description of the Input parameters for this API, see the “MAIN^XUMFP(): Master File Parameters" API.
Output Parameters
& Output:	See MAIN^XUMFP	For a description of the Output Parameters and Output for this API, see the “MAIN^XUMFP(): Master File Parameters" API.

[bookmark: _Toc458599001]Details
This interface should be called after the Master File Parameter API. The Master File Parameter API sets up the required parameters in the PARAM array.
The Institution File Redesign (IFR) patch (i.e., XU*8.0*206) implements several application Program Interfaces (APIs). After the IFR patch has been installed and the Cleanup performed, the STATION NUMBER field (#99) is a unique key to the INSTITUTION file (#4).
[bookmark: _Toc458599002]Example
>D MAIN^XUMFI(4,18723,1,.PARAM,.ERROR)

From the HL7 MESSAGE TEXT file (#772), you would see the following:
[bookmark: _Toc458599882]Figure 43: MAIN^XUMFI API—Sample output
DATE/TIME ENTERED: JAN 12, 2001@09:17:29
 SERVER APPLICATION: XUMF MFN TRANSMISSION TYPE: OUTGOING
 MESSAGE ID: 0259 PARENT MESSAGE: JAN 12, 2001@09:17:29
 PRIORITY: DEFERRED RELATED EVENT PROTOCOL: XUMF MFN
 MESSAGE TYPE: SINGLE MESSAGE
MESSAGE TEXT:
MFI^Z04^MFS^REP^20010112091729^20010112091729^NE
MFE^MUP^^19001011^631GD~STATION NUMBER~D
ZIN^GREENFIELD^631GD^National^CBOC~FACILITY TYPE~VA^^^MASSACHUSETTS^^^^^^
 STATUS: SUCCESSFULLY COMPLETED
 DATE/TIME PROCESSED: JAN 12, 2001@09:17:29
 NO. OF CHARACTERS IN MESSAGE: 161 NO. OF EVENTS IN MESSAGE: 1

[bookmark: _Ref38355914][bookmark: _Toc458599003]MAIN^XUMFP(): Master File Parameters
Reference Type:	Controlled Subscription
Category:	Institution File
ICR #:	2171
Description:	This API sets up required parameters used by the HL7 Master File Message Builder Interface and the HL7 Master File message handler. The interface defines required parameters and serves as a common interface for parameter initialization. This interface is the enabling component of the Master File Server (MFS) mechanism allowing VA FileMan Master Files to be maintained by the server, including files with multiple fields and extended references.
The developer can set any PARAM parameter before or after the interface call and override the default value.
Format:	MAIN^XUMFP(ifn,ien,type,param,error)
Input Parameters:	ifn:	(required) Internal File Number (IFN).
	ien:	(required) Internal Entry Number (IEN).
Single entry (pass by value).
Example:
IEN=1
Multiple entries (pass by reference).
Example:
IEN(1)=“”
IEN(2)=“”
ALL national entries (pass by value).
Example:
IEN=“ALL”
	type:	(required) Message TYPE. Possible values are:
0—MFN: Unsolicited update.
1—MFQ: Query particular record and file.
3—MFQ: Query particular record in array.
5—MFQ: Query group records file.
7—MFQ: Query group records array.
11—MFR: Query response particular record file.
13—MFR: Query response particular record array.
15—MFR: Query response group records file.
17—MFR: Query response group records array.
Output Parameters	param(“PROTOCOL”):	IEN PROTOCOL file (#101).
	param(“BROADCAST”):	Broadcast message to all VistA sites.
	param(“LLNK”):	Logical link in HLL(“LINKS”,n) format.
Output:	error:	1^Error message text

[bookmark: _Toc458599004]Details
[bookmark: _Toc458599999]Table 4: MAIN^XUMFP(): Master File Parameters API—QRD: Query Definition
	Parameter
	HL7 Sequence
	HL7 Data Type

	param(“QDT”)
	Query Date/Time
	TS

	param(“QFC”)
	Query Format Code
	ID

	param(“QP”)
	Query Priority
	ID

	param(“QID”)
	Query ID
	ST

	param(“DRT”)
	Deferred Response Type
	ID

	param(“DRDT”)
	Deferred Response Date/Time
	TS

	param(“QLR”)
	Quantity Limited Request
	CQ

	param(“WHO”)
	Who Subject Filter
	XCN

	param(“WHAT”)
	What Subject Filter
	CE

	param(“WDDC”)
	What Department Data Code
	CE

	param(“WDCVQ”)
	What Data Code Value Qual.
	CM

	param(“QRL”)
	Query Results Level
	ID

[bookmark: _Toc458600000]Table 5: MAIN^XUMFP(): Master File Parameters API—XCN Data Type of QRD WHO Parameter
	Component
	Value
	Description

	1ST component
	
	One of the following:

	NAME
	
	Value of NAME field (#.01) for Internal Entry Number (IEN).

	ALL
	
	String represents all national entries.

	IEN ARRAY
	
	String represents entries passed in IEN array.

	9th component
	D
	Source table (VA FileMan cross-reference).

	10th component
	045A4
	Assigning authority.

[bookmark: _Toc458600001]Table 6: MAIN^XUMFP(): Master File Parameters API—CE Data Type of QRD WHAT Parameter
	Component
	Value
	Description

	1ST component
	4
	Identifier

	2nd component
	IFN
	Text

	3rd component
	VA FM
	Name of Coding System

[bookmark: _Toc458600002]Table 7: MAIN^XUMFP(): Master File Parameters API—MFI: Master File Identification
	Parameter
	Description

	PARAM(“MFI”)
	Master File Identifier

	PARAM(“MFAI”)
	Master File Application Identifier

	PARAM(“FLEC”)
	File-Level Event Code

	PARAM(“ENDT”)
	Entered Data/Time

	PARAM(“MFIEDT”)
	Effective Date/Time

	PARAM(“RLC”)
	Response Level Code

[bookmark: _Toc458600003]Table 8: MAIN^XUMFP(): Master File Parameters API—MFE: Master File Entry
	Parameter
	Description

	PARAM(“RLEC”)
	Record-Level Event Code

	PARAM(“MFNCID”)
	MFN Control ID

	PARAM(“MFEEDT”)
	Effective Date/Time

	PARAM(“PKV”)
	Primary Key Value

[bookmark: _Toc458600004]Table 9: MAIN^XUMFP(): Master File Parameters API—[Z...] Segments Parameters
	Parameter
	Description

	PARAM(“SEG”,SEG)=“”
	HL7 segment name

	PARAM(“SEG”,SEG,“SEQ”,SEQ,FLD#)
	segment sequence # and field

[image: Note]	NOTE: If any special processing is required, in addition to the external value passed by VA FileMan, set the FLD# node equal to a formatting function “n^$$TAG^RTN(X)”.
“n” being the component sequence number.
“X” representing the external value from VA FileMan.
P(segment_sequence,HLCS,n)=FM_external_value.

[bookmark: _Toc458600005]Table 10: MAIN^XUMFP(): Master File Parameters API—Files Involving Sub-records and Extended Reference
	Parameter
	Description

	PARAM(“SEG”,SEG,“SEQ”,SEQ,“FILE”)
	See VA FileMan documentation.

	PARAM(“SEG”,SEG,“SEQ”,SEQ,“IENS”)
	$$GET1^DIQ() for value.

	PARAM(“SEG”,SEG,“SEQ”,SEQ,“FIELD”)
	of FILE, IENS, & FIELD.

	PARAM(“SEG”,SEG,“SEQ”,SEQ,“KEY”)
	.01 value.

	PARAM(“SEG”,SEG,“SEQ”,SEQ,“FORMAT”)
	format non ST data types.

[image: Note]	NOTE: Query group records store PARAM in the ^TMP global with the following root: ^TMP(“XUMF MFS”,$J,“PARAM”,IEN).

Example: MFE PKV node is ^TMP(“XUMF MFS”,$J,“PARAM”,IEN,“PKV”)
[bookmark: _Toc458599005]Example
The following example is a query (MFQ) for a group records array:

>D MAIN^XUMFP(4,“ALL”,7,.PARAM,.ERROR)
Since query group records store PARAM in the ^TMP global, display the ^TMP global to see the PARAM values:
[bookmark: _Toc458599883]Figure 44: MAIN^XUMFP API—Displaying ^TMP global for PARAM values
>D ^%G

Global ^TMP(“XUMF MFS”,$J
 TMP(“XUMF MFS”,$J
^TMP(“XUMF MFS”,539017563,“PARAM”,“DRDT”) =
^TMP(“XUMF MFS”,539017563,“PARAM”,“DRT”) =
^TMP(“XUMF MFS”,539017563,“PARAM”,“ENDT”) =
^TMP(“XUMF MFS”,539017563,“PARAM”,“FLEC”) = UPD
^TMP(“XUMF MFS”,539017563,“PARAM”,“MFAI”) =
^TMP(“XUMF MFS”,539017563,“PARAM”,“MFEEDT”) = 20010212110654
^TMP(“XUMF MFS”,539017563,“PARAM”,“MFI”) = Z04
^TMP(“XUMF MFS”,539017563,“PARAM”,“MFIEDT”) =
^TMP(“XUMF MFS”,539017563,“PARAM”,“MFNCID”) =
^TMP(“XUMF MFS”,539017563,“PARAM”,“POST”) = POST^XUMFP4C
^TMP(“XUMF MFS”,539017563,“PARAM”,“PRE”) = PRE^XUMFP4C
^TMP(“XUMF MFS”,539017563,“PARAM”,“PROTOCOL”) = 2233
^TMP(“XUMF MFS”,539017563,“PARAM”,“QDT”) = 20010212110654
^TMP(“XUMF MFS”,539017563,“PARAM”,“QFC”) = R
^TMP(“XUMF MFS”,539017563,“PARAM”,“QID”) = Z04 ARRAY
^TMP(“XUMF MFS”,539017563,“PARAM”,“QLR”) = RD~999
^TMP(“XUMF MFS”,539017563,“PARAM”,“QP”) = I
^TMP(“XUMF MFS”,539017563,“PARAM”,“QRL”) =
^TMP(“XUMF MFS”,539017563,“PARAM”,“RLC”) = NE
^TMP(“XUMF MFS”,539017563,“PARAM”,“RLEC”) = MUP
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,1,.01) = ST
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,2,99) = ST
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,3,11) = ID
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,4,13) = CE^~FACILITY TYPE~VA
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,5,100) = ST
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,6,101) = ST
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,7,.02) = ST
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,8,“DTYP”) = CE^~VISN~VA
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,8,“FIELD”) = 1
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,8,“FILE”) = 4.014
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,8,“IENS”) = 1,?+1,
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,9,“DTYP”) = ST
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,9,“FIELD”) = 1:99
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,9,“FILE”) = 4.014
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,9,“IENS”) = 2,?+1,
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,10,“DTYP”) = DT
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,10,“FIELD”) = .01
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,10,“FILE”) = 4.999
^TMP(“XUMF MFS”,539017563, PARAM”,“SEG”,“ZIN”,“SEQ”,11,“DTYP”) = ST
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,11,“FIELD”) = .06:99
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,11,“FILE”) = 4.999
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,12,“DTYP”) = DT
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,12,“FIELD”) = .01
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,12,“FILE”) = 4.999
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,13,“DTYP”) = ST
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,13,“FIELD”) = .05:99
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEG”,“ZIN”,“SEQ”,13,“FILE”) = 4.999
^TMP(“XUMF MFS”,539017563,“PARAM”,“SEGMENT”) = ZIN
^TMP(“XUMF MFS”,539017563,“PARAM”,“WDCVQ”) =
^TMP(“XUMF MFS”,539017563,“PARAM”,“WDDC”) = INFRASTRUCTURE~INFORMATION INFRASTRUCTURE ~VA TS
^TMP(“XUMF MFS”,539017563,”PARAM”,“WHAT”) = 4~IFN~VA FM
^TMP(“XUMF MFS”,539017563,”PARAM”,“WHO”) = ALL~~~~~~~~D~045A4

Institution File: Developer Tools

[bookmark: _Ref20099379][bookmark: _Toc458599006]Kernel Installation and Distribution System (KIDS): Developer Tools
[bookmark: _Toc86127906][bookmark: _Toc458599007]KIDS Build-related Options
To get to the KIDS: Kernel Installation & Distribution System menu [XPD MAIN] (locked with the XUPROG security key) choose the Programmer Options menu option [XUPROG] on the Kernel Systems Manager Menu [EVE], as shown below:
[bookmark: _Toc86128208][bookmark: _Toc200269979][bookmark: _Toc458599884]Figure 45: KIDS—Edits and Distribution menu options
Select Systems Manager Menu Option: PROGRAMMER OPTIONS

 KIDS Kernel Installation & Distribution System ...	[XPD MAIN]
 **> Locked with XUPROG
 NTEG Build an ‘NTEG’ routine for a package
 PG Programmer mode
 ALS MENU TEXT SAMPLE ...
 Calculate and Show Checksum Values
 Delete Unreferenced Options
 Error Processing ...
 Global Block Count
 List Global
 M Pointer Relations
 Number base changer
 Routine Tools ...
 Test an option not in your menu
 Verifier Tools Menu ...

Select Programmer Options Option: KIDS <Enter> Kernel Installation & Distribution
 System

 Edits and Distribution ...	[XPD DISTRIBUTION MENU]
 Utilities ...	[XPD UTILITY]
 Installation ...	[XPD INSTALLATION MENU]
 **> Locked with XUPROGMODE
Select Kernel Installation & Distribution System Option: EDITS AND DISTRIBUTION

 Create a Build Using Namespace
 Copy Build to Build
 Edit a Build
 Transport a Distribution
 Old Checksum Update from Build
 Old Checksum Edit
 Routine Summary List
 Version Number Update

Select Edits and Distribution Option:

[bookmark: _Toc458599008]Creating Builds
KIDS introduces significant revisions to the process of exporting software applications over the previous export mechanism, DIFROM.
[image: Note]	REF: For an introduction to KIDS and a description of the KIDS installation and utility options, see the “KIDS: System Management—Installations” and “KIDS: System Management—Utilities” sections in the Kernel Systems Management Guide.
A functional listing of the KIDS options supporting software application (package) export is shown below:
[bookmark: _Toc200269980][bookmark: _Toc458600006]Table 11: KIDS—Options supporting software application builds and exports
	[bookmark: COL001_TBL004]Task Category
	Option Name
	Option Text

	Create Build Entry
	XPD BUILD NAMESPACE
	Create a Build using Namespace

	
	XPD COPY BUILD
	Copy Build to Build

	
	XPD EDIT BUILD
	Edit a Build

	Create a Distribution
	XPD TRANSPORT PACKAGE
	Transport a Distribution

This section covers each of these tasks, describing how to accomplish the tasks using KIDS options.
[bookmark: _Toc458599009]Build Entries
KIDS stores the definition of a software application in the BUILD file (#9.6). Individual entries in the BUILD file (#9.6) are called build entries, or builds for short. To export a software application, you must first define a build entry for it in the BUILD file (#9.6).
Unlike DIFROM, where you re-used the same PACKAGE file (#9.4) entry each time you exported a new version of a software application, with KIDS you create a new BUILD file (#9.6) entry each time you export a software application version. One advantage of having one BUILD entry per software application version is that you have a complete history of each version of your software application, which makes it easier to compare previous versions of a software application with the current version.
After you create the build name, KIDS give you the option to choose the type of build you are creating. There are three types from which to choose:
Single
Multi-Package
Global
[bookmark: _Toc200269981][bookmark: _Toc458599885]Figure 46: KIDS—Choosing a build type sample
Select Edits and Distribution Option: EDIT A BUILD
Select BUILD NAME: TEST 5.0
 Are you adding ‘TEST 5.0’ as a new BUILD (the 104TH)? Y <Enter> (Yes)
 BUILD PACKAGE FILE LINK: RET
 BUILD TYPE: SINGLE PACKAGE// ?
 Choose from:
 0 SINGLE PACKAGE
 1 MULTI-PACKAGE
 2 GLOBAL PACKAGE
 BUILD TYPE: SINGLE PACKAGE// GLOBAL <Enter> GLOBAL PACKAGE

The following KIDS options, described below, support creating and maintaining build entries:
Create a Build Using Namespace
Copy Build to Build
Edit a Build
[bookmark: _Ref455470892][bookmark: _Toc458599010]Create a Build Using Namespace
You can quickly create a build entry and populate its components by namespace. The Create a Build Using Namespace option searches for all components in the current database matching a given list of namespaces (you can exclude by namespace also). The option searches for components of every type that match the namespaces and populates the build entry with all matches it finds on the system. You can then use Edit a Build to fine-tune the build entry.
As well as creating a new build entry, you can use this option to populate an existing build entry by namespace. In this case, you are asked if you want to purge the existing data. If you answer YES, the option purges the build components in the entry, and then populates the build components by namespace. If you answer NO, the option merges all components matching the selected namespaces into the existing build entry; it removes nothing already in the current build entry.
The following are Kernel 8.0 component types (listed alphabetically):
Bulletin
Dialog
Form
Function
Help Frame
HL7 Application Parameter
HL Logical Link
HL Lower Level Protocol
Input Template
List Template
Mail Group
Option
Print Template
Protocol
Remote Procedure
Routine
Security Key
Sort Template
[bookmark: _Toc200269983][bookmark: _Toc458599886]Figure 47: KIDS—Populating a build entry by namespace
Select Edits and Distribution Option: CREATE A BUILD USING NAMESPACE

Select BUILD NAME: ZXGY 1.0
 Are you adding ‘ZXGY 1.0’ as a new BUILD (the 14th)? YES
 BUILD PACKAGE FILE LINK: <Enter>

Namespace: ZXG
Namespace: -ZXGI
Namespace: <Enter>

NAMESPACE INCLUDE EXCLUDE
 ------- -------
 ZXG ZXGI

OK to continue? YES// <Enter>
...SORRY, LET ME THINK ABOUT THAT A MOMENT...

 ...Done.

[bookmark: _Toc200269984][bookmark: _Toc458599887]Figure 48: KIDS—Copying a build entry
Select Edits and Distribution Option: COPY BUILD TO BUILD

Copy FROM what Package: ZXG TEST 1.0
Copy TO what Package: ZXG TEST 1.1
 ARE YOU ADDING ‘ZXG TEST 1.1’ AS A NEW BUILD (THE 5TH)? Y <Enter> (YES)
 BUILD PACKAGE FILE LINK: <Enter>

OK to continue? YES// <Enter>
...HMMM, LET ME PUT YOU ON ‘HOLD’ FOR A SECOND... ...Done.

[bookmark: _Toc458599011]Copy Build to Build
You can create a new build entry based on a previous entry using the Copy Build to Build option. With KIDS, you must create a new build entry for each new version of a software application. This option gives you a way to quickly copy a previous build entry to a new entry. You can then use the Edit a Build to fine-tune the copied build entry.
If you choose an existing entry to copy into, the option purges the existing entry first before copying into it.
[bookmark: _Toc458599012]Edit a Build
Using the Edit a Build option, you can create new build entries and edit all parts of existing build entries. Edit a Build is a VA FileMan ScreenMan-driven option. There are four main screens in the Edit a Build. The following sections describe in detail each part of a build entry and how you can edit each part.
[bookmark: _Toc458599013]KIDS Build Screens
KIDS Build Screens are designed in conjunction with the Edit a Build option to help you plan your build entries.
[bookmark: _Toc200269985][bookmark: _Toc458600007]Table 12: KIDS—Functional layout, Edit a Build
	[bookmark: COL001_TBL006]Screen
	Build Section
	Build Sub-Section

	Screen 1
	Build Name
	

	
	Date Distributed
	

	
	Description
	

	
	Environment Check Routine
	

	
	Pre-Install Routine
	

	
	Post-Install Routine
	

	
	Pre-Transportation Routine
	

	Screen 2
	Files and Data
	Partial DD Definition

	
	
	Send Data Definition

	Screen 3
	Build Components
	Print Template

	
	
	Sort Template

	
	
	Input Template

	
	
	Form

	
	
	Function

	
	
	Dialog

	
	
	Bulletin

	
	
	Mail Group

	
	
	Help Frame

	
	
	Routine

	
	
	Option

	
	
	Security Key

	
	
	Protocol

	
	
	List Template

	
	
	HL7 Application Parameter

	
	
	HL Lower Level Protocol

	
	
	HL Logical Link

	
	
	Remote Procedure

	Screen 4
	Install Questions
	

	
	Required Builds
	

	
	Package File Link
	

	
	Package Tracking
	

[bookmark: _Toc458599014]Edit a Build: Name & Version, Build Information
When you invoke the Edit a Build option, KIDS loads a four-page ScreenMan form. The first screen of the form lets you edit the following software application settings:
Name
Date Distributed
Description
Environment Check Routine
Pre-Install Routine
Post-Install Routine
Pre-Transportation Routine
Build Name
The name of a build entry is where KIDS stores both the software application’s name and version number. The build name must be a software application name, followed by a space and then followed by a version number. This means that every version of a software application requires a separate entry in the BUILD file (#9.6). One way that this is an advantage is that you have a record of the contents of every version of a software application that you export.
[bookmark: _Toc200269986][bookmark: _Toc458599888]Figure 49: KIDS—Screen 1 of Edit a Build sample
 Edit a Build PAGE 1 OF 5
Name: ZXG Test 1.0 TYPE: SINGLE PACKAGE

 Name: ZXG DEMO 1.0

 Date Distributed: AUG 29,2004

 Description: Delete Routine
 after install
 Environment Check Routine: Y/N:

 Pre-Install Routine: ZXGPRE Y/N: N

 Post-Install Routine: ZXGPOS Y/N: N

Pre-Transportation Routine:

COMMAND: Press <PF1>H for help Insert

[bookmark: _Toc458599015]Edit a Build: Files
The second screen of Edit a Build is where you enter all the files to export with your software application. For each file, you can choose whether or not to send data with the file definition.
Data Dictionary Update
The installing site is not asked whether they want to override data dictionary updates; data dictionary updates are determined entirely by how the developer exports the file. There are two settings in KIDS you can use to determine whether KIDS should update a file’s data dictionary at the installing site:
YES—If you answer YES to Update the Data Dictionary, the data dictionary is updated at the installing site.
NO—If you answer NO to Update the Data Dictionary, the only time the data dictionary is updated is if the file does not exist on the installing system.
You can enter M code in the Screen to Determine DD Update field. The code should set the value of $T. If $T is true, KIDS installs the data dictionary; if $T=0, KIDS does not. The screen is only executed if the data dictionary already exists on the installing system, however; if the data dictionary does not already exist, the file is installed unconditionally (the screen is not executed). You can use the code in this field, for example, to examine the target environment to determine whether to update a data dictionary (providing the data dictionary already exists).
[bookmark: _Ref278366489]Sending Security Codes
With KIDS, you can specify on a file-by-file basis whether to send security codes. For each file, you can set SEND SECURITY CODE to either YES or NO.
If you answer YES to send security codes, KIDS sends the security codes of the files on the development system. KIDS only updates security codes at the installing site on new files (i.e., files that do not already exist), however. Security codes for a file are not updated at the installing site if the file already exists.
[image: Note]	NOTE: Use VA FileMan’s FILESEC^DDMOD API to set the security access codes for an existing file.

REF: For more information on the FILESEC^DDMOD API, see Section 3 in the VA FileMan Developer’s Guide located on the VDL at: http://www4.va.gov/vdl/application.asp?pid=5
[bookmark: _Toc200269987][bookmark: _Toc458599889]Figure 50: KIDS—Screen 2 of Edit a Build: Selecting files
 Edit a Build PAGE 2 OF 5
Name: ZXG Test 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number

 NEW PERSON

COMMAND: Press <PF1>H for help Insert

[bookmark: _Toc200269988][bookmark: _Toc458599890]Figure 51: KIDS—Data dictionary and data settings
 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│ │
│ File: NEW PERSON │
│ │
│ Send Full or Partial DD...: PARTIAL │
│ │
│Update the Data Dictionary: YES Send Security Code: NO │
│ │
│Screen to Determine DD Update │
│ │
│ │
│ Data Comes With File...: YES │
└──┘

COMMAND: Press <PF1>H for help Insert

Sending Full or Partial Data Dictionaries
KIDS supports sending out full data dictionaries (the entire file definition), and partial data dictionaries (specified fields in a file).
Full DD (All Fields)
To send the entire data dictionary, answer FULL at the Send Full or Partial DD prompt. In this case, all field definitions are exported. If you are sending data, you must export the FULL data dictionary.
[bookmark: _Ref280188116]Partial DD (Some Fields)
You can only send a partial DD if the file already exists at the site. If you answer PARTIAL at the “Send Full or Partial DD” prompt, KIDS lets you choose what data dictionary levels to export.
In the Data Dictionary Number popup window (Figure 53), you can select either one of the following types:
File Number—Top level of the file.
Multiple—Sub-data dictionary number (also known as a subfile). You can export any Multiple, no matter how deep (every Multiple’s data dictionary number is selectable).
File Number Level
In the Field Number popup window (Figure 54), if you selected the file number type, you can select which fields to export at that data dictionary level:
If you do not specify any fields, no fields are sent.
If you do specify fields, only the specified fields are sent. You cannot choose any multiples at this data dictionary level.
Multiple Level
In the Field Number popup window (Figure 54), if you selected the Multiple (sub-data dictionary number) type, you can select which fields to export at that sub-data dictionary level:
If you do not specify any fields, all fields are sent. All fields at this level and their descendants are exported. You must do this if the multiple is new at the site.
If you do specify fields, only the specified fields are sent.
Unlike DIFROM, KIDS does not require sending the .01 field of the file if you send a partial data dictionary.
Whenever you export a multiple, all “parents” of the multiple all the way up to the .01 field of the file must exist at the installing site, or else you must export all “parents” (higher data dictionary levels) yourself. Otherwise, the multiple is not installed.
[image: Note]	NOTE: Certain attributes (Identifiers, “ID” nodes, etc.) are considered file attributes (as opposed to field attributes), and so are sent only when you send a full DD. They are not sent with a partial DD.
[bookmark: _Toc200269989][bookmark: _Toc458599891]Figure 52: KIDS—Data dictionary settings screen—DD Export Options
 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│ │
│ File: NEW PERSON │
│ │
│ Send Full or Partial DD...: PARTIAL │
│ │
│Update the Data Dictionary: YES Send Security Code: NO │
│ │
│Screen to Determine DD Update │
│ │
│ │
│ Data Comes With File...: YES │
└──┘

COMMAND: Press <PF1>H for help Insert

[bookmark: _Ref280187172][bookmark: _Toc200269990][bookmark: _Toc458599892]Figure 53: KIDS—Partial DD: Choosing DD levels (top level and Multiple) to send; Data Dictionary Number level
 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│┌──────────────────────── Data Dictionary Number ──────────────────────────┐│
││ NEW PERSON (File-top level) ││
││ DMMS UNITS (sub-file) ││
││ ALIAS (sub-file) ││
││ DEFINED FORMATS FOR LM (sub-file) ││
││ ││
││ ││
││ ││
││ ││
││ ││
│└──┘│
└──┘

COMMAND: Press <PF1>H for help Insert

[bookmark: _Ref280187178][bookmark: _Ref280188212][bookmark: _Toc458599893]Figure 54: KIDS—Partial DD: Choosing DD levels (top level and Multiple) to send; Field Number level
 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│┌──────────────────────── Data Dictionary Number ──────────────────────────┐│
││┌─────────────────────── Field Number ───────────────────────────────────┐││
│││ TEST │││
│││ │││
│││ │││
│││ │││
│││ │││
│││ │││
│││ │││
││└──┘││
│└──┘│
└──┘

COMMAND: Press <PF1>H for help Insert

Choosing What Data to Send with a File
When you send data, you can send all of the data in a file; however, KIDS also lets you send a subset of a file’s data to installing sites.
In the Screen to Select Data field, you can enter M code to screen data. The M code should set $T; if $T is set to 1, the entry is sent, and if $T is set to 0, the entry is not sent. At the moment your code for the screen is executed, the local variable “Y” is set to the Internal Entry Number (IEN) of the entry being screened, and the M naked indicator is set to the global level @fileroot@(Y,0). Therefore, you can use the values of “Y” and the naked indicator in your screen.
In the Data List field, you can select a search template. The contents of the template are the entries that are exported.
If you choose both a screen and a search template, the screen is applied to the entries stored in the search template.
[bookmark: _Toc200269991][bookmark: _Toc458599894]Figure 55: KIDS—Settings for sending data
 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│┌──────────────────────── Data Export Options ─────────────────────────────┐│
││ Site’s Data: OVERWRITE ││
││ ││
││ Resolve Pointers: YES May User Override Data Update: YES ││
││ ││
││ Data List: ││
││ ││
││ Screen to Select Data ││
││ ││
││ ││
│└──┘│
└──┘

COMMAND: Press <PF1>H for help Insert

Determining How Data is Installed at the Receiving Site
When you send data with a file, KIDS gives you several options about how the data is sent. There are four ways KIDS can install file entries at the receiving site:
[bookmark: _Toc200269992][bookmark: _Toc458600008]Table 13: KIDS—Data installation actions
	[bookmark: COL001_TBL007]Data Installation Action
	Description

	ADD ONLY IF NEW FILE
	Installs data at the installing site only if this file is new to the site or if there is no data in this file at the site.

	MERGE
	If no matching entry is found, the incoming entry is added. When the incoming entry matches an existing entry on the system, site fields that are non-NULL are preserved. Only NULL fields in a matching site entry are overwritten by incoming values.
KIDS does not send out cross-references with the data. When you merge the data, however, KIDS re-indexes and creates new cross-references. Also, when you merge the data, KIDS does not delete the old cross-references for that data.

	OVERWRITE
	If no matching entry is found, the incoming entry is added. When the incoming entry matches an existing entry on the system, site fields that are non-NULL are overwritten by incoming data. Values in the site’s fields are preserved when the incoming field value is NULL, however.

	REPLACE
	If no matching entry is found, the incoming entry is added. When the incoming entry matches an existing entry at the top level of a file, all fields in the existing entry that are fields in the incoming data dictionary are purged; then field values for the new entry are brought in. Values in fields that are not part of the incoming data dictionary are preserved.
KIDS does not send out cross-references with the data. When you replace the data, however, KIDS re-indexes and creates new cross-references. Also, when you replace the data, KIDS deletes any old cross-references for that data.
With multiples, if the .01 field of an incoming multiple matches the .01 field of an existing multiple, the existing multiple entry is completely purged, and the data from the incoming multiple replaces the current multiple entirely; values for fields in the existing multiple that are not in the incoming data dictionary are not restored.

You can specify different settings for separate files; within a file, however, all data must be installed in one of these four ways.
You can give the installing site the choice of overriding the data update. If you set May User Override Data Update to YES, the installing site has the choice of whether to bring in data that has been sent with this file. They are not given the choice of how to install data, however (add only if new file vs. merge vs. OVERWRITE vs. REPLACE). If you set this field to NO, the installing site cannot override bringing in data.
How KIDS Matches Incoming Entries with Existing Entries
When KIDS installs VA FileMan data, it treats incoming entries differently depending on whether the entry is a new entry for the file or the incoming entry matches an existing entry in the file.
KIDS decides if an incoming entry is new or matches an existing entry by checking, in order:
1. The B index of the file or multiple, or the .01 field if there is no B index.
1. The Internal Entry Number (IEN) of the entry (if applicable).
1. The identifiers of the entry (if applicable).
First, KIDS makes a tentative match based on the B index. If there is no B index, KIDS goes through the .01 field entries of the file one-by-one looking for a match.
[image: Note]	NOTE: The “B” cross-reference holds the name as a subscript. The maximum length of subscripts is defined for each operating system and is stored in the MUMPS OPERATING SYSTEM file (#.7). KIDS uses this length [for example, 63 (default) or 99] as the limit of characters to compare.
If a match (either by the B cross-reference or by the first piece of the zero node) is not found, the incoming entry is considered new and is added to the file. If a match or matches are found, two additional checks are made to determine whether any of the existing entries are a match.
KIDS next checks whether the IENs of any tentatively matched entries are related. If the file has a defined .001 field, the IEN is a meaningful attribute of an entry. In this case, the IENs must match. If the input transform of the .01 field contains DINUM, it operates the same way as a .001 field. If the IEN is meaningful, and no match is found, the incoming entry is considered new and is added to the file.
If the possibility of a match remains after checking IENs, KIDS performs a final check based on identifiers.
A well-designed file uses one or more identifiers to act as key fields, so that each entry is unique with respect to name and identifiers. If identifiers exist on either the target file or the incoming data dictionary, KIDS checks the values of all such identifier fields. The value of each identifier field must be the same for the existing entry and the incoming entry to be considered a match. Only the internal value of the identifier field is checked (so if an identifier is a pointer field, problems could result). Only identifiers that have valid field numbers are used in this process.
If there is still more than one matching entry after checking .01 fields, IENs, and identifiers, the lowest numbered entry in the site’s file is considered a match for the incoming entry for the file. On the other hand, if no match is found after checking .01 fields, IENs, and identifiers, the entry is considered new and is added to the file.
Limited Resolution of Pointers
A feature of data export provided by KIDS is resolving pointers. For each file exported with data, you can choose whether to perform pointer resolution on that file’s pointer fields (with the exception of .01 fields, identifier fields, and pointer fields pointing to other pointer fields).
KIDS does not resolve pointers for .01 fields and identifier fields in files or Multiples, nor fields that point to other pointer fields. KIDS can resolve pointers, however, for all other pointer fields in a given file or Multiple.
When you do not resolve pointers, and the file being installed has pointer fields, data entries for that file are installed with whatever numerical pointer values are in the pointer fields. In which case, there is a good chance that the pointer fields no longer point to the intended entries in the pointed to file.
Resolution of pointers remedies this by exporting the FREE TEXT value of the pointed-to entry. When KIDS has finished installing all files and data entries at the installing site, it begins the process of resolving pointers (if any files are set to have pointers resolved).
For each field in an entry that is a pointer field, KIDS does a lookup in the pointed to file for the FREE TEXT value of the original pointed-to entry. If it finds an exact and unique match, it resolves the original pointer by storing the IEN of the new matching entry in the pointer field. If it cannot find an exact match, because there are no matching entries or there are multiple matching entries, then the pointer field is left blank, and KIDS displays an error message.
Resolution of pointers works with pointed-to entries that are themselves variable pointers. In these cases, it stores the file to which the pointed-to entry was pointing, and then resolves the pointer in the appropriate target file only.
Once all pointers are resolved, KIDS re-indexes each file. Each time KIDS finishes resolving pointer fields in a given file, it re-indexes that file.
[bookmark: _Ref187046500]Re-Indexing Files (KIDS)
Once all new data has been added to all files, KIDS re-indexes the files. If any of the files have compiled cross-references, the compiled cross-reference routines are rebuilt. Then, if any data was sent for a file, KIDS re-indexes all traditional cross-references and all new-style indexes with an ACTIVITY that contains an “I”, for all the records in the file. Only the SET logic is executed.
Data Dictionary Cleanup
If you change the definition of a field or remove a cross-reference, you must delete the field or cross-reference, or otherwise clean it up on the target account during the Pre-install routine. You must completely purge the target site’s data dictionary of the old field definition, even if you are re-using the same node and piece for a new field. This cleanup ensures that the data dictionary does not end up with an inconsistent structure after the installation.
You no longer need to clean up WORD PROCESSING fields in the data dictionary, however. Before KIDS, updated data dictionary field attributes stored in WORD PROCESSING fields (e.g., field description or technical description) did not completely overwrite a pre-existing attribute when installed. If the incoming value had fewer lines than the pre-existing one, the install of the data dictionary did not delete the surplus lines automatically; this deletion had to be done in the pre-install. KIDS, on the other hand, completely replaces the values of WORD PROCESSING fields in data dictionaries.
[bookmark: _Ref399321373][bookmark: _Toc458599016]Edit a Build: Components
In the third screen in the Edit a Build option, you can select the components of a software application to include in the build.
KIDS lets you enter an explicit list of components for each component type. You are not restricted by namespace. You can select items for each type of component simply by choosing them. Items can also be selected with the asterisk (*) wildcard and the exclusion sign (-).
To add an entry to the list when a similarly named entry already exists in the list, use the normal VA FileMan convention of surrounding the entry with quotes. For example, to add ZZTK to the list when ZZTK1 already exists in the list, enter “ZZTK” in quotes.
With most component types, the permissible installation actions are:
SEND TO SITE
DELETE AT SITE
Some component types, however, have additional installation actions available; the special cases are discussed on the following pages.
[image: Note]	REF: For a list of Kernel component types, see the “Create a Build Using Namespace”section.
[bookmark: _Ref257006469][bookmark: _Toc200269993][bookmark: _Toc458599895]Figure 56: KIDS—Screen 3 of Edit a Build: Components
 Edit a Build PAGE 3 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 Build Components

PRINT TEMPLATE (0)
SORT TEMPLATE (0)
INPUT TEMPLATE (0)
FORM (0)
FUNCTION (0)
DIALOG (0)
BULLETIN (0)
MAIL GROUP (0)
HELP FRAME (0)
ROUTINE (0)
OPTION (0)
SECURITY KEY (0)
PROTOCOL (0)
LIST TEMPLATE (0)
HL7 APPLICATION PARAMETE (0)
HL LOWER LEVEL PROTOCOL (0)
HL LOGICAL LINK (0)
REMOTE PROCEDURE (0)

COMMAND: Press <PF1>H for help Insert

[image: Note]	NOTE: This is an expanded view of this screen in order to show you all of the currently available component types. You have to scroll through the list in order to see all of the available types.
[bookmark: _Ref427586649][bookmark: _Toc458599017]Edit a Build: Options and Protocols
Menus and Protocols are similar to other component types, except for menus and protocols, which have more than the standard SEND TO SITE and DELETE AT SITE installation actions.
[image: Note]	NOTE: Beginning with Kernel 8.0, you can no longer send out an option with an attached scheduling frequency. Scheduling of options was moved out of the OPTION file (#19) and into the OPTION SCHEDULING file (#19.2). One advantage to this is that a developer’s scheduling settings no longer overwrites a site’s scheduling settings.
To indicate to the site that an option should be scheduled regularly, you should fill in the SCHEDULING RECOMMENDED field for the option. You can enter YES, NO, or STARTUP. This indicates to the site whether they should regularly schedule the option or not. You should list the actual frequency you recommend in the option’s description. The site can then use the TaskMan option Print Recommended for Queuing Options to list all options that developers have recommended scheduling.
[bookmark: _Ref195598380][bookmark: _Toc200269994][bookmark: _Toc458600009]Table 14: KIDS—Option and protocol installation actions
	[bookmark: COL001_TBL008]Option/Protocol Installation Action
	Description

	SEND TO SITE
	Menu, option, or protocol is installed at the site; any existing version already at the site is completely purged beforehand, except those options that are currently marked as “Out of Order” (OoO).
[image: Note] NOTE: The OUT OF ORDER MESSAGE field (aka OoO field) in the OPTION file (#19) is updated by KIDS during an install. When an option or protocol is sent, KIDS allows the site to disable them during the install. That means KIDS adds the OoO field at the beginning of the install and removes it at the end. In the case where the OoO already exists for an option, KIDS does nothing. Because of this, KIDS does not transport the OoO field. If a developer wants to add or change an OoO, they should use the OUT^XPDMENU(): Edit Option's Out of Order Message API during the post-install.

	DELETE AT SITE
	Menu or protocol is deleted at site.

	USE AS LINK FOR MENU ITEMS
	Designates a menu or protocol to be used as a link. The menu or protocol is not exported to the site; instead, its name is sent so that any item you link to it as a menu item or protocol (and send) becomes a sub-item on the corresponding menu or protocol at the site. KIDS does not disable options and protocols that have an Action of USE AS LINK FOR MENU ITEMS.

	MERGE MENU ITEMS
	All fields in the menu or protocol except for items are purged and replaced by the incoming values for those fields. Any items at the site that do not match incoming items are left as is. Any items that do match incoming items are completely replaced by the incoming items.
The advantage with this action is that it preserves locally added items at the site. The disadvantage is that if you have removed items, the removed items are not purged at the site.

	ATTACH TO MENU
	Designates an option or protocol, not exported to the site, to be attached to a menu that is exported. This is used when a menu is sent by KIDS to a site and the developer wants the local option or protocol attached to the menu. The option or protocol is not exported to the site; instead, its name is sent and the local option or protocol becomes a sub-item on the menu that is sent.

	DISABLE DURING INSTALL
	Designates an option or protocol that is not exported to be disabled during the KIDS install process.

[bookmark: _Toc458599018]Edit a Build: Routines
Routine selection is done based on pointers to entries in the ROUTINE file (#9.8), but this file is not automatically updated when programs are saved and deleted on an M system. So, before adding routines to a build entry, you should run KIDS’ Update Routine File option. Be sure to update all the routines and routine namespaces that you need to select for your build.
When selecting routines for the build, you can select individual routines by typing in their individual names. You can select a namespace group of routines by using the * wildcard. For example, to include all routines in the namespace XQ, type in XQ*. You can exclude routines by inserting the - exclusion sign before either a single name or a wild-carded namespace. For example, to exclude all routines in the XQI namespace, type -XQI*.
For each routine, you can choose one of two actions:
SEND TO SITE (default)
DELETE AT SITE
The default action is SEND TO SITE. If you choose DELETE AT SITE, the routine is deleted at the installing site.
Installers of KIDS software applications have a choice to update routines across multiple CPUs. If they choose to do this, routines are installed (or deleted) across all CPUs the site selects. KIDS displays various status messages while each CPU is updated. Sites cannot automatically install routines in the site’s manager accounts; however, you still must instruct the site to manually install any routine that goes in the manager’s account.
[bookmark: _Toc200269995][bookmark: _Toc458599896]Figure 57: KIDS—Choosing routines
 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 BUILD COMPONENTS
┌──────────────────────────── ROUTINE ───────────────────────────────────────┐
│ │
│ +XQSRV4 SEND TO SITE │
│ XQSTCK DELETE AT SITE │
│ XQT SEND TO SITE │
│ XQT1 SEND TO SITE │
│ XQT2 SEND TO SITE │
│ XQT3 SEND TO SITE │
│ XQT4 SEND TO SITE │
│ XQTOC SEND TO SITE │
│ XQUSR SEND TO SITE │
│ │
└──┘

COMMAND: Press <PF1>H for help Insert

[bookmark: _Toc458599019]Edit a Build: Dialog Entries (DIALOG File [#.84])
VA FileMan supports the capability for other software applications to store their dialog in the VA FileMan DIALOG file. Some advantages to using the DIALOG file (#.84) for user interaction include:
Separating user interaction from other program functionality. This is a helpful step for creating GUI interfaces.
Reusing dialog. When dialog is stored in the DIALOG file (#.84), it can be re-used.
Easily generating software application error lists. If error lists are stored in DIALOG file (#.84), there is a single point of access to print a complete list of errors.
Implementing alternate language interfaces. Multiple language versions of a dialog can be exported; also, entries for one language’s set of dialogs can be swapped with entries for another language’s set of dialogs.
KIDS allows you to export entries your software application maintains in the DIALOG file (#.84). Simply select which DIALOG entries you want to include in your software application, as you would for any other software application component, and choose an installation action for each item (the default is SEND TO SITE, the other permissible choice is DELETE AT SITE).
[image: Note]	REF: For more information on using the DIALOG file (#.84), see the VA FileMan Developer’s Guide.
[bookmark: _Toc458599020]Edit a Build: Forms
You do not need to select which blocks to send when you send VA FileMan ScreenMan forms. You only need to select the form; KIDS sends all blocks associated with a form once you have chosen the form.
[bookmark: _Toc458599021]Edit a Build: Templates
When you select print, sort, or input templates, KIDS appends the file number to the name of the template. This ensures that a unique entry exists for each template (since two templates of the same name could exist for two different files).
[bookmark: _Toc200269996][bookmark: _Toc458599897]Figure 58: KIDS—Selecting templates
 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 BUILD COMPONENTS
┌─────────────────────────── PRINT TEMPLATE ────────────────────────────────┐
│ │
│ +XUSER LIST FILE #200 SEND TO SITE │
│ XUSERINQ FILE #200 SEND TO SITE │
│ XUSERVER DISPLAY FILE #19.081 SEND TO SITE │
│ XUSERVER HEADER FILE #19.081 SEND TO SITE │
│ XUUFAA FILE #3.05 SEND TO SITE │
│ XUUFAAH FILE #3.05 SEND TO SITE │
│ XUUSEROPTH FILE #19.081 SEND TO SITE │
│ XUUSEROPTP FILE #19.081 SEND TO SITE │
│ │
│ │
└──┘

COMMAND: Press <PF1>H for help Insert

[bookmark: _Toc458599022]Transporting a Distribution
Once you have created a build entry and added all of the files and components you want to export, you are ready to export your software application. KIDS uses a transport global as the mechanism to move data. INIT routines are no longer the transport mechanism (which removes the old restrictions on the amount of data you can export). Transport globals can then be written to distributions, which are HFS files. Use the TRANSPORT option to generate transport globals and create distributions.
Depending on how you answer the questions in this option, the transport globals this option generates can be stored in:
A distribution, which is then ready to export as a Host file.
A PackMan message (to be sent over the network).
The ^XTMP global on your local system.
If you choose to transport the distribution via a Host file enter HF after the “Transport through (HF)Host File or (PM)PackMan:” prompt and enter a Host file name after the “Enter a Host File” prompt. The option creates transport globals and puts them in the distribution (HFS file) that you specify.
[bookmark: _Toc200269997][bookmark: _Toc458599898]Figure 59: KIDS—Transport a Distribution option: Creating a distribution sample user dialogue
Select Edits and Distribution Option: TRANSPORT A DISTRIBUTION

Enter the Package Names to be transported. The order in which
they are entered will be the order in which they are installed.

First Package Name: ZXG DEMO 1.0
Another Package Name: ZXG TEST 1.0
Another Package Name: <Enter>

ORDER PACKAGE
 1 ZXG DEMO 1.0
 2 ZXG TEST 1.0

OK to continue? NO// YES
Transport through (HF)Host File or (PM)PackMan: HF <Enter> Host File

Enter a Host File: ZXG_EXPT.DAT
Header Comment: EXPORT OF ZXG PACKAGE

 ZXG DEMO 1.0...
 ZXG TEST 1.0...

Package Transported Successfully

Select Edits and Distribution Option:

If you do not enter a Host file name, KIDS creates the transport globals and stores them in your local ^XTMP global, but does not WRITE them to a distribution file.
If you have previously created a transport global for this software application in the ^XTMP global and it still exists, KIDS asks you if you want to use what was already generated or if you want to re-generate the transport globals instead.
If you want the distribution sent via a PackMan message enter PM after the “Transport through (HF)Host File or (PM)PackMan:” prompt. You can only send one transport global per PackMan message, however.
[bookmark: _Toc200269998][bookmark: _Toc458599899]Figure 60: KIDS—Transport a Distribution option: Sending via network (PackMan message) sample user dialogue
Select Edits and Distribution Option: TRANSPORT A DISTRIBUTION

Enter the Package Names to be transported. The order in which
they are entered will be the order in which they are installed.

First Package Name: TEST 1.1
Another Package Name: <Enter>

ORDER PACKAGE
 1 TEST 1.1

OK to continue? NO// YES
Transport through (HF)Host File or (PM)PackMan: PM <Enter> PackMan

 TEST 1.1...
No Package File Link
Subject: TEST
Please enter description of Packman Message

TEST

 Created by XUUSER,FIVE at KERNEL.ISC-SF.VA.GOV (KIDS) on MONDAY, 10/07/96 at 15:21
Do you wish to secure this message? No// ?

If you answer yes, this message will be secured to insure that
what you send is what is actually received.
Do you wish to secure this message? No// Y <Enter> (Yes)
Enter the scramble hint: THIS IS A HINT
Enter scramble password:
The password entered is not echoed back.

Securing the message, now. This may take a while !!!

Send mail to: XUUSER,FIVE Last used MailMan: 04 Oct 96 15:28
 Select basket to send to: IN// <Enter>
And send to: <Enter>

[bookmark: _Toc458599023]When to Transport More than One Transport Global in a Distribution
If several software applications are unrelated, they should be sent as separate distributions. This gives the installing site optimum flexibility to decide when to do each installation.
If a group of software applications is to be installed together, however, and if there are dependencies between the software applications, sending the software applications together in one distribution can give you more control over how the group of software applications is installed. If in some cases only software applications A and B should be installed, and in other situations only software applications A and C should be installed, and you can do the determination yourself (in each software application’s environment check routine), sending the group of software applications in a single distribution lets you control which software applications in the distribution actually are installed.
When you are using PackMan messages to send your software application (rather than using a distribution), you are limited to sending only one transport global per PackMan message.
[bookmark: _Toc458599024]Multi-Package Builds
Multi-Package builds contain a list of other builds and lists their installation order. A Multi-Package build transports this list of builds (template or meta-build).
[bookmark: _Toc200269999][bookmark: _Toc458599900]Figure 61: KIDS—Multi-package builds sample
 Edit a Build PAGE 1 OF 5
Name: TEST 3.0 TYPE: MULTI-PACKAGE
--

 Name: TEST 3.0

 Date Distributed: OCT 9,2004

 Description:

Install Order Packages or Patches
 1 TEST 1.0
 2 TEST 1.1

COMMAND: Press <PF1>H for help Insert

[bookmark: _Toc458599025]Exporting Globals with KIDS
KIDS in Kernel 8.0 supports the installation of global distributions (distributions that export globals). KIDS supports the creation of global distributions by developers. Any number of globals can be included in a build. You are given the opportunity to run an environment check before installing the global and post-install routines after installing the globals. You also are given the choice of KILLing globals prior to installing new globals at a site. If you answer NO to this question, the global is merged with any previously installed global at the site.
[bookmark: _Ref20112563][bookmark: _Toc90348982][image: Note]	REF: For more information on global distributions, see the “KIDS: System Management—Installations” section in the Kernel Systems Management Guide.
[bookmark: _Toc200270000][bookmark: _Toc458599901]Figure 62: KIDS—Exporting global distributions sample
 Edit a Build PAGE 1 OF 5
Name: TEST 5.0 TYPE: GLOBAL PACKAGE
--

 Name: TEST 5.0

 Date Distributed: OCT 9,2004

 Description:

 Environment Check Rtn.: Post-Install Rtn.:

 Globals Kill Global Before Install?
 TMP(100) NO

COMMAND: Press <PF1>H for help Insert

[bookmark: _Toc458599026]Creating Transport Globals that Install Efficiently
There are some choices you can make when designing your build entries, to make your transport globals install efficiently at the receiving site. In particular, you can improve the efficiency of exporting data entries using KIDS:
When exporting data, you can use the ADD IF NEW option to only add entries if the file did not exist prior to the installation. Data is only added if the file is created by the installation. You can use this option to avoid re-exporting data for static files.
When exporting data, send only the data you need to (KIDS no longer forces you to send all data in a file when you only need to send some of the data). You can select a subset of data to send by using a screen, a search template, or both a screen and a search template.
When exporting data, resolve pointers only if necessary, because resolving pointers adds significant overhead to the process of loading data entries.

[bookmark: _Toc357749254][bookmark: _Toc458599027]Advanced Build Techniques
The previous sections in this section introduced KIDS from the developer’s perspective, describing the basics of how to create build entries and how to transport distributions. This section describes advanced build techniques that developers can use when creating builds. The following subjects are covered:
Environment Check Routine
PRE-TRANSPORTATION ROUTINE field (#900)
Pre- and Post-Install Routines: Special Features
Edit a Build—Screen 4
How to Ask Installation Questions
Using Checkpoints (Pre- and Post-Install Routines)
Required Builds
Package File Link
Track Package Nationally
Alpha/Beta Tracking
[bookmark: _Ref200441997][bookmark: _Toc458599028]Environment Check Routine
KIDS, like DIFROM, lets you specify an environment check routine. Typically, the environment check routine looks at the installing system and determines whether it’s appropriate to install the software application, based on conditions on the installing site’s current system or environment.
You are not required to specify an environment check in order for your software application to be installed. If, however, you have some special checks that you want to make to decide whether it is appropriate to go ahead with the installation, the environment check routine is the place to do it.
KIDS lets you specify the name of the environment check routine in screen one of EDIT A BUILD (Figure 67). Any routine that is specified is automatically sent by KIDS. You do not have to list the routine in the Build Components section (Figure 56).
[bookmark: _Toc458599029]Self-Contained Routine
The environment check routine itself must be a single, self-contained routine, because it is the only routine from your build that is loaded on the installing site’s system at the time it is executed by KIDS. Based on what you find out about the installing system during the environment check, you can tell KIDS to continue installing the software application, abort installing the software application, or abort installing all software applications (transport globals) in the distribution.
Although output during the pre-install and post-install should be done with the MES^XPDUTL(): Output a Message and BMES^XPDUTL(): Output a Message with Blank Line APIs, during the environment check routine you should use direct READs and WRITEs.
[bookmark: _Toc458599030]Environment Check is Run Twice
KIDS runs the environment check routine twice. It runs the environment check routine first when the installer loads the transport global from the distribution (with the Load a Distribution option).
KIDS runs the environment check a second time when the user runs the Install Package(s) option [XPD INSTALL BUILD] to install the software applications in the loaded distribution.
The KIDS key variable XPDENV indicates in which phase (load or install) the environment check is running.
[image: Note]	REF: For more information on XPDENV, see the “Key Variables during Environment Check” section.
[bookmark: _Ref332261145][bookmark: _Toc458599031]Key Variables during Environment Check

[bookmark: _Toc200270001][bookmark: _Ref292793561][bookmark: _Ref292795093][bookmark: _Toc458600010]Table 15: KIDS—Key variables during the environment check
	[bookmark: COL001_TBL009]Variable
	Description

	XPDNM
	The KIDS key variable XPDNM is available during the environment check, as well as during the pre- and post-install phases of a KIDS installation. XPDNM is set to the name of the transport global currently being installed. It is in the format of the .01 field of the software application’s BUILD file (#9.6) entry, which is software application name, concatenated with a space, concatenated with version number.

	XPDNM(“TST”)
	Released with Kernel patch XU*8.0*559, the XPDNM(“TST”) variable is available during the pre- and post-install and environment check phases of a KIDS installation. XPDNM(“TST”) is set to one of the following values:
Test Number—If build is a patch and the National Patch Module (NPM) created a test number.
Null.

	XPDNM(“SEQ”)
	Released with Kernel patch XU*8.0*559, the XPDNM(“SEQ”) variable is available during the pre- and post-install and environment check phases of a KIDS installation. XPDNM(“SEQ”) is set to one of the following values:
Sequence Number—If build is a patch and the National Patch Module (NPM) created a sequence number.
Null.

	XPDENV
	The KIDS key variable XPDENV is available during the environment check only. It can have the following values:
1—The environment check is being run by the KIDS Install Package(s) option.
0—The environment check is being run by the KIDS Load a Distribution option.
You can use XPDENV if, for example, there is a check that is valid to perform at install time, but not at load time.

	DIFROM
	For the purpose of backward compatibility, the variable DIFROM is available during the environment check, as well as during the pre- and post-install phases of a KIDS installation. DIFROM is set to the version number of the incoming software application.

[bookmark: _Toc458599032]Package Version vs. Installing Version
KIDS provides several functions that you can use during the environment check to compare version numbers of the current software application at the site to the incoming transport global:
$$VER^XPDUTL
$$VERSION^XPDUTL
[image: Note]	REF: For more on these APIs, see the “Application Programming Interface (API)” section in this section.
[bookmark: _Toc458599033]Telling KIDS to Skip Installing or Delete a Routine
During the environment check, you can tell KIDS to skip installing any routine, and change a routine’s installation status to DELETE AT SITE.
For example, suppose you have one version of a routine for GT.M sites and one version for Caché sites. Based on the type of system your environment check finds, you can use the $$RTNUP^XPDUTL(): Update Routine Action function to tell KIDS which routines to skip installing.
[image: Note]	REF: For more information on deleting environment check routines, see the “Key Parameters during Pre- and Post-Install Routines” section in this section.
[bookmark: _Toc458599034]Verifying Patch Installation
During the environment check, you can tell KIDS to verify that a particular patch has been installed on a system prior to the installation of your software application.
For example, if your software application is dependent on a particular patch being installed, you can use the $$PATCH^XPDUTL(): Verify Patch Installation function to have KIDS alert the user that a required patch is not installed on their system.
[bookmark: _Toc458599035]Aborting Installations During the Environment Check
In the environment check, you can decide whether an installation should continue or stop, or whether the installation of all transport globals in the distribution should be aborted.
When you abort the installation of a transport global by setting XPDQUIT or XPDABORT, KIDS outputs a message to the effect that a particular transport global in the installation is being aborted. You should also issue your own message when aborting an installation, however, to give the site some diagnostic information as to why you have chosen to abort the install.
Table 16 lists ways you can ask KIDS to continue or abort an installation, based on the conclusions of your environment check routine:
[bookmark: _Ref332260478][bookmark: _Toc200270002][bookmark: _Toc458600011]Table 16: KIDS—Actions based on environment check conclusions
	[bookmark: COL001_TBL010]KIDS Desired Action
(Based on Environment Check Conclusions)
	
How to Tell KIDS to Take Action

	OK to install this transport global.
	(Take no action)

	Do not install this transport global and KILL it from ^XTMP.
	>S XPDQUIT =1

	Do not install this transport global but leave it in ^XTMP.
	>S XPDQUIT=2

	Abort another transport global named pkg_name in distribution and KILL it from ^XTMP.
	>S XPDQUIT(pkg_name)=1

	Abort another transport global named pkg_name in distribution but leave it in ^XTMP.
	>S XPDQUIT(pkg_name)=2

	Abort all transport globals in distribution and KILL them from ^XTMP.
	>S XPDABORT=1

	Abort all transport globals in distribution but leave them in ^XTMP.
	>S XPDABORT=2

[image: Note]	NOTE: It is recommended that you use XPDQUIT when you have a distribution that contains multiple builds and you only want to selectively install a portion of it. Use the XPDABORT to abort the entire installation of a distribution.
[bookmark: _Toc458599036]Controlling the Queuing of the Install Prompt
By default, KIDS allows the installer to run in the future. It does this by allowing the installer to enter “Q” at the device prompt. If the XPDNOQUE variable is set to 1, then the installer sees the following prompt and not be allowed to enter “Q”:
[bookmark: _Toc200270003][bookmark: _Toc458599902]Figure 63: KIDS—Dialogue when the XPDNOQUE variable is set to disable queuing
Enter the Device you want to print the Install messages.
Enter a ‘^’ to abort the install.

DEVICE: HOME//

[bookmark: _Toc458599037]Controlling the Disable Options/Protocols Prompt
By default, KIDS asks the following question during KIDS installations:
[bookmark: _Toc200270004][bookmark: _Toc458599903]Figure 64: KIDS—”DISABLE” default prompt during installations
Want to DISABLE Scheduled Options, Options, and Protocols? YES//

You can control the way this question is asked by defining the array XPDDIQ(“XPZ1”) during the environment check. The environment check runs once during the installation and prompts the user if it should run during the load. Setting this array only has an effect during the installation. Therefore, you may want to define the array only when XPDENV=1. You can use this array as follows (each node is optional):
[bookmark: _Toc200270005][bookmark: _Toc458600012]Table 17: KIDS—Installation: XPDDIQ array sample
	[bookmark: COL001_TBL011]Array Node
	Description

	XPDDIQ(“XPZ1”)
	(optional) Set to zero (0) to force answer to NO or set to 1 to force answer to YES. When this node is set, the site is not asked the question.

	XPDDIQ(“XPZ1”,“A”)
	(optional) Replace the default question prompt with the value of this node.

	XPDDIQ(“XPZ1”,“B”)
	(optional) Set to new default answer in external form (YES or NO).

[bookmark: _Toc458599038]Controlling the Move Routines to Other CPUs Prompt
By default, KIDS asks the following question during KIDS installations:
[bookmark: _Toc200270006][bookmark: _Toc458599904]Figure 65: KIDS—”MOVE routines” default prompt during installations
Want to MOVE routines to other CPUs? NO//

You can control the way this question is asked by defining the array XPDDIQ(“XPZ2”) during the environment check. The environment check runs twice (once during load and once during installation), but setting this array only has an effect during the installation. Therefore, you may want to define the array only when XPDENV=1. You can use this array as follows (each node is optional):
[bookmark: _Toc200270007][bookmark: _Toc458600013]Table 18: KIDS—Environment Check—XPDDIQ array sample
	[bookmark: COL001_TBL012]Array Node
	Description

	XPDDIQ(“XPZ2”)
	(optional) Set to zero (0) to force answer to NO, or set to 1 to force answer to YES. When this node is set, the question is not asked.

	XPDDIQ(“XPZ2”,“A”)
	(optional) Replace the default question prompt with the value of this node.

	XPDDIQ(“XPZ2”,“B”)
	(optional) Set to new default answer in external form (YES or NO).

[bookmark: _Toc200270008][bookmark: _Toc458599905]Figure 66: KIDS—Environment Check routine sample
ZZUSER1 ;SFISC/RWF - CHECK TO SEE IF OK TO LOAD ; 8 Sep 94 10:39
 ;;8.0T13;KERNEL;;Aug 01, 1994
 N Y
 I $S($D(DUZ)[0:1,$D(DUZ(0))[0:1,’DUZ:1,1:0) W !!,*7,“>> DUZ and DUZ(0) must be defined as an active user to initialize.” S XPDQUIT=2
 I $D(^DD(200,0))[0,XPDNM’[“VIRGIN INSTALL” W !!,“You need to install the KERNEL - VIRGIN INSTALL 8.0 package, instead of this package!!” G ABRT
 ;check for Toolkit 7.3
 I $$VERSION^XPDUTL(“XT”)<7.3 W !!,“You need Toolkit 7.3 installed!” G ABRT
 ;
 W !,“I’m checking to see if it is OK to install KERNEL v”,$P($T(+2),“;”,3),“ in this account.”,!
 W !!,“Checking the %ZOSV routine” D GETENV^%ZOSV
 I $P(Y,“^”,4)=“” W !,“The %ZOSV routine isn’t current.”,!,“Check the second line of the routine, or your routine map table.” S XPDQUIT=2
 ;must have Kernel 7.1
 S Y=$$VERSION^XPDUTL(“XU”) G:Y<7.1 OLD
 ;Test Access to % globals, only check during install
 D:$G(XPDENV) GBLOK
 I ‘$G(XPDQUIT) W !!,“Everything looks OK, Lets continue.”,!
 Q
 ;
OLD W !!,*7,“It looks like you currently have version “,Y,” of KERNEL installed.”
 W !,*7,“You must first install KERNEL v7.1 before this version can be installed.”,!
 ;abort install, delete transport global
ABRT S XPDQUIT=1
 Q
 ;
GBLOK ;Check to see if we have WRITE access to needed globals.
 W !,“Now to check protection on GLOBALS.”,!,“If you get an ERROR, you need to add WRITE access to that global.”,!
 F Y=“^%ZIS”,“^%ZISL”,“^%ZTER”,“^%ZUA” W !,“Checking “,Y S @(Y_”=$G(“_Y_”)”)
 Q

[bookmark: _Ref200264530][bookmark: _Toc458599039]PRE-TRANSPORTATION ROUTINE field (#900)
The PRE-TRANSPORTATION ROUTINE field (#900) in the BUILD file (#9.6) contains a [TAG^]ROUTINE that is run during the transportation process for the Build. This allows developers to populate the transport global using the XPDGREF variable.
Developers can put information in the KIDS Transport Global, which can be used by the Pre-install, Environment Check, and/or Post-install routines. KIDS runs the [TAG^]ROUTINE in the field PRE-TRANSPORTATION ROUTINE during the transport process. This routine can use the XPDGREF variable to set nodes in the transport global. For example, enter the following at the programmer prompt:
>S @XPDGREF@(“My Namespace”,1)=“Information I need during install”
During the install process, in the Pre-install, Environment Check, and/or Post-install routines, the developer can retrieve the data by using the same variable, XPDGREF. Since these nodes are part of the transport global, they are removed when the install is completed.
[bookmark: _Ref257006361][bookmark: _Toc200270009][bookmark: _Toc458599906]Figure 67: KIDS—PRE-TRANSPORTATION ROUTINE field sample
 Edit a Build PAGE 1 OF 4
Name: TEST 4.0 TYPE: SINGLE PACKAGE

 Name: TEST 4.0

 Date Distributed: OCT 9,2004

 Description:

 Environment Check Routine:

 Pre-Install Routine:

 Post-Install Routine:

Pre-Transportation Routine: TAG^ROUTINE

COMMAND Press PF1H for help Insert

[bookmark: _Ref200442032][bookmark: _Toc458599040]Pre- and Post-Install Routines: Special Features
KIDS, like DIFROM, lets you specify pre-install and post-install routines. Typically, the pre- and post-install routines are used to perform pre-install and post-install conversions. This section describes how to use pre- and post-install routines with KIDS installations.
Pre- and post-routines are optional; you are not required to specify them in order for your software application to be installed. If, however, you have some special actions you want to take, either before or after your installation, the pre- and post-install routines are the places to do it.
KIDS lets you specify the names for pre- and post-install routines in screen one of EDIT A BUILD (Figure 67). Any routine that is specified is automatically sent by KIDS. You do not have to list the routine in the Build Components section (Figure 56).
Two functions can be called during the install process to disable or enable an option or protocol:
$$OPTDE^XPDUTL(): Disable/Enable an Option
$$PRODE^XPDUTL(): Disable/Enable a Protocol
Do not set up variables during the pre-install for use during the installation or the post-install, because these variables are lost if the installation aborts midway through and then is restarted by the site using the restart option.
You can reference any routine exported in your build, since all routines with a SEND TO SITE action are installed by the time the pre- and post-install routines run.
[bookmark: _Toc458599041]Aborting an Installation During the Pre-Install Routine
You can abort an installation during the pre-install routine by setting the XPDABORT variable to 1 and quitting. This is exactly as if the installing site pressed <CTRL>C, in the sense that no cleanup is done; options are left disabled. KIDS prints one message to the effect that the install aborted in the pre-install program. If you abort an installation in this manner, you need to tell the site what to do to either re-start the installation or clean up the system from the state it was left in.
[bookmark: _Toc458599042]Setting a File’s Package Revision Data Node (Post-Install)
A new Package Revision Data node can now be updated during the post-install. This node is located in ^DD(filenumber,0,“VRRV”). It is defined by the developer who distributes the software application and may contain patch or revision information regarding the file. $$GET1^DID can be used to retrieve the content of the node and PRD^DILFD updates the node.
[image: Note]	REF: For more information, see the VA FileMan Developer’s Guide.
[bookmark: _Ref332641959][bookmark: _Ref332641491][bookmark: _Toc458599043]Key Parameters during Pre- and Post-Install Routines

[bookmark: _Toc458600014]Table 19: KIDS—Key parameters during the pre- and post-install routines
	[bookmark: COL001_TBL013]Parameter
	Description

	XPD NO_EPP_DELETE
	If this parameter is set to 1, KIDS does not delete any environment check Pre and Post routines, regardless if the Environment Check routine is marked as “DELETE AT SITE.” By default, this parameter is set to 1 (do not delete), so support personnel are able to look at those routines for troubleshooting purposes.

[bookmark: _Toc458599044]Key Variables during Pre- and Post-Install Routines

[bookmark: _Toc200270010][bookmark: _Ref292773222][bookmark: _Toc458600015]Table 20: KIDS—Key variables during the pre- and post-install routines
	[bookmark: COL001_TBL014]Variable
	Description

	XPDNM
	The XPDNM variable is available during the pre- and post-install and environment check phases of a KIDS installation. XPDNM is set to the name of the build currently being installed. It is in the format of the .01 field of the software application’s BUILD file (#9.6) entry, which is software application name, concatenated with a space, concatenated with version number.

	XPDNM(“TST”)
	Released with Kernel patch XU*8.0*559, the XPDNM(“TST”) variable is available during the pre- and post-install and environment check phases of a KIDS installation. XPDNM(“TST”) is set to one of the following values:
Test Number—If build is a patch and the National Patch Module (NPM) created a test number.
Null.

	XPDNM(“SEQ”)
	Released with Kernel patch XU*8.0*559, the XPDNM(“SEQ”) variable is available during the pre- and post-install and environment check phases of a KIDS installation. XPDNM(“SEQ”) is set to one of the following values:
Sequence Number—If build is a patch and the National Patch Module (NPM) created a sequence number.
Null.

	DIFROM
	For the purpose of backward compatibility, the DIFROM variable is available during the pre- and post-install (as well as environment check) phases of a KIDS installation. DIFROM is set to the version number of the incoming software application.

	ZTQUEUED
	If the ZTQUEUED variable is present, you know that you are running as a queued installation. If ZTQUEUED is not present, you know that the installer chose to run the installation directly instead of queuing it.

[bookmark: _Toc458599045]NEW the DIFROM Variable When Calling MailMan
You are free to use the MailMan API to send mail messages during pre- and post-install routines (provided MailMan exists on the target system). Make sure that you NEW the DIFROM variable before calling any of the MailMan APIs, however. MailMan APIs can terminate prematurely if the DIFROM variable is present because the DIFROM variable has a special meaning within MailMan.
[bookmark: _Toc458599046]Update the Status Bar During Pre- and Post-Install Routines
During the installation, if the device selected for output is a VT100-compatible (or higher) terminal, KIDS displays the installation output in a virtual window on the terminal. Below the virtual window, a progress bar graphically illustrates the percentage complete that the current part of the installation has reached. KIDS resets the status bar prior to the Pre- and Post-install routines.
[image: Note]	REF: For more information on the status (progress) bar, see the “Installation Progress” section in the “KIDS Systems Management Installations” section in the Kernel Systems Management Guide.
You can provide a similar status bar for users in the Pre- and Post-Install by doing the following:
1. SET XPDIDTOT=total number of items.
1. DO UPDATE^XPDID(current number of items). This moves the status bar.
For example, if you were converting 100 records and want to update the user every time you have completed 10% of the records you would enter the following at the programmer prompt:

>SET XPDIDTOT=100
>F%=1:1:100 D CONVERT I’(%#10) D UPDATE^XPDID(%)
If you wish to display a status bar at various intervals throughout your Pre or Post-install routines, you should reset the status bar. To reset the status bar enter the following at the programmer prompt:

>SET XPDIDTOT=0
>D UPDATE^XPDID(0)

[bookmark: _Ref200443148][bookmark: _Toc458599047]Edit a Build—Screen 4
Screen four of the EDIT A BUILD option is where you can set up the install questions, any required builds, PACKAGE file (#9.4) links, and tracking software application information for a build.
[bookmark: _Toc200270011][bookmark: _Toc458599907]Figure 68: KIDS—Screen 4 of Edit a Build sample
 Edit a Build PAGE 4 OF 5
Name: TEST 1.0 TYPE: SINGLE PACKAGE

 Install Questions

 Required Builds

 Package File Link...: TEST

 Track Package Nationally: NO

COMMAND: Press <PF1>H for help Insert

[bookmark: _Ref200443180][bookmark: _Toc458599048]How to Ask Installation Questions
You are not required to ask any installation questions in order for your software application to be installed. If, however, you have some special actions that you can take in your pre-install and post-install processes, and these special actions depend on information you need to get from your installer, then you need a way to ask these questions.
Screen four of the EDIT A BUILD option is where you can set up the install questions for a build.
To ask questions, you need to supply KIDS with the proper DIR input values for each question. Then, KIDS uses the DIR utility to ask installation questions when performing installations. The DIR input values you can supply for each question are:
[bookmark: _Toc200270012][bookmark: _Toc458600016]Table 21: KIDS—DIR input values for KIDS install questions
	[bookmark: COL001_TBL015]DIR Input Value
	Description

	DIR(0)
	Question format.

	DIR(A)
	Question prompt.

	DIR(A,#)
	Additional message before question prompt.

	DIR(B)
	Default answer.

	DIR(?)
	Simple help string.

	DIR(?,#)
	Additional simple help.

	DIR(??)
	Help frame.

[image: Note]	REF: For information on the purpose of these variables, permissible values for them, and which are required versus which are optional, see the VA FileMan Developer’s Guide.
[bookmark: _Toc458599049]Question Subscripts
For each question you want to ask, the .01 field of the question (as stored by KIDS) is a subscript. The subscript must be in one of two forms:
Pre-Install Questions—PRExxx
Post-Install Questions—POSxxx
Where “xxx” in the subscript can be any string up to 27 characters in length. KIDS asks questions whose subscript starts with PRE during the pre-install and questions whose subscript starts with POS during the post-install.
The order in which questions are asked during the pre- or post-installs is the same as the sorting order of the subscript itself. KIDS asks questions with the lowest sorting subscript first and proceeds to the highest sorting subscript.
[bookmark: _Toc458599050]M Code in Questions
Besides specifying the DIR input variables, you can specify a line of M code that is executed after the DIR input variables have been set up but prior to the DIR call. The purpose of this line of M code is so that you can modify the DIR parameters, if necessary, before ^DIR is actually called.
The M code must be standalone, however; it cannot depend on any routine in the software application (other than the environment check routine) since no other exported routines besides the environment check routine are loaded on the installing system.
[bookmark: _Toc458599051]Skipping Installation Questions
If you want to prevent a question from being asked, you should KILL the DIR variable in the line of M code for that question (execute K DIR).
[bookmark: _Toc458599052]Accessing Questions and Answers
Once the questions have been asked, the results of the questions are available (during pre-install and post-install only) in the following locations:
Pre-Install Questions:
XPDQUES(PRExxx)=internal form of answer
XPDQUES(PRExxx, “A”)=prompt
XPDQUES(PRExxx, “B”)=external form of answer
Post-Install Questions:
XPDQUES(POSxxx)=internal form of answer
XPDQUES(POSxxx, “A”)=prompt
XPDQUES(POSxxx, “B”)=external form of answer
The results of the questions for the pre-install can only be accessed (in XPDQUES) during the pre-install, and the results of the questions for the post-install can only be accessed (in XPDQUES) during the post-install. At all other times, XPDQUES is undefined for pre- and post-install questions.
[bookmark: _Toc200270013][bookmark: _Toc458599908]Figure 69: KIDS—Pre-install question (setting up) sample
 Edit a Build PAGE 4 OF 5
┌───────────────────────── Install Questions ─────────────────────────────────┐
│ Name: PRE1 │
│ │
│ DIR(0): YA^^ │
│ │
│ DIR(A): Do you want to run the pre-install conversion? │
│DIR(A,#): │
│ │
│ DIR(B): YES │
│ │
│ DIR(?): Answer YES to run the pre-install conversion, NO to skip it. │
│DIR(?,#): │
│ DIR(??): │
│ │
│ M Code: │
└───┘
__

COMMAND: Press <PF1>H for help Insert

[bookmark: _Toc200270014][bookmark: _Toc458599909]Figure 70: KIDS—Appearance of question during installation
Do you want to run the pre-install conversion? YES// ?

Answer YES to run the pre-install conversion, NO to skip it...

Do you want to run the pre-install conversion? YES//

[bookmark: _Toc458599053]Where Questions Are Asked During Installations
KIDS asks the pre- and post-install questions when a site initiates an installation of the software application. The order of the questions is:
1. KIDS runs environment check routine, if any.
1. KIDS asks pre-Install questions.
1. KIDS asks generic KIDS installation questions.
1. KIDS asks post-Install questions.
1. KIDS asks site to queue the installation or run it directly.
[bookmark: _Ref200443204][bookmark: _Toc458599054]Using Checkpoints (Pre- and Post-Install Routines)
KIDS allows the installing site to restart installations that have aborted. This means that your pre-install and post-install routines must be “restart-aware:” that is, they must be able to run correctly whether it’s the first time they’re executed or whether it is the nth time through.
KIDS maintains a set of internal checkpoints during an installation. For each phase of the installation (for example, completion of each software application component), it uses a checkpoint to record whether that phase of the installation has completed yet. If an installation errors out, checkpointing allows the installation to be restarted, not from the very beginning, but instead only from the last completed checkpoint onward.
In your pre- and post-install routines, you can use your own checkpoints. If there is an error during the pre- or post-install, and you use checkpoints, when the sites restart the installation, it resumes from the last completed checkpoint rather than running through the entire pre- or post-install again.
Another advantage of using checkpoints is that you can record timing information for each phase of your pre- and post-install routines, which allows you to evaluate the efficiency of each phase you define.
There are two distinct types of checkpoints you can create during pre- and post-install routines:
Checkpoints with callbacks
Checkpoints without callbacks.
[bookmark: _Toc458599055]Checkpoints with Callbacks
The preferred method of using checkpoints is to use checkpoints with callbacks. When you create a checkpoint with a callback, you give the checkpoint an API (the callback routine). That is all you have to do during your pre- or post-install routine, create a checkpoint with a callback. You do not have to execute the callback. At the completion of the pre- or post-install routine, KIDS manages the created checkpoints by calling, running, and completing the checkpoint and its callback routine.
The reason to let KIDS execute checkpoints (by creating checkpoints with callbacks) is to ensure that the pre-install or post-install runs in the same way whether it is the first installation pass, or if the installation aborted and has been restarted. If the installation has restarted, KIDS skips any checkpoints in the pre-install or post-install that have completed, and only executes the callbacks of checkpoints that have not yet completed (and completes them).
In this scenario (checkpoints with callback routines), your pre-install and post-install routine should consist only of calls to the $$NEWCP^XPDUTL(): Create Checkpoint function to create checkpoints (with callbacks). Once you create all of the checkpoints for each discrete pre- or post-install task, the pre-install or post-install should quit.
Once the pre- or post-install routine finishes, KIDS executes each created checkpoint (that has a callback) in the order created. If it is the first time through, each checkpoint is executed. If the installation has been restarted, KIDS skips any completed checkpoints, and only executes checkpoints that have not completed.
The KIDS checkpoint functions that apply when using checkpoints with callbacks are summarized below (listed in alphabetic order):
[bookmark: _Toc200270015][bookmark: _Toc458600017]Table 22: KIDS—Functions using checkpoints with callbacks
	[bookmark: COL001_TBL016]Function
	Description

	$$NEWCP^XPDUTL
	Create checkpoint (use during pre- or post-install routine only.)

	$$UPCP^XPDUTL
	Update checkpoint parameter (use within callback routine.)

	$$CURCP^XPDUTL
	Retrieve current checkpoint name (use during pre- or post-install routine). Useful when using the same tag^routine for multiple callbacks; this is how you determine which callback you’re in.

	$$PARCP^XPDUTL
	Retrieve checkpoint parameter (use within callback routine.)

[bookmark: _Toc458599056]Checkpoint Parameter Node
You can store how far you have progressed with a task you are performing in the callback by using a checkpoint parameter node. The $$UPCP^XPDUTL(): Update Checkpoint function updates the value of a checkpoint’s parameter node; the $$PARCP^XPDUTL(): Get Checkpoint Parameter function retrieves the value of a checkpoint’s parameter node.
Being able to update and retrieve a parameter within a checkpoint can be quite useful. For example, if you are converting each entry in a file, as you progress through the file you can update the checkpoint’s parameter node with the Internal Entry Number (IEN) of each entry as you convert it. Then, if the conversion errors out and has to be re-started, you can WRITE your checkpoint callback in such a way that it always retrieves the last completed IEN stored in the checkpoint’s parameter node. Then, it can process entries in the file starting from the last completed IEN, rather than the first entry in the file. This is one example of how you can save the site time and avoid re-processing.
The pre-install API in this example is PRE^ZZUSER2; the post-install API is POST^ZZUSER2.
[bookmark: _Toc200270016][bookmark: _Toc458599910]Figure 71: KIDS—Using checkpoints with callbacks: combined pre- and post-install routine
ZZUSER2 ;RON TEST 1.0 PRE AND POST INSTALL
 ;;1.0
 ;build checkpoints for PRE
PRE N %
 S %=$$NEWCP^XPDUTL(“ZZUSER1”,“PRE1^ZZUSER2”,“C-”)
 Q
PRE1 ;check terminal type file
 N DA,UPDATE,NAME
 ;quit if answer NO to question 1
 Q:’XPDQUES(“PRE1”)
 S UPDATE=XPDQUES(“PRE2”)
 ;write message to user about task
 D BMES^XPDUTL(“Checking Terminal Type File”)
 ;get parameter value to initialize NAME
 S NAME=$$PARCP^XPDUTL(“ZZUSER1”)
 F S NAME=$O(^%ZIS(2,“B”,NAME)) Q:$E(NAME,1,2)’=“C-” D
 .S DA=+$O(^%ZIS(2,“B”,NAME,0))
 .I DA,$D(^%ZIS(2,DA,1)),$P(^(1),U,5)]“” D MES^XPDUTL(NAME_” still has data in field 5”) S:UPDATE $P(^%ZIS(2,DA,1),U,5)=“”
 .;update parameter NAME
 .S %=$$UPCP^XPDUTL(“ZZUSER1”,NAME)
 Q
 ;build checkpoints for POST
POST N %
 S %=$$NEWCP^XPDUTL(“ZZUSER1”,“POST1^ZZUSER2”)
 S %=$$NEWCP^XPDUTL(“ZZUSER2”)
 Q
POST1 ;check version multiple
 N DA,VER,%
 ;quit if answer NO to question 1
 Q:’XPDQUES(“POST1”)
 ;write message to user about task
 D BMES^XPDUTL(“Checking Package File”)
 ;get parameter value to initialize DA
 S DA=+$$PARCP^XPDUTL(“ZZUSER1”)
 F S DA=$O(^DIC(9.4,DA)) Q:’DA D
 .S VER=+$$PARCP^XPDUTL(“ZZUSER2”)
 .F S VER=$O(^DIC(9.4,DA,22,VER)) Q:’VER D
 ..;here is where we could do something
 ..;update parameter VER
 ..S %=$$UPCP^XPDUTL(“ZZUSER2”,VER)
 .;update parameter DA
 .S %=$$UPCP^XPDUTL(“ZZUSER1”,DA),%=$$UPCP^XPDUTL(“ZZUSER2”,VER)
 Q

[bookmark: _Toc458599057]Checkpoints without Callbacks (Data Storage)
KIDS ignores checkpoints that do not have callback routines specified. The ability to create checkpoints without a callback routine is provided mainly as a facility for developers to store information during the pre- or post-install routine. The parameter node of the checkpoint serves as the data storage mechanism. It is not safe to store important information in local variables during pre- or post-install routines, because installations can now be re-started in the middle; variables defined prior to the restart may no longer be defined after a restart.
An alternative use lets you expand the scope of checkpoints without callbacks beyond simply storing data. If you want to manage your own checkpoints instead of letting KIDS manage them, you can create checkpoints without callbacks, but use them to divide your pre- and post-install routine into phases. Rather than having KIDS execute and complete them (as happens when the checkpoint has a callback routine), you would then be responsible for executing and completing the checkpoints. In this style of coding a pre- or a post-install routine, you would:
1. Check if each checkpoint exists ($$VERCP^XPDUTL(): Verify Checkpoint); if it does not exist, create it ($$NEWCP^XPDUTL(): Create Checkpoint).
1. Retrieve the current checkpoint parameter as the starting point if you want to ($$PARCP^XPDUTL(): Get Checkpoint Parameter); do the work for the checkpoint; update the parameter node if you want to ($$UPCP^XPDUTL(): Update Checkpoint).
1. Complete the checkpoint when the work is finished ($$COMCP^XPDUTL(): Complete Checkpoint).
1. Proceed to the next checkpoint.
You have to do more work this way than if you let KIDS manage the checkpoints (by creating the checkpoints with callback routines).
The KIDS checkpoint functions that apply when using checkpoints without callbacks are summarized below (listed in alphabetic order):
[bookmark: _Toc200270017][bookmark: _Toc458600018]Table 23: KIDS—Functions using checkpoints without callbacks
	[bookmark: COL001_TBL017]Function
	Description

	$$COMCP^XPDUTL
	Complete checkpoint (use during pre- or post-install routine).

	$$NEWCP^XPDUTL
	Create checkpoint (use during pre- or post-install routine).

	$$PARCP^XPDUTL
	Retrieve checkpoint parameter (use during pre-or post-install routine).

	$$UPCP^XPDUTL
	Update checkpoint parameter (use during pre- or post-install routine).

	$$VERCP^XPDUTL
	Verify if checkpoint exists and if it has completed (use during pre- or post-install routine).

[bookmark: _Ref200443233][bookmark: _Toc458599058]Required Builds
In the fourth screen of the EDIT A BUILD option, you can use the Required Builds multiple to enter other builds (i.e., software applications, or patches) that either warn the installer when they are missing or requires that they be installed before this build is installed. Make an entry in the BUILD file (#9.6) for those software applications or patches not installed using KIDS. Include the name and version number in the BUILD file (#9.6) entry.
[image: Note]	REF: For the action types available, see Table 24.
At the installing site, KIDS checks the PACKAGE file (#9.4), VERSION multiple, and PATCH APPLICATION HISTORY multiple to verify that the required build has been installed at that site.
[bookmark: _Toc200270018][bookmark: _Toc458599911]Figure 72: KIDS—Required builds sample
 Edit a Build PAGE 4 OF 5
Name: TEST 1.0 TYPE: SINGLE PACKAGE
--
 Install Questions

 Required Builds
 TEST 1.1 Don’t install, remove global

 Package File Link...: TEST

 Track Package Nationally: NO

COMMAND: Press <PF1>H for help Insert

[bookmark: _Ref454953738][bookmark: _Ref20114069][bookmark: _Toc200270019][bookmark: _Toc458600019]Table 24: KIDS—Required builds installation actions
	[bookmark: COL001_TBL018]Installation Action
	Description

	WARNING ONLY
	Warns the installer the listed software application/patch is missing at the site but allows the installation to continue. (Displays a **WARNING** to the installer.)

	DON’T INSTALL, LEAVE GLOBAL
	If the listed software application/patch is missing, this action prevents sites from continuing the installation. It does not unload the Transport Global. This allows sites to install the missing item and continue with the installation without having to reload the Transport Global.

	DON’T INSTALL, REMOVE GLOBAL
	If the listed software application/patch is missing, this action prevents sites from continuing the installation. It also unloads the Transport Global.

[bookmark: _Ref200443251][bookmark: _Toc458599059]Package File Link
In the fourth screen of the EDIT A BUILD option, you can link your build to an entry in the national PACKAGE file (#9.4). Use this link if you want to update the site’s PACKAGE file (#9.4) when the software application you are creating is installed or if you want to use Kernel’s Alpha/Beta Testing module. You can only link to a PACKAGE file (#9.4) entry that is the same name (minus the version number) as the build you are creating.
If you specify a PACKAGE file (#9.4) entry in the PACKAGE FILE LINK field, and the installing site does not have a matching entry in their PACKAGE file (#9.4), KIDS creates a new entry in the installing site’s PACKAGE file (#9.4).
KIDS checks for duplicate version numbers and patch names when updating the PACKAGE file (#9.4). When you link to an entry in the PACKAGE file (#9.4), your installation automatically updates the VERSION multiple in the installing site’s corresponding PACKAGE file (#9.4) entry. KIDS makes a new entry in the VERSION multiple for the version of the software application you are installing. KIDS fills in the following fields in the new VERSION entry:
VERSION
DATE DISTRIBUTED
DATE INSTALLED AT THIS SITE
INSTALLED BY
DESCRIPTION OF ENHANCEMENTS
PATCH APPLICATION HISTORY
PATCH APPLICATION HISTORY
DATE APPLIED
APPLIED BY
DESCRIPTION
KIDS saves patch names along with their sequence numbers in the PATCH APPLICATION HISTORY multiple (this functionality was added with patch XU*8.0*30). The Patch Application History sample (Figure 73) shows a list of patch names with and without sequence numbers. Those patches without sequence numbers were entered prior to patch XU*8.0*30, since no sequence numbers are evident.
In addition, you can choose to update the following fields at the top level of the National PACKAGE file (#9.4):
[bookmark: _Toc200270020][bookmark: _Toc458600020]Table 25: KIDS—National PACKAGE file field updates
	[bookmark: COL001_TBL019]PACKAGE File (#9.4) Field Name
	Description

	PRIMARY HELP FRAME
	Select the primary help frame for the software application.

	AFFECTS RECORD MERGE
	(multiple) Select files that, if merged, affect this software application.

	ALPHA/BETA TESTING
	There are two possible responses:
YES—This software application is currently in alpha or beta test and you want to track option usage and errors relating to this software application at the sites.
NO—You want to discontinue tracking of alpha or beta testing at the sites.

Beyond these fields, KIDS does not support maintaining any other information in the PACKAGE file (#9.4).
[bookmark: _Ref36449126][bookmark: _Toc200270021][bookmark: _Toc458599912]Figure 73: KIDS—Patch Application History sample
 Select PATCH APPLICATION HISTORY: 48// ?
 Answer with PATCH APPLICATION HISTORY
Choose from:
Patches without sequence numbers means that they were entered prior to Kernel patch XU*8.0*30.

 27
 39
 41
 42
 48
 45 SEQ #41
 46 SEQ #42
 47 SEQ #43

 You may enter a new PATCH APPLICATION HISTORY, if you wish
 Answer must be 8-15 characters in length.

 Select PATCH APPLICATION HISTORY: 48// <Enter>
 PATCH APPLICATION HISTORY: 48// <Enter>
 DATE APPLIED: SEP 20,1996// <Enter>
 APPLIED BY: XUUSER,NINETY// <Enter>
 DESCRIPTION:
 1>This contains fixes related to output fixes for the PCMM software
 2>(distributed as SD*5.3*41).
 3>
 4>Both SD*5.3*41 and SD*5.3*45 must be installed prior to loading this
 5>patch.

[bookmark: _Ref200443273][bookmark: _Toc458599060]Track Package Nationally
The fourth screen of the EDIT A BUILD option also lets you choose whether to send a message to the National PACKAGE file (#9.4) on FORUM, each time the software application is installed at a site. If you enter YES in the TRACK PACKAGE NATIONALLY field, KIDS sends a message to FORUM when a site installs the software application, provided the following conditions are met:
The PACKAGE FILE LINK field in the build APIs to an entry in the PACKAGE file (#9.4).
The software application is installed at a site that is a primary VA domain.
The software application is installed in a production UCI.
Answering NO to TRACK PACKAGE NATIONALLY (or leaving it blank) means that KIDS does not send a message to FORUM.
[bookmark: _Ref179162620][bookmark: _Ref179248792][bookmark: _Toc458599061]Alpha/Beta Tracking
Kernel provides a mechanism for tracking and monitoring installation and option usage during the alpha and beta testing phases of VistA software applications. This tool is primarily intended for application developers to use in monitoring the testing process at local test sites.
[image: Note]	NOTE: In VA terminology, “Alpha” and “Beta” testing are defined as follows:
Alpha Testing—VistA test software application that is running in a Test account.
Beta Testing—VistA test software application that is running in a Production account.
Alpha/Beta Tracking provides the following services to both developers and system administrators:
Notification when a new alpha or beta software version is installed at a site.
Periodic option usage reports for alpha or beta options being tracked.
Periodic listings of errors in the software’s namespace that are currently in alpha or beta test at the site.
The Alpha/Beta Tracking of option usage is transparent to users. If the option counter is turned on, it records the number of times an option is invoked within the menu system when entered in the usual way via ^XUS. Options are not counted when navigated past in the course of menu jumping. Also, the counter is not set when entering the menu system with the developers ^XUP utility.
Alpha/Beta tracking data is stored in the following Multiples in the KERNEL SYSTEM PARAMETERS file (#8989.3), which is stored in the ^XTV global:
[bookmark: _Toc200270022][bookmark: _Toc458600021]Table 26: Alpha/Beta Tracking—KERNEL SYSTEM PARAMETERS file (#8989.3) field setup for KIDS
	[bookmark: COL001_TBL020]Alpha/Beta Tracking Fields:
KERNEL SYSTEM PARAMETERS File (#8989.3)
	Description

	ALPHA/BETA TEST PACKAGE Multiple (#32)
	This field stores the list of software namespaces that are currently in alpha or beta test at the site.

	ALPHA,BETA TEST OPTION Multiple (#33)
	This field keeps a log of usage of the options associated with an alpha or beta test of VistA software based on the namespace indicated for the alpha or beta test software in the .ALPHA/BETA TEST PACKAGE Multiple field (#32). This field stores pointers to entries in the OPTION file (#19).

If there are any entries in these Multiples, the menu system’s XQABTST variable is set and the options are tracked.
Each time any subsequent test software is loaded, the current alpha/beta data is sent to the data tracker (e.g., developer) and the alpha/beta data is purged from all Multiples.
[bookmark: _Toc458599062]Initiating Alpha/Beta Tracking
In order to initiate and setup Alpha/Beta Tracking at a test site, developers should perform the following procedures:
1. Create the build entry for the VistA software that is exported to sites.
1. Turn on Alpha/Beta Tracking—In the “Package File Link…” section in the fourth ScreenMan form of the build entry. Developers can turn on Alpha/Beta Tracking by entering YES at the “BUILD TRACK PACKAGE NATIONALLY:” prompt. ALPHA/BETA TESTING field (#20) in the BUILD file (#9.6).
1. Edit THE BUILD file Entries—Highlight the software name and press the <Enter> key. KIDS places you in a ScreenMan form that lets you edit the following Alpha/Beta Tracking-related fields in the BUILD file (#9.6):
[bookmark: _Toc200270023][bookmark: _Toc458600022]Table 27: Alpha/Beta Tracking—BUILD file (#9.6) field setup for KIDS
	[bookmark: COL001_TBL021]Alpha/Beta Tracking Fields:
BUILD File (#9.6)
	Description

	ALPHA/BETA TESTING (#20)
	This field initiates Alpha/Beta Tracking. Developers should enter YES in this field to activate Alpha/Beta Tracking.

	INSTALLATION MESSAGE (#21)
	This field sends an installation message when the VistA software application is installed at a site. Developers should answer YES if you want the installation message sent to the mail group specified in the ADDRESS FOR USAGE REPORTING field (#22) in the BUILD file (#9.6).

	ADDRESS FOR USAGE REPORTING (#22)
	This field should be set to the address of the MailMan mail group at the developer’s domain. This mail group address is where installation and option usage messages are sent by the Alpha/Beta Tracking code. Also, the domain specified in the address is where server requests are sent from the sites to report errors.

	PACKAGE NAMESPACE OR PREFIX field (#23)
	This field is where you identify the alpha/beta VistA software application namespaces to be tracked.

[image: Note]	NOTE: At Alpha/Beta Tracking termination, these fields in the BUILD file (#9.6) need to remain populated so the software code knows where to send the final report.
1. Set up the server option at the development domain. This option must be set up correctly—In order to track errors at test sites, make sure that the XQAB ERROR LOG SERVER server option resides at your development site, which should be the domain specified in the ADDRESS FOR USAGE REPORTING field (#22) in the BUILD file (#9.6) for the software build entry.

This option processes server requests from the test sites, from the Errors Logged in Alpha/Beta Test (QUEUED) option [XQAB ERROR LOG XMIT]. The server stores the data from the requests into the XQAB ERRORS LOGGED file (#8991.5).
[image: Note]	REF: For more information on the Errors Logged in the Alpha/Beta Test (Queued) option, see the “Error Tracking—Alpha/Beta Software Releases” section.
1. Schedule the Errors Logged in the Alpha/Beta Test (Queued) option [XQAB ERROR LOG XMIT] to run at sites to gather errors and report these to the development server.
[image: Note]	REF: For more information on the Errors Logged in the Alpha/Beta Test (Queued) option, see the “Error Tracking—Alpha/Beta Software Releases” section.
1. Schedule the Send Alpha/Beta Usage to Programmers option [XQAB AUTO SEND] at the sites to send mail messages containing option usage.
[image: Note]	REF: For more information on the Send Alpha/Beta Usage to Programmers option, see the “Send Alpha/Beta Usage to Programmers Option” section.
[bookmark: _Toc179096136][bookmark: _Ref179192250][bookmark: _Toc458599063]Error Tracking—Alpha/Beta Software Releases
As well as tracking option usage and installations, Kernel also lets developers track errors that occur in the namespace of the alpha- or beta-tracked software. To report these errors to developers, the site should schedule the Errors Logged in Alpha/Beta Test (QUEUED) option [XQAB ERROR LOG XMIT]. This option cannot be run directly; it is located on the ZTMQUEUABLE OPTIONS menu, which is not on any Kernel menu tree, as shown below:
[bookmark: _Toc200270024][bookmark: _Toc458599913]Figure 74: KIDS—Errors Logged in Alpha/Beta Test (QUEUED) option
ZTMQUEUABLE OPTIONS 	[ZTMQUEUABLE OPTIONS]
 Errors Logged in Alpha/Beta Test (QUEUED)	[XQAB ERROR LOG XMIT]

The Errors Logged in Alpha/Beta Test (QUEUED) option [XQAB ERROR LOG XMIT] identifies any errors associated with an application that is in either alpha or beta test. It collects error information and sends it to a server at the development domain. The developer may ask sites to schedule this option to run at a specified frequency, usually nightly. For example, developers may instruct test sites to schedule it as a task to run daily, after midnight.
The identified errors are combined in a mail message that includes the following information:
Type of error
Routine involved
Date (usually the previous day)
Option that was being used at the time of the error
Number of times the error was logged
Volume
UCI
[image: Note]	NOTE: The volume and UCI are included so that stations with error logs being maintained on different CPUs can run the task on each different system.
[bookmark: _Toc179096132][bookmark: _Toc458599064]Monitoring Alpha/Beta Tracking
There are a number of options available to sites used to monitor the progress of alpha or beta testing. These options are located on the Alpha/Beta Test Option Usage Menu [XQAB MENU], which is located on the Operations Management menu [XUSITEMGR]:
[bookmark: _Toc179096463][bookmark: _Toc200270025][bookmark: _Toc458599914]Figure 75: Alpha/Beta Test Option Usage Menu options
Operations Management ...	[XUSITEMGR]
 Alpha/Beta Test Option Usage Menu ... 	[XQAB MENU]
 Actual Usage of Alpha/Beta Test Options	[XQAB ACTUAL OPTION USAGE]
 Low Usage Alpha/Beta Test Options	[XQAB LIST LOW USAGE OPTS]
 Print Alpha/Beta Errors (Date/Site/Num/Rou/Err)	[XQAB ERR DATE/SITE/NUM/ROU/ERR]
 Send Alpha/Beta Usage to Programmers 	[XQAB AUTO SEND]

These options are described in the sections that follow.
[bookmark: _Toc179096133]Usage Report Options
To get usage reports during the alpha/beta testing of software that is making use of the option counter, system administrators can review the tallies with the following options:
Actual Usage of Alpha/Beta Test Options [XQAB ACTUAL OPTION USAGE]
Low Usage Alpha/Beta Test Options [XQAB LIST LOW USAGE OPTS]
Actual Usage of Alpha/Beta Test Options Option
To get actual usage reports during the alpha/beta testing of software that is making use of the option counter, system administrators can review the tallies with the Actual Usage of Alpha/Beta Test Options option [XQAB ACTUAL OPTION USAGE]. ADPACs may also be interested in being able to generate this information. Figure 76 shows a printout of the actual usage of options within the XU namespace:
[bookmark: _Ref200252350][bookmark: _Toc200270026][bookmark: _Toc458599915]Figure 76: Actual Usage of Alpha/Beta Test Options option—Sample Option Usage report
 OPTION USAGE SINCE 08-05-92

XUSERINQ I 44 User Inquiry
XUUSERDISP R 49 Display User Characteristics
XUFILEACCESS M 50 File Access Management
XUSERBLK R 51 Grant Access by Profile
XUTIME A 53 Time
XUHALT A 71 Halt
XUMAINT M 83 Menu Management
XUSITEMGR M 86 Operations Management
XUSEREDITSELF R 87 Edit User Characteristics
XUSERTOOLS M 129 User’s Toolbox
XUSEREDIT A 175 Edit an Existing User
XUPROG M 191 Programmer Options
XUSER M 265 User Edit
XUPROGMODE R 268 Programmer mode

Low Usage of Alpha/Beta Test Options Option
A similar report can be obtained of low usage options since the current version of the tracked software was installed, using the Low Usage of Alpha/Beta Test Options option [XQAB LIST LOW USAGE OPTS].
[bookmark: _Toc179096134]Print Alpha/Beta Errors (Date/Site/Num/Rou/Err) Option
The Print Alpha/Beta Errors (Date/Site/Num/Rou/Err) option [XQAB ERR DATE/SITE/NUM/ROU/ERR] is used at the development domain, to print error information collected from sites. It does not report meaningful information when used at a site.
[bookmark: _Toc179096135][bookmark: _Ref179191294]Send Alpha/Beta Usage to Programmers Option
At any time during alpha/beta testing, system administrators can send an interim summary message back to the developers, with the Send Alpha/Beta Usage to Programmers option [XQAB AUTO SEND].
To receive option usage reports, developers should instruct the sites to schedule this option to run at whatever frequency desired in order to receive option usage reports. It may be convenient to schedule this task to run, perhaps on a weekly basis; however, the developer may ask system administrators to schedule it to run at a different specified frequency. This option can also be run manually by the sites to send option usage information.
Mail messages are sent to the mail group and domain specified by the national application developer in the build entry for the ADDRESS FOR USAGE REPORTING field (#22) in the BUILD file (#9.6) when they exported the software.
[image: Note]	NOTE: Developers/System Administrators, make sure that this mail group exists at the development domain!
[bookmark: _Toc179096137][bookmark: _Toc458599065]Terminating Alpha/Beta Tracking
Alpha/Beta Tracking, once initiated for a VistA software application, must be turned off when the final version of the software application is released nationally (production). It is the developer’s responsibility to manually stop Alpha/Beta Tracking, terminate the audit, and purge the data when appropriate prior to national release. However, system administrators can also terminate Alpha/Beta Tracking at the local level:
Local (Test) Software—Developer or system administrators is responsible for terminating Alpha/Beta Tracking at the local site.
National (Production) Software—Developers are responsible for terminating Alpha/Beta Tracking for software that is released nationally.
Information stored during Alpha/Beta Tracking is purged each time a subsequent test version of the software is installed. A final summary report of option usage is prepared and sent to the developer’s mail group just before the purge.
[bookmark: _Ref180379270]Local (Test) Software Option Usage—Terminating Alpha/Beta Tracking
For test versions of the software application that is loaded locally (Test/Production accounts), it is the developer or system administrator’s responsibility to stop Alpha/Beta Tracking, terminate the audit, and purge the data from the KERNEL SYSTEM PARAMETERS file (#8989.3) when appropriate. There is no Kernel option to purge locally collected option counts; purge the data via a global KILL. If a subsequent software version release is another test version, Alpha/Beta Tracking is automatically re-initiated and tracking counts are reset back to zero.
[image: Note]	NOTE: If the Alpha/Beta testing is set to YES, any subsequent software version should be considered another test software version. If the Alpha/Beta testing is still set to NO, then the subsequent software version should be considered a production/release software version.
To manually stop Alpha/Beta Tracking at an individual site, developers or system administrators can use the Enter/Edit Kernel Site Parameters option [XUSITEPARM] located on the Kernel Management Menu [XUKERNEL] to remove the desired entries from the ALPHA/BETA TEST PACKAGE Multiple (#32) and ALPHA,BETA TEST OPTION Multiple field (#33) fields in the KERNEL SYSTEM PARAMETERS file (#8989.3):
[bookmark: _Toc179096465][bookmark: _Toc200270027][bookmark: _Toc458599916]Figure 77: Enter/Edit Kernel Site Parameters—Sample user dialogue
Select Kernel Management Menu Option: ENTER/EDIT KERNEL SITE PARAMETERS

Note: the TaskMan site parameters have been moved out of this file.
Use the Edit TaskMan Parameters option to edit those values.

DEFAULT # OF ATTEMPTS: 3// ^ALPHA BETA TEST PACKAGE
Select ALPHA/BETA TEST PACKAGE: ZZLOCAL// @
 SURE YOU WANT TO DELETE THE ENTIRE ALPHA,BETA TEST PACKAGE? Y
Select ALPHA/BETA TEST PACKAGE: <Enter>
Select ALPHA,BETA TEST OPTION: ZZSAMPLE// @
 SURE YOU WANT TO DELETE THE ENTIRE ALPHA,BETA TEST OPTION? Y

National (Production) Software Option Usage—Terminating Alpha/Beta Tracking
For the final version of the software application that is to be released nationally (production), it is the developer’s responsibility to manually stop Alpha/Beta Tracking, terminate the audit, and purge the data from the local Test/Production accounts when appropriate prior to national release.
[image: Note]	NOTE: For more information on how to terminate Alpha/Bea Tracking at local test sites, see the “Local (Test) Software Option Usage—Terminating Alpha/Beta Tracking” section in this section.
To manually stop Alpha/Beta Tracking of nationally released software, developers must enter NO in the ALPHA/BETA TESTING field (#20) in the BUILD file (#9.6) for the final build of the production software. When the sites install the build, Alpha/Beta Tracking is shut off.
[bookmark: _Ref200443078][bookmark: _Toc458599066]Application Programming Interface (API)
Several APIs are available for developers to work with KIDS. These APIs are described below.
[image: Note]	NOTE: For all output during pre- and post-installs, use the MES^XPDUTL(): Output a Message and BMES^XPDUTL(): Output a Message with Blank Line APIs. These functions WRITE output to both the INSTALL file (#9.7) and the output device.
[bookmark: _Ref194456496][bookmark: _Toc458599067]UPDATE^XPDID(): Update Install Progress Bar
Reference Type:	Supported
Category:	KIDS
ICR #:	2172
Description:	This API updates the progress bar to show the percentage complete for the installation of the current number of items specified (i.e., “n” input parameter).
Format:	UPDATE^XPDID(n)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	XPDIDTOT:	(required) This variable is the total number of items that are being updated.
Input Parameters:	n:	(required) The current number of items being updated.
Output:	none.

[bookmark: _Toc458599068]Example
If you are converting 100 records and want to update the user every time you have completed 10% of the records you would do the following:

>Set XPDIDTOT=100
>F%=1:1:100 D CONVERT I’(%#10) D UPDATE^XPDID(%)

[bookmark: _Toc458599069]EN^XPDIJ(): Task Off KIDS Install
Reference Type:	Controlled Subscription
Category:	KIDS
ICR #:	2243
Description:	This API can be used with XPDA and is defined to task off a KIDS install. This is useful if a large conversion needs to run in the background while users are back on the system. For example, the first KIDS build can install a new version of software, then task off a second cleanup/conversion build. This allows users back onto the system, because the new version install completes and unlocks options and protocols. Meanwhile, the cleanup runs in the background under KIDS and makes use of KIDS checkpoints, restart upon failure, and message logging that can later be accessed in the Install File Print.
Format:	EN^XPDIJ(xpda)
Input Parameters:	xpda:	(required) Internal entry number of the build to be tasked in the INSTALL file (#9.7).
Output:	none.

[bookmark: _Toc458599070]$$PKGPAT^XPDIP(): Update Patch History
Reference Type:	Supported
Category:	KIDS
ICR #:	2067
Description:	This extrinsic function updates the PATCH APPLICATION HISTORY field (#1105, Multiple) of the VERSION field (#22, Multiple) in the PACKAGE file (#9.4). This function can be used during the Pre- or Post-Install routine.
Format:	$$PKGPAT^XPDIP(software_ien,version,.x)
Input Parameters:	software_ien:	(required) The software file entry Internal Entry Number (IEN) in the PACKAGE file (#9.4).
	version:	(required) This is the software version number. It must contain a decimal (e.g., 8.0).
	.x:	(required) This parameter is required.
Output:	returns:	Returns:
version ien^patch ien

[bookmark: _Ref37655407][bookmark: _Toc458599071]BMES^XPDUTL(): Output a Message with Blank Line
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations, this API outputs a message string to the installation device. A message is also recorded in the INSTALL file (#9.7) entry for the installation. It is similar to the MES^XPDUTL(): Output a Message API, except that it outputs a blank line before it outputs the message, and it does not take arrays.
Format:	BMES^XPDUTL(msg)
Input Parameters:	msg:	(required) String to output.
Output:	returns:	Returns a message string preceded by a blank line to the installation device.

[bookmark: COMCP][bookmark: _Ref200252064][bookmark: _Toc458599072]$$COMCP^XPDUTL(): Complete Checkpoint
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations, this extrinsic function completes a checkpoint, in pre- or post-install routines. Use this only to complete checkpoints that do not have callback routines. If the checkpoint has a callback routine, KIDS itself completes the checkpoint. You can only complete checkpoints that are for the same installation phase (pre-install or post-install) that you are currently in.
Use this API only for checkpoints with no callback. KIDS completes checkpoints that have a callback.
Format:	$$COMCP^XPDUTL(name)
Input Parameters:	name:	(required) Checkpoint name.
Output:	returns:	Returns:
1—Successfully completed checkpoint.
0—Error completing checkpoint.

[bookmark: CURCP][bookmark: _Toc458599073]$$CURCP^XPDUTL(): Get Current Checkpoint Name/IEN
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	This extrinsic function is used during KIDS installations. Use this extrinsic function to return the name of the current checkpoint. It can be useful if, for example, you use the same tag^routine API for more than one callback. Using this function, you can determine which callback you are in.
Use this API only for checkpoints with a callback. It returns the NULL string if you call it when working with a checkpoint with no callback (in which case, you would really be in either the pre- or post-install routine).
Format:	$$CURCP^XPDUTL(format)
Input Parameters:	format:	(required) Pass as zero (0) to return checkpoint name. Pass as 1 to return checkpoint Internal Entry Number (IEN).
Output:	returns:	Returns:
Checkpoint Name—The current checkpoint name.
NULL String—If not currently in a checkpoint callback.

[bookmark: _Ref193699718][bookmark: _Toc458599074]$$INSTALDT^XPDUTL(): Return All Install Dates/Times
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	This extrinsic function retrieves all dates/times that an install was performed for a given install name in the INSTALL file (#9.7). It returns the results in an array. This API was released with Kernel patch XU*8.0*491.
Format:	$$INSTALDT^XPDUTL(install,.result)
Input Parameters:	install:	(required) Name of install in the INSTALL file (#9.7).
	.result:	(required) Passed by reference, the name of the array to return values.
Output Parameters:	.result:	Returns the number of records in the result array:
result=number of records.
result(internal date/time)=“TEST#^SEQ#” (Fields 61^62 from INSTALL file [#9.7]).

[bookmark: _Toc458599075]Example
>W $$INSTALDT^XPDUTL(“XU*8.0*491”, .RSLT)
1
>ZW RSLT
RSLT=1
RSLT(3080318.092151)=“1^”

[bookmark: _Ref292697210][bookmark: _Ref37559548][bookmark: _Toc458599076]$$LAST^XPDUTL(): Last Software Patch
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	This extrinsic function returns the last patch and the date it was applied to the software. The patch also includes the Sequence # if the last patch was a released patch.
[image: Note]	NOTE: This API can be used outside of KIDS.
Format:	$$LAST^XPDUTL(x[,y][,z])
Input Parameters:	x:	(required) Software name or software namespace within quotes (e.g., “KERNEL” or “XU”).
	y:	(optional) Full software version number with decimal point entered within quotes (e.g., “8.0”). The current version is assumed if this parameter is not supplied.
	z:	(optional) This parameter was added with Kernel patch XU*8.0*559. If set to 1, then only the last released patch information is returned.
Output:	returns:	Returns the last patch information in a caret-delimited string:
nnn^yyymmdd—Unreleased patch, where “nnn” = patch number and “yyymmdd” = date in VA FileMan format.
nnn Seq #nnn^yyymmdd—Released patch, where “nnn” = patch number, “Seq #nnn” = sequence number for released patch, and “yyymmdd” = date in VA FileMan format.
-1—If either the software or version does not exist or no patches have been applied.

[bookmark: _Toc458599077]Examples
Example 1
>S X=“KERNEL”

>S Y=“8.0”

>W $$LAST^XPDUTL(X,Y)
543^3110503

Example 2
>S X=“KERNEL”

>S Y=“8.0”

>S Z=1

>W $$LAST^XPDUTL(X,Y,Z)
431 SEQ #453^3110425.122831

Example 3
>S X=“KERNEL”

>S Y=“9.0”

>S Z=1

>-1

For this example, since there is no Kernel 9.0 the expected result is -1.
[bookmark: _Ref36528021][bookmark: _Ref64942765][bookmark: _Toc458599078]MES^XPDUTL(): Output a Message
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations, this API outputs a message string to the installation device. A message is also recorded in INSTALL file (#9.7) entry for the installation.
Format:	MES^XPDUTL([.]msg)
Input Parameters:	[.]msg:	(required) Message string to output, either in a variable or passed by reference as an array of strings.
Output:	returns:	Returns a message string to the installation device.

[bookmark: NEWCP][bookmark: _Ref200251226][bookmark: _Ref200251853][bookmark: _Toc458599079]$$NEWCP^XPDUTL(): Create Checkpoint
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations—in Pre- or Post-install routines, this extrinsic function creates a checkpoint. The checkpoint is stored in the INSTALL file (#9.7).
Pre-and post-install checkpoints are stored separately, so you can use the same name for a pre- and post-install checkpoint if you wish. Checkpoints created with this function from the pre-install routine are pre-install checkpoints; checkpoints created during the post-install routine are post-install checkpoints.
You can use $$NEWCP^XPDUTL to create a checkpoint with or without a callback. You can also store a value for the parameter node, if you wish.
Checkpoints created with callbacks have that callback automatically executed by KIDS during the appropriate phase of the installation. If the checkpoint is created during the pre-install routine, KIDS executes the callback as soon as the pre-install routine completes. If the callback is created during the post-install, KIDS executes the callback as soon as the post-install routine completes. If multiple checkpoints are created during the pre- or post-install routine, KIDS executes the callbacks (and completes the checkpoints) in the order the corresponding checkpoints were created.
Checkpoints created without a callback cannot be executed by KIDS; instead, they provide a way for developers to store and retrieve information during the pre-install and post-install phases. Rather than storing information in a local or global variable, you can store information in a checkpoint parameter node and retrieve it (even if an installation is re-started).
If the checkpoint you are trying to create already exists, the original parameter and callback is not overwritten.
Format:	$$NEWCP^XPDUTL(name[,callback][,par_value])
Input Parameters:	name:	(required) Checkpoint name.
	callback:	(optional) Callback (^routine or tag^routine reference).
	par_value:	(optional) Value to which the checkpoint parameter is set.
Output:	returns:	Returns:
Internal Entry Number (IEN)—Created checkpoint if newly created or if checkpoint already exists.
Zero (0)—Error occurred while creating checkpoint.

[bookmark: _Ref37738022][bookmark: _Toc458599080]$$OPTDE^XPDUTL(): Disable/Enable an Option
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations—in Pre- or Post-Init routines, this extrinsic function disables or enables an option.
Format:	$$OPTDE^XPDUTL(name,action)
Input Parameters:	name:	(required) Option name.
	action:	(required) Set to:
1—Enable an option.
0—Disable an option.
Output:	returns:	Returns:
1—Success.
0—Failure.

[bookmark: _Toc458599081]Example
>I $$OPTDE^XPDUTL(“XMUSER”,0) W !,’Option Disabled.’

[bookmark: PARCP][bookmark: _Ref200251448][bookmark: _Ref200251949][bookmark: _Toc458599082]$$PARCP^XPDUTL(): Get Checkpoint Parameter
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations, this extrinsic function retrieves the current value of a checkpoint’s stored parameter. The parameter is stored in the INSTALL file (#9.7).
Use this API for checkpoints both with and without callbacks.
Use the optional second parameter to retrieve a pre-install checkpoint’s parameter during a post-install.
Format:	$$PARCP^XPDUTL(name[,pre])
Input Parameters:	name:	(required) Checkpoint name.
	pre:	(optional) To retrieve a parameter from a pre-install checkpoint while in the post-install, set this parameter to “PRE”.
Output:	returns:	Returns the current parameter node for the checkpoint named in the name input parameter.

[bookmark: _Ref200250542][bookmark: _Toc458599083]$$PATCH^XPDUTL(): Verify Patch Installation
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations—during the environment check only, this extrinsic function verifies if a patch has been installed. You can check for patches with or without sequence numbers.
Format:	$$PATCH^XPDUTL(patch)
Input Parameters:	patch:	(required) Patch name. Patch name must include the full version number with the decimal point, such as XU*8.0*28.
Output:	returns:	Returns:
1—Specified patch was installed on the current system.
0—Specified patch was not installed on the current system.

[bookmark: _Toc458599084]Example
Checking for a patch installation. Enter the following at the programmer prompt:

>I ‘$$PATCH^XPDUTL(“XU*8.0*28”) W !,“You must install patch XU*8*28”

[bookmark: _Toc458599085]$$PKG^XPDUTL(): Parse Software Name from Build Name
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	This extrinsic function parses the name of a software application from a software application’s build name. You can obtain the name of the build KIDS is installing from the KIDS key variable XPDNM, which is defined throughout a KIDS installation.
Format:	$$PKG^XPDUTL(buildname)
Input Parameters:	buildname:	Name of build (.01 field of BUILD file [#9.6]).
Output:	returns:	Returns the software name.

[bookmark: _Ref37559572][bookmark: _Ref37738061][bookmark: _Toc458599086]$$PRODE^XPDUTL(): Disable/Enable a Protocol
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations—in Pre-Init or Post-Init routines, this extrinsic function disables or enables a protocol.
Format:	$$PRODE^XPDUTL(name,action)
Input Parameters:	name:	(required) Protocol name.
	action:	(required) Enter one of the following values for this parameter:
1—Enable a protocol.
2—Disable a protocol.
Output:	returns:	Returns:
1—Success.
0—Failure.

[bookmark: _Ref200250498][bookmark: _Toc458599087]$$RTNUP^XPDUTL(): Update Routine Action
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations—during the environment check only, this extrinsic function updates the installation action for a routine.
Format:	$$RTNUP^XPDUTL(routine,action)
Input Parameters:	routine:	(required) Routine name.
	action:	(required) Enter one of the following values for this parameter:
1—Delete at site.
2—Skip installing at site.
Output:	returns:	Returns:
1—Routine found in routine installation list.
0—Routine not found in routine installation list.

[bookmark: UPCP][bookmark: _Ref200251366][bookmark: _Ref200252006][bookmark: _Toc458599088]$$UPCP^XPDUTL(): Update Checkpoint
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations, this extrinsic function updates the parameter node of an existing checkpoint, in pre- or post-install routines. The parameter node is stored in the INSTALL file (#9.7).
Use this API for checkpoints both with and without callbacks.
During the pre-install, you can only update pre-install checkpoints; during the post-install, you can only update post-install checkpoints.
Format:	$$UPCP^XPDUTL(name[,par_value])
Input Parameters:	name:	(required) Checkpoint name.
	par_value:	(optional) Sets checkpoint parameter to this value.
Output:	returns:	Returns:
Internal Entry Number (IEN)—Successfully updated checkpoint.
Zero (0)—Error updating checkpoint.

[bookmark: _Toc458599089]$$VER^XPDUTL(): Parse Version from Build Name
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	This extrinsic function parses the version of a software application from a software application’s build name. You can obtain the name of the build KIDS is installing from the KIDS key variable XPDNM, which is defined throughout a KIDS installation.
Format:	$$VER^XPDUTL(buildname)
Input Parameters:	buildname:	(required) Name of build (.01 field of BUILD file [#9.6]).
Output:	returns:	Returns:
Version—The version of the build identified in the buildname input parameter.
NULL—If no match in the BUILD file (#9.6).

[bookmark: VERCP][bookmark: _Ref200251583][bookmark: _Toc458599090]$$VERCP^XPDUTL(): Verify Checkpoint
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	During KIDS installations, this extrinsic function checks whether a given checkpoint exists and, if it exists, whether it has completed or not.
Use this API only for checkpoints with no callback.
During the pre-install, you can only verify pre-install checkpoints; during the post-install, you can only verify post-install checkpoints.
Format:	$$VERCP^XPDUTL(name)
Input Parameters:	name:	(required) Checkpoint name.
Output:	returns:	Returns:
1—Checkpoint has completed.
0—Checkpoint has not completed but exists.
-1—Checkpoint does not exist.

[bookmark: _Toc458599091]$$VERSION^XPDUTL(): Package File Current Version
Reference Type:	Supported
Category:	KIDS
ICR #:	10141
Description:	This extrinsic function obtains the current version of a site’s software application.
Format:	$$VERSION^XPDUTL(package_id)
Input Parameters:	package_id:	(required) Software application’s name or namespace, from its entry in the PACKAGE file (#9.4).
Output:	returns:	Returns:
Version—The current version of the software application at the site, according to the software application’s entry in the site’s PACKAGE file (#9.4).
NULL—If the software application is not matched.

KIDS: Developer Tools

[bookmark: _Ref357750549][bookmark: _Ref358126604][bookmark: _Ref303842809][bookmark: _Toc458599092]Lock Manager: Developer Tools
[bookmark: _Toc357522061][bookmark: _Toc458599093]Application Programming Interface (API)—Housekeeping
When an application terminates, there may be housekeeping required. A prime example is the need to delete temporary data kept in the ^TMP and ^XTMP globals. An application that is terminated by the Lock Manager does not have the opportunity to do its own housecleaning, but the Lock Manager can do it for the application if it registers a housecleaning routine via the API described below.
[bookmark: _Toc357522064][bookmark: _Ref357750551][bookmark: _Ref332367333][bookmark: _Toc357522062][bookmark: _Toc458599094]CLEANUP^XULMU(): Execute the Housecleaning Stack
Reference Type:	Supported
Category:	Lock Manager
ICR #:	5832
Description:	This API executes the housecleaning stack set by the process identified by DOLLARJ. Entries are executed in the first-in-first-out (FIFO) order, with the last entry added being the first to be executed, and LAST being the last entry executed. If the LAST parameter is not passed in, then the entire stack is executed.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*608.
Format:	CLEANUP^XULMU([last])
Input Parameters:	last:	(optional) This is the last entry that is executed. If not passed in, then the entire housecleaning stack is executed.
Output:	none.

[bookmark: _Toc458599095]Examples
Example 1
An application may execute the entire housecleaning stack with the following code:
DO CLEANUP^XULMU
Example 2
If an application is called by another application, then the first application may have already placed entries of its own on the stack. So, the parameter LAST needs to be passed, with LAST being the first entry placed on the stack. It is the last entry executed, since that stack is executed in FIFO order.
DO CLEANUP^XULM(last)
[bookmark: _Toc458599096]SETCLEAN^XULMU(): Register a Cleanup Routine
Reference Type:	Supported
Category:	Lock Manager
ICR #:	5832
Description:	This API registers a cleanup routine that should be executed when the process is terminated by the Kernel Lock Manager. An entry is created on a stack kept for the process. The location is ^XTMP(“XULM CLEANUP_”_$J), where $J uniquely identifies the process. A process can call SETCLEAN^XULMU repeatedly, and each time a new entry is placed on the stack.
[image: Caution]	CAUTION: Once an application calls SETCLEAN, upon exiting it must either execute its housecleaning stack or delete it using the APIs CLEAN or UNCLEAN.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*608.
Format:	SETCLEAN^XULMU(rtn,.var)
Input Parameters:	rtn:	(required) The routine to be executed when the process is terminated.
	.var:	(required) An input array containing a list of variables that should be defined when the routine is executed. It is up to the application to ensure that all the required variables are defined when CLEAN^XULMU is called.
Output:	returns:	Returns an integer that identifies the entry created on the stack. The application needs to retain the value in order to execute the entry on the housecleaning stack or remove it.

[bookmark: _Toc458599097]Example
Suppose the application has a cleanup routine CLEANUP^XXAPP, and it needs to be executed with DFN defined with its present valued. The application would use this API as follows:
N VAR,CLEANUP
S VAR(“DFN”)=DFN
S CLEANUP=$$SETCLEAN^XULMU(“CLEANUP^XXAPP”,.VAR)
The application’s housekeeping stack would look like this:
^XTMP(“XULM CLEANUP”,$J,1,“ROUTINE”)=“CLEANUP^XXAPP”
^XTMP(“XULM CLEANUP”,$J,1,“VARIABLES”,”DFN”)=1000061
[bookmark: _Toc357522063][bookmark: _Ref357750550][bookmark: _Toc458599098]UNCLEAN^XULMU(): Remove Entries from the Housecleaning Stack
Reference Type:	Supported
Category:	Lock Manager
ICR #:	5832
Description:	This API removes entries from the housecleaning stack set by calling the SETCLEAN^XULMU(): Register a Cleanup Routine API. Entries are removed in First-In-First-Out (FIFO) order. If the LAST parameter is not passed in, then the entire stack is deleted; otherwise, just the entries back to LAST are removed.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*608.
Format:	UNCLEAN^XULMU([last])
Input Parameters:	last:	(optional) Identifies the last entry on the housekeeping stack to remove. Entries are removed in FIFO order. Therefore, the first entry removed is the last entry that was added, and the last entry removed is LAST. If not passed in, the entire housecleaning stack is deleted.
Output:	none.

[bookmark: _Toc458599099]Examples
Example 1
This example would remove the entire housecleaning stack:
DO UNCLEAN^XULMU
Example 2
If an application is called by another application, then the first application may have already placed entries of its own on the stack. So, the parameter LAST needs to be passed, with LAST being the first entry placed on the stack. It is the last entry deleted, since that stack is executed in first-in-first-out (FIFO) order.
DO UNCLEAN^XULMU(last)
[bookmark: _Toc331509276][bookmark: _Toc357522065][bookmark: _Toc458599100]Application Programming Interface (API)—Lock Dictionary
[bookmark: _Toc357522067][bookmark: _Ref357750552][bookmark: _Ref332352284][bookmark: _Ref332368590][bookmark: _Toc357522066][bookmark: _Toc458599101]ADDPAT^XULMU(): Add Patient Identifiers for a Computable File Reference
Reference Type:	Supported
Category:	Lock Manager
ICR #:	5832
Description:	This API is very similar to the PAT^XULMU(): Get a Standard Set of Patient Identifiers API, except that it is used to add the patient identifiers for a computable file reference for a file that is not the PATIENT file (#2). The computable file references can include additional identifiers. For example, a computable file reference for a billing file can contain the bill number as an identifier as well as the patient identifiers returned by the ADDPAT^XULMU API.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*608.
Format:	ADDPAT^XULMU(dfn)
Input Parameters:	dfn:	(required) The IEN of a record in the PATIENT file (#2).
Output:	returns:	Returns ID(0): If not defined at the point the ADDPAT^XULMU API is called, it is initially set to 0. When the ADDPAT^XULMU API returns, the ID(0) is incremented by 4.
ID(ID(0)+1)=<patient name>
ID(ID(0)+2)=<patient sex>
ID(ID(0)+3)=<patient date of birth>
ID(ID(0)+4)=<patient Social Security Number>

[bookmark: _Toc458599102]PAT^XULMU(): Get a Standard Set of Patient Identifiers
Reference Type:	Supported
Category:	Lock Manager
ICR #:	5832
Description:	This API is for use within the M code for a computable file reference to the PATIENT file (#2). It returns a standard set of patient identifiers.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*608.
Format:	PAT^XULMU(dfn)
Input Parameters:	dfn:	(required) The IEN of a record in the PATIENT file (#2).
Output:	returns:	Returns the following variables:
ID(“IEN”)=DFN
ID(0)=4
ID(1)=<patient name>
ID(2)=<patient sex>
ID(3)=<patient date of birth>
ID(4)=<patient Social Security Number>

[bookmark: _Toc458599103]Example
Assuming that DFN is a variable defined within the Lock template, then the M code for a computable file reference to the PATIENT file (#2) would consist of the following:
DO PAT^XULMU(DFN)

Lock Manager: Developer Tools

[bookmark: _Ref410207780][bookmark: _Toc458599104]Menu Manager: Developer Tools
[bookmark: _Toc458599105]Creating Options
You can develop applications quickly and easily using Menu Manager. Once you have defined a set of files using VA FileMan, you can use Menu Manager to provide a menu of options including entering, editing, displaying, and printing information. You can use M code to tailor the functioning of an option, in the option’s header, entry, or exit action. You can create specialized routine-type options. And you can associate help frames with options (as described in the Help Processor section) to further enhance option creation and custom tailoring.
[bookmark: _Toc458599106]Option Types
Several different option types ;exist:
Edit, Inquire, and Print are mainly used to access VA FileMan files.
Action and Run Routine types are available for invoking M code.
Menu types, as discussed earlier in this section, are used to group other options for presentation to the user at the select prompt.
Server options are options that can be addressed through MailMan (sending to S.SERVER NAME). The server activity, such as the running of a routine, is then carried out.
[image: Note]	REF: For a complete description, see the “Server Options: Developer Tools” section in this section.
Protocol, Protocol Menu, Extended Action, and Limited option types are specific to the XQOR (Unwinder) software application. Control is passed to the XQOR (Unwinder) software for processing. The Extended Action type, for example, “unwinds” the items on a menu in a specific order. Protocol Menus are formatted in multiple columns allowing several items to be selected at once. The Protocol-type option prompts the user for a selection. Limited protocols involve patient-oriented processing, rather than application-specific tasks. Any of these option types are included, like other options, when a software application is exported.
[image: Note]	REF: For more information, see the Computerized Patient Record System (CPRS) or Unwinder (XQOR) documentation.
[bookmark: _Toc458599107]Creating Options (Edit Options)
[bookmark: _Toc200270028][bookmark: _Toc458599917]Figure 78: Menu Manager—Edit options [XUEDITOPT]
MENU MANAGEMENT...	[XUMAINT]
 Edit options	[XUEDITOPT]

You can define options with the Edit Options template, available from the Menu Management menu. Depending on what type of option you are editing, the Edit Options template branches to the fields in the OPTION file (#19) appropriate for that option type.
Some option types (Edit, Inquire, and Print) have fields whose names correspond to VA FileMan DI variables. The Edit Options template branches to the DI fields that have relevance to the type of VA FileMan call being made by the option.
For Edit type options, the DI fields presented correspond to the input variables for an ^DIE call. Likewise, inquire-type options correspond to ^DIQ calls, and print options to ^DIP calls.
[image: Note]	REF: For a complete description of the meaning of the variables represented by each of the DI fields, see the VA FileMan Developer’s Guide.
[bookmark: _Toc458599108]Options that Should Be Regularly Scheduled
If an option should be regularly scheduled to run through TaskMan, you should set its SCHEDULING RECOMMENDED field (#209) in the OPTION file (#19)) to YES. Sites are not able to use Schedule/Unschedule Options to schedule an option unless this field is set to YES for the option.
[bookmark: _Toc458599109]Variables for Developer Use
The appearance and functioning of the menu system can be modified by developers by using several variables. The variables can be defined within applications, such as in an option’s Entry Action, Exit Action, or Header. These variables are listed below.
The XQMM variables can be used individually or together. It is strongly recommended that you test the effects of XQMM variables with the AUTO MENU display, DUZ(“AUTO”), turned on and off.
[bookmark: _Toc458599110]XQUIT: Quit the Option
This variable can be set in an option’s Entry Action to cause Menu Manager to quit and not invoke the option. The menu system does not run the option, either as a foreground job or background task, and does not jump past the option. If an option’s use depends on the existence of certain application-specific key variables, for example, the Entry Action logic can set XQUIT if those variables are not defined. Menu Manager simply checks for the existence of the XQUIT variable, so it can be set to NULL (S XQUIT=“”) or to a value as the developer chooses.
[bookmark: _Toc458599111]XQMM(“A”): Menu Prompt
If XQMM(“A”) exists, the menu system uses it as the prompt instead of the normal “Select...option” menu prompt. This variable is KILLed immediately after it is used. It does not inhibit the AUTO MENU display. If the user has chosen to have options displayed at each cycle of the menu system, then the options are displayed before the XQMM(“A”) prompt is presented. Unlike the phantom jump, prompts must be set singularly, and cannot be concatenated with a semicolon.
[bookmark: _Toc458599112]XQMM(“B”): Default Response
If XQMM(“B”) is defined, the menu system uses it as the default response and is presented along with the usual two slashes (“//”). If the user accepts the default by pressing <Enter>, the default becomes the user’s response.
XQMM(“B”) identifies an option if set to a unique synonym or a unique string of text from the beginning of the option’s menu text. This option must exist on the user’s current menu. If the option cannot be found, Menu Manager responds with two question marks (“??”), KILL both XQMM(“A”) and XQMM(“B”), and display the standard menu prompt.
[bookmark: _Toc458599113]XQMM(“J”): The Phantom Jump
This variable can be used to force a menu jump to an option within the user’s menu tree. Set it equal to the exact option name (i.e., .01 field of the OPTION file [#19]) to which Menu Manager should jump. For example:
>S XQMM(“J”)=“XUMAINT”
This jumps to the Menu Management option if that option is within the user’s menu tree.
The phantom jump automatically turns off the user’s menu display for one cycle through the menu system so that the user does not see a list of choices before jumping to an option that is not on that list.
The phantom jump can also be used to designate a set of options for a series of jumps, called a script. The exact option names should be separated with semicolons. For example:
>S XQMM(“J”)=“XUMAINT;DIUSER”
After jumping to Menu Management, the menu system would jump to VA FileMan (provided that all of the access and security requirements are met).
After all the options in a script have been completed, the phantom jump logic returns the user to the option that was last run before the script was invoked. If for some reason this cannot be accomplished, the user is returned to their primary menu.
[bookmark: _Toc458599114]XQMM(“N”): No Menu Display
This variable can be used to suppress the AUTO MENU display of menu options for one menu cycle. XQMM(“N”) is then KILLed and the display resumes as usual. XQMM(“N”) can be used in conjunction with XQMM(“A”) and (“B”) to present only the custom tailored menu prompts.
Setting XQMM(“N”) does not change the display for users who already suppress the AUTO MENU display. For users who have AUTO MENU turned on, XQMM(“N”) takes precedence over DUZ(“AUTO”).
It is not necessary to define XQMM(“N”) when using the phantom jump, XQMM(“J”), since the display is already suppressed. If XQMM(“J”) is present, then XQMM(“N”) is not KILLed after the first cycle since the phantom jump is already inhibiting the display. In this case, XQMM(“N”) is KILLed after the second cycle (the display of menus after the jump is completed). If several phantom jumps are chained together, XQMM(“N”) is not KILLed until one cycle after the final jump unless code is added to explicitly KILL it between jumps.
[bookmark: _Toc458599115]Direct Mode Utilities
Several Menu Manager direct mode utilities are available for developers to use at the M prompt. They are not APIs and cannot be used in software application routines. These direct mode utilities are described below.
[bookmark: _Toc458599116]^XQ1: Test an Option
The ^XQ1 routine asks you to select an option; it then uses the selected option as the primary menu option for entry into the menu system (at the top of ^XQ). This provides a way for an individual in Programmer mode to enter into the menu system at a desired option:
>D ^XQ1
This API is also called by ^XUP.
[image: Caution]	CAUTION: Developers are advised to use ^XUP instead of ^XQ1 to enter Kernel from Programmer mode, since the ^XUP routine sets up a standard environment and takes care of cleanup activities.
[image: Note]	REF: For a description of the ^XUP direct mode utility, see the “Signon/Security: Developer Tools” section.
[image: Note]	NOTE: While D ^XQ1 is a direct mode utility, it is not a callable API.
[bookmark: _Toc458599117]Application Programming Interface (API)
Several APIs are available for developers to work with menu management. These APIs are described below.
[bookmark: _Toc38679148][bookmark: _Toc458599118]$$ADD^XPDMENU(): Add Option to Menu
Reference Type:	Supported
Category:	Menu Manager
ICR #:	1157
Description:	This extrinsic function adds an option as a new item to an existing menu.
Format:	$$ADD^XPDMENU(menu,option[,syn][,order])
Input Parameters:	menu:	(required) Name of the menu to which an option should be added.
	option:	(required) Name of the option being added to the menu.
	syn:	(optional) Synonym to add to the SYNONYM field in the new menu item.
	order:	(optional) Order to place in the DISPLAY ORDER field in the new menu item.
Output:	returns:	Returns:
1—Success, option added to menu.
0—Failure, option not added to menu.

[bookmark: _Ref264453983][bookmark: _Toc458599119]$$DELETE^XPDMENU(): Delete Menu Item
Reference Type:	Supported
Category:	Menu Manager
ICR #:	1157
Description:	This extrinsic function deletes an option from the Menu field of another option. It returns the following values:
1—If the function succeeded.
0—If it failed.
Format:	$$DELETE^XPDMENU(menu,option)
Input Parameters:	menu:	(required) This is the name of the option from which you want to delete a menu item.
	option:	(required) This is the name of the option you want to delete from the menu item of the “menu” input parameter.
Output:	returns:	Returns:
1—Success, menu item deleted.
0—Failure, menu item not deleted.

[bookmark: _Ref264454893][bookmark: _Toc458599120]$$LKOPT^XPDMENU(): Look Up Option IEN
Reference Type:	Supported
Category:	Menu Manager
ICR #:	1157
Description:	This extrinsic function looks up an option’s Internal Entry Number (IEN) using the “B” cross-reference.
Format:	$$LKOPT^XPDMENU(option)
Input Parameters:	option:	(required) The name of the option.
Output:	returns:	Returns the Internal Entry Number (IEN) of the input option in the OPTION file (#19).

[bookmark: _Toc458599121]OUT^XPDMENU(): Edit Option’s Out of Order Message
Reference Type:	Supported
Category:	Menu Manager
ICR #:	1157
Description:	This API creates or deletes an out of order message for an option; this action effectively puts the option out of order or back in order.
Format:	OUT^XPDMENU(option,text)
Input Parameters:	option:	(required) Name of option in which to place an OUT OF ORDER MESSAGE value.
	text:	(required) Text of message to place in the option’s OUT OF ORDER MESSAGE field.
If this is not NULL, the text is stored in the option’s OUT OF ORDER MESSAGE field and the option is placed out of order.
If this parameter is passed as a NULL string, the current OUT OF ORDER MESSAGE value is deleted, and the option is put back in order.
Output:	none.

[bookmark: _Toc458599122]RENAME^XPDMENU(): Rename Option
Reference Type:	Supported
Category:	Menu Manager
ICR #:	1157
Description:	This API renames an existing option.
Format:	RENAME^XPDMENU(old,new)
Input Parameters:	old:	(required) Current option name (.01 field of OPTION file [#19] entry). Must be an exact match.
	new:	(required) New name for option.
Output:	none.

[bookmark: _Ref264457838][bookmark: _Toc458599123]$$TYPE^XPDMENU(): Get Option Type
Reference Type:	Supported
Category:	Menu Manager
ICR #:	1157
Description:	This extrinsic function returns the option’s TYPE field (#4) in the OPTION file (#19).
Format:	$$TYPE^XPDMENU(option)
Input Parameters:	option:	(required) The name of the option.
Output:	returns:	Returns the one character TYPE field (#4) value of the input option in the OPTION file (#19). For example:
A—Action
E—Edit
I—Inquire
M—Menu
P—Print
R—Run routine
O—Protocol
Q—Protocol Menu
X—Extended Action
S—Server
L—Limited
C—ScreenMan
W—Window
Z—Window Suite
B—Broker (Client/Server)
[bookmark: _Ref332270263][bookmark: _Toc458599124]$$ADD^XPDPROT(): Add Child Protocol to Parent Protocol
Reference Type:	Supported
Category:	Menu Manager
ICR #:	5567
Description:	This extrinsic function adds a CHILD protocol to a PARENT protocol ITEM multiple (#10) in the PROTOCOL file (#101).
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*547.
Format:	$$ADD^XPDPROT(parent,child[,mnemonic][,sequence])
Input Parameters:	parent:	(required) Name of the PARENT protocol in the PROTOCOL file (#101) to which a CHILD protocol should be added.
	child:	(required) Name of the CHILD protocol being added to the PARENT protocol in the PROTOCOL file (#101).
	mnemonic:	(optional) The mnemonic value to be added to the MNEMONIC field (#2) in the ITEM multiple (#10) in the PROTOCOL file (#101) for the CHILD in the PARENT protocol.
	sequence:	(optional) The sequence value to be added to the SEQUENCE field (#3) in the ITEM multiple (#10) in the PROTOCOL file (#101) for the CHILD in the PARENT protocol.
Output:	returns:	Returns:
1—Success, CHILD protocol added to the input PARENT protocol ITEM multiple (#10) in the PROTOCOL file (#101).
0—Failure, CHILD protocol not added to the input PARENT protocol ITEM multiple (#10) in the PROTOCOL file (#101).

[bookmark: _Ref332270286][bookmark: _Toc458599125]$$DELETE^XPDPROT(): Delete Child Protocol from Parent Protocol
Reference Type:	Supported
Category:	Menu Manager
ICR #:	5567
Description:	This extrinsic function deletes a CHILD protocol from a PARENT protocol ITEM multiple (#10) in the PROTOCOL file (#101).
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*547.
Format:	$$DELETE^XPDPROT(parent,child)
Input Parameters:	parent:	(required) Name of the PARENT protocol in the PROTOCOL file (#101) from which a CHILD protocol should be deleted.
	child:	(required) Name of the CHILD protocol being deleted from the PARENT protocol in the PROTOCOL file (#101).
Output:	returns:	Returns:
1—Success: CHILD protocol deleted from the input PARENT protocol ITEM multiple (#10) in the PROTOCOL file (#101).
0—Failure: CHILD protocol not deleted from the input PARENT protocol ITEM multiple (#10) in the PROTOCOL file (#101).

[bookmark: _Ref332270311][bookmark: _Toc458599126]FIND^XPDPROT(): Find All Parents for a Protocol
Reference Type:	Supported
Category:	Menu Manager
ICR #:	5567
Description:	This API finds all parents for a protocol in the PROTOCOL file (#101) and returns the list in the RESULT array:
RESULT(0)=Number of parents found or -1^error message.
RESULT(ien)=Protocol name.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*547.
Format:	FIND^XPDPROT(.result,protocol)
Input Parameters:	.result:	(required) The array to return the results, passed by reference:
RESULT(0)=Number of parents found or -1^error message.
RESULT(ien)=Protocol name.
	protocol:	(required) Name of the protocol in the PROTOCOL file (#101) for which to find the parents.
Output:	returns:	Returns the RESULT array:
RESULT(0)=Number of parents found or -1^error message.
RESULT(ien)=Protocol name

[bookmark: _Ref332270333][bookmark: _Toc458599127]$$LKPROT^XPDPROT(): Look Up Protocol IEN
Reference Type:	Supported
Category:	Menu Manager
ICR #:	5567
Description:	This extrinsic function returns the internal entry number (IEN) of the input protocol from the PROTOCOL file (#101).
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*547.
Format:	$$LKPROT^XPDPROT(protocol)
Input Parameters:	protocol:	(required) Name of the protocol to look up in the PROTOCOL file (#101).
Output:	returns:	Returns the internal entry number (IEN) of the input protocol in the PROTOCOL file (#101).

[bookmark: _Ref332270350][bookmark: _Toc458599128]OUT^XPDPROT(): Edit Protocol’s Out of Order Message
Reference Type:	Supported
Category:	Menu Manager
ICR #:	5567
Description:	This API creates or deletes an “Out of Order” message in the DISABLE field (#2) in the PROTOCOL file (#101) for the input protocol.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*547.
Format:	OUT^XPDPROT(protocol,text)
Input Parameters:	protocol:	(required) Name of the protocol in the PROTOCOL file #101) to which the “Out of Order” text is assigned.
	text:	(required) Text value:
Text—Message text to place in the DISABLE field (#2) in the PROTOCOL file (#101) for the input protocol.
Null—Delete any message text in the DISABLE field (#2) in the PROTOCOL file (#101) for the input protocol.
Output:	returns:	Returns:
Text—Updated message text in the DISABLE field (#2) in the PROTOCOL file (#101) for the input protocol. Marking the protocol “Out of Order.”
Null—Deleted message text in the DISABLE field (#2) in the PROTOCOL file (#101) for the input protocol.

[bookmark: _Ref332270366][bookmark: _Toc458599129]RENAME^XPDPROT(): Rename Protocol
Reference Type:	Supported
Category:	Menu Manager
ICR #:	5567
Description:	This API renames an existing protocol name. It updates the value in the NAME field (#.01) in the PROTOCOL file (#101).
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*547.
Format:	RENAME^XPDPROT(old,new)
Input Parameters:	old:	(required) Current (old) name of the protocol to be renamed in the PROTOCOL file (#101).
	new:	(required) New name for the protocol.
Output:	returns:	Returns the updated NAME field (#.01) in the PROTOCOL file (#101).

[bookmark: _Ref332270383][bookmark: _Toc458599130]$$TYPE^XPDPROT(): Get Protocol Type
Reference Type:	Supported
Category:	Menu Manager
ICR #:	5567
Description:	This extrinsic function returns the value of the TYPE field (#4) in the PROTOCOL file (#101) for the input protocol IEN.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*547.
Format:	$$TYPE^XPDPROT(protocol_ien)
Input Parameters:	protocol_ien:	(required) The protocol’s internal entry number (IEN) in the PROTOCOL file (#101).
Output:	returns:	Returns the one character TYPE field (#4) value in the PROTOCOL file (#101) for the input protocol IEN. For example:
A—Action: Same as the “X” type, except any existing sub-items are not executed.
M—Menu: Use this type for displaying and selecting items.
O—Protocol: This value is strictly related to the Add orders function. It is the same as the “Q” type, except the protocol is the item selected. Protocols are directly executed when encountered.
Q—Protocol Menu: This value is strictly related to the Add orders function. Use it for displaying and selecting orderable items during the add sequence. When this type of protocol is encountered OE/RR prompts the user with “Select PATIENT:,” “LOCATION:,” and “Provider:,” and execute the transaction logic for the new orders screen.
L—Limited Protocol: This value is strictly related to the Add orders function. It is the same as the “O” type, except any existing sub-items are not executed.
X—Extended Action: Protocols of this type execute the entry action plus all sub-items.
D—Dialog.
T—Term.
E—Event Driver.
S—Subscriber.

[bookmark: _Toc458599131]NEXT^XQ92(): Restricted Times Check
Reference Type:	Supported
Category:	Menu Manager
ICR #:	10077
Description:	This API returns the next time an option can run, checking any time or date restrictions placed on the option. If there are no times in the next week when the option can be run, the x parameter is returned as NULL and a message is issued regarding the time restriction.
Format:	NEXT^XQ92(ien,x)
Input Parameters:	ien:	(required) Internal entry number (IEN) of the option in the OPTION file (#19).
	x:	The date/time in VA FileMan format of the next unrestricted runtime when the option can run.
Output:	x:	Returns the next time an option can run:
Current Time—If the option is able to run at the current time.
Null—If the option is prohibited for the entire next week. It also issues a message regarding the time restriction.

[bookmark: _Toc458599132]$$ACCESS^XQCHK(): User Option Access Test
Reference Type:	Supported
Category:	Menu Manager
ICR #:	10078
Description:	This extrinsic function determines if a user has access to a particular option.
Format:	$$ACCESS^XQCHK(duz,option)
Input Parameters:	duz:	(required) The identification number of the user in question in the NEW PERSON file (#200).
	option:	(required) The Internal Entry Number (IEN) or option name of the option in question in the OPTION file (#19).
Output:	returns:	Returns:
-1—No such user in the NEW PERSON file (#200).
-2—User terminated or has no Access code.
-3—No such option in the Option file (#19).
0—No access found in any menu tree the user owns.
4-Piece String:
access^menu tree IEN^a set of codes^key
0^tree^codes^key: No access because of locks (see XQCODES below).
1^OpIEN^^: Access allowed through Primary Menu.
2^OpIEN^codes^: Access found in the Common Options.
3^OpIEN^codes^: Access found in top level of secondary option.
4^OpIEN^codes^: Access through the secondary menu tree OpIEN.
XQCODES can contain the following:
N—No Primary Menu in the NEW PERSON file (#200, warning only).
L—Locked and the user does not have the key (forces zero [0] in first piece).
R—Reverse lock and user has the key (forces zero [0] in first piece).

[bookmark: _Ref332259792][bookmark: _Toc458599133]OP^XQCHK(): Current Option Check
Reference Type:	Supported
Category:	Menu Manager
ICR #:	10078
Description:	This API returns the current option or protocol name and menu text in the first and second pieces of the XQOPT output variable. It looks for the local XQORNOD if defined or the local XQY variable; the internal number of the option, if XQORNOD is defined, needs to be in the variable pointer format:
XQORNOD=<internal number of the protocol>;<protocol file>
If the search is unsuccessful, because the job is not running out of the menu system or is not a tasked option, XQOPT is returned with -1 in the first piece and “Unknown” in the second.
[image: Note]	NOTE: XQCHK cannot return option/protocol information if the job is a task that did not originate from an option.
Format:	OP^XQCHK
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	XQORNOD:	(optional) If this variable is defined, it should be in variable pointer format. For example:
XQORNOD=“1234;ORD(101,”
Output Variables:	XQOPT:	Returns a string in the following format:
Option/Protocol Name^Menu Text
If neither an option nor a protocol can be identified, XQOPT is returned as:
-1^Unknown

[bookmark: OP_XQCHK_examples][bookmark: _Toc458599134]Examples
[bookmark: OP_XQCHK_example_1]Example 1
>K XQORNOD D OP^XQCHK W !,XQOPT

>EVE^Systems Manager Menu

[bookmark: OP_XQCHK_example_2]Example 2
>S XQORNOD=“445;ORD(101,” D OP^XQCHK W !,XQOPT

>XU USER EVENT TERMINATE^Terminate User Event

[bookmark: OP_XQCHK_example_3]Example 3
>S XQORNOD=“9;DIC(19,” D OP^XQCHK W !,XQOPT

>EVE^Systems Manager Menu

[bookmark: OP_XQCHK_example_4]Example 4
>K XQORNOD,XQY,XQOPT D OP^XQCHK W !,XQOPT

>-1^Unknown

Menu Manager: Developer Tools

[bookmark: _Ref200254379][bookmark: _Toc458599135]Miscellaneous: Developer Tools
[bookmark: _Toc236534902][bookmark: _Toc241305740][bookmark: _Ref241374696][bookmark: _Toc139170386][bookmark: _Toc151281754][bookmark: _Toc139170387][bookmark: _Toc458599136]Direct Mode Utilities
Several Kernel Toolkit direct mode utilities are available for developers to use at the M prompt, usually involving the DO command. They are not APIs and cannot be used in software application routines.
Many of the options on the Programmer Options menu can also be run as direct mode utilities. Some are not available as options, but only as direct mode utilities callable at the M prompt. Table 28 lists examples on how to run these utilities when working in Programmer mode.
[bookmark: _Ref152655622][bookmark: _Toc200270059][bookmark: _Toc458600023]Table 28: Miscellaneous Tools—Direct Mode Utilities
	[bookmark: COL001_TBL022]Direct Mode Utility
	Description

	>D ^%G
	List the contents of a global to the screen.

[bookmark: _Ref241384183][bookmark: _Toc458599137]Programmer Options Menu

[bookmark: _Toc193181930][bookmark: _Toc241305116][bookmark: _Toc458599918]Figure 79: Programmer Options menu options—Toolkit miscellaneous tools
SYSTEMS MANAGER MENU ...	[EVE]
 Programmer Options ... <locked with XUPROG>	[XUPROG]
 KIDS Kernel Installation & Distribution System ...	[XPD MAIN]
 <locked with XUPROG>
 PG Programmer mode <locked with XUPROGMODE>	[XUPROGMODE]
 Calculate and Show Checksum Values	[XTSUMBLD-CHECK]
 Delete Unreferenced Options	[XQ UNREF’D OPTIONS]
 Error Processing ...	[XUERRS]
 General Parameter Tools ...	[XPAR MENU TOOLS]
 Global Block Count	[XU BLOCK COUNT]
 List Global <locked with XUPROGMODE>	[XUPRGL]
 Routine Tools ...	[XUPR-ROUTINE-TOOLS]
 Test an option not in your menu <locked with XUMGR>	[XT-OPTION TEST]

[bookmark: _Toc241305742][bookmark: _Toc458599138]Delete Unreferenced Options
The Delete Unreferenced Options option [XQ UNREF’D OPTIONS] examines those options that are not:
Located on any menu.
Used as primary or secondary options.
Tasked to run.
The user can then decide in each case whether to delete the unreferenced option.
[bookmark: _Toc241305743][bookmark: _Toc458599139]Global Block Count Option
The Global Block Count option [XU BLOCK COUNT] can be used to count the number of data blocks in a global.
[bookmark: _Toc241305744][bookmark: _Toc458599140]Listing Globals Option
The List Global option [XUPRGL] is found on the Programmer Options menu, locked with the XUPROG key. This option is also locked with the XUPROGMODE key as an extra level of security.
It can be used to list the contents of a global to the screen. It makes use of operating system-specific utilities such as %G, the Global Lister.
The option is locked with the XUPROGMODE security key.
The corresponding direct mode utility can be used in programmer mode. For example:
>D ^%G (OS-specific)
[bookmark: _Toc241305745][bookmark: _Toc458599141]Test an option not in your menu Option
Use the Test an option not in your menu option [XT-OPTION TEST] for in-house testing of options only. It allows the selection of an option from the OPTION file (#19) and then executes it. This option is locked with the XUMGR security key.
[image: Caution]	CAUTION: No security checks are performed in the XT-OPTION TEST option; therefore, it should only be given to programmers.
[image: Note]	REF: Kernel Toolkit Application Programming Interfaces (APIs) are documented in the “Toolkit: Developer Tools” section in the Kernel Developer’s Guide. Kernel and Kernel Toolkit APIs are also available in HTML format on the VA Intranet Website.
[bookmark: _Toc139170393][bookmark: _Toc151281756][bookmark: _Ref153068314][bookmark: _Toc236534904][bookmark: _Toc241305746][bookmark: _Ref241374697][bookmark: _Toc458599142]^%Z Editor
[bookmark: _Toc139170394][bookmark: _Toc236534905][bookmark: _Toc241305747][bookmark: _Toc458599143]User Interface
The ^%Z editor (routine editor) is installed in the Manager account as the ^%Z global by ZTMGRSET during installation. (It can also be installed with D ^ZTEDIT.) To use the editor, load the routine (it must pre-exist) and then X ^%Z. The following example creates a one-line routine in Caché and then calls the ^%Z Editor.
[bookmark: _Toc193181931][bookmark: _Toc241305117][bookmark: _Toc458599919]Figure 80: Calling the ^%Z Editor—Sample user entries
>ZR

>ZZTEST <Enter> ;ID/SITE;test routine;
>ZS ZZTEST
The editor fills in the third “<space>;” piece with the date/time that the routine is filed.

>ZL ZZTEST X ^%Z

%Z Editing: ZZTEST Terminal type: C-VT100
Edit:

Enter “.F” (dot-file) at the edit prompt to change files. When saving with dot-file, an edit comment can be entered. This text is stored in the EDIT HISTORY multiple in the ROUTINE file (#9.8) as programmer documentation. The following example shows how an entire routine can be displayed by entering the ZP print command followed by a space at the M prompt. Dot-file (.File) is then used to file. A dot is then used to exit. (The dot exit does not automatically file changes.)
[bookmark: _Toc193181932][bookmark: _Toc241305118][bookmark: _Toc458599920]Figure 81: ^%Z Editor—Displaying a routine using the ZP command
>ZL ZZTEST X ^%Z

%Z Editing: ZZTEST Terminal type: C-VT100
Edit: ZP<SPACE> <Enter>
ZZTEST ;test routine

Length: 20 <Enter> Line: ZZTEST
ZZTEST ;test routine
Edit: .Insert after: ZZTEST// <Enter>
First, either a <Tab> or line label is entered.

Line: ;NEXT LINE
Line: Q
Line: <Enter>
Edit: .FILE ZZTEST
Edit comment:
 1> This text is stored in the Routine file’s Edit History multiple. <Enter>
 2> <Enter>
EDIT Option: <Enter>
Edit: . <Enter>
>

Routines are filed by the name used when loading, not by the first line tag. If a ROUTINE file (#9.8) exists, then the routine is added if not already there, and an entry is made of the date/time and DUZ of the user that filed it. When filing, the editor updates the third piece of the first line of the routine with the date/time.
When editing, a question mark (“?”) can be entered to provide help. The dot commands are listed first. They provide the usual break, join, insert, and remove functions. The +n method of selecting lines to edit is also noted. The line tag can be used along with a number (e.g., TAG+3) to reach a particular line. A minus sign (“-”) backs up lines. And the asterisk (“*”) can be entered to reach the last line.
[bookmark: _Toc193181933][bookmark: _Toc241305119][bookmark: _Toc458599921]Figure 82: ^%Z Editor—Listing edit commands
>X ^%Z
Edit: ?
.ACTION menu .BREAK line .CHANGE every
.FILE routine .INSERT after .JOIN lines
.MOVE lines .REMOVE lines .SEARCH for
.TERMinal type .XY change to/from replace-with
. -TO EXIT THE EDITOR
“”+n Absolute line n +n To advance n lines -n To backup n lines_
 use ‘*’ to get last line

^NAME - to edit a GLOBAL node *NAME - to edit a LOCAL variable
MUMPS command line (mumps command <space> or Z command <space>)

Help displays information about editing in line mode. A complete line is displayed and various keys can be used to navigate. The <Spacebar> moves forward by words, the period moves forward by characters, and the <CTRL H> command key sequence moves backwards by characters. Upon reaching the desired location, the <Delete> key can be used to remove characters. To enter characters, the character “E” must first be entered as an insert/delete toggle. Pressing the <Enter> key reverses the toggle and allows navigation. Pressing the <Enter> key again moves back to the beginning of the line.
[bookmark: _Toc193181934][bookmark: _Toc241305120][bookmark: _Toc458599922]Figure 83: ^%Z Editor—Line mode help information
In the line mode,
Spacebar moves to the next space or comma. Dot to the next char.
‘>‘ To move forward 80 char or to end of line.
Backspace to back up one char. E to enter new char’s at the cursor.
CR to exit enter mode, return to start of line or EDIT prompt.
D to delete from the cursor to the next space or comma.
Delete (Rub) to delete the char under the cursor.
CTRL-R to restore line and start back at the beginning.

Replace mode editing can be invoked by entering dot-XY at the edit prompt. This method allows easy string substitution, as in VA FileMan’s Line Editor. Entering a question mark at the next edit prompt displays the following help:
[bookmark: _Toc193181935][bookmark: _Toc241305121][bookmark: _Toc458599923]Figure 84: ^%Z Editor—Replace mode editing help information
In the replace/with mode,
SPECIAL <REPLACE> STRINGS:
 END -to add to the END of a line
 ... -to replace a line
 A...B -to specify a string that begins with “A” and ends with “B”
 A... -to specify a string that begins with “A” to the end of the line
CTRL-R to restore line.

The ACTION menu provides additional functions. Save and restore lines can be used to move lines within one routine or from one routine to another. To copy lines to another routine, first save the lines, then load and edit the other routine, and restore the lines.
When patching a routine, the ACTION menu can be used to calculate checksums. Before filing changes, the new checksum can be displayed and compared with the patch report for verification of editing. Figure 85 shows how to reach the ACTION menu with dot-A (.A).
[bookmark: _Ref332260294][bookmark: _Toc193181936][bookmark: _Toc241305122][bookmark: _Toc458599924]Figure 85: ACTION menu—Sample user entries
Edit: .A
Action: ?
Bytes in routine Checksum Restore lines
Save lines Version #
Action: C
 Checksum is 4971725
Action: <Enter>
Edit: <Enter>

Global nodes and local variables may also be edited with the ^%Z editor. Editing occurs directly, so the idea of filing does not apply. The editor must then be exited with a dot, not with a dot-file, since filing should not take place.
[bookmark: _Toc458599144]Application Programming Interface (API)
The following are miscellaneous APIs available for developers. These APIs are described below.
[bookmark: _Toc458599145]Progress Bar Emulator
The following APIs can be use d to emulate a KIDS Progress Bar outside of KIDS. To create the progress bar, you must first call the INIT^XPDID: Progress Bar Emulator: Initialize Device and Draw Box Borders API, and when you are finished, you must call the EXIT^XPDID(): Progress Bar Emulator: Restore Screen, Clean Up Variables, and Display Text API.
[bookmark: _Ref194457338][bookmark: _Ref194457382][bookmark: _Toc458599146]INIT^XPDID: Progress Bar Emulator: Initialize Device and Draw Box Borders
Reference Type:	Supported
Category:	Miscellaneous
ICR #:	2172
Description:	This API initializes the device, draws the borders for the progress bar box, and draws the progress bar. When you are finished, you must call the EXIT^XPDID(): Progress Bar Emulator: Restore Screen, Clean Up Variables, and Display Text API.
Format:	INIT^XPDID
Input Parameters:	none.
Output:	returns:	Returns XPDIDVT:
1—If output device supports graphics.
0—If output device does not support graphics.

[bookmark: _Ref200258271][bookmark: _Toc458599147]TITLE^XPDID(): Progress Bar Emulator: Display Title Text
Reference Type:	Supported
Category:	Miscellaneous
ICR #:	2172
Description:	This API displays the text in the x input parameter as a title at the top of the progress bar box.
Format:	TITLE^XPDID(x)
Input Parameters:	x:	(required) Title text to be displayed at the top of the box.
Output:	none.

[bookmark: _Ref200250405][bookmark: _Toc458599148]EXIT^XPDID(): Progress Bar Emulator: Restore Screen, Clean Up Variables, and Display Text
Reference Type:	Supported
Category:	Miscellaneous
ICR #:	2172
Description:	This API restores the screen to normal, cleans up all variables, and displays the text in the x input parameter.
Format:	EXIT^XPDID(x)
Input Parameters:	x:	(required) Text to display on screen after removing box and progress bar.
Output:	none.

[bookmark: _Toc458599149]Lookup Utility
[bookmark: _Toc458599150]$$EN^XUA4A71(): Convert String to Soundex
Reference Type:	Supported
Category:	Miscellaneous
ICR #:	3178
Description:	This extrinsic function converts a string into a numeric representation of the string, using soundex methods. Soundex represents the phonetic properties of a string; its chief feature is that it assigns similar strings the same soundex representation.
Format:	$$EN^XUA4A71(string)
Input Parameters:	string:	(required) String to convert into soundex form.
Output:	returns:	Returns the soundex version of the string.

[bookmark: _Toc458599151]Date Conversions and Calculations
[bookmark: _Toc458599152]^XQDATE: Convert $H to VA FileMan Format (Obsolete)
[image: Note]	NOTE: This API is obsolete. You should use either of the following APIs instead:
$$FMTE^XLFDT(): Convert VA FileMan Date to External Format
$$HTFM^XLFDT(): Convert $H to VA FileMan Date Format

Reference Type:	Supported
Category:	Miscellaneous
ICR #:	10079
Description:	This API converts $H formatted input date to a VA FileMan formatted date in %, and in human readable format (e.g., Jan. 9, 1990 1:37 PM) in %Y variable.
Format:	^XQDATE
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variable s:	XQD1:	(optional) If this variable is not set, the system uses $H.
Output Variables:	%:	Returns the converted $H date in VA FileMan format.
	%Y:	Returns the converted $H date, in human readable format.

[bookmark: _Ref219875213][bookmark: _Toc458599153]^XUWORKDY: Workday Calculation (Obsolete)
[image: Note]	NOTE: This API is obsolete. The XUWORKDY routine is maintained for code that might still use it.
Reference Type:	Supported
Category:	Miscellaneous
ICR #:	10046
Description:	To use the ^XUWORKDY APIs, you must make sure that HOLIDAY file (#40.5) is populated with each year’s holidays for the workday calculation to work correctly. If it is not populated, you need to populate it yourself (Kernel distributes this file without data). Only enter holidays that fall on weekdays, however.
You can call the ^XUWORKDY routine to calculate the number of workdays between two dates (X, X1). It returns a positive value if X<X1 and a negative value if X>X1. If either date is imprecisely specified, or if the HOLIDAY global is empty, then ^XUWORKDY returns a NULL string.
The first FOR loop in ^XUWORKDY checks the HOLIDAY global and sets %H equal to the number of holidays between the two dates. It is assumed that the HOLIDAY global contains only weekday holidays.
The second FOR loop (F %J=%J:1 ...) steps forward from the earliest date and stops at the first Sunday or at the ending date (whichever comes first) counting the number of workdays.
The third FOR loop (F %K=%K:-1 ...) steps backward from the latest date and stops at the first Sunday or at the beginning date (whichever comes first), counting the workdays.
Then %I is set equal to the number of days between the two Sundays.
Finally, X is set equal to the total counted days minus the number of weekend days between the two Sundays (-(%I\7*2)).
Format:	^XUWORKDY
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	X:	(required) Starting date in VA FileMan internal format (e.g., 2850420).
	X1:	(required) Ending date in VA FileMan internal format (e.g., 2850707).
Output:	X:	The number of workdays in the interval.

[bookmark: _Toc458599154]Example
>S X=2850420,X1=2850707 D ^XUWORKDY W X	

55

[bookmark: _Ref219880614][bookmark: _Toc458599155]$$EN^XUWORKDY: Number of Workdays Calculation
[image: Note]	NOTE: The XUWORKDY routine is maintained for code that might still use it.
Reference Type:	Supported
Category:	Miscellaneous
ICR #:	10046
Description:	To use the ^XUWORKDY APIs, you must make sure that HOLIDAY file (#40.5) is populated with each year’s holidays for the workday calculation to work correctly. If it is not populated, you need to populate it yourself (Kernel distributes this file without data). Only enter holidays that fall on weekdays, however.
The $$EN^XUWORKDY extrinsic function calculates the number of workdays between two dates (date1, date2). It returns a positive value if date1<date2 and a negative value if date1>date2. If either date is imprecisely specified, or if the HOLIDAY global is empty, then $$EN^XUWORKDY returns a NULL string.
The first FOR loop in ^XUWORKDY checks the HOLIDAY global and sets %H equal to the number of holidays between the two dates. It is assumed that the HOLIDAY global contains only weekday holidays.
The second FOR loop (F %J=%J:1 ...) steps forward from the earliest date and stops at the first Sunday or at the ending date (whichever comes first) counting the number of workdays.
The third FOR loop (F %K=%K:-1 ...) steps backward from the latest date and stops at the first Sunday or at the beginning date (whichever comes first), counting the workdays.
Then %I is set equal to the number of days between the two Sundays.
Finally, the return value is set equal to the total counted days minus the number of weekend days between the two Sundays (-(%I\7*2)).
Format:	$$EN^XUWORKDY(date1,date2)
Input Parameters:	date1:	(required) Starting date in VA FileMan internal format (e.g., 2850420).
	date2:	(required) Ending date in VA FileMan internal format (e.g., 2850707).
Output:	returns:	Returns the number of workdays in the interval.

[bookmark: _Toc458599156]Example
>W $$EN^XUWORKDY(3090102,3090108)
4

[bookmark: _Ref219880615][bookmark: _Toc458599157]$$WORKDAY^XUWORKDY: Workday Validation
[image: Note]	NOTE: The XUWORKDY routine is maintained for code that might still use it.
Reference Type:	Supported
Category:	Miscellaneous
ICR #:	10046
Description:	To use the ^XUWORKDY APIs, you must make sure that HOLIDAY file (#40.5) is populated with each year’s holidays for the workday calculation to work correctly. If it is not populated, you need to populate it yourself (Kernel distributes this file without data). Only enter holidays that fall on weekdays, however.
The $$WORKDAY^XUWORKDY extrinsic function returns 1 if the date submitted is a workday and 0 if it is not. If the date is imprecisely specified, or if the HOLIDAY global is empty, then $$WORKDAY^XUWORKDY returns a NULL string.
Format:	$$WORKDAY^XUWORKDY(date)
Input Parameters:	date:	(required) Starting date in VA FileMan internal format returns: (e.g., 2850420).
Output:		Returns:
1—Workday
0—Non-Workday

[bookmark: _Toc458599158]Examples
Example 1
This example shows the return value when a workday in VA FileMan internal format is input:
>W $$WORKDAY^XUWORKDY(3090102)
1

Example 2
This example shows the return value when a non-workday in VA FileMan internal format is input:
>W $$WORKDAY^XUWORKDY(3090103)
0

[bookmark: _Ref219880616][bookmark: _Toc458599159]$$WORKPLUS^XUWORKDY: Workday Offset Calculation
[image: Note]	NOTE: The XUWORKDY routine is maintained for code that might still use it.
Reference Type:	Supported
Category:	Miscellaneous
ICR #:	10046
Description:	To use the ^XUWORKDY APIs, you must make sure that HOLIDAY file (#40.5) is populated with each year’s holidays for the workday calculation to work correctly. If it is not populated, you need to populate it yourself (Kernel distributes this file without data). Only enter holidays that fall on weekdays, however.
The $$WORKPLUS^XUWORKDY extrinsic function returns the date that is “n” working days (i.e., offset) +/- of the input date. If the date is imprecisely specified, or if the HOLIDAY global is empty, then $$WORKPLUS^XUWORKDY returns a NULL string.
Format:	$$WORKPLUS^XUWORKDY(date,offset)
Input Parameters:	date:	(required) Starting date in VA FileMan internal format (e.g., 2850420).
	offset:	 (required) The number of days to offset.
Output:	returns:	Returns the date in VA FileMan internal format that is “n” working days (i.e., offset) +/- of the input date.

[bookmark: _Toc458599160]Example
>W $$WORKPLUS^XUWORKDY(3090108,3)
3090113

Miscellaneous: Developer Tools

[bookmark: _Ref303842837][bookmark: _Toc458599161]Name Standardization: Developer Tools
[bookmark: _Toc458599162]Application Programming Interface (API)
Several APIs are available for developers to work with name standardization. These APIs are described below.
[bookmark: _Toc458599163]$$BLDNAME^XLFNAME(): Build Name from Component Parts
Reference Type:	Supported
Category:	Name Standardization
ICR #:	3065
Description:	This extrinsic function takes the component parts of a name and returns the name, truncated if necessary, in the following format:
Family_name,Given_name<space>Middle_name<space>Suffix(es)
Format:	$$BLDNAME^XLFNAME(.name[,max])
Input Parameters:	.name:	(required) The component parts of the name:
NAME(“FAMILY”) = Family (Last) Name
NAME(“GIVEN”) = Given (First) Name(s)
NAME(“MIDDLE”) = Middle Name(s)
NAME(“SUFFIX”) = Suffix(es)
Alternatively, this array can contain the file number, IENS, and field number of the field that contains the name. If the name has a corresponding entry in the NAME COMPONENTS file (#20), then the name components are obtained from that entry. Otherwise, the name is obtained directly from the file, record, and field specified, and the name components are obtained by making a call to the STDNAME^XLFNAME(): Name Standardization Routine API.
NAME(“FILE”) = Source file number (required)
NAME(“IENS”) = IENS of entry in the source file (required)
NAME(“FIELD”) = Source field number (required)
	max:	(optional) The maximum length of the Name to be returned (default = 256).
[image: Note]	REF: For a description of the pruning algorithm, see the “Details” section.
Output:	returns:	Returns the name, truncated if necessary, in the following format:
Family_name,Given_name<space>Middle_name<space>Suffix(es)

[bookmark: _Ref433033113][bookmark: _Toc458599164]Details
If the max input parameter is used, and the resulting name is longer than max, the following pruning algorithm is performed to shorten the name:
1. Truncate Middle Name from the right-most position until only the initial character is left.
1. Drop suffix.
1. Truncate Given Name from the right-most position until only the initial character is left.
1. Truncate Family Name from the right-most position.
1. Truncate the name from the right.
[bookmark: _Toc458599165]Examples
Example 1
Suppose the MYNAME array contains the following elements:
MYNAME(“FAMILY”)=“XUUSER”
MYNAME(“GIVEN”)=“SIXTY”
MYNAME(“MIDDLE”)=“K.”
MYNAME(“SUFFIX”)=“JR”

Calls to $$BLDNAME^XLFNAME returns the name as follows:
>S X=$$BLDNAME^XLFNAME(.MYNAME)

>W X
XUUSER,SIXTY K JR

“Pruning” the name to 12 characters total:
>S X=$$BLDNAME^XLFNAME(.MYNAME,12)

>W X
XUUSER,SI K

Example 2
If an entry in the NAME COMPONENTS file (#20) stores the components of a name stored in the NAME field (#.01) of record number 32 in the NEW PERSON file (#200), and the data in the corresponding record in the NAME COMPONENT file (#20) is:
FILE=200
FIELD=.01
IENS=“32,”
GIVEN NAME=“SIXTY”
MIDDLE NAME=“K.”
FAMILY NAME=“XUUSER”
SUFFIX=“JR”

You can set:
MYNAME(“FILE”)=200
MYNAME(“FIELD”)=.01
MYNAME(“IENS”)=“32,”

Then call $$BLDNAME^XLFNAME as in Example 1:
>S X=$$BLDNAME^XLFNAME(.MYNAME)

>W X
XUUSER,SIXTY K JR

“Pruning” the name to 12 characters total:
>S X=$$BLDNAME^XLFNAME(.MYNAME,12)

>W X
XUUSER,SI K

[bookmark: _Toc458599166]$$CLEANC^XLFNAME(): Name Component Standardization Routine
Reference Type:	Supported
Category:	Name Standardization
ICR #:	3065
Description:	This extrinsic function takes a single name component and returns that name in standard format.
Format:	$$CLEANC^XLFNAME(comp[,flags])
Input Parameters:	comp:	(required) The name component to be converted to standard format.
	flags:	(optional) Flag to control processing. Possible values are:
F—If the name component to be converted is the FAMILY (LAST) NAME, pass the “F” flag. With the “F” flag, colons (:), semicolons (;), and commas (,) are converted to hyphens (-). Spaces and all punctuation except hyphens are removed. Two or more consecutive spaces or hyphens are replaced with a single space or hyphen. Birth position indicators 1ST through 10TH are changed to their Roman numeral equivalents.
NULL—Without the “F” flag, the component is converted to upper case. Colons (:), semicolons (;), commas (,), and periods (.) are converted to spaces. All punctuation except for hyphens and spaces are removed. Two or more consecutive spaces or hyphens are replaced with a single space or hyphen. Birth position indicators 1ST through 10TH are changed to their Roman numeral equivalents.
Output:	returns:	Returns the standard formatted name.

[bookmark: _Toc458599167]Examples
Example 1
Standardize family (last) name:
>Set X=$$CLEANC^XLFNAME(“XUUSER-XU U SER”,“F”)

>W X
XUUSER-XUUSER

>Set X=$$CLEANC^XLFNAME(“XUUSER-XU U SER 2ND”,“F”)

>W X
XUUSER-XUUSERII

>Set X=$$CLEANC^XLFNAME(“XUUSER-XU U SER”)

>W X
XUUSER-XU U SER

>Set X=$$CLEANC^XLFNAME(“ST. USER”,“F”)

>W X
STUSER

Example 2
Standardize other (non-family) name components:
>S X=$$CLEANC^XLFNAME(“F.O.”)

>W X
F O

>S X=$$CLEANC^XLFNAME(“FORTY’”)

>W X
FORTY

>S X=$$CLEANC^XLFNAME(“FORTY ONE”)

>W X
FORTY ONE

>S X=$$CLEANC^XLFNAME(“FORTY-ONE”)

>W X
FORTY-ONE

[bookmark: _Ref404683927][bookmark: _Toc458599168]$$FMNAME^XLFNAME(): Convert HL7 Formatted Name to Name
Reference Type:	Supported
Category:	Name Standardization
ICR #:	3065
Description:	This extrinsic function converts an HL7 formatted input name to a VistA formatted name.
Format:	$$FMNAME^XLFNAME([.]name[,flags][,delim])
Input Parameters:	[.]name:	(required) This is the HL7 name to be converted; it can be passed by reference. If the “C” flag is used, the name components are returned in nodes descendent from this parameter (see the “Output” section below).
	flags:	(optional) Flags to controls processing. Possible values are:
C—Return name components in the NAME array (see the “Output Parameters” section below).
L#—Truncate the returned name to a maximum Length of # characters, where # is an integer between 1 and 256.
M—Return the name in Mixed case, with the first letter of each name component capitalized.
S—Return the name in Standardized form.
	delim:	(optional) The delimiter used in the HL7 formatted name (default = “^”).
Output Parameters:	name:	If the FLAGS input parameter contains a “C”, the component parts of the name are returned in the NAME array:
NAME(“FAMILY) = Family (Last) Name
NAME(“GIVEN”) = Given (First) Name(s)
NAME(“MIDDLE”) = Middle Name(s)
NAME(“SUFFIX”) = Suffix(es)

[bookmark: _Toc458599169]Details
If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is performed to shorten the name:
1. Truncate Middle Name from the right-most position until only the initial character is left.
1. Drop suffix.
1. Truncate Given Name from the right-most position until only the initial character is left.
1. Truncate Family Name from the right-most position.
1. Truncate the name from the right.
[bookmark: _Toc458599170]Examples
Example 1
Convert an HL7 formatted name to a VistA name:
>S X=$$FMNAME^XLFNAME(“XUUSER^SIXTY^K.^JR^MR.^PHD”)

>W X
XUUSER,SIXTY K. JR

>S X=$$FMNAME^XLFNAME(“XUUSER^SIXTY^K.^JR^MR.^PHD”,“S”)

>W X
XUUSER,SIXTY K JR

>S X=$$FMNAME^XLFNAME(“XUUSER^SIXTY^K.^JR^MR.^PHD”,“M”)

>W X
Xuuser,Sixty K. Jr

>S X=$$FMNAME^XLFNAME(“XUUSER^SIXTY^K.^JR^MR.^PHD”,“SL12”)

>W X
XUUSER,SI K

Example 2
Convert an HL7 formatted name where “~” is the delimiter to a standard name:
>S X=$$FMNAME^XLFNAME(“XUUSER~SIXTY~K.~JR~MR”,“S”,“~”)

>W X
XUUSER,SIXTY K JR

Example 3
Convert an HL7 formatted name to a standard name, and return the components of that name in the MYNAME array:
[bookmark: _Toc458599925]Figure 86: $$FMNAME^XLFNAME API—Example: Converting an HL7 formatted name to a standard name, and returning the components in an array
>S MYNAME=“XUUSER^SIXTY^K.^JR^MR.^PHD”

>W $$FMNAME^XLFNAME(.MYNAME,“CS”)
XUUSER,SIXTY K JR

>ZW MYNAME
MYNAME=XUUSER^SIXTY^K.^JR^MR.^PHD
MYNAME(“DEGREE”)=PHD
MYNAME(“FAMILY”)=XUUSER
MYNAME(“GIVEN”)=SIXTY
MYNAME(“MIDDLE”)=K.
MYNAME(“PREFIX”)=MR.
MYNAME(“SUFFIX”)=JR

[bookmark: _Toc458599171]$$HLNAME^XLFNAME(): Convert Name to HL7 Formatted Name
Reference Type:	Supported
Category:	Name Standardization
ICR #:	3065
Description:	This extrinsic function converts an input name to an HL7 formatted name.
Format:	$$HLNAME^XLFNAME([.]name[,flags][,delim])
Input Parameters:	[.]name:	(required) The component parts of the name to be converted:
NAME(“FAMILY) = Family (Last) Name (required)
NAME(“GIVEN”) = Given (First) Name(s) (optional)
NAME(“MIDDLE”) = Middle Name(s) (optional)
NAME(“SUFFIX”) = Suffix(es) (optional)
NAME(“PREFIX”) = Prefix (optional)
NAME(“DEGREE”) = Degree (optional)
Alternatively, this array can contain the file number, IENS, and field number of the field that contains the name. If the name has a corresponding entry in the NAME COMPONENTS file (#20), then the name components are obtained from that entry. Otherwise, the name is obtained directly from the file, record, and field specified, and the name components are obtained by making a call to the STDNAME^XLFNAME(): Name Standardization Routine API.
NAME(“FILE”) = Source file number (required)
NAME(“IENS”) = IENS of entry in the source file (required)
NAME(“FIELD”) = Source field number (required)
Another alternative is to pass in the unsubscripted NAME parameter the name to be converted. $$HLNAME^XLFNAME obtains the components parts of that name by making a call to the STDNAME^XLFNAME(): Name Standardization Routine API. This alternative is recommended only for names that do not have associated entries on the NAME COMPONENTS file (#20).
	flags:	(optional) Flags to controls processing. Possible values are:
L#—Truncate the returned name to a maximum Length of # characters, where # is an integer between 1 and 256.
S—Return the name components in the HL7 formatted name in Standardized form.
	delim:	(optional) The delimiter to use in the HL7 string (default = “^”).
Output:	returns:	Returns the converted name in HL7 format.

[bookmark: _Toc458599172]Details
If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is performed to shorten the name:
1. Truncate Middle Name from the right-most position until only the initial character is left.
1. Drop suffix.
1. Truncate Given Name from the right-most position until only the initial character is left.
1. Truncate Family Name from the right-most position.
1. Truncate the name from the right.
[bookmark: _Toc458599173]Examples
Example 1
Suppose the MYNAME array contains the following elements:
MYNAME(“PREFIX”)=“MR.”
MYNAME(“GIVEN”)=“SIXTY”
MYNAME(“MIDDLE”)=“K.”
MYNAME(“FAMILY”)=“XUUSER”
MYNAME(“SUFFIX”)=“JR”
MYNAME(“DEGREE”)=“PHD”

Then calls to the $$HLNAME^XLFNAME API returns the name as follows:
>S X=$$HLNAME^XLFNAME(.MYNAME)

>W X
XUUSER^SIXTY^K.^JR^MR.^PHD

>S X=$$HLNAME^XLFNAME(.MYNAME,“”,“~”)

>W X
XUUSER~SIXTY~K.~JR~MR.~PHD

>S X=$$HLNAME^XLFNAME(.MYNAME,“S”,“~”)

>W X
XUUSER~SIXTY~K~JR~MR~PHD

>S X=$$HLNAME^XLFNAME(.MYNAME,“L12S”)

>W X
XUUSER^SI^K

Example 2
If an entry in the NAME COMPONENTS file (#20) stores the components of a name stored in the NAME field (#.01) of record number 32 in the NEW PERSON file (#200), and the data in the corresponding record in the NAME COMPONENTS file (#20) is:
FILE = 200
FIELD = .01
IENS = “32,”
PREFIX = “MR.”
GIVEN NAME = “SIXTY”
MIDDLE NAME = “K.”
FAMILY NAME = “XUUSER”
SUFFIX = “JR”
DEGREE = “PHD”

You can set:
MYNAME(“FILE”) = 200
MYNAME(“FIELD”) = .01
MYNAME(“IENS”) = “32,”

Then call the $$HLNAME^XLFNAME API, as in Example 1, to return the name in various formats.
Example 3
Convert a name passed by value to HL7 format:
>S X=$$HLNAME^XLFNAME(“XUUSER,SIXTY HOWARD II”)

>W X
XUUSER^SIXTY^HOWARD^II

>S X=$$HLNAME^XLFNAME(“XUUSER,SIXTY HOWARD II”,“S”)

>W X
XUUSER^SIXTY^HOWARD^II

>S X=$$HLNAME^XLFNAME(“XUUSER,SIXTY HOWARD II”,“SL10”,“~”)

>W X
XUUSE~S~H

[bookmark: _Ref64953451][bookmark: _Toc458599174]NAMECOMP^XLFNAME(): Component Parts from Standard Name
Reference Type:	Supported
Category:	Name Standardization
ICR #:	3065
Description:	This API takes a name in standard format and returns in an array the component parts of that name.
Format:	NAMECOMP^XLFNAME(.name)
Input Parameters:	.name:	(required) This parameter is the name in standard format to be parsed. NAMECOMP^XLFNAME returns the component parts of the name in nodes descendent from NAME. (See the “Output Parameters” section below.)
Output Parameters:	.name:	The component parts of the name are returned in the NAME array passed in.
NAME(“FAMILY) = Family (last) Name
NAME(“GIVEN”) = Given (first) Name
NAME(“MIDDLE”) = Middle Name
NAME(“SUFFIX”) = Suffix(es)
[bookmark: _Toc458599175]Example
In this example, the MYNAME variable is set to the standard name. The NAMECOMP^XLFNAME call is made to return in the MYNAME array the component parts of that name:
[bookmark: _Toc458599926]Figure 87: NAMECOMP^XLFNAME API—Example
>S MYNAME=“XUUSER-XUUSER,FORTY ONE S MD”
>D NAMECOMP^XLFNAME(.MYNAME)

>ZW MYNAME
MYNAME=XUUSER-XUUSER,FORTY ONE S MD
MYNAME(“FAMILY”)=XUUSER-XUUSER
MYNAME(“GIVEN”)=FORTY ONE
MYNAME(“MIDDLE”)=S
MYNAME(“SUFFIX”)=MD

[bookmark: _Toc458599176]$$NAMEFMT^XLFNAME(): Formatted Name from Name Components
Reference Type:	Supported
Category:	Name Standardization
ICR #:	3065
Description:	This extrinsic function returns a name converted to a form useful for display.
Format:	$$NAMEFMT^XLFNAME(.name[,format][,flags])
Input Parameters:	.name:	(required) An array that contains the component parts of the name:
NAME(“FAMILY) = Family (Last) Name (required)
NAME(“GIVEN”) = Given (First) Name(s) (optional)
NAME(“MIDDLE”) = Middle Name(s) (optional)
NAME(“SUFFIX”) = Suffix(es) (optional)
NAME(“PREFIX”) = Prefix (optional)
NAME(“DEGREE”) = Degree (optional)
Alternatively, this array can contain the file number, IENS, and field number of the field that contains the name. If the name has a corresponding entry in the NAME COMPONENTS file (#20), then the name components are obtained from that entry. Otherwise, the name is obtained directly from the file, record, and field specified, and the name components are obtained by making a call to the STDNAME^XLFNAME(): Name Standardization Routine API.
NAME(“FILE”) = Source file number (required)
NAME(“IENS”) = IENS of entry in the source file (required)
NAME(“FIELD”) = Source field number (required)
	format:	(optional) Controls the general formatting of the output (default = G). Possible values are:
F—Return Family (Last) Name first.
G—Return Given (First) Name first.
O—Return Only the Family (Last) Name.
	flags:	(optional) Flags to controls processing. Possible values are:
C—If the “F” format is used, return a Comma between the Family (Last) and Given (First) Names. Otherwise, the Family (Last) Name and the Given (First) Name are separated by a space. (Ignored if the “F” format is not used.)
D—Return the Degree.
Dc—Return the Degree preceded by a comma and space.
L#—Truncate the returned name to a maximum Length of # characters, where # is an integer between 1 and 256. See the “Details” section for a description of the pruning algorithm.
M—Return the name in Mixed case, with the first letter of each name component capitalized.
P—Return the Prefix.
S—Standardize the name components before building formatted name.
Xc—Precede the SuffiX with a comma and space.
Output:	returns:	Returns the formatted name.

[bookmark: _Ref433033215][bookmark: _Toc458599177]Details
If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is performed to shorten the name:
1. Drop Degree.
1. Drop Prefix.
1. Truncate Middle Name from the right-most position until only the initial character is left.
1. Drop suffix.
1. Truncate Given Name from the right-most position until only the initial character is left.
1. Truncate Family Name from the right-most position.
1. Truncate the name from the right.
[bookmark: _Toc458599178]Examples
Example 1
Suppose the MYNAME array contains the following elements:
MYNAME(“PREFIX”)=“MR.”
MYNAME(“GIVEN”)=“SIXTY”
MYNAME(“MIDDLE”)=“K.”
MYNAME(“FAMILY”)=“XUUSER”
MYNAME(“SUFFIX”)=“JR”
MYNAME(“DEGREE”)=“PHD”

Then calls to the $$NAMEFMT^XLFNAME API returns the name as follows:
>S X=$$NAMEFMT^XLFNAME(.MYNAME,“F”)

>W X
XUUSER SIXTY K. JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“F”,“C”)

>W X
XUUSER,SIXTY K. JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“F”,“CS”)

>W X
XUUSER,SIXTY K JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“F”,“CSD”)

>W X
XUUSER,SIXTY K JR PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“F”,“CDcXc”)

>W X
XUUSER,SIXTY K., JR, PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“F”,“CSL12”)

>W X
XUUSER,SI K

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“F”,“CMD”)

>W X
Xuuser,Sixty K. Jr PhD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”)

>W X
SIXTY K. XUUSER JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”,“D”)

>W X
SIXTY K. XUUSER JR PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”,“Dc”)

>W X
SIXTY K. XUUSER JR, PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”,“P”)

>W X
MR. SIXTY K. XUUSER JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”,“Xc”)

>W X
SIXTY K. XUUSER, JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”,“PDcXc”)

>W X
MR. SIXTY K. XUUSER, JR, PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”,“PDcXcM”)

>W X
Mr. Sixty K. Xuuser, Jr, PhD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”,“S”)

>W X
SIXTY K XUUSER JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“G”,“SL12”)

>W X
SI K XUUSER

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“O”)

>W X
XUUSER

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“O”,“S”)

>W X
XUUSER

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“O”,“M”)

>W X
Xuuser

>S X=$$NAMEFMT^XLFNAME(.MYNAME,“O”,“L3”)

>W X
XU

Example 2
If an entry in the NAME COMPONENTS file (#20) stores the components of a name stored in the NAME field (#.01) of record number 32 in the NEW PERSON file (#200), and the data in the corresponding record in the NAME COMPONENTS file (#20) is:
FILE = 200
FIELD = .01
IENS = “32,”
PREFIX = “MR.”
GIVEN NAME = “SIXTY”
MIDDLE NAME = “K.”
FAMILY NAME = “XUUSER”
SUFFIX = “JR”
DEGREE = “PHD”

You can set:
MYNAME(“FILE”)=200
MYNAME(“FIELD”)=.01
MYNAME(“IENS”)=“32,”

Then call the $$NAMEFMT^XLFNAME API, as in Example 1, to return the name in various formats.
[bookmark: _Ref38170431][bookmark: _Ref64949405][bookmark: _Ref64950533][bookmark: _Ref64950681][bookmark: _Ref64951157][bookmark: _Toc458599179]STDNAME^XLFNAME(): Name Standardization Routine
Reference Type:	Supported
Category:	Name Standardization
ICR #:	3065
Description:	This API parses a name and converts it into the following standard format:
Family_name,Given_name<space>Middle_name<space>Suffix(es)
A name in standard format is entirely in uppercase, and contains no Arabic numerals. The Family_name (last name) portion of a standard name appears to the left of the comma and contains no spaces and no punctuation except hyphens (-). The other parts of a standard name (the portion to the right of the comma) contain no punctuation except for hyphens and spaces. NMI and NMN are not used for the Middle_name.
STDNAME^XLFNAME optionally returns in an array the component parts of the name. It also optionally returns information in an array about possible problems encountered during the conversion of the name to standard form and the parsing of the name into its component parts.
Format:	STDNAME^XLFNAME(.name[,flags][,.audit])
Input Parameters:	.name:	(required) NAME is the name to be converted to standard format. It is assumed that the name is in the general format:
Family_name,Given_name(s) Middle_name Suffix(es)
If the “F” flag is not used, and the name contains no comma, it is assumed the name is in the general format:
Given_name(s) Middle_name Family_name Suffix(es)
The standard form of the name is returned in the NAME variable. If the “C” flag is passed in, the components of the name are returned in nodes descendent from NAME. (See the “Output Parameters” section below.)
	flags:	(optional) Flags to control processing. Possible values are:
C—Return name components in the NAME array. (See the “Output Parameters” section below.)
F—If the name passed in the NAME input parameter does not contain a comma, assume it is the Family Name only. For example, if the name input is “ST USER”, return the name as “STUSER” instead of “USER,ST”.
G—Do not return AUDIT(“GIVEN”) even if the Given Name is missing.
P—Remove text in parentheses (), brackets [], or braces { } from the name. If such text is actually removed, return AUDIT(“STRIP”).
	.audit:	(optional) If provided, this is an array that STDNAME^XLFNAME returns if there are any ambiguities or possible problems in standardizing the name or parsing the name into component parts. (See the “Output Parameters” section below.)
Output Parameters:	name:	This parameter is set to the name that was input converted to standard format.
If the Flags input parameter contains a “C”, the component parts of the name are returned in the NAME array:
NAME(“FAMILY) = Family (Last) Name
NAME(“GIVEN”) = Given (First) Name(s)
NAME(“MIDDLE”) = Middle Name
NAME(“SUFFIX”) = Suffix(es)
	audit:	If this parameter is set to the original name that was passed in the Name parameter. In addition, if there were any problems in the interpretation of the Name being standardized, descendants of Audit are set:
AUDIT(“subscript”) = “”
Where “subscript” can be any one of the following:
AUDIT(“FAMILY”)—The Family Name starts with ST. (The period and space are removed from the Family Name. For example, the name “ST. USER” is converted to “STUSER”.)
AUDIT(“GIVEN”)—Returned if there is no Given Name and the “G” flag is not passed.
AUDIT(“MIDDLE”)—Returned if there are three or more names between the first comma and the Suffix(es). (All name parts except the last are assumed to be part of the Given Name. Only the last part is assumed to be the Middle Name.)
AUDIT(“NM”)—Returned if NMI or NMN appears to be used as the Middle Name. (NMI and NMN are removed from the standard name, and the Middle Name component is returned as null.)
AUDIT(“NOTE”)—Returned if the name appears to contain a note or flag that may not actually be part of the name. For example, the name starts with “C-” or “EEE,” or has “FEE” at the end.
AUDIT(“NUMBER”)—Returned if a name part (other than a valid numeric Suffix) contains a number.
AUDIT(“PERIOD”)—Returned if periods were removed.
AUDIT(“PUNC”)—Returned if punctuation was removed.
AUDIT(“SPACE”)—Returned if spaces were removed from the Family Name.
AUDIT(“STRIP”)—Returned if text in parentheses (), brackets [], or braces { } were removed from the Name. (This is done only if the “P” flag is passed.)
AUDIT(“SUFFIX”)—Returned if:
Suffix(es) are found immediately to the left of the 1st comma.
I, V, or X, and nothing else except valid suffixes, appear immediately after the Given Name. (It is interpreted as the Middle Name.)
The name immediately after the Given Name appears to be a non-numeric suffix (except I, V, and X), and everything after that also appear to be suffixes. (It is assumed there are a Given Name and Suffix(es), but no Middle Name.)
M.D. or M D is found at the end of the name, or before any valid suffixes at the end of the name. (It is assumed that M and D are initials in the Given or Middle Name rather than a Suffix.)
The name part before any recognizable suffixes is more than one character in length and does not contain any vowels or Y. It is interpreted as a suffix.
Suffix is found between commas immediately after the Family Name.

[bookmark: _Toc458599180]Details
Standard Name
In forming the standard name, the following changes are made:
1. The name is converted to uppercase.
1. In the Family Name:
Semicolons (;) and colons (:) are converted to hyphens (-).

Spaces and all other punctuation except hyphens are removed.
Spaces and all other punctuation except hyphens are removed.
1. In the other name parts (Given Name, Middle Name, and Suffix).
1. Semicolon, colons, commas (,), and periods (.) are converted to spaces.

Spaces and all other punctuation except hyphens are removed.
All punctuation except hyphens and spaces are removed.
1. Hyphens and spaces at the beginning and end of the name are removed.
1. Two or more consecutive hyphens/spaces are replaced with a single hyphen/space.
1. Any suffixes immediate preceding the comma are moved to the end.
1. The suffixes indicating birth positions 1st, 2nd, 3rd, ..., 10th are converted to their Roman numeral equivalents I, II, III, … X.
1. DR immediately after the comma (or if there is no comma, at the beginning of the name), is assumed to be a suffix and moved to the end of the name.
1. Any suffixes between two commas immediate after the Family Name are moved to the end of the name.
1. NMI or NMN used as a Middle Name is deleted.
Component Parts Name
In forming the component parts of the name, only the following changes are made:
1. The name component is converted to uppercase.
1. In the Family Name, semicolons (;) and colons (:) are converted to hyphens (-).
1. In the other name parts (Given Name, Middle Name, and Suffix), semicolons, colons, and commas (,) are converted to spaces.
1. Hyphens and spaces at the beginning and end of the name are removed.
1. Two or more consecutive hyphens/spaces are replaced with a single hyphen/space.
1. A Middle Name of NMI or NMN is changed to null.
1. Spaces after periods are removed.
1. Accent graves (`) and carets (^) are removed.
In parsing the name into its component parts, if the name contains a comma or the “F” flag is passed, STDNAME^XLFNAME looks for suffixes immediately to the left of the first comma, and at the very end of the name. The suffixes it recognizes are 1ST through 10TH, JR, SR, DR, MD, ESQ, DDS, RN, ARNP, DO, PA, and Roman numerals I through X.
[image: Note]	NOTE: The ARNP, DO, and PA suffixes were added with Kernel patch XU*8.0*535.
If a name part before any recognizable suffixes is more than one character in length, and contains no vowel or ‘Y’, it is also assumed to be a suffix. The Name Standardization looks for the DR suffix immediately after the first comma, and for any suffix between two commas immediately after the Family Name. The portion of the name to the left of the comma, less any suffixes, is assumed to be the Family Name.
After STDNAME^XLFNAME accounts for all Suffixes, it looks at the portion of the name after the comma. It assumes that the first space-delimited piece is the Given Name. If any other pieces are left, the last one (rightmost) is assumed to be the Middle Name, and anything else is appended to the end of the Given Name.
If the name contains no comma, and the “F” flag is not passed, STDNAME^XLFNAME looks for suffixes at the very end of the name. The last space-delimited piece before any suffixes is assumed to be the Family Name. The first space-delimited piece is assumed to be the Given Name. If any other pieces are left, the last one (rightmost) is assumed to be the Middle Name, and anything else is appended to the end of the Given Name.
[bookmark: _Toc458599181]Example
In this example, the MYNAME variable is set to the name to be standardized. The “C” flag indicates that the name components should be returned in the MYNAME array, and the “P” flag indicates that parenthetical text should be removed from the name. STDNAME^XLFNAME sets MYAUD to original name passed in and sets nodes in the MYAUD array to flag changes and possible problems.
[bookmark: _Toc458599927]Figure 88: STDNAME^XLFNAME API—Example
>S MYNAME=“XUUSER,FIFTY A. B. 2ND (TEST)”
>D STDNAME^XLFNAME(.MYNAME,“CP”,.MYAUD)

>ZW MYNAME
MYNAME=XUUSER,FIFTY A B II
MYNAME(“FAMILY”)=XUUSER
MYNAME(“GIVEN”)=FIFTY A.
MYNAME(“MIDDLE”)=B.
MYNAME(“SUFFIX”)=2ND

>ZW MYAUD
MYAUD=XUUSER,FIFTY A. B. 2ND (TEST)
MYAUD(“MIDDLE”)=“”
MYAUD(“PERIOD”)=“”
MYAUD(“SPACE”)=“”
MYAUD(“STRIP”)=“”

STDNAME^XLFNAME returned the standard form of the name in MYNAME as XUUSER,FIFTY A B II. It interpreted FIFTY A. as the given (first) name and B. as the middle name. Since this may not be correct, MYAUD(“MIDDLE”) is set. Periods were removed and spaces were removed to form the standard name, therefore MYAUD(“PERIOD”) and MYAUD(“SPACE”) were set. Finally, since the parenthetical text (TEST) was removed, MYAUD(“STRIP”) was set.
[bookmark: _Toc458599182]DELCOM P^XLFNAME2(): Delete Name Components Entry
Reference Type:	Controlled Subscription
Category:	Name Standardization
ICR #:	3066
Description:	This API deletes an entry in the NAME COMPONENTS file (#20), and optionally, the value of the pointer in the source file that points to the name components entry.
[image: Note]	NOTE: This API is designed to be used in the KILL logic for the MUMPS cross-reference mentioned previously in the UPDCOMP^XLFNAME2(): Update Name Components Entry API.
Format:	DELCOMP^XLFNAME2(file,[.]record,field[,ptrfield])
Input Parameters:	file:	(required) The number of the file or Multiple (the “source file”) that contains the name.
	[.]record:	(required) The IENS or the Internal Entry Number array (that looks like the DA array) of the record in the source file that contains the name.
	field:	(required) The number of the field in the source file that contains the name.
	ptrfield:	(optional) The number of the pointer field in the source file that points to the NAME COMPONENTS file (#20). Only if this parameter is passed is the value of this pointer field deleted.
Output:	none.	Deletes record.

[bookmark: _Toc458599183]Example
Suppose that you have a NAME COMPONENTS file (#20) entry that contains the components of a name stored in File #1000, Record #132, Field #.01. Pointer Field #1.1 of that File #1000 is a pointer to the NAME COMPONENTS file (#20). To delete the entry in the NAME COMPONENTS file (#20), and the value of the pointer field, you can do the following:
>D DELCOMP^XLFNAME(1000,132,.01,1.1)

[bookmark: _Ref64952079][bookmark: _Toc458599184]UPDCOMP^XLFNAME2(): Update Name Components Entry
Reference Type:	Controlled Subscription
Category:	Name Standardization
ICR #:	3066
Description:	This API updates an entry in the NAME COMPONENTS file (#20). Optionally, the pointer in the source file that points to the name components entry is also updated.
This API is designed to be used in the SET logic of a MUMPS cross-reference on the name field in a source file, to keep the name field and the associated name components in sync. For an example of its use, see the ANAME index in the INDEX file (#.11). The ANAME index is a MUMPS cross-reference on the .01 NAME field of the NEW PERSON file (#200). If an entry’s NAME field is edited, the ANAME cross-reference updates the associated entry in the NAME COMPONENTS file (#20).
[image: Note]	NOTE: Existing MUMPS cross-references on the NAME COMPONENTS file (#20) already exist to update the associated name field on the source file if the components are edited.
Format:	UPDCOMP^XLFNAME2(file,[.]record,field,[.]name[,ptrfield]
[,ptrval])
Input Parameters:	file:	(required) The number of the file or Multiple (the “source file”) that contains the name.
	[.]record:	(required) The IENS or the Internal Entry Number array (that looks like the DA array) of the record in the source file that contains the name.
	field:	(required) The number of the field in the source file that contains the name.
	[.]name:	(required) An array that contains the component parts of the name to store in the NAME COMPONENTS file (#20) entry:
NAME(“FAMILY) = Family Name (required)
NAME(“GIVEN”) = Given Name(s) (optional)
NAME(“MIDDLE”) = Middle Name(s) (optional)
NAME(“SUFFIX”) = Suffix(es) (optional)
NAME(“PREFIX”) = Prefix (optional)
NAME(“NOTES”) = optional free text string
Alternatively, a name in standard format can be passed in the NAME input parameter. If the NAME input parameter has no descendants (that is, $D(NAME)=1), UPDCOMP^XLFNAME2 makes a call to the NAMECOMP^XLFNAME(): Component Parts from Standard Name API to build the NAME array for you.
	ptrfield:	(optional) The number of the pointer field in the source file that points to the NAME COMPONENTS file (#20). Only if this parameter is passed is the value of this pointer field updated with the entry number of the record in the NAME COMPONENTS file (#20) that was added or edited.
	ptrval:	(optional) The current value of the pointer field specified by the PTRFIELD input parameter. This parameter can be used to save processing time. If both PTRFIELD and PTRVAL are passed, the pointer field is updated only if this value is different from the entry number of the record in the NAME COMPONENTS file (#20) that was added or edited.
Output:	returns:	Updated entry in the NAME COMPONENTS file (#20).

[bookmark: _Toc458599185]Example
Suppose the .01 field of File #1000 contains a person’s name, and the component parts of the name in entry 132 should be updated as follows:
Family (last) name: XUUSER
Given (first) name: FIFTY HENRY
Middle name: A.
Suffix: JR.
Field #1.1 is defined as a pointer to the NAME COMPONENTS file (#20) and has a value of 42, the IEN of a record in the NAME COMPONENTS file (#20). To update the NAME COMPONENTS file (#20) with this name, you can do the following:
[bookmark: _Toc458599928]Figure 89: UPDCOMP^XLFNAME2 API—Example
>S MYNAME(“FAMILY”)=“XUUSER”
>S MYNAME(“GIVEN”)=“FIFTY HENRY”
>S MYNAME(“MIDDLE”)=“A.”
>S MYNAME(“SUFFIX”)=“JR.”

>D UPDCOMP^XLFNAME2(1000,132,.01,.MYNAME,1.1,42)

If there is an entry in the NAME COMPONENTS file (#20) that corresponds to File #1000, Field #.01, IEN #132, that entry is updated with the name components passed in the MYNAME array. Otherwise, a new entry is added to the name components with this information.
If the entry in the name components that was updated or added is record #42, no change is made to the value of the pointer field #1.1, since 42 was passed in the 6th parameter.
MUMPS cross-references on the NAME COMPONENTS file (#20) updates the name in the Field #.01 of File #1000 to “XUUSER,FIFTY HENRY A JR” if it does not already contain that name.

Name Standardization: Developer Tools

[bookmark: _Ref303842861][bookmark: _Ref20098751][bookmark: _Ref20098777][bookmark: _Toc458599186]National Provider Identifier (NPI): Developer Tools
[bookmark: _Toc458599187]Application Programming Interface (API)
The following are National Provider Identifier (NPI) APIs available for developers. These APIs are described below.
[bookmark: _Toc458599188]$$CHKDGT^XUSNPI(): Validate NPI Format
Reference Type:	Controlled Subscription
Category:	National Provider Identifier (NPI)
ICR #:	4532
Description:	This extrinsic function validates the format of a National Provider Identifier (NPI) number. It checks the following:
NPI is numeric.
Length of the Number (must be 10-digits).
Check Digit is Valid.
This API was added with Kernel patch XU*8.0*410.
Format:	$$CHKDGT^XUSNPI(xusnpi)
Input Parameters:	xusnpi:	(required) The 10-digit National Provider Identifier (NPI) number to validate. No default.
Output:	returns:	Returns:
1—If check digit is valid. The NPI number must be 10-digits long.
0—If check digit is not valid.

[bookmark: _Toc458599189]Examples
Example 1
The following example shows the result when checking a valid NPI:
>W $$CHKDGT^XUSNPI(1234567893)
1

Example 2
The following example shows the result when checking an invalid NPI (not 10 digits):
>W $$CHKDGT^XUSNPI(123456789)
0

[bookmark: _Toc458599190]$$NPI^XUSNPI(): Get NPI from Files #200 or #4
Reference Type:	Controlled Subscription
Category:	National Provider Identifier (NPI)
ICR #:	4532
Description:	This extrinsic function retrieves the National Provider Identifier (NPI) and related utilities from the NEW PERSON (#200) or INSTITUTION (#4) files. This API was added with Kernel patch XU*8.0*410.
Format:	$$NPI^XUSNPI(xusqi,xusien[,xusdate])
Input Parameters:	xusqi:	(required) The Qualified Identifier for the NPI. For example: Individual_ID or Organization_ID. No default.
	xusien:	(required) The Internal Entry Number (IEN) from the NEW PERSON (#200) or INSTITUTION (#4) files. No default.
	xusdate:	(optional) A date of interest. Defaults to “Today.”
Output:	returns:	Returns any of the following strings:
NPI^EffectiveDate^Status—If National Provider Identifier (NPI) exists.
0—If NPI does not exist.
-1^ErrorMessage—If invalid xusqi or xusien.

[bookmark: _Toc458599191]Examples
Example 1
The following example uses the following file data:
Individual_ID = NEW PERSON file (#200)
NPI = 9876543213
EffectiveDate = 3061108.123651
Status = Active

>W $$NPI^XUSNPI(“Individual_ID”,82)
9876543213^3061108.123651^Active

Example 2
The following example uses the following file data:
Organization_ID = INSTITUTION file (#4)
NPI = 1111111112
EffectiveDate = 3070122
Status = Active

>W $$NPI^XUSNPI(“Organization_ID”,1)
1111111112^3070122^Active

[bookmark: _Ref193523364][bookmark: _Toc458599192]$$QI^XUSNPI(): Get Provider Entities
Reference Type:	Controlled Subscription
Category:	National Provider Identifier (NPI)
ICR #:	4532
Description:	This extrinsic function retrieves all qualified provider entities for a National Provider Identifier (NPI) identifier. This API was added with Kernel patch XU*8.0*410.
Format:	$$QI^XUSNPI(xusnpi)
Input Parameters:	xusnpi:	(required) The National Provider Identifier (NPI) identifier. No default.
Output:	returns:	Returns either of the following strings:
QualifiedIdentifier^IEN^EffectiveDate^Status—National Provider Identifier (NPI) exists. If more than one record is found, they are separated by “;”.
0—Qualified NPI does not exist.

[bookmark: _Toc458599193]Examples
Example 1
The following example uses the following file data:
Individual_ID = NEW PERSON file (#200)
IEN = 82
EffectiveDate = 3061108.123651
Status = Active

>W $$QI^XUSNPI(9876543213)
Individual_ID^82^3061108.123651^Active;

Example 2
The following example uses the following file data:
Organization_ID = institution file (#4)
IEN = 1
EffectiveDate = 3070122
Status = Active

>W $$QI^XUSNPI(1111111112)
Organization_ID^1^3070122^Active;

[bookmark: _Toc458599194]$$TAXIND^XUSTAX(): Get Taxonomy Code from File #200
Reference Type:	Controlled Subscription
Category:	National Provider Identifier (NPI)
ICR #:	4911
Description:	This extrinsic function retrieves the taxonomy code for a given record in the NEW PERSON file (#200). This API was added with Kernel patch XU*8.0*410.
Format:	$$TAXIND^XUSTAX(xuien)
Input Parameters:	xuien:	(required) This is the Internal Entry Number (IEN) of the record in the NEW PERSON file (#200). No default.
Output:	returns:	Returns either of the following strings:
TaxonomyX12Code^TaxonomyIEN—Taxonomy exists.
^—Taxonomy does not exist.

[bookmark: _Toc458599195]Example
The following example uses the following file data:
Taxonomy X12 code of the record in the NEW PERSON file (#200) = 2086S0105
Taxonomy IEN from the PERSON CLASS file (#8932.1) = 900

>W $$TAXIND^XUSTAX(82)
2086S0105X^900

[bookmark: _Toc458599196]$$TAXORG^XUSTAX(): Get Taxonomy Code from File #4
Reference Type:	Controlled Subscription
Category:	National Provider Identifier (NPI)
ICR #:	4911
Description:	This extrinsic function retrieves the taxonomy code for a given record in the INSTITUTION file (#4). This API was added with Kernel patch XU*8.0*410.
Format:	$$TAXORG^XUSTAX(xuien)
Input Parameters:	xuien:	(required) This is the Internal Entry Number (IEN) of the record in the INSTITUTION file (#4). No default.
Output:	returns:	Returns either of the following strings:
TaxonomyX12Code^TaxonomyIEN—Taxonomy exists.
^—Taxonomy does not exist.

[bookmark: _Toc458599197]Example
The following example uses the following file data:
Taxonomy X12 code of the record in the INSTITUTION file (#4) = 390200000X
Taxonomy IEN from the PERSON CLASS file (#8932.1) = 144

>W $$TAXORG^XUSTAX(2)
390200000X^144

National Provider Identifier (NPI): Developer Tools

[bookmark: _Ref303842877][bookmark: _Ref303842897][bookmark: _Toc458599198]Operating System (OS) Interface: Developer Tools
[bookmark: _Toc458599199]Overview
Kernel and Kernel Toolkit provides several utilities to work with the underlying operating system. In addition, Kernel’s ^%ZOSF global holds operating system-dependent logic so that application programs can be written independently of any specific operating system. Each CPU or node in a system should have its own copy of the ^%ZOSF global; the ^%ZOSF global should not be translated.
[bookmark: _Toc152465379][bookmark: _Toc458599200]Direct Mode Utilities
[bookmark: _Toc458599201]>D ^%ZTBKC: Global Block Count
You can count the data blocks in a global using the direct mode utility ^%ZTBKC. An entire global or a subscripted section can be measured, such as ^DIC or ^DIC(9.2). There is a corresponding option that can be used from the Programmer Options menu, called the Global Block Count option [XU BLOCK COUNT].
[image: Note]	REF: For more information on the XU BLOCK COUNT, see Section 28, “Miscellaneous Programmer Tools,” in the Kernel Systems Management Guide.
[bookmark: _Toc458599202]>D ^ZTMGRSET: Update ^%ZOSF Nodes
This direct mode utility is only available from the manager’s account. It is ordinarily run during Kernel installations to initialize Kernel in the manager’s account. It can be used at a later time, however, to update an account’s ^%ZOSF nodes with new UCI and Volume Set information. The ^%ZOSF nodes that ^ZTMGRSET updates are:
^%ZOSF(“MGR”)
^%ZOSF(“PROD”)
^%ZOSF(“VOL”)
An example of a use for re-running ^ZTMGRSET would be when creating a new print, compute, file, or shadow server by copying an existing server’s account. Although Kernel is already set up in the copied account, the new server’s UCI and Volume Set ^%ZOSF nodes would need to be updated from their old values to the values needed for the new server. Re-running ^ZTMGRSET allows these values to be updated.
[bookmark: _Toc458599203]Application Programming Interface (API)
Several APIs are available for developers to work with the operating system. These APIs are described below.
[bookmark: _Ref182107163][bookmark: _Toc458599204]^%ZOSF(): Operating System-dependent Logic Global
The ^%ZOSF global holds operating system-dependent logic so that application programs can be written independently of any specific operating system.
Most of the nodes contain logic that must be executed to return a value, for example:
X ^%ZOSF(“SS”)
Those prefaced with one asterisk in Table 29, however, are reference values. For example, to WRITE the operating system, use:
W ^%ZOSF(“OS”)
The nodes prefaced with two asterisks in Table 29 should be used with the DO command, as in the following:
>D @^%ZOSF(“ERRTN”)
Table Key:
*	indicates those nodes that hold reference values.
**	indicates those nodes that are invoked with a DO statement (D).
[bookmark: _Ref59870602][bookmark: _Toc200270029][bookmark: _Toc458600024]Table 29: ^%ZOSF API—Global nodes
	[bookmark: COL001_TBL023]Node
	Description

	ACTJ
	Return in Y the number of active jobs on the system.

	AVJ
	Return in Y the number of jobs that can be started. The number of available jobs is the maximum number less the number of active jobs.

	BRK
	Allow the user to break the running of a routine.

	DEL
	Delete the routine named in X from the UCI.

	EOFF
	Turn off echo to the $I device.

	EON
	Turn on echo to the $I device.

	EOT
	Returns Y = 1 if Magtape end-of-tape mark is detected.

	**ERRTN
	This node is set to the name of the routine that should be used to record errors. For most systems this is the KERNEL error recording routine (%ZTER):
>D @^%ZOSF(“ERRTN”)
To initially set the Error Trap:
>S X=^%ZOSF(“ERRTN”),@^%ZOSF(“TRAP”)

	ETRP
	Obsolete.

	GD
	Display the global directory.

	GSEL
	Returns the user’s selection of globals as follows:
^UTILITY($J,“global name”)
[image: Note] NOTE: This is only supported for Caché at this time.

	JOBPARAM
	When passed the job in X, returns the UCI for that job in Y. It determines whether the job is valid on the system.

	LABOFF
	Turn off echo to the IO device.

	LOAD
	Load routine X into @(DIF_”XCNP,0)”.

	LPC
	Returns in Y the longitudinal parity check of the string in X.

	MAGTAPE
	Sets the %MT local variable to hold magtape functions. Issue the backspace command as follows:
>W @%MT(“BS”)
The full list of functions are:
“BS”—Back Space
“FS”—Forward Space
“WTM”—WRITE Tape Mark
“WB”—WRITE Block
“REW”—Rewind
“RB”—READ Block
“REL”—READ Label
“WHL”—WRITE HDR Label
“WEL”—WRITE EOF Label

	MAXSIZ
	For M/SQL-VAX only. Sets the partition size to X.

	*MGR
	Holds the name of the MGR account (UCI, Volume Set).

	MTBOT
	Returns Y = 1 if the magtape is at BOT.

	MTERR
	Returns Y = 1 if a magtape error is detected.

	MTONLINE
	Returns Y = 1 if the magtape is online.

	MTWPROT
	Returns Y = 1 if the magtape is WRITE Protected.

	NBRK
	Do not allow the user to break a routine.

	NO-PASSALL
	Sets device $I to interpret tabs, carriage returns, line feeds, or control characters (normal text mode).

	NO-TYPE-AHEAD
	Turn off the TYPE-AHEAD for the device $I.

	*OS
	In the first “^” piece, holds the type of MUMPS (e.g., Caché, VAX DSM, GT.M).

	PASSALL
	Sets device $I to pass all codes, allow tabs, carriage returns, and other control characters to be passed (binary transfer).

	PRIINQ
	Returns Y with the current priority of the job.

	PRIORITY
	Sets the priority of the job to X (1 is low, 10 is high).

	*PROD
	Holds the name of the Production account (UCI, Volume Set).

	PROGMODE
	Returns Y = 1 if the user is in Programmer mode.

	RD
	Displays the routine directory.

	RESJOB
	References the operating system routine for restoring a job.

	RM
	Sets the $I width to X characters. If X=0, then the line in set to no wrap.

	RSEL
	Returns the user’s selection of routines as follows:
^UTILITY($J,“routine name”)

	RSUM
	Passes a routine name in X, and it returns the checksum in Y. Used by CHECK^XTSUMBLD. The second line and comments are not included in the total.

	RSUM1
	Passes a routine name in X, and it returns the checksum in Y. Used by CHECK1^XTSUMBLD. The second line and comments are not included in the total.

	SAVE
	Saves the code in @(DIE_”XCN,0)”) as routine X.

	SIZE
	Returns Y=size (in bytes) of the current routine.

	SS
	Displays the system status.

	TEST
	Returns $T = 1 if routine X exists.

	TMK
	Returns Y = 1 if a tape mark was detected on the last READ.

	TRAP
	To set the Error Trap:
>S X=“error routine”,@^%ZOSF(“TRAP”)

	TRMOFF
	Resets terminators to normal.

	TRMON
	Turns on all controls as terminators.

	TRMRD
	Returns in Y what terminated the last READ.

	TYPE-AHEAD
	Allow TYPE-AHEAD for the device $I.

	UCI
	Returns Y with the current account (UCI, Volume Set).

	UCICHECK
	Returns Y’=“” if X is a valid UCI name.

	UPPERCASE
	Converts lowercase to uppercase. Setting X=“User Name” returns Y=“USER NAME”. Applications can gain efficiency by executing this node rather than performing checks within the application program.

	*VOL
	Contains the current Volume Set (CPU) name.

	XY
	Sets $X=DX and $Y=DY (may not work on all systems).

	ZD
	Given X in $H format, returns the printable form of X in Y.

[bookmark: _Toc458599205]$$ACTJ^%ZOSV: Number of Active Jobs
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This extrinsic function returns the number of active jobs in the scope of this process. It is the same as ^%ZOSF(“ACTJ”).
Format:	$$ACTJ^%ZOSV
Input Parameters:	none.
Output:	returns:	Returns the number of active jobs.

[bookmark: _Toc458599206]$$AVJ^%ZOSV: Number of Available Jobs
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This extrinsic function returns a best effort on the number of available jobs (i.e., number of new jobs that could be started). It is the same as ^%ZOSF(“AVJ”).
Format:	$$AVJ^%ZOSV
Input Parameters:	none.
Output:	returns:	Returns the number of available jobs.

[bookmark: _Toc458599207]DOLRO^%ZOSV: Display Local Variables
Reference Type:	Controlled Subscription
Category:	Operating System Interface
ICR #:	3883
Description:	This API saves all local variables. It stores all local variables in the global storage location specified by the “X” input variable.
Format:	DOLRO^%ZOSV
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	X:	(required) When this variable is set to an open global reference, (e.g., ’^XTMP(“ZZHL”,25,’), all local variables existent when DOLRO^%ZOSV is called are stored in the location specified by the open global reference. These variables, now stored in the X-specified global location, can be listed and examined by application developers.
Output:	returns:	Local variables are stored in the global specified by the X input variable.

[bookmark: _Toc458599208]Example
>S X=“^%ZTSK(ZTSKm.3,” D DOLRO^%ZOSV

[bookmark: _Toc458599209]GETENV^%ZOSV: Current System Information
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This API returns environment information about the current system.
Format:	GETENV^%ZOSV
Input Parameters:	none.
Output Variables:	Y:	Returns a string in the following format:
UCI^VOL/DIR^NODE^BOX LOOKUP

[bookmark: _Toc458599210]$$LGR^%ZOSV: Last Global Reference
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This extrinsic function returns the last global reference.
Format:	$$LGR^%ZOSV
Input Parameters:	none.
Output:	returns:	Returns the string set to the last full global reference.

[bookmark: _Toc458599211]Example
>S X=$$LGR^%ZOSV

[bookmark: _Toc458599212]LOGRSRC^%ZOSV(): Record Resource Usage (RUM)
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This API records resource usage in ^XTMP(“KMPR” via the Resource Usage Monitor (RUM) software.
Format:	LOGRSRC^%ZOSV(opt,type,status)
Input Parameters:	opt:	(required) Name of Option, Protocol, Remote Procedure Call (RPC) or Health Level Seven (HL7). This is a Free Text parameter.
	type:	(required) Type of option:
0—Option
1—Protocol
2—Remote Procedure Call (RPC)
3—Health Level Seven (HL7)
	status:	(optional) Reserved for future use.
Output:	returns:	This API saves RUM-related data for each option/type into a file. This file is then downloaded weekly to the Capacity Planning National Database. The data is then available to all sites via the Capacity Planning Service VA Intranet Website.

[bookmark: _Ref234301781][bookmark: _Ref234301812][bookmark: _Toc458599213]$$OS^%ZOSV: Get Operating System Information
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This extrinsic function returns the underlying operating system (e.g., VMS on OpenVMS, NT on Windows, Unix on Linux). It is only available under Caché/OpenVMS M systems.
Format:	$$OS^%ZOSV
Input Parameters:	none.
Output:	returns:	Returns the underlying operating system information (e.g., VMS on OpenVMS, NT on Windows, Unix on Linux).

[bookmark: _Toc458599214]Example
I ^%ZOSF(“OS”)[“OpenM” S Y=$$OS^%ZOSV

[bookmark: _Ref59330756][bookmark: _Toc458599215]SETENV^%ZOSV: Set VMS Process Name (Caché/OpenVMS Systems)
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This API sets the VMS process name. It only has meaning on Caché/OpenVMS systems, otherwise it just quits.
Format:	SETENV^%ZOSV
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	X:	(required) This is a 1-15 character name to be given to the process at the VMS level.
Output:	none.

[bookmark: _Toc458599216]SETNM^%ZOSV(): Set VMS Process Name (Caché/OpenVMS Systems)
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This API sets the VMS process name. It only has meaning on Caché/OpenVMS systems, otherwise it just quits. It is the parameter-passing version of the SETENV^%ZOSV: Set VMS Process Name (Caché/OpenVMS Systems) API.
Format:	SETNM^%ZOSV(name)
Input Parameters:	name:	(required) This is a 1-15 character name to be given to the process at the VMS level.
Output:	none.

[bookmark: _Toc458599217]T0^%ZOSV: Start RT Measure (Obsolete)
[image: Note]	NOTE: This API is obsolete as of the release of Kernel Toolkit patch XT*7.3*102 and Kernel patch XU*8.0*425.
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This API starts RT Measure. The Kernel site parameter flag to enable RT logging must be set for the volume set. The setting of this flag defines the XRTL variable. The call to this API should, thus, include a check for the existence of XRTL, such as the following:
>D:$D(XRTL) T0^%ZOSV
This API should be placed just before a process that may take a few seconds before the system responds with another prompt. If the minimal pause is at least a half second, there is enough variability to notice changes as the load on the system is increased or decreased. There should be no terminal IOs between the T0 start point and the T1 stop point.

[image: Note]	REF: For more information on RT measure, see the Resource Usage Monitor (RUM) documentation, located on the VDL at: http://www.va.gov/vdl/application.asp?appid=130
Format:	T0^%ZOSV
Input Parameters:	none.
Output Variables:	XRT0:	Output variable (start time).
The T0 call sets the XRT0 variable to the start time. To discard a sample, the XRT0 variable should be KILLed. Such a KILL would be appropriate if there is an exit path between the T0 and T1 checkpoints that is circuitous or otherwise irrelevant to the normal execution of the code in question.
[image: Note]	NOTE: On Caché systems, it only records to the nearest second.

[bookmark: _Toc458599218]T1^%ZOSV: Stop RT Measure (Obsolete)
[image: Note]	NOTE: This API is obsolete as of the release of Kernel Toolkit patch XT*7.3*102 and Kernel patch XU*8.0*425.
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This API stops RT Measure. This API logs the elapsed time into the ^%ZRTL global (obsolete). The API should include a check for the existence of the XRT0 variable to confirm that the start time is available.
[image: Note]	REF: For more information on RT measure, see the Resource Usage Monitor (RUM) documentation, located on the VDL at: http://www.va.gov/vdl/application.asp?appid=130
Format:	T1^%ZOSV
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	XRTN:	(required) Routine name.
The XRTN variable is normally set to the name of the routine being monitored via the command:
>S XRTN=$T(+0)
To log more than one stop point in the same routine, a number or other characters can be concatenated (e.g., XRTN_1) so that a separate entry is made in the ^%ZRTL global (obsolete), since the global is subscripted by routine name:
>S:$D(XRT0) XRTN=$T(+0) D:$D(XRT0) T1^%ZOSV
Output:	returns:	Logs elapsed time into the ^%ZRTL global (obsolete).

[bookmark: _Ref234723675][bookmark: _Toc458599219]$$VERSION^%ZOSV(): Get OS Version Number or Name
Reference Type:	Supported
Category:	Operating System Interface
ICR #:	10097
Description:	This extrinsic function returns the operating system version number or name.
Format:	$$VERSION^%ZOSV([flag])
Input Parameters:	flag:	(optional) If you pass a value of 1, the operating system name is returned instead of the version number.
[image: Note]	NOTE: The name is as defined by the vendor and does not necessarily correspond with the OS name stored in ^%ZOSF(“OS”).
Output:	returns:	Returns the operating system version number or name, depending on the (optional) flag input parameter.

[bookmark: _Toc458599220]Examples
Example 1
>W $$VERSION^%ZOSV(1)

Cache for OpenVMS/ALPHA V7.x (Alpha)

Example 2
>W $$VERSION^%ZOSV

4.1.16

Operating System Interface: Developer Tools

[bookmark: _Ref303842964][bookmark: _Toc458599221]Security Keys: Developer Tools
[bookmark: _Toc458599222]Overview
As well as locking options, developers can use security keys within options if some part of an option requires special security. One example of this is Kernel’s use of the ZTMQ key; it restricts functionality within the Dequeue Task, Requeue Tasks, and Delete Tasks options.
[bookmark: _Toc458599223]Key Lookup
When writing code that checks whether the current user holds a certain key, do not reference the SECURITY KEY file (#19.1) for this information. Instead, check the ^XUSEC global. The most efficient check is:
>I $D(^XUSEC(keyname,DUZ))
This is (and continues to be) a supported reference. The ^XUSEC global is built by a cross-reference on the SECURITY KEY file (#19.1).
[bookmark: _Toc458599224]Person Lookup
If a key is flagged for Person Lookup, a cross-reference on the NEW PERSON file (#200) is built and maintained to facilitate APIs. It is constructed with the letters “AK” before the key name. The Provider key is exported with the Person Lookup flag set; as a result, providers can be easily identified in this AK.keyname cross-reference, at ^VA(200,“AK.PROVIDER”,DUZ). Specifically, the lookup would be:
>S DIC=“^VA(200,”,DIC()=“AEQ”,D=“AK.PROVIDER” D IX^DIC
[bookmark: _Toc458599225]Application Programming Interface (API)
Several APIs are available for developers to work with security keys. These APIs are described below.
[bookmark: _Toc458599226]DEL^XPDKEY(): Delete Security Key
Reference Type:	Supported
Category:	Security Keys
ICR #:	1367
Description:	This API deletes a security key from the SECURITY KEY file (#19.1). All necessary indexing is performed to maintain the ^XUSEC global. The security key is removed from all holders in the NEW PERSON file (#200).
Format:	DEL^XPDKEY(key_name)
Input Parameters:	key_name:	(required) The name of the security key to delete.
Output:	none.

[bookmark: _Toc458599227]Example
>D DEL^XPDKEY(key_name)

[bookmark: _Toc458599228]$$LKUP^XPDKEY(): Look Up Security Key Value
Reference Type:	Supported
Category:	Security Keys
ICR #:	1367
Description:	This extrinsic function looks up a security key by name or by Internal Entry Number (IEN) value. It returns the security key:
Name—If called with a security key number.
IEN—If called with a security key name.
Format:	$$LKUP^XPDKEY(key_value)
Input Parameters:	key_value:	(required) The name or IEN of the security key in question.
Output:	returns:	Returns the security key:
Name—If called with a security key number.
IEN—If called with a security key name.

[bookmark: _Toc458599229]Example
>S value=$$LKUP^XPDKEY(key_value)

[bookmark: _Toc458599230]$$RENAME^XPDKEY(): Rename Security Key
Reference Type:	Supported
Category:	Security Keys
ICR #:	1367
Description:	This extrinsic function renames a security key. All necessary indexing is performed to maintain the ^XUSEC global.
Format:	$$RENAME^XPDKEY(oldname,newname)
Input Parameters:	oldname:	(required) Name of security key to be renamed.
	newname:	(required) New name for security key.
Output:	returns:	Returns:
1—Success.
0—Failure.

[bookmark: _Toc458599231]OWNSKEY^XUSRB(): Verify Security Keys Assigned to a User
Reference Type:	Supported
Category:	Security Keys
ICR #:	3277
Description:	The XUS KEY CHECK RPC uses this API to verify if a user has a specified security key assigned. The calling routine sends one or a reference to a subscripted array and the API returns a subscripted array with the following possible values:
1—User owns key.
0—Key not found.
The DUZ variable should be defined before calling this API.
(This was developed as a Broker RPC and all RPCs have as the first parameter the return/output parameter.)
Format:	OWNSKEY^XUSRB(ret,list[,ien])
Input Parameters:	ret:	(required) Name of the subscripted return array. In every API that is used as an RPC, the first parameter is the return array.
	list:	(required) A single value or an input subscripted array of security keys to be evaluated.
	ien:	(optional) The DUZ of a user for whom you want to check if he/she holds security keys.
Output:	ret():	Returns a subscripted output array of the input value/subscripted array (i.e., list) with the following possible values shown:
1—User owns key.
0—Key not found.

[bookmark: _Toc458599232]Examples
Example 1
In the following example, the return array is named “ZZ” and the single security key to be checked is the XUPROG security key:
>K ZZ D OWNSKEY^XUSRB(.ZZ,“XUPROG”) ZW ZZ
ZZ(0)=1

Example 2
In the following example, the return subscripted array is named “ZZ” and the input array of security keys to be checked is named “LST”:
[bookmark: _Toc458599929]Figure 90: OWNSKEY^XUSRB API—Example
>K LST S LST(1)=“XUPROG”,LST(2)=“XUMGR”,LST(3)=“ABC”
>K ZZ D OWNSKEY^XUSRB(.ZZ,.LST) ZW ZZ
ZZ(1)=1
ZZ(2)=1
ZZ(3)=0

Security Keys: Developer Tools

[bookmark: _Ref135456158][bookmark: _Toc458599233]Server Options: Developer Tools
[bookmark: _Toc458599234]Tools for Processing Server Requests
When a server option runs, it can call custom programs to perform server-related tasks such as responding to the sender of the server request, or retrieving the actual text of the server request message. In this way, server requests can act not only as triggers, but also as message carriers. The server option can call custom programs via the following fields:
ENTRY ACTION
HEADER
ROUTINE
EXIT ACTION
[image: Note]	REF: For more information on server options, see Section 11 in the Kernel Systems Management Guide.
[image: Note]	REF: For more information on the developer API for processing server requests, see the MailMan Developer’s Guide.
[bookmark: _Toc458599235]Key Variables When a Server Option is Running
There are key variables that are set up when a server option is running. You can reference these key variables during any routine run by the server option’s ENTRY ACTION, HEADER, ROUTINE, and EXIT ACTION fields. The key variables for server options are set up as follows:
[bookmark: _Toc458600025]Table 30: Key variable setup—Server options
	[bookmark: COL001_TBL024]Variable
	Description

	XQSOP
	Server option name.

	XQMSG
	Server request message number.

	XQSND
	DUZ of the sender if the request is local; network address of the sender if the request is not local

	XQSUB
	Subject heading of the server request message.

[bookmark: _Toc458599236]Appending Text to a Server Request Bulletin or Mailman Reply
Server options use bulletins and MailMan messages to communicate with the local system administrators when a server request is received, or with the sender of a server request, usually in the event of an error. These two kinds of documents look very similar and must contain certain key pieces of data. It is also possible, however, for the sender or the local system administrators to append other information to the bulletin or MailMan message by setting that information into the array XQSTXT (one line per node). For example, if the following array exists:
XQSTXT(0)=“Please append these two lines of text”
XQSTXT(1)=“to the end of the bulletin XQSERVER.”
The default bulletin, XQSERVER, would then look like:
[bookmark: _Toc200270030][bookmark: _Toc458599930]Figure 91: XQSERVER—Default bulletin
Subj: Server request notice
From: <Postmaster>
--

Dec. 21, 1989 3:08 PM

A request for execution of a server option was received.

Sender: <Child,Your@HOME.VA.GOV>
Option name: ZZUPDATECL
Subject: UPDATE CHRISTMAS LIST DATA BASE
Message #: 136771

Menu system Action: No error(s) detected by the menu system.

Please append these two lines of text
to the end of the bulletin XQSERVER.

You can use the same method to append text to MailMan messages.
[bookmark: _Toc458599237]Customizing a Server Request Bulletin
Please note that the first six data elements in a server request bulletin are always:
1. The date and time the request was received.
1. The sender.
1. The requested option’s name.
1. The subject of the message of the server request.
1. The requesting message’s number.
1. A brief statement of the menu system’s action or an error message.
If you use a customized bulletin instead of XQSERVER, these data elements should always be printed first, followed by the contents of XQSTXT.
The easiest way to create a customized local bulletin is to use the VA FileMan copy function to copy the default bulletin XQSERVER to a bulletin of another name.
[image: Note]	NOTE: XQSERVER has a line of text in it that says:

 is the server request bulletin XQSERVER

To avoid confusion, you should edit this line using the Bulletin Edit option to reflect the name of the new bulletin.

Server Options: Developer Tools

[bookmark: _Ref97639362][bookmark: _Ref20100387][bookmark: _Ref20101094][bookmark: _Toc458599238]Signon/Security: Developer Tools
[bookmark: _Toc458599239]Overview
Kernel’s Signon/Security module sets up a standard VistA programming environment as a foundation for software applications. Once a signon session has been created, applications can assume that system-wide variables exist for common reference. For example, key variables defined via Signon/Security include the user’s institution and agency (DUZ(2) and DUZ(“AG”), respectively).
[bookmark: _Toc458599240]Direct Mode Utilities
Several Signon/Security direct mode utilities are available for developers to use at the M prompt. They are not APIs and cannot be used in software application routines. These utilities allow developers to simulate ordinary user signon and yet work from Programmer mode to test code and diagnose errors. These direct mode utilities are described below.
[bookmark: _Toc458599241]^XUP: Programmer Signon
The ^XUP routine can be called as a quick way to enter Kernel and set up a standard environment:
>D ^XUP: Programmer Signon
It does the following:
Sets up DT.
Calls ^%ZIS.
Prompts for Access code if DUZ is zero or undefined.
KILLs and rebuilds ^XUTL(“XQ”,$J).
KILLs ^UTILITY($J).
Calls ^XQ1 to prompt for an option if one should be run.

If a non-menu-type option is specified, returning from the option displays the “Select:” prompt as though the option was a menu-type. Although this construction may at first appear misleading, restricting option selection to menu-type only would be a functional limitation to the call.
[bookmark: _Toc458599242]^XUS: User Signon: No Error Trapping
^XUS determines whether access to the computer is allowed, and then sets up the user with the proper environment:
>D ^XUS
This routine can be called to establish the signon environment. A recommended alternative for developers is to call ^XUP, which establishes signon conditions as well as calling ^XQ1 for an option name. Neither ^XUP nor ^XUS sets the Error Trap. Entering through ^ZU sets the Error Trap and then calls the ^XUS routine.
[bookmark: _Toc458599243]H^XUS: Programmer Halt
The following is an obsolete utility:
>D H^XUS
It simply transfers control to ^XUSCLEAN.
[bookmark: _Toc458599244]^XUSCLEAN: Programmer Halt
Developers are advised to call the ^XUSCLEAN routine when signing off:
>D ^XUSCLEAN
It is the same code that Kernel uses when a user signs off or restarts. It notes the signoff time in the SIGN-ON LOG file (#3.081) and KILLs the $J nodes in ^XUTL and ^UTILITY. It then performs a normal halt.
[bookmark: _Toc458599245]^ZU: User Signon
The ZU routine sets the Error Trap and then calls ^XUS:
>D ^ZU
User signons should be tied to ^ZU.
[bookmark: _Toc458599246]XU USER SIGN-ON Option
Some software applications asked for the means to execute an action at user signon, but not through the alert system. Kernel provides the XU USER SIGN-ON option that software applications can attach to and perform software application-specific tasks on user signon.
[bookmark: _Ref38255864][bookmark: _Toc458599247]XU USER SIGN-ON: Package-specific Signon Actions
Kernel 8.0 introduced a method to support software application-specific signon actions. Kernel exports an extended-action option called XU USER SIGN-ON. Packages that want Kernel to execute a software application-specific user signon routine can accomplish this by attaching their own option, of type action, to Kernel’s XU USER SIGN-ON option. Your action-type option should call your software application-specific user signon routine.
To attach your option to the XU USER SIGN-ON option, make your option an item of the XU USER SIGN-ON protocol; then, export your option with a KIDS action of SEND, and export the XU USER SIGN-ON option with a KIDS action of USE AS LINK FOR MENU ITEMS.
During signon, Kernel executes the XU USER SIGN-ON option, which in turn executes any options that software applications have attached to XU USER SIGN-ON. No database Integration Control Registrations are required to attach to the XU USER SIGN-ON option.
If you need to perform any output during your action, you should use the SET^XUS1A function to perform the output. Output is not immediate, but occurs once all software application-specific signon actions have completed. Also, you should not perform any tasks requiring interaction in an action attached to the XU USER SIGN-ON option.
The DUZ variable is defined at the time the signon actions are executed; DUZ is set as it normally is to the person’s Internal Entry Number (IEN) in the NEW PERSON file (#200).
Take care to make code efficient, since executed by every signon. A few examples of tasks you might want to accomplish during signon are:
Alert the user to a software application status.
Issue a reminder.
Notify the software application of the signon of a software application user.
[bookmark: _Toc458599248]Example
The following option, when attached to the XU USER SIGN-ON protocol, outputs one line during signon:
[bookmark: _Toc200270031][bookmark: _Toc458599931]Figure 92: XU USER SIGN-ON—Sample ZZTALK Protocol
NAME: ZZTALK PROTOCOL MENU TEXT: TALKING PROTOCOL
 TYPE: action E ACTION PRESENT: YES
 DESCRIPTION: USE TO TEST EXTENDED ACTION PROTOCOLS
 ENTRY ACTION: D SET^XUS1A(“!This line is from the ZZTALK option.”)
 UPPERCASE MENU TEXT: TALKING PROTOCOL

[bookmark: _Ref325114283][bookmark: _Toc458599249]XU USER START-UP Option
VistA software developers asked for the means to execute an action at VistA user signon, but not through the alert system. Added with Kernel patch XU*8.0*593, the XU USER START-UP option is a protocol option used exclusively during a VistA user signon event. Items attached to this option are “TYPE: action” options in the OPTION file (#19), which can be used for software-specific actions that prompt users for input upon VistA signon before their Primary Menu Option is displayed. Unlike the XU USER SIGN-ON option, it can provide interactive prompting to users. It is not used for GUI signon. It is called from the XQ12 routine.
[bookmark: _Toc458599250]XU USER START-UP: Application-specific Signon Actions
Kernel 8.0 introduced a method to support application-specific VistA (non-GUI) signon actions. Kernel patch XU*8.0*593 exports the XU USER START-UP extended-action option. VistA applications that want Kernel to execute an application-specific user signon routine can do this by attaching their own option, of TYPE: action, to Kernel’s XU USER START-UP option. The action-type option should call the application-specific user signon routine.
To attach your option to the XU USER START-UP option, perform the following procedure:
1. Make your option an item of the XU USER START-UP protocol.
1. Export your option with a KIDS action of SEND.
1. Export the XU USER START-UP option with a KIDS action of USE AS LINK FOR MENU ITEMS.
During signon, Kernel executes the XU USER START-UP option before the user’s Primary Menu Option is displayed, which in turn executes any options that applications have attached to XU USER START-UP. No database Integration Control Registrations are required to attach to the XU USER START-UP option.
Since this option is only used for VistA signon sessions and not GUI signon, tasks requiring interaction are permitted. If you want a task to prevent a user from signing on, then the task should set the variable XUSQUIT=1.
The DUZ variable is defined at the time the signon actions are executed; DUZ is set as it normally is to the person’s Internal Entry Number (IEN) in the NEW PERSON file (#200).
Take care to make code efficient, since it is executed at every VistA signon. The following are examples of tasks you might want to accomplish during a VistA signon:
Prompt the user to update their phone number in the NEW PERSON file (#200).
Block a user’s access unless they electronically sign a security agreement.
[bookmark: _Toc458599251]Example:
The following option, when attached to the XU USER SIGN-ON protocol, outputs one line during signon:
[bookmark: _Toc458599932]Figure 93: XU USER START-UP option—Sample signon action-type option
NAME: ZZXU593 SAMPLE OPTION
TYPE: action E ACTION PRESENT: YES
DESCRIPTION: PROMPT USER TO EDIT SIGNATURE BLOCK
ENTRY ACTION: D SAMPLE^XQ12
UPPERCASE MENU TEXT: SAMPLE OPTION

[bookmark: _Toc458599252]XU USER TERMINATE Option
Kernel 8.0 introduced a method to support software application-specific user termination actions. Kernel 8.0 exports an extended-action option called XU USER TERMINATE. Packages that want Kernel to execute a software application-specific user termination action can accomplish this by attaching their own option, of type action, to Kernel’s XU USER TERMINATE extended action.
[bookmark: _Toc458599253]Discontinuation of USER TERMINATE ROUTINE
Kernel 7.1 introduced a method for software applications to have Kernel execute a software application-specific routine when Kernel terminated a user. The method was for the software application to have a routine tag and name in fields 200.1 (USER TERMINATE TAG) and 200.2 (USER TERMINATE ROUTINE) of the software application’s PACKAGE file (#9.4) entry. When Kernel 7.1 terminated a user, it executed the TAG^ROUTINE API stored in these fields, if any.
Kernel 8.0 continues to execute the API, if any, stored in a software application’s PACKAGE file (#9.4) entry. However, Kernel 8.0 is the last version to support that method of software application-specific user termination routines.
[bookmark: _Toc458599254]Creating a Package-specific User Termination Action
Beginning with Kernel 8.0, you should create an action-type option that calls your software application-specific user termination routine. To attach it to the XU USER TERMINATE option, do the following:
1. Export your option with a KIDS action of SEND.
1. Export the XU USER TERMINATE option with a KIDS action of USE AS LINK FOR MENU ITEMS.
Kernel defines the XUIFN variable at the time your action executes; it is defined as the Internal Entry Number (IEN) in the NEW PERSON file (#200) of the user being terminated.
When terminating a user, Kernel executes the XU USER TERMINATE option, which in turn executes any options attached to XU USER TERMINATE. No database Integration Control Registrations are required to attach to the XU USER TERMINATE option.
A few examples of user clean up you might want to accomplish when Kernel terminates users are as follows:
Removal of HINQ access.
Removal of Control Point access.
Removal from health care teams.
[bookmark: _Toc458599255]Application Programming Interface (API)
Several APIs are available for developers to work with signon/security. These APIs are described below.
[bookmark: _Toc458599256]$$GET^XUPARAM(): Get Parameters
Reference Type:	Supported
Category:	Signon/Security
ICR #:	2542
Description:	This extrinsic function gets simple parameters from the KERNEL PARAMETERS file (#8989.2) that the site can edit.
Format:	$$GET^XUPARAM(parameter_name[,style])
Input Parameters:	parameter_name:	(required) This is the namespaced name of the parameter to look up in the KERNEL PARAMETERS file (#8989.2) and return the REPLACEMENT value or DEFAULT.
	style:	(optional) This input parameter controls the return value if the REPLACEMENT value or DEFAULT is empty.
Output:	returns:	Returns the REPLACEMENT value or DEFAULT.

[bookmark: _Toc458599257]$$KSP^XUPARAM(): Return Kernel Site Parameter
Reference Type:	Supported
Category:	Signon/Security
ICR #:	2541
Description:	This extrinsic function retrieves a Kernel site parameter. The following parameters are currently supported:
INST
SPOOL DOC
SPOOL LIFE
SPOOL LINE
WHERE
Format:	$$KSP^XUPARAM(param)
Input Parameters:	param:	(required) Site parameter to retrieve. Currently, the following values for param are supported:
INST—Internal Entry Number (IEN) of the site’s institution, in the site’s INSTITUTION file (#4).
SPOOL DOC—MAX SPOOL DOCUMENTS PER USER (internal value) from the site’s KERNEL SYSTEM PARAMETERS file (#8989.3).
SPOOL LIFE—MAX SPOOL DOCUMENT LIFE-SPAN (internal value) from the site’s KERNEL SYSTEM PARAMETERS file (#8989.3).
SPOOL LINE—MAX SPOOL LINES PER USER (internal value) from site’s KERNEL SYSTEM PARAMETERS file (#8989.3).
WHERE—Site’s domain name (FREE TEXT value), from the site’s DOMAIN file (#4.2).
Output:	returns:	Returns the requested site parameter value.

[bookmark: _Toc458599258]Examples
Example 1
>S A6ASITE=$$KSP^XUPARAM(“WHERE”)

Example 2
>S A6ASPLLF=$$KSP^XUPARAM(“SPOOL LIFE”)

[bookmark: _Toc458599259]$$LKUP^XUPARAM(): Look Up Parameters
Reference Type:	Supported
Category:	Signon/Security
ICR #:	2542
Description:	This extrinsic function looks up simple parameters from the KERNEL PARAMETERS file (#8989.2) that the site can edit.
Format:	$$LKUP^XUPARAM(parameter_name[,style])
Input Parameters:	parameter_name:	(required) This is the namespaced name of the parameter to look up in the KERNEL PARAMETERS file (#8989.2) and return the REPLACEMENT value or DEFAULT.
	style:	(optional) This input parameter controls the return value if the REPLACEMENT value or DEFAULT is empty.
Output:	returns:	Returns the REPLACEMENT value or DEFAULT.

[bookmark: _Toc458599260]SET^XUPARAM(): Set Parameters
Reference Type:	Supported
Category:	Signon/Security
ICR #:	2542
Description:	This API sets simple parameters in the KERNEL PARAMETERS file (#8989.2).
Format:	SET^XUPARAM(parameter_name[,style])
Input Parameters:	parameter_name:	(required) This is the namespaced name of the parameter to set in the KERNEL PARAMETERS file (#8989.2).
	style:	(optional) This input parameter controls the return value if the REPLACEMENT value or DEFAULT is empty.
Output:	none.

[bookmark: _Ref73436650][bookmark: _Toc74450532][bookmark: _Toc458599261]$$PROD^XUPROD(): Production Vs. Test Account
Reference Type:	Supported
Category:	Signon/Security
ICR #:	4440
Description:	This API was released with Kernel patch XU*8.0*284. It is called by applications to check and see if the application is running in a Production or a Test account.
The Ask if Production Account option [XU SID ASK] on the Kernel Management Menu [XUKERNEL], asks if the current account is the Production account. It returns the following values:
True (1 or non-zero)—If the answer is YES, the account is the Production account, so the current system ID (SID) is set as the Production SID.
False (zero)—If the answer is NO, the account is not the Production account, so a fake value is stored.
The Startup PROD check option [XU SID STARTUP] can be scheduled for startup so that when TaskMan starts the SID is checked. The first check each day gets the current SID and compares it with the stored SID to see if they match.
Format:	$$PROD^XUPROD([force])
Input Parameters:	force:	(optional) The parameter value of 1 allows an application to force a full test.
Output:	returns:	Returns a Boolean value:
True (1 or non-zero)—Production account, current SID is set as the Production SID.
False (zero)—Test account.

[bookmark: _Toc458599262]H^XUS: Programmer Halt
Reference Type:	Supported
Category:	Signon/Security
ICR #:	10044
Description:	This API is the Programmer Halt.
Format:	H^XUS
Input Parameters:	none.
Output:	none.

[bookmark: _Toc458599263]SET^XUS1A(): Output Message During Signon
Reference Type:	Supported
Category:	Signon/Security
ICR #:	3057
Description:	This API performs any output during a software application-specific action executed at signon. This function should only be used by action-type options attached to and executed by Kernel’s XU USER SIGN-ON extended action.
Display of the string is not immediate; instead, every call to SET^XUS1A appends a node to an array containing the post signon text. When all software application-specific signon actions have completed, the signon process then displays the post signon text array, which also contains any strings registered with the SET^XUS1A function, appended at the end.
Format:	SET^XUS1A(string)
Input Parameters:	string:	(required) String to output. First character is stripped from string; if the first character is an exclamation point, a line feed is issued before the string is displayed; otherwise, no line feed is issued.
Output:	none.

[bookmark: _Toc458599264]Details
As of Kernel 8.0, software applications can attach an action-type option to a Kernel extended action-type option called XU USER SIGN-ON. This option, and all attached action-types, are executed during every signon.
[image: Note]	REF: For more information on software application-specific action executed at signon, see the “XU USER SIGN-ON: Package-specific Signon Actions” section.
[bookmark: _Toc458599265]AVHLPTXT^XUS2: Get Help Text
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	4057
Description:	This API retrieves help text to display to the user when they change their Verify code.
Format:	AVHLPTXT^XUS2
Input Parameters:	none.
Output:	returns:	Returns the help text for a user to use when entering a new Verify code.

[bookmark: _Ref303837493][bookmark: _Toc458599266]$$CREATE^XUSAP: Create Application Proxy User
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	4677
Description:	Released with Kernel patch XU*8.0*361, this extrinsic function is a non-interactive API to create an Application Proxy User to support J2EE middle-tier applications. The Application Proxy User represents an application and not an end-user.
[image: Caution]	CAUTION: If the user running this extrinsic function does not hold the XUMGR security key, it returns an error upon the filing of the Application Proxy as the User Class.
Overview
The Application Proxy User is a special category of user account that is created in the NEW PERSON file (#200) and can run internal tasks or execute authorized Remote Procedure Calls (RPCs). The Application Proxy represents an application and not an end-user. The Application Proxy user account must adhere to the following criteria:
The name added to the NEW PERSON file (#200) must be unique and must be namespaced in accordance with M Programming Standards and Conventions (SAC) Section 2.6, “Name Requirements.”
It must have a user class of “Application Proxy,” as defined in the USER CLASS file (#201) and pointed to by the USER CLASS field (#9.5) in the NEW PERSON file (#200).
It must not have an Access or Verify code assigned to it.
It must not have a Primary menu assigned to it.
It must have one or more Secondary menu options assigned to it. The Secondary menu option must be owned by the application that the Application Proxy represents, or the application must have an Integration Control Registration (ICR) with the option owner. The Secondary menu option contains a list of RPCs that the Application Proxy is authorized to call, as described in the “RPC Security” section in the RPC Broker User Guide.
The RPCs that the menu options reference must have the APP PROXY ALLOWED field (#.11) in the REMOTE PROCEDURE file (#8994) set to YES. The RPCs must be owned by the application that the Application Proxy represents, or the application must have an ICR with the RPC owner.
The use of an Application Proxy must be restricted to accessing non-protected data. Federal laws specify when an actual end-user must be represented when accessing Personally Identifiable Information (PII) and Protected Health Information (PHI). Information regarding user authentication, identity, auditing, and authorization can be found in:
VA Information Security Handbook 6500 Appendix F
National Institute of Standards and Technology (NIST) e-Authentication Guidelines (800-63-2)
Health Insurance Portability and Accountability Act of 1996 (HIPAA) federal law 45 CFR § 160 & § 164
Application Proxy Privacy and Auditing
Many VistA data interactions by human end-users must be represented with accurate and unambiguous user identity information, so that VistA audit mechanisms function as intended. Application Proxy user accounts do not identify the user and should be avoided, especially where the interaction is with PHI/PII data (regulated by federal law). The use of Application Proxy user accounts should be limited to background processes and machine-to-machine interactions.
Application Proxy Permission
The $$CREATE^XUSAP is used to create an Application Proxy. Permission to use this API should be done early in the development process, as use of Application Proxy user accounts are reviewed by VA management due to security concerns.
Format:	$$CREATE^XUSAP(proxyusername[,filemanaccesscode][,options])
Input Parameters:	proxyusername:	(required) This is the name of the Application Proxy User. This name must be unique and should be namespaced.
	filemanaccesscode:	(optional) This is the VA FileMan Access code. It cannot be an at-sign (“@”).
[image: Note]	REF: For more information, see the VA FileMan Advanced User Manual.
	options:	(optional) This is the name of a single option name (e.g., XUS TEST PROXY LOGON) or an array of options, such as XUOPT(“XMUSER”)=1. Applications can only access the Remote Procedure Calls (RPCs) contained in the options provided in this input parameter. RPCs are tied to “B”-type options.
Output:	returns:	Returns:
IEN of entry created in NEW PERSON file (#200)—Successful; writes new Application Proxy User to the NEW PERSON file (#200).
“0^Name In Use”—Unsuccessful; Application Proxy User of that name already exists in the NEW PERSON file (#200).
-1—Unsuccessful; could not create Application Proxy User OR error in call to UPDATE^DIE.
[image: Note]	NOTE: For more information on the UPDATE^DIE-related error, users should check ^TMP(“DIERR”,$J).

[bookmark: _Toc458599267]Examples
Application Proxy Example (Good)
The following example shows a successful creation of an Application Proxy User:
>IF $$CREATE^XUSAP("VPR,APPLICATION PROXY","","VPR APPLICATION PROXY")>0 W !,"Proxy Created"

Proxy Created

Figure 94 is an example of an Application Proxy user account that is provisioned correctly:
[bookmark: _Ref442255647][bookmark: _Toc458599933]Figure 94: Application Proxy Example (Good)
NAME: VPR,APPLICATION PROXY DATE ENTERED: SEP 01, 2011
 CREATOR: PROGRAMMER,ONE
SECONDARY MENU OPTIONS: VPR APPLICATION PROXY
 TIMESTAMP: 62335,62903
User Class: APPLICATION PROXY ISPRIMARY: Yes

The Proxy User List option [XUSAP PROXY LIST] lists the current Application Proxy user accounts, as shown in Figure 95:
[bookmark: _Ref442255614][bookmark: _Toc458599934]Figure 95: Application Proxy Example (Good)—Displayed using Proxy User List option
PROXY USER LIST JAN 28,2016 09:44 PAGE 1
NAME User Class IsPrimary Active
--

XOBVTESTER,APPLICATION PROXY APPLICATION PROXY Yes
ANRVAPPLICATION,PROXY USER APPLICATION PROXY Yes
VPFS,APPLICATION PROXY APPLICATION PROXY Yes
RADIOLOGY,OUTSIDE SERVICE APPLICATION PROXY Yes
LRLAB,HL APPLICATION PROXY Yes
LRLAB,POC APPLICATION PROXY Yes
TASKMAN,PROXY USER APPLICATION PROXY Yes
CLINICAL,DEVICE PROXY SERVICE APPLICATION PROXY Yes
NHIN,APPLICATION PROXY APPLICATION PROXY Yes
EDPTRACKING,PROXY APPLICATION PROXY Yes
KAAJEE,PROXY APPLICATION PROXY Yes
VPR,APPLICATION PROXY APPLICATION PROXY Yes
AUTHORIZER,IB REG APPLICATION PROXY Yes
HOWDY,BOT APPLICATION PROXY Yes
LRLAB,TASKMAN APPLICATION PROXY Yes
VIABAPPLICATIONPROXY,VIAB APPLICATION PROXY Yes

[image: Caution]	CAUTION: Some of the listed Application Proxy user accounts do not follow the rules for namespacing. There are other serious infractions in current applications using Application Proxy user accounts, which puts the VA in the position of violating federal privacy laws by accessing PHI/PII information. VA Handbook 6500 Appendix F lists VA System Security Controls that are applicable to Application Proxy user accounts as well as human end-users. An Application Proxy should never be used to circumvent VA System Security Controls.
Application Proxy Example (Bad)
Figure 96 is an example of an Application Proxy user account that is not provisioned correctly:
[bookmark: _Ref442255705][bookmark: _Toc458599935]Figure 96: Application Proxy Example (Bad) (1 of 2)
NAME: TASKMAN,PROXY USER FILE MANAGER ACCESS CODE: #
 DATE ENTERED: JUN 9,2009 CREATOR: LABTECH,FORTYEIGHT
 NAME COMPONENTS: 200
 SIGNATURE BLOCK PRINTED NAME: PROXY USER TASKMAN
 TIMESTAMP: 62362,53550
User Class: APPLICATION PROXY ISPRIMARY: Yes

If provisioned correctly, the name “TASKMAN, PROXY USER” would be identified by the Kernel (XU) namespace, such as “XUTASKMAN,PROXY USER”. This particular Application Proxy does not require access to any menu options or RPCs, so it does not contain a SECONDARY MENU OPTION.
Figure 97 is another example of an Application Proxy user account that is not provisioned correctly:
[bookmark: _Ref442255721][bookmark: _Toc458599936]Figure 97: Application Proxy Example (Bad) (2 of 2)
NAME: CLINICAL,DEVICE PROXY SERVICE DATE ENTERED: JUN 30,2010
 CREATOR: PROGRAMMER,ONE
SECONDARY MENU OPTIONS: MD GUI MANAGER
SECONDARY MENU OPTIONS: MD GUI USER
 TIMESTAMP: 61907,71682
User Class: APPLICATION PROXY ISPRIMARY: Yes

In this example, the SECONDARY MENU OPTIONs are in the Clinical Procedures (MD) namespace, so that if provisioned correctly, “CLINICAL,DEVICE PROXY SERVICE” would be more appropriately named “MDCLINICAL,DEVICE PROXY SERVICE”.
[bookmark: _Toc458599268]KILL^XUSCLEAN: Clear all but Kernel Variables
Reference Type:	Supported
Category:	Signon/Security
ICR #:	10052
Description:	This API clears the partition of all but key variables essential to Kernel. Application developers are allowed to use this call to clean up application variables and leave the local symbol table unchanged when returning from an option or as otherwise required by SAC Standards.
In the past, options that have called KILL^XUSCLEAN have occasionally created problems for other options that had defined software-wide variables. For example, a user might enter the top-level menu for a software application, which could have an entry action that retrieved site parameters into a local variable that is supposed to remain defined while in any menu of that software application, between options. But if the user could then reach a secondary menu option that happened to call KILL^XUSCLEAN, a side effect would be the KILLing off the previously defined software-wide variable.
KILL^XUSCLEAN now provides a way for sites and developers to work around this problem. For any menu-type option, the PROTECTED VARIABLES field in the OPTION file (#19) allows you to enter a comma-delimited list of variables to protect from being KILLed by KILL^XUSCLEAN. Once a user enters a menu subtree descendent from the protected menu, the variables are protected until the menu subtree is exited.
So, for example, to protect a software-wide variable for an entire software application, you can enter that variable in the PROTECTED VARIABLES field for the top-level menu in the software application. As long as a user does not exit the top-level menu of the software application’s menu tree, the software-wide variable is protected from all calls to KILL^XUSCLEAN. “Up-arrow Jumps” into a menu tree also work fine, as long as the menu that has been protected is in the menu path made by the jump.
Format:	KILL^XUSCLEAN
Input Parameters:	none.
Output:	none.

[bookmark: _Toc458599269]$$ADD^XUSERNEW(): Add New Users
Reference Type:	Supported
Category:	Signon/Security
ICR #:	10053
Description:	This extrinsic function adds new entries to the NEW PERSON file (#200). It was modified with Kernel patch XU*8.0*134. After prompting for the user’s name, it parses the input into its component parts, and then prompts for each name component separately, presenting the parsed input as defaults. It then prompts for the default identifiers for the NEW PERSON file (#200) entry in the following order:
1. INITIAL (#1)
1. SSN (#9)
1. SEX (#4)
If the user of this function has the XUSPF200 security key, entry of the SSN is not required. The default identifiers can be locally modified by modifying the NEW PERSON IDENTIFIERS field in the KERNEL SYSTEM PARAMETERS file (#8989.3).
To prompt for additional fields during this call, you pass a DR string containing the fields for which you wish to prompt as a parameter to this function. If the person adding the entry enters a caret (“^”) to exit out before filling in all the identifiers and requested fields, the entry is removed from the NEW PERSON file (#200), and -1 is returned.
Format:	$$ADD^XUSERNEW([dr_string][,keys])
Input Parameters:	dr_string:	(optional) Additional fields to ask when adding the new user, in the format for a DR string as used in a standard DIC call.
[image: Note]	REF: For information about DIC, see the VA FileMan documentation.
	keys:	(optional) A comma-delimited string of keys to assign to the newly created user.
Output:	returns:	Returns a value similar in format to the value of “Y” returned from a standard DIC call:
-1—User neither existed nor could be added.
N^S—User already exists in the file; N is the internal number of the entry in the file, and S is the value of the .01 field for that entry.
N^S^1—N and S are defined as above, and the 1 indicates the user has just been added to the file.
[image: Note]	REF: For information about DIC, see the VA FileMan documentation.

[bookmark: _Toc458599270]Examples
Example 1
To add a new user, asking default fields for new entry:
[bookmark: _Toc200270032][bookmark: _Toc458599937]Figure 98: $$ADD^XUSERNEW API—Example of adding a new user
>S X=$$ADD^XUSERNEW

Enter NEW PERSON’s name (Family,Given Middle Suffix): XUUSER,TWO E
 Are you adding ‘XUUSER,TWO E’ as a new NEW PERSON (the 1602ND)? No// Y <Enter> (Yes)
Checking SOUNDEX for matches.
No matches found.
Name components.
FAMILY (LAST) NAME: XUUSER// <Enter>
GIVEN (FIRST) NAME: TWO// <Enter>
MIDDLE NAME: E// <Enter>
SUFFIX: <Enter>
Now for the Identifiers.
INITIAL: TEX
SSN: 000222222
SEX: M <Enter> MALE
>W X
1000118^XUUSER,TWO E^1
>

Example 2
To add a new user, specifying a key to add:
>S X=$$ADD^XUSERNEW(“”,“PROVIDER”)

Example 3
To add a new user, specifying additional fields to ask, plus two keys to add:
>S X=$$ADD^XUSERNEW(“5;13;53”,“PSMGR,PSNARC”)

[bookmark: _Toc458599271]$$CHECKAV^XUSRB(): Check Access/Verify Codes
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	2882
Description:	This extrinsic function checks an Access/Verify code pair (delimited by a semi-colon) and returns whether or not it is a valid pair.
Format:	$$CHECKAV^XUSRB(access_verify)
Input Parameters:	access_verify:	(required) This is a string containing the Access and Verify code pair delimited by a semi-colon (i.e., Access code;Verify code).
Output:	returns:	Returns:
Internal Entry Number (IEN)—Codes are OK.
Zero (0)—Codes are not OK.

[bookmark: _Toc458599272]Example
>S X=$CHECKAV^XUSRB(<string>)

String = Access code;Verify code
[bookmark: _Toc458599273]CVC^XUSRB: VistALink—Change User’s Verify Code
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	4054
Description:	This API changes a VistALink user’s Verify code.
Format:	CVC^XUSRB
Input Parameters:	none.
Output Variables:	DUZ:	If DUZ is defined, you can consider the “change verify code” operation to have been successful.

[bookmark: _Toc458599274]$$INHIBIT^XUSRB: Check if Logons Inhibited
Reference Type:	Supported
Category:	Signon/Security
ICR #:	3277
Description:	This extrinsic function checks if logons have been inhibited.
Format:	$$INHIBIT^XUSRB
Input Parameters:	none.
Output:	none.

[bookmark: _Toc458599275]INTRO^XUSRB: VistALink—Get Introductory Text
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	4054
Description:	This API retrieves the introductory text from M to display in VistALink.
Format:	INTRO^XUSRB
Input Parameters:	none.
Output:	returns:	Returns each line in the introductory text as a value stored at the first subscript level node of the pass-by-reference first parameter to the method call. For example:
RETURN(0)=line 1 RETURN(1)=line 2 etc.

[bookmark: _Toc458599276]LOGOUT^XUSRB: VistALink—Log Out User from M
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	4054
Description:	This API logs out a VistALink user from M.
Format:	LOGOUT^XUSRB
Input Parameters:	none.
Output:	none.

[bookmark: _Ref59497925][bookmark: _Toc458599277]SETUP^XUSR B(): VistALink—Set Up User’s Partition in M
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	4054
Description:	This API sets up a VistALink user’s partition in M prior to signon.
Format:	SETUP^XUSRB(ret)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	ret:	(required) Name of the subscripted return array. In every API that is used as an RPC, the first parameter is the return array.
Input Variables:	XWBTIP:	(required) The Internet Protocol (IP) address of the client workstation.
	XWBCLMAN:	(optional) The client workstation name.
	XWBVER:	(optional) This is the version of the RPC Broker software on the client workstation.
Output:	ret():	Returns a subscripted output array:
RET(0)—Server option name
RET(1)—Volume
RET(2)—UCI
RET(3)—Device
RET(4)—# Attempts
RET(5)—Skip signon-screen
RET(6)—Domain name

[bookmark: _Toc458599278]VALIDAV^XUSRB(): VistALink—Validate User Credentials
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	4054
Description:	This API validates a VistALink user’s credentials for signon to M.
Format:	VALIDAV^XUSRB(credential)
Input Parameters:	credential:	(required) A credential (typically the encoded “Access code;Verify code” string) to use to attempt a signon for the current user.
Output:	returns:	Returns:
;Return R(0)=DUZ, R(1)=(0=OK, 1,2...=Can’t sign on for some reason)
 ; R(2)=verify needs changing, R(3)=Message, R(4)=0, R(5)=msg cnt, R(5+n)
 ; R(R(5)+6)=# div user must select from, R(R(5)+6+n)=div

[bookmark: _Toc458599279]$$DECRYP^XUSRB1(): Decrypt String
Reference Type:	Supported
Category:	Signon/Security
ICR #:	2241
Description:	This extrinsic function decrypts a string that was encrypted on a Client system. This function decrypts a string that has been encrypted using the Encrypt Delphi function supplied by the RPC Broker, returning the decrypted string.
Format:	$$DECRYP^XUSRB1(encrypted_string)
Input Parameters:	encrypted_string:	(required) Encrypted string to be decrypted.
Output:	returns:	Returns the decrypted string.

[bookmark: _Toc458599280]$$ENCRYP^XUSRB1(): Encrypt String
Reference Type:	Supported
Category:	Signon/Security
ICR #:	2240
Description:	This extrinsic function encrypts a string before transport to a Client system, where it is decrypted. This function performs encryption on the input string, returning the encrypted string.
Format:	$$ENCRYP^XUSRB1(string)
Input Parameters:	string:	(required) The input string to be encrypted.
Output:	returns:	Returns the encrypted string.

[bookmark: _Toc458599281]$$HANDLE^XUSRB4(): Return Unique Session ID String
Reference Type:	Supported
Category:	Signon/Security
ICR #:	4770
Description:	This extrinsic function returns a unique Caché cluster string for a VistA system for use by HealtheVet Desktop applications. This API was made available with Kernel patch XU*8.0*395.
Format:	$$HANDLE^XUSRB4(“namespace”[,timetolive])
Input Parameters:	“namespace”:	(required) This input parameter should start with the VistA software namespace. In addition, users can add any additional application/software identifiers.
	timetolive:	(optional) This input parameter indicates the number of days that this handle is available for use. Possible values range from 1 to 7. The default is 1. The ^XTMP global requires that the zero node hold the save through date. This value is cleaned up via the XQ82 routine (i.e., Clean old Job Nodes in XUTL option [XQ XUTL $J NODES]).
Output:	returns:	Returns the unique Vista system Caché cluster string. The value generated includes the data entered in the namespace input parameter and $J and $H. If this value is already defined, a new value is generated.

[bookmark: _Toc458599282]Example
In this example, we are creating a unique session ID for the RPC Broker namespace (i.e., “XWB”):
>S HDL=$$HANDLE^XUSRB4(“XWB-CCOW”)

>W HDL
XWB-CCOW928-57785_0

When checking the ^XTMP temporary global you would see:
^XTMP(“XWB-CCOW928-57785_0”,0) = 3050805^3050804

[bookmark: _Toc458599283]^XUVERIFY: Verify Access and Verify Codes
Reference Type:	Supported
Category:	Signon/Security
ICR #:	10051
Description:	This API validates Access and Verify codes. You can use it anytime within an application program to verify that the person using the system is the same person who signed onto the system.
Format:	^XUVERIFY
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	%:	(required) If % equals:
A—Check the Access code.
V—C heck the Verify code.
AV—Check both the Access and Verify code.
	%DUZ:	(required) The user’s number (DUZ value).
Output Variables:	%:	Returns the following values:
2—Failure (the incorrect code was entered).
1—Success (the correct code was entered).
0—A question mark was entered.
-1—A caret (“^”) was entered.

[bookmark: _Toc458599284]$$CHECKAV^XUVERIFY(): Check Access/Verify Codes
Reference Type:	Supported
Category:	Signon/Security
ICR #:	10051
Description:	This extrinsic function checks an Access/Verify code pair entered by the user (delimited by a semi-colon) and returns whether or not it is a valid pair.
Format:	$$CHECKAV^XUVERIFY(access_verify)
Input Parameters:	access_verify:	(required) This is a string containing the Access and Verify code pair delimited by a semi-colon (i.e., Access code;Verify code).
Output:	returns:	Returns:
Internal Entry Number (IEN)—Codes are OK.
Zero (0)—Codes are not OK.

[bookmark: _Toc458599285]Example
>S X=$CHECKAV^XUVERIFY(<Access and Verify code string>)

String = Access code;Verify code
[bookmark: _Ref238980068][bookmark: _Toc458599286]WITNESS^XUVERIFY(): Return IEN of Users with A/V Codes & Security Keys
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	1513
Description:	This API returns the IEN of a user if he/she has an Access code, Verify code, and security keys.
Format:	WITNESS^XUVERIFY(prefix,keys)
Input Parameters:	prefix:	String to put before the Access/Verify code prompt.
	keys:	String of security keys the user must have.
Output:	returns:	Returns:
IEN (successful)—The user has an Access code, Verify code, and security keys.
0 (failure)—The user does not have an Access code, Verify code, and security keys.

[bookmark: _Toc458599287]Example
>S Y=$$WITNESS^XUVERIFY(“Cosign”,“XUMGR”) W !,Y

Cosign ACCESS CODE: ********
Cosign VERIFY CODE: ********
2

[bookmark: _Ref59497099][bookmark: _Toc458599288]GETPEER^%ZOSV: VistALink—Get IP Address for Current Session
Reference Type:	Controlled Subscription
Category:	Signon/Security
ICR #:	4056
Description:	This API retrieves an IP address value for the current session, which is required as input (i.e., XWBTIP input variable) for the SETUP^XUSRB(): VistALink—Set Up User’s Partition in M API. The VistALink security module calls this API.
Format:	GETPEER^%ZOSV
Input Parameters:	none.
Output:	returns:	Returns the Internet Protocol (IP) address of the current connected session to M.

Signon/Security: Developer Tools

[bookmark: _Ref303843035][bookmark: _Toc458599289]Spooling: Developer Tools
[bookmark: _Toc458599290]Overview
In order for an application to spool reports, the application must call the Device Handler to open the spool device. If the application fails to close the device, the spool document is not accessible. The application should close the spool device by using D ^%ZISC. Furthermore, queuing to the spooler requires that the application invoke ^%ZTLOAD with the proper variables defined.
The ZTIO input variable can be set to identify how the device should be opened. If incorrectly set up, the queued task could fail to send results to the spooler. If you have any doubt about how to set ZTIO, you should leave it undefined. ^%ZTLOAD can define ZTIO with the appropriate variables from symbols left in the current partition following the last call to the Device Handler.
[image: Note]	NOTE: The following code samples are not complete. They do not contain code to issue form feeds between pages of output.

REF: For the details of issuing form feeds, see the “Form Feeds” section in the “Special Device Issues” section.
[bookmark: _Toc200270033][bookmark: _Toc458599938]Figure 99: Spooling—Sending output to the spooler (and pre-defining ZTIO)
SAMPLE ;SAMPLE ROUTINE
 ;
 S %ZIS=“QM” D ^%ZIS G EXIT:POP
 I $D(IO(“Q”)) D D ^%ZTLOAD D HOME^%ZIS K IO(“Q”) Q
 .S ZTRTN=“DQ^SAMPLE”,ZTDESC=“Sample Test routine”
 .S ZTIO=ION_”;”_IOST
 .I $D(IO(“DOC”))#2,IO(“DOC”)]“” S ZTIO=ZTIO_“;”_IO(“DOC”) Q
 .I IOM S ZTIO=ZTIO_“;”_IOM
 .I IOSL S ZTIO=ZTIO_“;”_IOSL
DQ U IO W !,“THIS IS YOUR REPORT”
 W !,“LINE 2”
 W !,“LINE 3”
 D ^%ZISC
EXIT S:$D(ZTQUEUED) ZTREQ=“@” K VAR1,VAR2,VAR3 Q

[bookmark: _Toc200270034][bookmark: _Toc458599939]Figure 100: Spooling—Allowing output to go the spooler (without pre-defining ZTIO)
SAMPLE ;SAMPLE ROUTINE
 ;
 S %ZIS=“QM” D ^%ZIS G EXIT:POP
 I $D(IO(“Q”)) D Q
 .S ZTRTN=“DQ^SAMPLE”,ZTDESC=“Sample Test routine”
 .D ^%ZTLOAD D HOME^%ZIS K IO(“Q”) Q
DQ U IO W !,“THIS IS YOUR REPORT”
 W !,“LINE 2”
 W !,“LINE 3”
 D ^%ZISC
EXIT S:$D(ZTQUEUED) ZTREQ=“@” K VAR1,VAR2,VAR3 Q

[bookmark: _Toc458599291]
Application Programming Interface (API)
Several APIs are available for developers to work with spooling. These APIs are described below.
[bookmark: _Toc458599292]DSD^ZISPL: Delete Spool Data File Entry
Reference Type:	Controlled Subscription
Category:	Spooling
ICR #:	1092
Description:	This API deletes SPOOL DATA file (#3.519) entry following transfer of data, to minimize consumption of data.
Format:	DSD^ZISPL
Input Parameters:	none.
Output:	none.

[bookmark: _Toc458599293]DSDOC^ZISPL: Delete Spool Document File Entry
Reference Type:	Controlled Subscription
Category:	Spooling
ICR #:	1092
Description:	This API deletes the SPOOL DOCUMENT file (#3.51) entry following transfer of data, to minimize consumption of disk space.
Format:	DSDOC^ZISPL
Input Parameters:	none.
Output:	none.

Spooling: Developer Tools

[bookmark: _Ref20100825][bookmark: _Ref20101928][bookmark: _Ref20116317][bookmark: _Toc458599294]TaskMan: Developer Tools
[bookmark: _Toc458599295]Overview
The TaskMan API consists of several callable entry points and an extrinsic variable. Use of these calls makes the creation, scheduling, and monitoring of background processing from within applications straightforward.
Developers must avoid directly setting information into TaskMan’s globals to queue tasks. In fact, the SAC specifies that TaskMan’s calls be used. The structure of the globals is not static; there is no commitment to support their current structure in the future.
[image: Note]	REF: For more information on why and when to use TaskMan to perform queuing, see the “TaskMan System Management: Overview” section in the Kernel Systems Management Guide.
[bookmark: _Toc458599296]How to Write Code to Queue Tasks
Writing code to queue a task is not difficult; however, the coding must be done carefully and systematically. If you think of it in two parts, it is easier to write. These two parts are the queuer and the task:
Queuer—Some code must invoke ^%ZTLOAD to create and schedule the task. This code is the queuer. The most complex part of a queuer is determining which variables must be passed on to the task.

In one type of queuer, the program application makes its own calls to ^%ZTLOAD to queue tasks. In the other common type of queuer, scheduled options, an option is scheduled to run as a task through the OPTION SCHEDULING file (#19.2); TaskMan itself takes care of the queuing.
Task—Some code must perform the actual work in the background. Sometimes the task shares code with an equivalent foreground activity. However, remember that a queued task runs under special conditions that must be considered. For example, no interactive dialogue with the user is possible.
Usually, both pieces of code should be planned together since they interact heavily.
[bookmark: _Toc458599297]Queuers
As mentioned above, there are two common types of queuers:
Application code that itself acts as the queuer by calling ^%ZTLOAD.
Options that are scheduled (in which case, TaskMan itself acts as the queuer).
Calling ^%ZTLOAD to Create Tasks
One common way to create tasks is to call TaskMan’s main API, ^%ZTLOAD. You can use ^%ZTLOAD interactively, or non-interactively.
[image: Note]	REF: For more information on queuing tasks with ^%ZTLOAD, see the “^%ZTLOAD: Queue a Task” section.
[bookmark: _Toc458599298]Calling EN^XUTMDEVQ to Create Tasks
The EN^XUTMDEVQ API encapsulates the logic to handle both direct printing and queuing in a single call.
[bookmark: _Toc458599299]Creating Tasks Using Scheduled Options
You can also create options that you ask the sites to schedule on a regular basis. In this case, TaskMan itself (rather than application code) acts as the queuer. Site managers use TaskMan to queue options and can schedule these options to run again and again on some specified schedule.
You should be careful because this creates a great possibility for confusion. Obviously, some options cannot be scheduled, in the same way that some routines cannot be queued. When you create options that should be scheduled, you should:
Indicate whether an option can be scheduled through TaskMan and, if so, the recommended frequency of scheduling. Do this using the DESCRIPTION field of the option.
Indicate the format of data to pass to the scheduled option via the TASK PARAMETERS field, if the option uses such data. Do this using the DESCRIPTION field of the option.
Set the SCHEDULING RECOMMENDED field of the option to YES. This makes the option show up in a Kernel report that lists all options on the system that should be scheduled.
Consider using a name for the option that reflects the fact that it is intended to be run only by TaskMan, if you create such an option.
Give the option a parent (i.e., attach it to a menu). This prevents the option from being deleted by Kernel’s Delete Unreferenced Options (XQ UNREF’D OPTIONS) purge option. If the option cannot be used interactively, make sure that it is not attached to a menu that is part of a user’s menu tree. Instead, attach it to a menu that is not on any user’s menu tree. An example is Kernel’s ZTMQUEUABLE OPTIONS. It is not in any user menu tree. If you do not want to create your own menu to be a parent of queueable options, you are allowed to attach your option to Kernel’s ZTMQUEUABLE OPTIONS option and export ZTMQUEUABLE OPTIONS through KIDS’ USE AS LINK FOR MENU ITEMS action.
When you create options that queue tasks but that cannot be scheduled themselves, you should be especially clear in documenting this so that site managers does not try to schedule them.
Queued options differ from other tasks in only a few ways:
They may have an entry and exit action and may set XQUIT in the entry action to avoid running.
They can run on a scheduling cycle as defined by the system manager.
They are designed explicitly for the system manager to use, since the option used to schedule options is available only to system managers.
They can be better documented than normal tasks because the OPTION file (#19) entry provides a place for a permanent description of the task’s purpose and behavior (the DESCRIPTION field).
If the option is scheduled regularly, data can be passed to your task from the OPTION SCHEDULING file’s (#19.2) TASK PARAMETERS field; the data is made available to the task at run time in the ZTQPARAM variable. The variable is only defined if an entry is made in the TASK PARAMETERS field when the task is scheduled. The format that is expected of information entered in the TASK PARAMETERS field should be described in the option’s DESCRIPTION field.
You should describe scheduling recommendations and the format, if any, for the TASK PARAMETERS field (as well as in the option’s DESCRIPTION field) in your software application installation guide for all the queueable options, since options are usually set on their schedules shortly after installation.
[bookmark: _Toc458599300]Tasks
This section describes information about Tasks. It applies whether the queuer that queued the task was a call to ^%ZTLOAD, or TaskMan itself was running the task because it was scheduled in the OPTION SCHEDULING file (#19.2).
When you write a task, you create an API that TaskMan can call to perform the work. The submanager calls the API you specify to run the task. The submanager does more than pass your task a few parameters, however; it creates an entire specialized environment for the task, according to your specifications. Then the submanager calls your API, at which point your task begins running. When your task quits, control passes back to the submanager.
The interface between tasks and submanagers determines the special problems you must solve and the features you have available to do so. This interface consists of two parts:
The environment and tools that the submanagers guarantee to the tasks.
The responsibilities of the tasks themselves.
[bookmark: _Toc458599301]Key Variables and Environment When Task is Running
All VistA processes run in a guaranteed environment, with standard variables and devices available to the software. The guaranteed environment for tasks differs from that of foreground processes in some ways, however. This reflects the differences between the foreground and background, and the special services provided by TaskMan. The submanagers guarantee tasks the following variables and other features:
DT: While this usually designates the date when a user signs on, here it contains the date when the task first began running (in FileMan format, of course).
DUZ(: The entire DUZ array (except DUZ(“NEWCODE”)), as defined at the time of your call to the Program Interface, is always passed to your task. If DUZ was not properly set up at that time, then it is set to 0. If DUZ(0) was not properly set up, then the submanager attempts to look it up using your DUZ variable; if the lookup fails, it sets DUZ(0)=“”. The submanager does the same thing with DUZ(2).
IO*: All of the IO variables describing the output device that you receive are passed to you. If you request no output device, then IO, IO(0), and ZTIO all equal “”.
ZTDESC: This contains the free-text description of your task that you passed to the Program Interface.
ZTDTH: This contains the date and time (in $HOROLOG format) that you wanted your task to begin running. Because delays from a number of sources can make your task begin late, this variable may be useful.
ZTIO: This contains your original output device specifications.
ZTQUEUED: This variable is always defined when your task begins, and is only defined for background tasks. Many queued routines can run either in the foreground or in the background. The only reliable way to determine which situation is currently the case is using the M code:
>IF $D(ZTQUEUED)
ZTRTN: This variable is the API that TaskMan will DO to start the task.
ZTSK: Every task is passed its internal number so that it can make use of the Program Interface.
Destination: Using ZTUCI, ZTIO, and ZTCPU, you can request a specific UCI on a specific volume set and CPU node where your task should run. The location you request is where the submanager calls your API. Remember that the SAC does not protect the TaskMan namespaced input variables to your task (e.g., ZTIO, ZTSK, etc.), however. The submanagers guarantee their values to the tasks, but once you begin running, their values may change. For example, the utilities you call may alter these variables, or your own code may. If your task needs to know these values throughout its execution, you should load them into your own namespaced variables, which you can then protect.
Device: If you request an IO device for your task then, when the task starts, the device is open. The submanager even issues the USE command for you and after your task completes, it properly closes the device for you. If you leave it open when you are finished with it, the submanager is able to recycle the device more efficiently for use with other tasks.
Error Trap: The submanager always sets an Error Trap before calling your task. This way, if your task errors out, the submanager can record that fact in the system error log, in TaskMan’s error log, and in the entry for your task in the TASKS file (#14.4).
Priority: Your task begins running with the priority specified if you request one.
Saved Variables: The submanager passes any variables that the queuer saved using ZTSAVE. These act as input variables.
Tools: The task can rely upon the following tools to assist it in meeting its responsibilities (as described below):
$$S^%ZTLOAD
ZTSTOP
ZTQUEUED
ZTREQ
KILL^%ZTLOAD
^%ZTLOAD
Device Handler
Resource devices
SYNC FLAGs
[bookmark: _Toc458599302]Checking for Stop Requests
You should write tasks in such a way that your tasks honor stop requests. Since Kernel 7.0, users have been able to call the TaskMan User option to stop tasks that they started. A task should periodically check whether it has been asked to stop and should gracefully shut down when asked. This involves four steps:
1. To check for a stop request, the task can execute the following code:
>IF $$S^%ZTLOAD
If this evaluates to TRUE, the user has asked the task to stop. This check should occur periodically throughout the task; not so often as to increase significantly the task’s CPU usage, but often enough that the response time satisfies the users. For example, a report printout might check once per page, while a massive data compilation might check once every hundred or even thousand records. Very short tasks can choose not to check at all.
1. The task may need to perform some internal flagging or cleanup. Stop requests from a user rarely come at ideal moments in the overall algorithm of the task, and the task may need to perform some work to prepare to quit.
1. The task needs to notify the submanager that it responded to the user’s request to stop, so that the submanager can notify the user. The task should use the following code to do so:
>SET ZTSTOP=1
The ZTSTOP flag is processed by the submanager when the task quits. Do not KILL this variable if you wish to pass it back to the submanager.
1. The task should then quit. Depending on how deeply within loops these stop request checks are made, it may take some processing to work out of all loops and quit on short notice. The code may need to be adjusted to allow for this kind of exit.
In the end, checking for stop requests benefits not only the developer, by satisfying your users, but also the users themselves by making them feel more in control, and the system managers by freeing them up from stopping tasks for users.
[bookmark: _Toc458599303]Purging the Task Record
 According to the SAC, tasks have a responsibility to remove their own records from the TASKS file (#14.4) when they complete. This serves two purposes. First, it helps keep the TASKS file small, which makes TaskMan more efficient. Second, because any tasks that cause errors never reaches the final commands to delete the task’s record, such tasks remain in the TASKS file after they complete. This greatly assists system management staff in identifying and troubleshooting problem tasks.
You have two methods to delete TASKS file (#14.4) entries:
ZTREQ output variable
KILL^%ZTLOAD API
The recommended method, simpler than the other, is to use the ZTREQ output variable to instruct the submanager to delete your task’s record after it finishes running. Do this with the following line of M code:
>S ZTREQ=“@”
Because the submanager does not get this variable back until after your task quits, you can set ZTREQ anywhere within the task and still ensure your task does not delete its record if it errors out.
[image: Note]	NOTE: If you KILL off the variable before the task quits, the submanager does not delete your task.
The other method is to call KILL^%ZTLOAD to delete the task’s record. This solution has two disadvantages. First, the ZTSK input variable to KILL^%ZTLOAD needs to equal the task number of the task to delete, which may not be the case if the task has called other utilities. The task can solve this problem by saving off ZTSK at the beginning and restoring it prior to calling KILL^%ZTLOAD. Second, you must place the call at the end of the task, just prior to quitting, ensuring the record remains if the task encounters an error. This causes problems for tasks that lack a single exit point, but you can solve this by writing a new API for the task that does the main body of the task, performs the deletion, and then quits.
[bookmark: _Toc458599304]Checking For Background Execution: ZTQUEUED
When you share code for both foreground and background processing, you often need the code to behave differently under the two situations. The only reliable way to test whether the code is running in the background is to check if the ZTQUEUED variable is defined. It is only defined if the current running job is a task. You can check for its existence, and therefore, whether the code is truly running in the background, with the following M statement:
>IF $D(ZTQUEUED)
[bookmark: _Toc458599305]Post-Execution Commands: ZTREQ
Tasks can make the submanager execute a certain limited set of commands after the tasks complete. Use the ZTREQ output variable to describe these post-execution commands.
The use of ZTREQ to delete a task’s record has already been discussed above. ZTREQ can also be used to edit and/or reschedule the task.
To reschedule the task to run again immediately:
>S ZTREQ=“”
To requeue a modified version of your task:
Use ZTREQ to specify how to modify the existing task to run again. By optionally setting any of the various ^-pieces of ZTREQ, you can modify that aspect of how the rescheduled task runs. The purpose and format of each ^-piece roughly corresponds to the input variables of REQ^%ZTLOAD listed below:
[bookmark: _Toc200270035][bookmark: _Toc458600026]Table 31: TaskMan—ZTREQ piece and equivalent REQ^ZTLOAD variable
	[bookmark: COL001_TBL025]ZTREQ Piece
	Equivalent REQ^%ZTLOAD Variable

	1
	ZTDTH

	2
	ZTIO

	3
	ZTDESC

	4^5
	ZTRTN

All of these ^-pieces in ZTREQ are optional; only set the pieces that affect parameters you want to change. However, that in the case of leaving piece 2 NULL, the task uses the same device that your task initially requested, which is not necessarily the device that it actually got. To reschedule the task to run on the device your task currently has, you must build up the ZTIO value using your IO variables.
To edit the task without actually rescheduling it:
Set ^-piece 1 to “@”, and set the other pieces to the values you want. This is equivalent to setting ZTDTH=“@”, as described in the REQ^%ZTLOAD: Requeue a Task API. Remember, however, to include at least one caret (“^”) in ZTREQ to do this, since if ZTREQ=“@” the task is deleted.
Remember that ZTREQ is not an input parameter that you pass to the submanager; it is an output parameter from your task. The submanager does its best to honor your request, but if the request is impossible, then there is no way for you to find out. For example, if you specify that the submanager should requeue your task, then it attempts to do so; if it finds that your task has been deleted, there is no way for the submanager to let you know. When the submanager cannot honor your request, it ignores it.
[bookmark: _Toc458599306]Calling ^%ZTLOAD within a Task
Tasks can use all of the standard TaskMan API calls. There is no reason a task should not itself call the TaskMan API to do requeuing, deletion, or any of the other standard calls. The only way such calls are special is that they have many of the variables they need to pass already defined for them by the submanager.
You should be careful to avoid interference from these pre-defined variables; sometimes the submanager passes you the value you need for the API call, but sometimes you need a different one. For example, from within a task that has an IO device, to call ^%ZTLOAD to queue a task without an IO device, you should set ZTIO (to “”), because the input variable passed in by the submanager may still be defined. With a little care, these kinds of problems can easily be anticipated and prevented.
[bookmark: _Toc458599307]Calling the Device Handler (^%ZIS) within a Task
The main Device Handler API (^%ZIS) by itself is not designed to open more than one I/O device beyond the already-open home device. Within a task, you are free to open one additional device (beyond the home device) using ^%ZIS. If you need to open more than one device concurrently within a task, however, you should use Kernel’s multiple device APIs (OPEN^%ZISUTL, USE^%ZISUTL, and CLOSE^%ZISUTL).
[bookmark: _Ref233608657][bookmark: _Toc458599308]Long Running Tasks—Writing Two-step Tasks
A situation you should always consider is how to deal with jobs that take a long time to gather data and then print a report of that data. If you write this as a single job that both gathers and prints data, any requested IO device that is eventually used to print that data sits idle for a long period of time. Thus, the IO device is unused and unavailable to any other tasks during that entire period of time it takes to gather the data for your report.
If you write the task to start without a device, and to call the ^%ZIS: Standard Device Call API to open the device when the report is ready, two different problems occur:
1. First, if the device is heavily used by tasks, then this task may never get a chance to open the device; TaskMan keeps it busy with other tasks.
1. Second, if the task does manage somehow to grab the device away from TaskMan, it interferes with the fair distribution of resources, potentially running ahead of other tasks that have been waiting longer.
One way around this problem is to queue the task to a spool device. Spool devices are always available, which solves the problem of tying up a device. However, some system managers discourage use of spoolers, because of the possibility for disk crashes resulting from users who send excessively large reports to the spooler.
Therefore, the best solution to this problem involves splitting the job into two separate tasks:
1. Gather—The first task runs without a device, gathers and generates the report data in the ^XTMP global, and schedules the second task (Print).
1. Print—The second task runs with the IO device and prints the report data generated by the first task (Gather).
In order to perform these two separate but associated tasks, Kernel provides the following APIs:
$$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call—This API creates the Gather and the Print tasks. The gather task is scheduled to run, while the print task is not scheduled.
$$REQQ^XUTMDEVQ(): Schedule Second Part of a Task—At the end of the Gather task, it invokes the $$REQQ^XUTMDEVQ API to schedule the Print task.
[bookmark: _Ref233608294][bookmark: _Toc458599309]Long Running Tasks—Using ^%ZIS
As an alternative to splitting the job into two separate tasks an interactive call can be made to ^%ZIS to allow the user to select the output device without opening it. The gather data portion of the job can then proceed without tying up the output device. When the job is ready to print it can open the output device using the variables that were saved when the ^%ZIS device selection call was made.
To allow for selection of the output device without actually opening it make sure the ^%ZIS input variable %ZIS contains “N”.
Some of the variables returned by the device selection call to ^%ZIS need to be saved for use when the device open call is made. These include:
IO
IO(“DOC”),
IOM
ION
IOSL
If IO(“Q”) is 1 queuing has been selected and your code should handle that and take care of the queuing.
The following code excerpt shows the basic structure for allowing the user to select whether a job is queued or not and the output device to use.
[bookmark: _Toc458599940]Figure 101: TaskMan—Sample code allowing users to select whether a job is queued or not and the output device to use
 N POP,%ZIS
 S %ZIS=“NQ”
 W !
 D ^%ZIS
 I POP G EXIT
 I ION=(“HOST FILE SERVER”)!(ION=“P-MESSAGE-HFS”) S SAVEHFIO=IO
 S SAVEIOP=ION_”;”_$G(IOST)_”;”_$G(IO(“DOC”))_”;”_$G(IOM)_”;”_$G(IOSL)
 ;
 I IO(“Q”) D Q
 .;Queue the report.
 .;If ZTIO is not explicitly set to null then %ZTLOAD will open
 .;the device.
 . S ZTIO=“”
 .
 .
 .
 . D ^%ZTLOAD
 .
 .
 .
 I ‘IO(“Q”) D Q
 .;Run the report.
 .
 .
 .

When it is time to print, the output device can be opened using the variables that were saved.
[bookmark: _Toc458599941]Figure 102: TaskMan—Sample code printing to a device using saved variables
 N IOP,POP,VDUZ,XMDUZ,XMQUIET,XMSUB,XMY,%ZIS
 ;Check for output to p-message. TaskMan will automatically copy
 ;^TMP(“XM-MESS”,$J) to the tasked job.
 I $D(^TMP(“XM-MESS”,$J)) D
 . S XMQUIET=1
 . S XMDUZ=$G(^TMP(“XM-MESS”,$J,“XMHOST”,“XMINSTR”,“FROM”))
 . I XMDUZ=“” S XMDUZ=^TMP(“XM-MESS”,$J,“XMHOST”,“XMDUZ”)
 . S XMSUB=^TMP(“XM-MESS”,$J,“XMHOST”,“XMSUB”)
 . S VDUZ=“”
 . F S VDUZ=$O(^TMP(“XM-MESS”,$J,“XMY”,VDUZ)) Q:VDUZ=“” S XMY(VDUZ)=“”
 . I $D(XMY(DUZ)),$D(^TMP(“XM-MESS”,$J,“XMHOST”,“XMINSTR”,“SELF BSKT”)
) S XMY(DUZ,0)=^TMP(“XM-MESS”,$J,“XMHOST”,“XMINSTR”,“SELF BSKT”)
 S IOP=SAVEIOP
 I $D(SAVEHFIO) S %ZIS(“HFSNAME”)=SAVEHFIO
 D ^%ZIS
 I POP G EXIT
 U IO

If p-message was selected then ^TMP(“XM-MESS”,$J) is defined and contains all the information required to deliver the message. Setting XMQUIET=1 stops interactive processing by MailMan. XMDUZ is the sender and XMSUB is the subject. The VDUZ loop is the list of people to which the user has chosen to send the message. Finally, the check for “SELF BSKT” is to determine if the user has selected a particular basket to which the message is to be delivered.
[bookmark: _Toc458599310]Using SYNC FLAGs to Control Sequences of Tasks
You can use SYNC FLAGs together with resource type devices when queuing through ^%ZTLOAD, as a mechanism to ensure sequential processing of a series of tasks. The mechanism also ensures that subsequent tasks in the series do not run if a previous task errors out or completes unsuccessfully.
A SYNC FLAG is a unique, arbitrary FREE TEXT name you use as an identifying flag. You use SYNC FLAGs in conjunction with resource devices; when paired with a particular resource device, the pairing is called a SYNC FLAG pair.
The SYNC FLAG pair ties all tasks that have requested the same SYNC FLAG and the same resource together. If a task in a group of tasks is running, all other tasks queued with the same SYNC FLAG pair have to wait until the running task has completed. If one task in the series does not finish successfully, then all other tasks using the same SYNC FLAG pair waits.
To build a series of tasks, you need to choose a resource device and queue the entire series of tasks in the same order that they should run, through ^%ZTLOAD. Use the ZTIO variable to queue all tasks in the series to the same resource device. Use the ZTSYNC parameter to use the same SYNC FLAG for each task in the series. TaskMan then runs the series of tasks in the same order that they were queued.
The SYNC FLAG pair uniquely identifies one group of tasks using one resource device. TaskMan builds a SYNC FLAG pair by concatenating the requested resource (from the ^%ZTLOAD ZTIO input variable) with the name of the SYNC FLAG (from the ^%ZTLOAD ZTSYNC input variable).
In any given task in the series of tasks, you indicate that the task completed successfully by KILLing the ZTSTAT variable or setting it to 0. Otherwise, no subsequent tasks is able to run.
The following describes how using SYNC FLAG pairs ensures sequential processing of a series of tasks:
1. When a task is queued through ^%ZTLOAD, if the ZTSYNC is defined, then the SYNC FLAG defined by ZTSYNC is saved with that task.
1. When TaskMan is ready to start the task, after it is able to allocate the resource device to which it was queued, it checks whether the SYNC FLAG pair (Resource_SYNC FLAG) exists in the TASK SYNC FLAG file (#14.8).
1. If the SYNC FLAG pair does not exist in the TASK SYNC FLAG file (#14.8), TaskMan creates an entry for the SYNC FLAG pair in the TASK SYNC FLAG file (#14.8) and starts the task.
If, on the other hand, the SYNC FLAG pair already exists in the TASK SYNC FLAG file (#14.8), then any task requiring the same SYNC FLAG has to wait until the corresponding entry in the TASK SYNC FLAG file (#14.8) is deleted.
1. If the task was able to start, the variable ZTSTAT is set to “1” in the running task.
To indicate success (e.g., that the series of tasks should continue), you must KILL ZTSTAT or set it to zero. In this case, when your task completes, the SYNC FLAG pair for that task is cleared.
To indicate failure (e.g., that the series of tasks should not continue) leave ZTSTAT set to 1.
1. When the task completes, TaskMan checks to see the value of ZTSTAT. If ZTSTAT is set to zero (0) or not defined, TaskMan deletes the SYNC FLAG pair entry in the TASK SYNC FLAG file (#14.8). This allows any future tasks in the series to run.
If, on the other hand, ZTSTAT is left with a positive value, the task is assumed to have had some kind of error. In this case, the value of ZTSTAT is saved in the STATUS field of the SYNC FLAG pair entry, and the entry in the TASK SYNC FLAG file (#14.8) is not deleted. Subsequent jobs in the series are prevented from running.
If the task errors out, the SYNC FLAG pair entry is also left in the TASK SYNC FLAG file (#14.8), preventing subsequent jobs in the series from running. TaskMan puts a message in the STATUS field, saying that the task stopped due to an error.
[bookmark: _Toc152468262][bookmark: _Toc458599311]Direct Mode Utilities
You can use TaskMan’s direct mode utilities from both the Manager and Production UCIs. Developers cannot call them from applications, however.
[bookmark: _Toc458599312]>D ^ZTMB: Start TaskMan
This utility can be used to start TaskMan for the first time since system startup. As part of this startup, any tasks scheduled to begin at system startup are fired off.
[bookmark: _Toc458599313]>D RESTART^ZTMB: Restart TaskMan
This utility restarts TaskMan. RESTART^ZTMB, unlike ^ZTMB, does not fire off the startup tasks and should be used whenever the startup tasks have already been initiated. The Restart TaskMan option uses this entry point.
[bookmark: _Toc458599314]>D ^ZTMCHK: Check TaskMan’s Environment
This utility provides the same functionality as the Check Taskman’s Environment option but from Programmer mode.
[bookmark: _Toc458599315]>D RUN^ZTMKU: Remove Taskman from WAIT State Option
This utility provides the same functionality as the Remove Taskman from WAIT State option but from Programmer mode.
[bookmark: _Toc458599316]>D STOP^ZTMKU: Stop Task Manager Option
This utility provides the same functionality as the Stop Task Manager option but from Programmer mode.
[bookmark: _Toc458599317]>D WAIT^ZTMKU: Place Taskman in a WAIT State Option
This utility provides the same functionality as the Place Taskman in a WAIT State option, but from Programmer mode.
[bookmark: _Toc458599318]>D ^ZTMON: Monitor TaskMan Option
This utility provides the same functionality as the Monitor Taskman option, but from Programmer mode.
[bookmark: _Toc458599319]Application Programming Interface (API)
Several APIs are available for developers to work with TaskMan. These APIs are described below.
[bookmark: _Ref315160803][bookmark: _Toc458599320]TOUCH^XUSCLEAN: Notify Kernel of Tasks that Run 7 Days or Longer
Reference Type:	Supported
Category:	TaskMan
ICR #:	10052
Description:	This API notifies Kernel of any tasks that run 7 days or longer. If a task appears to have been running longer than 7 days, Kernel assumes that it really is not running anymore and KILLs off its temp global and user stack.
If your task legitimately runs more than 7 days, your task should call the TOUCH^XUSCLEAN API once a day to notify Kernel. This API sets ^XUTL(“XQ”,$J,“KEEPALIVE”)=$H.
If Kernel sees this node, and $H is less than 7 days ago, Kernel leaves your task alone, unless it determines that your task is really dead. If $H is more than 7 days ago, Kernel assumes your task is dead and KILLs the temp global and user stack for that task.
There are no inputs or outputs to this API.
Format:	TOUCH^XUSCLEAN
Input Parameters:	none.
Output:	none.

[bookmark: _Ref115665535][bookmark: _Toc458599321]$$DEV^XUTMDEVQ(): Force Queuing—Ask for Device
Reference Type:	Supported
Category:	TaskMan
ICR #:	1519
Description:	This extrinsic function encapsulates the logic to handle direct (FORCED) queuing in a single call and ask users for a device. This API was added with Kernel patch XU*8.0*275.
Format:	$$DEV^XUTMDEVQ(ztrtn[,ztdesc][,%var][,%voth][,%zis][,iop]
[,%wr])
Input Parameters:	ztrtn:	(required) The API that TaskMan will DO to start the task (job). You can specify it as “LABEL^ROUTINE” or “^ROUTINE” or “ROUTINE”.
	ztdesc:	(optional) Task description, up to 200 characters describing the task, with the software application name at the front. Default to name of [tag]^routine.
	%var:	(optional) ZTSAVE values for the task. Single value or passed by reference, this is used to S ZTSAVE(). It can be a string of variable names separated by “;”. Each ;-piece is used as a subscript in ZTSAVE.
	%voth:	(optional) Passed by reference, %voth(sub)=“” or explicit value sub—this is any other %ZTLOAD variable besides ZTRTN, ZTDESC, ZTIO, ZTSAVE. For example:
%VOTH(“ZTDTH”)=$H
	%zis:	(optional) Default value “MQ”. Passed by reference, standard %zis variable array for calling the Device Handler.
	iop:	(optional) The IOP variable as defined in Kernel’s Device Handler.
	%wr:	(optional) If %WR>0 then write text to the screen as to whether or not the queuing was successful.
Output:	returns:	Returns:
0—If run ztrtn without queuing.
-1—If unsuccessful device call or failed the %ZTLOAD call.

[bookmark: _Toc458599322]Example
This example is a job that consists of gathering information and then printing it. Assume that the gathering takes a few hours. You do not want the device that the user selects to be tied up for that time, so you divide the job into two tasks. The first task gathers the information, and the second task prints it. Use the $$DEV^XUTMDEVQ API to select the device and queue up the print task, and the $$NODEV^XUTMDEVQ(): Force Queuing—No Device Selection API to schedule the gather task. Use the REQ^%ZTLOAD: Requeue a Task API to schedule the print task when the gather task finishes.
[image: Note]	NOTE: You can also use the $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task API to schedule the print task.
[bookmark: _Toc200270036][bookmark: _Toc458599942]Figure 103: $$DEV^XUTMDEVQ API—Example: Sample code
ARHBQQ ;SFVAMC/GB - Demo of ‘gather’ and ‘print’ in 2 tasks ;1/19/06 08:31
 ;;1.1
DEV ;
 N ARH,ARHZTSK,X
 ;The user doesn’t know it, but he’s actually queuing the second task,
 ;the “print” portion of the job. The only question the user will be
 ;asked is to select the device.
 S ARH(“ZTDTH”)=“@” ;Don’t schedule the task to run, we’ll do it later.
 ;In the following, the “Q” sets IOP=Q, which forces queuing.
 S X=$$DEV^XUTMDEVQ(“PRINT^ARHBQQ”,“ARHB Print”,,.ARH,,“Q”,1)
 W !,“X=”,X
 Q:X<1
 N ARH
 ;Now queue the first task, the “gather” portion of the job. The user
 ;won’t be asked any questions.
 S ARHZTSK=X ; Save the ZTSK number of the “print” task.
 S ARH(“ZTDTH”)=$H ; Force the task to start now.
 ;To ask the user the start time, comment out the above line.
 S X=$$NODEV^XUTMDEVQ(“GATHER^ARHBQQ”,“ARHB Gather”,“ARHZTSK”,.ARH,1)
 W !,“X=”,X
 Q

[bookmark: _Toc458599323]EN^XUTMDEVQ(): Run a Task (Directly or Queued)
Reference Type:	Supported
Category:	TaskMan
ICR #:	1519
Description:	This API encapsulates the logic to handle both direct printing and queuing in a single call.
EN^XUTMDEVQ calls ^%ZIS to query the user for device selection. The user can choose a device on which to run the job directly or choose to queue the job.
After calling ^%ZIS, EN^XUTMDEVQ looks to see if the queuing was chosen. If so, EN^XUTMDEVQ uses the values from the ztrtn, ztdesc, and ztsave input parameters to queue the job to the chosen device. If the user did not choose to queue, EN^XUTMDEVQ runs the job directly using the ztrtn input parameter. Thus, EN^XUTMDEVQ provides a simple way to facilitate both queuing and running a job directly.
If the IOP variable is defined before calling EN^XUTMDEVQ, it has the same effect as it does if defined before a ^%ZIS call.
If the ZTPRI or ZTKIL variables are defined before calling EN^XUTMDEVQ, they has the same effect as they do if defined before an ^%ZTLOAD call. Other ^%ZTLOAD input variables have no effect, however.
You do not need to “USE IO” in the routine specified in the ztrtn input parameter; IO is the current device, whether the job is queued or run directly. Also, you do not need to pass “Q” in the top-level of the %ZIS input array; if the top-level of the array does not contain “Q”, “Q” is appended to it (to allow queuing).
Format:	EN^XUTMDEVQ(ztrtn,ztdesc,.ztsave[,.%zis][,retztsk])
Input Parameters:	ztrtn:	(required) The API that TaskMan will DO to start the task. You can specify it as “LABEL^ROUTINE” or “^ROUTINE” or “ROUTINE”.
	ztdesc:	(required) Task description, up to 200 characters describing the task, with the software application name at the front.
	.ztsave:	(required) Pass by reference. Set up this array in the same format as the ztsave input array is set up for the ^%ZTLOAD TaskMan API. The array you set up in ztsave is passed directly as ztsave to TaskMan if the user chooses to queue the job.
	.%zis:	(optional) Pass by reference. String containing input specifications for the Device Handler. Set up the array in the same way as the %ZIS array is set up for the ^%ZIS: Standard Device Call API. The array you set up in the %zis input parameter is passed directly as %ZIS to the Device Handler.
All %zis subscripts from the regular ^%zis call (“A”, “B”, “HFSMODE”, etc.) can be passed in the %zis input array.
	retztsk:	(optional) This is the return task number (i.e., ztsk). Put a number in this parameter, such that $G(retztsk), then ztsk exists as an output variable. Otherwise, ztsk does not exist as an output variable.
Output:	ztsk:	If a number is entered in the retztsk input parameter, the task number assigned to a task is returned.

[bookmark: _Toc458599324]Example
[bookmark: _Toc200270037][bookmark: _Toc458599943]Figure 104: EN^XUTMDEVQ API—Sample report
ZZYZOPT ;ISC-SF/doc
 ;;1.0;;
EN ;
 N ZZEN K X,DIC S DIC=9.6,DIC(0)=“AEMO” D ^DIC
 Q:+Y’>0 S ZZEN=+Y
 ;
 K ZTSAVE S ZTSAVE(“ZZEN”)=“”
 D EN^XUTMDEVQ(“P^ZZYZOPT”,“Print from BUILD File”,.ZTSAVE)
 Q
P ;
 ; code for printout
 ;
 W !,“Here goes the body of the report!”
 W !,“ZZEN = ”,ZZEN
 Q

[bookmark: _Ref125512945][bookmark: _Toc458599325]$$NODEV^XUTMDEVQ(): Force Queuing—No Device Selection
Reference Type:	Supported
Category:	TaskMan
ICR #:	1519
Description:	This extrinsic function encapsulates the logic to handle direct (FORCED) queuing in a single call and does not ask users for a device. This API was added with Kernel patch XU*8.0*275.
Format:	$$NO DEV^XUTMDEVQ(ztrtn[,ztdesc][,%var][,%voth][,%wr])
Input Parameters:	ztrtn:	(required) The API that TaskMan will DO to start the task (job). You can specify it as “LABEL^ROUTINE” or “^ROUTINE” or “ROUTINE”.
	ztdesc:	(optional) Task description, up to 200 characters describing the task, with the software application name at the front. Default to name of [tag]^routine.
	%var:	(optional) ZTSAVE values for the task. Single value or passed by reference, this is used to S ZTSAVE(). It can be a string of variable names separated by “;”. Each ;-piece is used as a subscript in ZTSAVE.
	%voth:	(optional) Passed by reference, %voth(sub)=“” or explicit value sub—this is any other %ZTLOAD variable besides ZTRTN, ZTDESC, ZTIO, ZTSAVE. For example:
%VOTH(“ZTDTH”)=$H
	%wr:	(optional) If %WR>0 then write text to the screen as to whether or not the queuing was successful.
Output:	returns:	Returns:
> 0—Successful; Task # (number of the job).
-1—Unsuccessful; If failed, the %ZTLOAD call.

[bookmark: _Toc458599326]Example
This example is a job that consists of gathering information and then printing it. Assume that the gathering takes a few hours. You do not want the device that the user selects to be tied up for that time, so you divide the job into two tasks. The first task gathers the information, and the second task prints it. Use the $$DEV^XUTMDEVQ(): Force Queuing—Ask for Device API to select the device and queue up the print task, and the $$NODEV^XUTMDEVQ API to schedule the gather task. Use the REQ^%ZTLOAD: Requeue a Task API to schedule the print task when the gather task finishes.
[image: Note]	NOTE: You could also use the $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task API to schedule the print task.
[bookmark: _Toc200270038][bookmark: _Toc458599944]Figure 105: $$NODEV^XUTMDEVQ API—Sample code
ARHBQQ ;SFVAMC/GB - Demo of ‘gather’ and ‘print’ in 2 tasks ;1/19/06 08:31
 ;;1.1
DEV ;
 N ARH,ARHZTSK,X
 ;The user doesn’t know it, but he’s actually queuing the second task,
 ;the “print” portion of the job. The only question the user will be
 ;asked is to select the device.
 S ARH(“ZTDTH”)=“@” ;Don’t schedule the task to run, we’ll do it later.
 ;In the following, the “Q” sets IOP=Q, which forces queuing.
 S X=$$DEV^XUTMDEVQ(“PRINT^ARHBQQ”,”ARHB Print”,,.ARH,,”Q”,1)
 W !,“X=”,X
 Q:X<1
 N ARH
 ;Now queue the first task, the “gather” portion of the job. The user
 ;won’t be asked any questions.
 S ARHZTSK=X ; Save the ZTSK number of the “print” task.
 S ARH(“ZTDTH”)=$H ; Force the task to start now.
 ;To ask the user the start time, comment out the above line.
 S X=$$NODEV^XUTMDEVQ(“GATHER^ARHBQQ”,“ARHB Gather”,“ARHZTSK”,.ARH,1)
 W !,“X=”,X
 Q

[bookmark: _Ref125436679][bookmark: _Toc458599327]$$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call
Reference Type:	Supported
Category:	TaskMan
ICR #:	1519
Description:	This extrinsic function encapsulates the logic to handle direct queuing in a single call. This API was added with Kernel Patches XU*8.0*275 and updated with Kernel patch XU*8.0*389. This extrinsic function does a double queuing:
Queue up the second task to a device, but do not schedule the task in TaskMan.
Queue up the first task to ZTIO=“” and schedule it.
If it takes a long time to gather and print data, users should split the job into two tasks:
1. Gather Data—The first task gathers the data.
1. Print Data—The second task prints the data.
Separating the data-gathering task from the data print task helps avoid unnecessarily tying up a printer while large amounts of data are gathered.
The task number of the second task (i.e., print data) is added to the saved variables with the name XUTMQQ. This makes it easier to schedule the second task when the first task (i.e., gather data) has finished.
To schedule the second task to run at the end of the first task, you must call the $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task API.
Format:	$$QQ^XUTMDEVQ(%rtn[,%desc][,%var1][,%voth1][,%zis][,iop][,%wr],
%rtn2[,%desc2][,%var2][,%voth2])
Input Parameters:	%rtn:	(required) First task that TaskMan runs, usually a search and build sorted data type process (i.e., gather data). The API that TaskMan will DO to start the task. You can specify it as “LABEL^ROUTINE” or “^ROUTINE” or “ROUTINE”. [tag]^routine that TaskMan runs.
	%desc:	(optional) First task description, up to 200 characters describing the task, with the software application name at the front. Defaults to name of [tag]^routine.
	%var1:	(optional) ZTSAVE values for the first task. Single value or passed by reference, this is used to SET ZTSAVE(). It can be a string of variable names separated by “;”. Each ;-piece is used as a subscript in ZTSAVE.
	%voth1:	(optional) First task other parameter. Passed by reference, %voth(sub)=“” or explicit value sub—this is any other %ZTLOAD variable besides ZTRTN, ZTDESC, ZTIO, ZTSAVE. For example:
%VOTH(“ZTDTH”)=$H
	%zis:	(optional) Default value “MQ”. Passed by reference, standard %ZIS variable array for calling the Device Handler. Except for one difference, the second task of the job is tasked to this device call.
Exception:
IF $D(%ZIS)=0 then default value is “MQ” and call the Device Handler.
IF $D(%ZIS)=1,%ZIS=“” then queue the second task also with ZTIO=“” (i.e., do not do the Device Handler call).
	iop:	(optional) The IOP variable as defined in Kernel’s Device Handler. Default value “Q”—if IOP is passed and IOP does not start with “Q;” then “Q;” is added.
	%wr:	(optional) If %WR>0 then write text to the screen as to whether or not the queuing was successful.
	%rtn2:	(required) Second task that TaskMan runs, usually a print process (i.e., print data).The API that TaskMan will DO to start the task. You can specify it as “LABEL^ROUTINE” or “^ROUTINE” or “ROUTINE”.
	%desc2:	(optional) Second task description, up to 200 characters describing the task, with the software application name at the front. Default to name of [tag]^routine.
	%var2:	(optional) ZTSAVE values for the second task. Single value or passed by reference, this is used to S ZTSAVE(). It can be a string of variable names separated by “;”. Each ;-piece is used as a subscript in ZTSAVE.
If %var1 is not passed and $D(%VAR), then also send %VAR data to the second task.
If $D(%VAR1), then do not send %VAR data to the second task.
	%voth2:	(optional) Second task other parameter, usually not needed. Passed by reference, %voth(sub)=“” or explicit value sub—this is any other %ZTLOAD variable besides ZTRTN, ZTDESC, ZTIO, ZTSAVE. For example:
%VOTH(“ZTDTH”)=$H
[image: Note]	NOTE: If %voth1(“ZTDTH”) is passed, it is ignored as it is necessary to S ZTDTH=“@” for the second task—this creates the task but does not schedule it.
Output:	ztsk1^ztsk2:	Returns:
ztsk1^ztsk2—If successfully queued:
ztsk1 = ZTSK value of first task.
ztsk2 = ZTSK value of second task.
-1—If unsuccessful device call or failed %ZTLOAD call.

[bookmark: _Toc458599328]Example
This example is a job that consists of gathering information and then printing it. Assume that the gathering takes a few hours. You do not want the device that the user selects to be tied up for that time, so you divide the job into two tasks. The first task gathers the information, and the second task prints it. Use the $$QQ^XUTMDEVQ API to select the device, schedule the gather task, and queue the print task. Use the $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task API to schedule the print task when the gather task finishes.
[image: Note]	NOTE: This is the easiest way to divide a job into two tasks.
[bookmark: _Toc200270039][bookmark: _Toc458599945]Figure 106: $$QQ^XUTMDEVQ API—Sample code
ARHBQQ ;SFVAMC/GB - Demo of ‘gather’ and ‘print’ in 2 tasks ;1/19/06 08:31
 ;;1.1
QQ ;
 N X
 S X=$$QQ^XUTMDEVQ(“GATHERQ^ARHBQQ”,“ARHB Gather”,,,,,1,“PRINTQ^ARHBQQ”,“ARHB Print”)
 W !,“X=”,X
 Q
GATHERQ ;
 N ARHJ,X
 S ZTREQ=“@”
 S ARHJ=“ARHB-QQ”_“-”_$J_“-”_$H ; namespace + unique ID
 K ^XTMP(ARHJ) ; Use ^XTMP to pass a lot of data between tasks.
 S ^XTMP(ARHJ,0)=$$FMADD^XLFDT(DT,1)_U_DT ; Save-thru and create dates.
 S ^XTMP(ARHJ)=“HI MOM!” ; Pretend this is a lot of data!
 ; XUTMQQ holds the ZTSK of the print task
 S X=$$REQQ^XUTMDEVQ(XUTMQQ,$H,“ARHJ”) ; Schedule print task to start
 Q
PRINTQ ;
 S ZTREQ=“@”
 ;U IO ; Don’t need this if invoked using a ^XUTMDEVQ API.
 W !,“The secret message is: ‘”,$G(^XTMP(ARHJ)),“‘”
 K ^XTMP(ARHJ)
 Q

[bookmark: _Ref125424162][bookmark: _Toc458599329]$$REQQ^XUTMDEVQ(): Schedule Second Part of a Task
Reference Type:	Supported
Category:	TaskMan
ICR #:	1519
Description:	This extrinsic function schedules the second task (i.e., print data) from the $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call API. This API was added with Kernel patch XU*8.0*389.
If it takes a long time to gather and print data, users should split the job into two tasks:
1. Gather Data—The first task gathers the data.
1. Print Data—The second task prints the data.
Separating the data-gathering task from the data print task helps avoid unnecessarily tying up a printer while large amounts of data are gathered.
This API makes sure that only the scheduled time and any variables in %VAR are passed to the REQ^%ZTLOAD: Requeue a Task.
Format:	$$REQQ^XUTMDEVQ(xutsk,xudth[,[.]%var])
Input Parameters:	xutsk:	(required) This input parameter is the TaskMan task to schedule the second task from the $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call API and should be in the XUTMQQ variable.
	xudth:	(required) This input parameter is the new scheduled run time.
	[.]%var:	(optional) This input parameter is converted to the ZTSAVE variable; it is the same as the %var input parameter for the $$DEV^XUTMDEVQ(): Force Queuing—Ask for Device API.
Output:	returns:	Returns:
1—Successful.
0—Unsuccessful.

[bookmark: _Toc458599330]Example
This example is a job that consists of gathering information and then printing it. Assume that the gathering takes a few hours. You do not want the device that the user selects to be tied up for that time, so you divide the job into two tasks. The first task gathers the information, and the second task prints it. Use the $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call API to select the device, schedule the gather task, and queue the print task. Use the $$REQQ^XUTMDEVQ API to schedule the print task when the gather task finishes.
[image: Note]	NOTE: This is the easiest way to divide a job into two tasks.
[bookmark: _Toc200270040][bookmark: _Toc458599946]Figure 107: $$REQQ^XUTMDEVQ API—Sample code
ARHBQQ ;SFVAMC/GB - Demo of ‘gather’ and ‘print’ in 2 tasks ;1/19/06 08:31
 ;;1.1
QQ ;
 N X
 S X=$$QQ^XUTMDEVQ(“GATHERQ^ARHBQQ”,“ARHB Gather”,,,,,1,“PRINTQ^ARHBQQ”,“ARHB Print”)
 W !,“X=”,X
 Q
GATHERQ ;
 N ARHJ,X
 S ZTREQ=“@”
 S ARHJ=“ARHB-QQ”_“-”_$J_“-”_$H ; namespace + unique ID
 K ^XTMP(ARHJ) ; Use ^XTMP to pass a lot of data between tasks.
 S ^XTMP(ARHJ,0)=$$FMADD^XLFDT(DT,1)_U_DT ; Save-thru and create dates.
 S ^XTMP(ARHJ)=“HI MOM!” ; Pretend this is a lot of data!
 ; XUTMQQ holds the ZTSK of the print task
 S X=$$REQQ^XUTMDEVQ(XUTMQQ,$H,”ARHJ”) ; Schedule print task to start
 Q
PRINTQ ;
 S ZTREQ=“@”
 ;U IO ; Don’t need this if invoked using a ^XUTMDEVQ API.
 W !,“The secret message is: ‘”,$G(^XTMP(ARHJ)),“‘”
 K ^XTMP(ARHJ)
 Q

[bookmark: _Toc458599331]DISP^XUTMOPT(): Display Option Schedule
Reference Type:	Supported
Category:	TaskMan
ICR #:	1472
Description:	This API displays the schedule for an option.
Format:	DISP^XUTMOPT(option_name)
Input Parameters:	option_name:	(required) The name of the option from the OPTION file (#19) for which the TaskMan schedule is to be displayed.
Output:	returns:	Returns the TaskMan option schedule.

[bookmark: _Toc458599332]Example
>D DISP^XUTMOPT(option_name)

[bookmark: _Toc458599333]EDIT^XUTMOPT(): Edit an Option’s Scheduling
Reference Type:	Supported
Category:	TaskMan
ICR #:	1472
Description:	This API allows users to edit an option’s scheduling in the OPTION SCHEDULING file (#19.2).
Format:	EDIT^XUTMOPT(option_name)
Input Parameters:	option_name:	(required) The name of the option from the OPTION file (#19) whose schedule the user is to be allowed to edit.
Output:	returns:	Returns the requested option in order to edit the schedule.

[bookmark: _Ref65050503][bookmark: _Toc458599334]OPTSTAT^XUTMOPT(): Obtain Option Schedule
Reference Type:	Supported
Category:	TaskMan
ICR #:	1472
Description:	This API allows an application to find out when an option is scheduled and get other data.
Format:	OPTSTAT^XUTMOPT(option_name,.root)
Input Parameters:	option_name:	(required) The name of the option from the OPTION file (#19) upon which to return data.
	.root:	(required) This variable is passed by reference. This is an array because the same task can be scheduled more than once.
Output:	.root:	Returns an array of data about the option in question.

[bookmark: _Toc458599335]Example
>D OPTSTAT^XUTMOPT(“OPTION NAME”,.ROOT)

Returns an array of data in ROOT (pass by ref) in the form:
ROOT=count ROOT(1)=task number^scheduled time^reschedule freq^special queuing flag

[bookmark: _Toc458599336]RESCH^XUTMOPT(): Set Up Option Schedule
Reference Type:	Supported
Category:	TaskMan
ICR #:	1472
Description:	This API allows an application to set up the schedule for an option.
Format:	RESCH^XUTMOPT(option_name[,when_to_run][,device_to_use]
[,reschedule_freq][,flags][,.error_array])
Input Parameters:	option_name:	(required) The name of the option from the OPTION file (#19) to be rescheduled.
	when_to_run:	(optional) The new scheduled time for the option to run.
	device_to_use:	(optional) The device to use for the rescheduled option.
	reschedule_freq:	(optional) The frequency to run the rescheduled option.
	flags:	(optional) If the flag is set to an “L” LAYGO a new entry if needed.
	.error_array:	(optional) Passed by reference.
Output Parameters:	.error_array:	(optional) This is set to -1 if the option was not found.

[bookmark: _Toc458599337]EN^XUTMTP(): Display HL7 Task Information
Reference Type:	Controlled Subscription
Category:	TaskMan
ICR #:	3521
Description:	This API is displays the Health Level Seven (HL7)-related task information. First, the currently running tasks are examined in the SCHEDULE file. For each task found, examine the ROUTINE field. If the ROUTINE field contains “HL”, it is a Health Level Seven-related task.
Format:	EN^XUTMTP(task[,ztenv,ztkey,ztname,ztflag,xutmuci])
Input Parameters:	task:	(required) TaskMan’s task ID.
	ztenv:	(optional) Set = 1.
	ztkey:	(optional) Set = 0.
	ztname:	(optional) Set = ,User name.
	ztflag:	(optional) Set = 1.
	xutmuci:	(optional) X ^%ZOSF(“UCI”) S XUTMUCI=Y
Output:	returns:	Returns the HL7-related task information. The following is an example of the information displayed by this API:
261181: EN^HLCSLM, HL7 Link Manager. No device. DEV,MOU.
From 12/31/2001 at 14:17, By XUUSER,THIRTY.
Started running 12/31/2001 at 14:17. Job #: 562039155

[bookmark: _Ref20103688][bookmark: _Toc458599338]^%ZTLOAD: Queue a Task
^%ZTLOAD is the main API used to create and schedule tasks (commonly referred to as “queuing”). Queuing tells TaskMan to use a background partition to DO a certain API at a certain time, with certain other conditions established as described by the input variables.
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API, as used in code, behaves consistently so most queuers strongly resemble one another. The queuer can be written so that it is either interactive with the user or so that it is not interactive. The standard variations on this structure deserve attention.
Format:	^%ZTLOAD
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variable:	ZTRTN:	(required) The API that TaskMan will DO to start the task. You can specify it as “LABEL^ROUTINE” or “^ROUTINE” or “ROUTINE”. If it is not passed, the original API is used.
	ZTDESC:	(required) Task description, up to 200 characters describing the task, with the software application name at the front. While not required, use of this variable is recommended.
	ZTDTH:	(optional) Start Time when TaskMan should start the task. It must be a date and time in VA FileMan or $HOROLOG format. Setting it to “@”causes the task to be created but not scheduled. If ZTDTH is not set, ^%ZTLOAD asks the user for the start time.
	ZTIO:	(optional) The I/O device the task should use. If ZTIO is NULL, no device is used. If undefined, the current I/O variables are used to select a device. ZTIO should only be used when the current I/O variables do not describe the needed device. If you do not need a device for a job, SET ZTIO=“”. The ZTIO variable accepts the same I/O formatting string as the IOP variable in the
^%ZIS: Standard Device Call.
[image: Note]	REF: For more information, see the “Device Handler: Developer Tools” section.
	ZTUCI:	(optional) UCI the task should use. The current UCI is used if ZTUCI is undefined.
	ZTCPU:	(optional) Volume Set:CPU. Specifies the name of the volume set and CPU on which the task should run. The volume set can be passed in the first :-piece, and the CPU in the second. Neither piece of information is required; either can be passed without the other. If the CPU alone is passed, it must still be preceded by a “:” (e.g., :KDAISC6A1). If the volume set is not passed, TaskMan runs the task on the volume set it came from or on a Print Server. If the CPU is not passed, TaskMan runs the task on the CPU where TaskMan resides. Any volume set and/or CPU specified by the task’s I/O device takes precedence over the same information passed here.
[image: Note]	NOTE: On Caché systems, specifying which CPU a job should run on only works if you are running TaskMan from a DCL context. If you specify the CPU, but are not running TaskMan from a DCL context, the job may not run correctly.
	ZTPRI:	(optional) The CPU priority the task should receive. It should be an integer between 1 (low) and 10 (high). The site’s default for tasks is used if this is undefined.
	ZTSAVE():	(optional) Input variable array. An array whose nodes specify input variables to the task beyond the usual set all tasks receive. There are four kinds of nodes this array can have:
ztsave(“variable”) can be set equal to NULL or to a value; if NULL, the current value of that variable is copied for the task, otherwise the variable is created with the value assigned [for example, ztsave(“PSIN”)=42]. The variable can be local or global, and it can be a variable or an individual array node.
ZTSAVE(“open array reference”) can be set to NULL to declare a set of nodes within an array to be input variables to the task [for example, ZTSAVE(“^UTILITY($J,”)].
ZTSAVE(“namespace*”) can be set to NULL to save all local variables in a certain namespace [for example, ZTSAVE(“LR*”)].
ZTSAVE(“*”) can be used to save all local variables. Non-namespaced variables (esp. %, X, Y, etc.) may or may not be saved. Saving individual variables is more efficient. ZTSAVE nodes are saved just as they are typed, so special variables like $J have one value when used to save the variables, and a different value when used to restore them for the task.
	ZTKIL:	(optional) KEEP UNTIL. Set this to the first day the Task File Cleanup can delete this task. It should be a date and time in VA FileMan or $HOROLOG format. Use of this variable is recommended when ZTDTH equals “@”.
	ZTSYNC:	(optional) Name of a SYNC FLAG. Using SYNC FLAGS allows TaskMan to run the next task in a series of tasks only if the preceding task in the series completed successfully.
You can choose any name for a SYNC FLAG. You should namespace the name, however, and make it no longer than 30 characters in length.
To use SYNC FLAGs, the task must be queued to a device of type resource (through the ZTIO variable).
[image: Note]	REF: For complete information on how to use SYNC FLAGs, see the “Using SYNC FLAGs to Control Sequences of Tasks” section in this section.

Output Variables:	ZTSK:	(Usually returned) The task number assigned to a task, returned whenever a task is successfully created. It can be used as an input variable to the other TaskMan application mode APIs.
[image: Note]	NOTE: If a task is queued to a volume set other than the one where it was created, it is usually assigned a new task number when it is moved.
If ztsk is not defined after calling ^%ZTLOAD, either ztrtn was not set up or the user canceled the creation when prompted for a start time. If a task is not created and if ^%ZTLOAD is being called by a foreground job, then ^%ZTLOAD displays a message to the user indicating that the task has been canceled.
[image: Note]	NOTE: ZTSK is not a system variable. It is KILLed and manipulated in many places. If the software needs to remember a task number, ztsk should be set into some properly namespaced variable the application can protect.
	ZTSK(“D”):	START TIME (usually returned) contains the task’s requested start time in $HOROLOG format. It is returned whenever ztsk is returned, and gives you a way to know the start time a user requests.

[bookmark: _Toc458599339]Interactive Use of ^%ZTLOAD
The VistA Standards and Conventions require that anywhere you let a user pick the output device you also let the user choose to queue the output.
Often one part of the queuer is a call to ^%ZIS (the Device Handler). When you set up the variables for your call, include a “Q” in the variable ^%ZIS so the Device Handler lets the user pick queuing. After the Device Handler call (and after you check POP to ensure that a valid device was selected), you can check $DATA(IO(“Q”)) to see whether the user chose to queue to that device. If so, then you must queue the printout you were about to do directly, and your software should branch to the code to set up the task. A sample of the code for this kind of print queuer looks something like this:
[bookmark: _Toc200270041][bookmark: _Toc458599947]Figure 108: ^%ZTLOAD API—Print queuer sample code
SELECT ;select IO device for report
 S %ZIS=“Q” D ^%ZIS
 I POP D CANCEL Q
 I $D(IO(“Q”)) D QUEUE Q
 D PRINT,^%ZISC Q
 ;
QUEUE ;queue the report
 S ZTRTN=“PRINT^ZZREPORT”
 S ZTDESC=“ZZ Application Daily Report 1”
 S ZTSAVE(“ZZRANGE”)=“”
 D ^%ZTLOAD
 I $D(ZTSK)[0 W !!?5,“Report canceled!”
 E W !!?5,“Report queued!”
 D HOME^%ZIS Q

The code to set up the task after the call to ^%ZIS has four steps. First, it sets the ^%ZTLOAD input variables to define the task. Second, it calls ^%ZTLOAD to queue the task. Third, it checks $DATA(ZTSK)#2 to find out whether a task was really queued and provides appropriate feedback. Fourth, it calls HOME^%ZIS to reset its IO variables.
[image: Note]	NOTE: This queuer did not define the ZTIO variable. Print queuers can take advantage of the fact that they directly follow a ^%ZIS call that sets up all the IO variables they need. Under these conditions, the queuer code can rely on ^%ZTLOAD to identify the task’s IO device from the IO variables, thus, saving the developer the work of building the correct ZTIO string.
Notice also that when queuing output, we need not call ^%ZISC to close the IO device because when the user chooses to queue output the Device Handler does not open the device. Thus, all we need to do here is reset our IO variables with a HOME^%ZIS call.
As usual in these kinds of queuers, we did not define ZTDTH, but instead let ^%ZTLOAD ask the user when the report should run.
Finally, notice that we tell the task to begin at PRINT, the same tag used by the trigger code to start the foreground print when the user chooses not to queue. Under most circumstances, print queuers can use most of the same code for their tasks that the foreground print uses.
[bookmark: _Toc458599340]Non-interactive Use of ^%ZTLOAD
Under certain conditions, queuers must create and schedule their tasks with no interaction with the user. Examples include queuers operating out of tasks or queuers that need to run without the users’ knowledge. Only two items must be changed from interactive queuers to make non-interactive queuers work:
1. ZTDTH must be passed to ^%ZTLOAD, and must contain a valid date/time value.
1. If the code to queue the task does not follow a call to ^%ZIS, you must define the ZTIO variable yourself. Either set it, or allow it to be built from the current I/O variables (if those I/O variables describe the proper device).
After the call to ^%ZTLOAD, you may (or may not) want to issue feedback messages.
[bookmark: _Toc458599341]Queuing Tasks without an I/O Device
Certain tasks need no IO device. These include primarily tasks that rearrange large amounts of data but produce no report, such as filing and compiling tasks. Two different kinds of non-IO tasks exist:
Concurrent—Those that can run concurrently.
Sequential—Those that must run sequentially.
Queuers for concurrent non-IO tasks need only set ZTIO to NULL, and TaskMan runs the task, with no IO device.
For sequential non-IO tasks, queuers must set the ZTIO variable to the name of a resource type device. TaskMan then ensures that the tasks run single file, one after the other in order by requested start time. Applications that need sequential non-IO tasks should instruct system managers in the Package Installation Guide to create a resource device with the desired characteristics so that these queuers can safely queue their tasks to them. Such devices should be namespaced by the software application that uses them. SYNC FLAGs can also be used to allow the next task in a series to start only if the previous task in the series completed successfully.
[image: Note]	REF: For more information on SYNC FLAGs, see the “Using SYNC FLAGs to Control Sequences of Tasks” section in this section.
[bookmark: _Toc458599342]Example
This example is a job that consists of gathering information and then printing it. Assume that the gathering takes a few hours. You do not want the device that the user selects to be tied up for that time, so you divide the job into two tasks. The first task gathers the information and the second task prints it. Use the ^%ZIS: Standard Device Call API to select the device, the ^%ZTLOAD API to queue the print task, and the ^%ZTLOAD API to schedule the gather task. Use the REQ^%ZTLOAD: Requeue a Task API to schedule the print task when the gather task finishes.
[image: Note]	NOTE: This process is made easier by using the $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call and $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task APIs.
[bookmark: _Toc200270042][bookmark: _Toc458599948]Figure 109: ^%ZTLOAD API—Sample code
ARHBQQ ;SFVAMC/GB - Demo of ‘gather’ and ‘print’ in 2 tasks ;1/19/06 08:31
 ;;1.1
ZTLOAD ;
 N ARH,ARHZTSK,X,ZTSAVE,%ZIS,ZTSK,ZTDTH,ZTRTN,ZTDESC,ZTIO,POP
 W !,“Queue the second task (the print task) first.”,!
 ;Let’s deal with the second task first.
 ;The user doesn’t know it, but he’s actually queuing the second task,
 ;the “print” portion of the job. The only question the user will be
 ;asked is to select the device.
 ;
 S %ZIS=“QM”
 S IOP=“Q” ;Force queuing.
 D ^%ZIS Q:POP ; Select Device
 W !,“Finished with %ZIS.”
 ;
 S ZTDTH=“@” ;Don’t schedule the task to run, we’ll do it later
 ;If we didn’t need to set ZTDTH, we could use EN^XUTMDEVQ, but that
 ;I ‘new’s ZTDTH, so we can’t set it.
 ;
 ;BTW, Did you know that there’s a 5th parameter in EN^XUTMDEVQ?
 ;Usually, EN^XUTMDEVQ will ‘new’ ZTSK, so you can’t get to it.
 ;If you put “1” as the 5th parameter, ZTSK will exist when EN returns.
 ;D EN^XUTMDEVQ(“PRINT^ARHBQQ”,“ARHB Print”,.ZTSAVE,.%ZIS,1)
 ;
 S ZTRTN=“PRINT^ARHBQQ”
 S ZTDESC=“ARHB Print”
 D ^%ZTLOAD
 D HOME^%ZIS
 W !,“ZTSK=”,$G(ZTSK)
 Q:’$D(ZTSK)
 S ARHZTSK=ZTSK
 ;
 N ZTSAVE,%ZIS,ZTSK,ZTDTH,ZTRTN,ZTDESC,ZTIO,IOP
 W !,“Now queue the first task (the gather task).”,!
 ;Now queue the first task, the “gather” portion of the job.
 ;Since we don’t need a device,
 ;the user will only be asked when to start the task.
 ;(I wasn’t able to get EN^XUTMDEVQ to work for me. I tried setting
 ;IOP=“Q;” to let it know that it should be queued and it didn’t need
 ;a device, but it did nothing, and returned a null ZTSK.)
 F I=“ARHZTSK” S ZTSAVE(I)=“” ; Save the ZTSK of the “print” task.
 S ZTIO=“” ; We don’t need a device.
 S IOP=“Q” ; Force queuing.
 S ZTRTN=“GATHER^ARHBQQ”
 S ZTDESC=“ARHB Gather”
 D ^%ZTLOAD
 D HOME^%ZIS
 W !,“ZTSK=”,$G(ZTSK)
 Q
GATHER ;
 N ARHJ
 S ZTREQ=“@”
 S ARHJ=“ARHB-QQ”_”-”_$J_”-”_$H ; namespace + unique ID
 K ^XTMP(ARHJ) ; Use ^XTMP to pass a lot of data between tasks.
 S ^XTMP(ARHJ,0)=$$FMADD^XLFDT(DT,1)_U_DT ; Save-thru and create dates.
 S ^XTMP(ARHJ)=“HI MOM!” ; Pretend this is a lot of data.
 D SPRINT
 Q
SPRINT ; Now schedule the “print” task to run.
 N ZTSK,ZTDTH,I,ZTRTN,ZTDESC,ZTIO,ZTSAVE ; Very important to NEW the
 ; input variables to REQ^%ZTLOAD, otherwise they retain the values of
 ; the currently running task, and you could unintentionally change the
 ; “print” task to rerun the “gather” task.
 F I=“ARHJ” S ZTSAVE(I)=“” ; Let the “print” task know the “$J” value.
 S ZTSK=ARHZTSK
 S ZTDTH=$H
 D REQ^%ZTLOAD
 ;Instead of the above 8 lines we could have simply:
 ;S X=$$REQQ^XUTMDEVQ(ARHZTSK,$H,“ARHJ”)
 Q
PRINT ;
 S ZTREQ=“@”
 U IO ; Don’t need this if invoked using a ^XUTMDEVQ API.
 W !,“The secret message is: ‘”,$G(^XTMP(ARHJ)),“‘”
 K ^XTMP(ARHJ)
 Q

[bookmark: _Toc458599343]Code Execution
[bookmark: _Toc200270043][bookmark: _Toc458599949]Figure 110: ^%ZTLOAD API—Sample code execution
VAH>D ZTLOAD^ARHBQQ

Queue the second task (the print task) first.
QUEUE TO PRINT ON
DEVICE: HOME// P-MESS

 1 P-MESSAGE-ENGWO-HFS-VXD HFS FILE ==> MAILMESSAGE
 2 P-MESSAGE-HFS-VXD HFS FILE ==> MAILMESSAGE
Choose 1-2> 2 <Enter> P-MESSAGE-HFS-VXD HFS FILE ==> MAILMESSAGE

Subject: MY PRINT

 Select one of the following:

 M Me
 P Postmaster

From whom: Postmaster// <Enter>
Send mail to: XUUSER,ONE// <Enter> XUUSER,ONE
Select basket to send to: IN// <Enter>
And Send to: <Enter>
Finished with %ZIS.
ZTSK=2921497
Now queue the first task (the gather task).

Requested Start Time: NOW// <Enter> (JAN 25, 2005@11:30:35)
ZTSK=2921499

[bookmark: _Toc458599344]Output
[bookmark: _Toc200270044][bookmark: _Toc458599950]Figure 111: ^%ZTLOAD API—Sample output
Subj: MY PRINT [#28881111] 01/25/05@11:30 2 lines
From: POSTMASTER (Sender: XUUSER,ONE - COMPUTER SPECIALIST) In ‘IN’
basket.
Page 1 *New*

The secret message is: ‘HI MOM!’

Enter message action (in IN basket): Ignore//

[bookmark: _Ref204410435][bookmark: _Toc458599345]$$ASKSTOP^%ZTLOAD: Stop TaskMan Task
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This extrinsic function asks TaskMan to stop running a specified task. Also, it checks for the ZTNAME variable, and if defined, it uses it instead of DUZ to value the STOP FLAG field (#59.1). ZTNAME is supported by applications calling this API to indicate the process that asked the task to stop.
Format:	$$ASKSTOP^%ZTLOAD(ztsk)
Input Parameters:	ztsk:	(required) Task number of the TaskMan task to be stopped.
Output:	returns:	Returns:
0—“Busy”. If it returns “Busy”, it could mean that the task is locked, someone else is changing it, or TaskMan is starting to run it.
1—“Task missing” or Task “Finished running”. If it returns “Task missing”, it could mean that it was an incorrect input task number, but it is most likely that the task ran and was removed after running.

If it returns “Finished running”, it means that the task was finished running before the API request could go through, so the API could not stop an already finished task.
2—“Asked to stop” or “Unscheduled”. If it returns “Asked to Stop”, the task has started running and the stop flag has been set, so if the application checks ($$S^%ZTLOAD) it should stop.

If it returns “Unscheduled”, it was successful and the task is not scheduled any more.

[bookmark: _Toc458599346]DESC^%ZTLOAD(): Find Tasks with a Description
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API finds tasks with a specific description.
Format:	DESC^%ZTLOAD(description,list)
Input Parameters:	description:	(required) The TaskMan task description.
Output Parameters:	list:	Returns a list of tasks with the specified description.

[bookmark: _Toc458599347]DQ^%ZTLOAD: Unschedule a Task
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API unschedules tasks. Unscheduling a task ensures that, after the call, it is not scheduled or waiting for a device, computer link, or partition in memory. Unscheduling is guaranteed to be successful as long as the task is currently defined in the TASKS file (#14.4). However, unscheduling a task that has already started running does not stop the task in any way.
Format:	DQ^%ZTLOAD
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	ZTSK:	(required) The number of the task to unschedule. This task must currently be defined in the TASKS file (#14.4) or the call fails.
Output Variables:	ZTSK(0):	Returns:
1—Task was unscheduled successfully.
0—Task was not unscheduled successfully.

[bookmark: _Toc458599348]ISQED^%ZTLOAD: Return Task Status
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API returns whether a task is currently pending. Pending means that the task is scheduled, waiting for an I/O device, waiting for a volume set link, or waiting for a partition in memory. It also returns the DUZ of the task’s creator and the time the task was scheduled to start.
Format:	ISQED^%ZTLOAD
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	ZTSK:	(required) Task number of the task to look up. The task must be currently defined on the volume set to be searched, or the lookup fails.
	ZTCPU:	(optional) The volume set TaskMan should search for the task being looked up. If not passed, TaskMan searches the current volume set. Unlike ^%ZTLOAD’s ZTCPU input variable, this one does not accept a second :-piece specifying the CPU. It only specifies a volume set to search.
Output Variables:	ZTSK(0):	ZTSK(0) is returned as follows:
1—Task ZTSK is currently scheduled or waiting on volume set ZTCPU.
0—Task ZTSK is not currently scheduled or waiting on volume set ZTCPU.
NULL (“”)—The lookup was unsuccessful.
	ZTSK(“E”):	(sometimes returned) The error code, returned when some error condition prevented a successful lookup. The codes and their values are:
IT—The task number was not valid (0, negative, or non-numeric).
I—The task does not exist on the specified volume set.
IS—The volume set is not listed in the VOLUME SET file (#14.5).
LS—The link to that volume set is not available.
U—An unexpected error arose (e.g., disk full, protection, etc.).
	ZTSK(“D”):	(sometimes returned) The date and time the task was scheduled to start, in $HOROLOG format. It is returned only if ZTSK(0) equals zero (0) or 1.
	ZTSK(“DUZ”):	(sometimes returned) Holds the DUZ of the user who created the task. It is returned only if ZTSK(0) equals zero (0) or 1.

[bookmark: _Toc458599349]$$JOB^%ZTLOAD(): Return a Job Number for a Task
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This extrinsic function was released with Kernel patch XU*8.0*339. It returns the job number for a running TaskMan task.
Format:	JOB^%ZTLOAD(ztsk)
Input Parameters:	ztsk:	(required) Task number of the running TaskMan task. If the specified task is not running, it returns null.
Output:	returns:	Returns the job number for the specified running TaskMan task.

[bookmark: _Toc458599350]KILL^%ZTLOAD: Delete a Task
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API deletes a task. When a task is deleted by KILL^%ZTLOAD, the task referenced by ZTSK is not defined in the volume set’s task file. If the task was pending, it does not start, but if it had already started running, the effects of deleting its record are unpredictable.
[image: Note]	NOTE: Tasks can delete their own records through the use of the ZTREQ output variable.
Format:	KILL^%ZTLOAD
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	ZTSK:	(required) Task number of the TaskMan task to delete.
Output Variables:	ZTSK(0):	Returns:
1—Successful deletion of the task.
0—Requested task number is invalid.

[bookmark: _Toc458599351]OPTION^%ZTLOAD(): Find Tasks for an Option
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API finds TaskMan tasks for a specific option.
Format:	OPTION^%ZTLOAD(option,list)
Input Parameters:	option:	(required) The name of the specific option.
Output Parameters:	list:	Returns a list of TaskMan tasks for the specified option.

[bookmark: _Toc458599352]PCLEAR^%ZTLOAD(): Clear Persistent Flag for a Task
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API clears the persistent flag for a TaskMan task (clears the persistent node).
Format:	PCLEAR^%ZTLOAD(ztsk)
Input Parameters:	ztsk:	(required) The TaskMan task number.
Output:	none.

[bookmark: _Toc458599353]$$PSET^%ZTLOAD(): Set Task as Persistent
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This extrinsic function sets a TaskMan task as persistent (sets the persistent node). A task that is marked as persistent is restarted if TaskMan finds that the lock on ^%ZTSCH(“TASK”,tasknumber) has been removed. This adds the requirement that the task only use incremental locks, that the entry in ^%ZTSK(task... be left in place as this restarts the task, and that the task can be restarted from the data that is in the ^%ZTSK(task,... global.
Format:	$$PSET^%ZTLOAD(ztsk)
Input Parameters:	ztsk:	(required) The TaskMan task number.
Output:	returns:	Returns:
1—Flag was set.
0—Flag was not set.

[bookmark: _Ref115665495][bookmark: _Toc458599354]REQ^%ZTLOAD: Requeue a Task
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API unschedules, edits, and reschedules a task. Unscheduling ensures the task is not pending but does not stop it from running. Editing is limited to the API, start time, description, and I/O device. Rescheduling is optional. However, if the task is not rescheduled, it is vulnerable to the Task File Cleanup option. The entire procedure is referred to as requeuing.
[image: Caution]	CAUTION: Because requeuing does not involve stopping a running task, it is possible to wind up with the same task running in two different partitions if the algorithm is not designed carefully. This is not supported by TaskMan; thus, developers should use requeuing very carefully. Queuing a new task is usually a better way to accomplish the same goals.
[image: Note]	NOTE: Tasks can reschedule themselves through use of the ZTREQ output variable.
Format:	REQ^%ZTLOAD
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	ZTSK:	(required) The TaskMan task number of the task to edit. It must be defined on the current volume set for the edit to succeed. It is strongly recommended that this task not be currently running.
	ZTDESC:	(optional) New description for the task. It should describe the task and name the software application that created the task.
	ZTDTH:	(optional) New start time for the task. Pass this as a date and time in VA FileMan or $HOROLOG format. If not passed, the original start time is used again. If passed as “@”, the task is not rescheduled.
The ZTDTH input variable can also be passed as a rescheduling code. This code is a number followed by an “S” (seconds), an “H” (hours), or a “D” (days). This code represents an interval of time (e.g., “60S” is 60 seconds) that is added to the current time (for seconds or hours) or the original start time (for days) to produce the new start time.
	ZTIO:	(optional) New I/O device for the task. It sets IOP in the ^%ZIS: Standard Device Call API, and can take all of IOP’s format specification strings. If the ZTIO variable is set to “@”, the task is rescheduled for no I/O device. If the ZTIO variable is set to NULL or it is not passed, the originally requested I/O device is used.
ZTIO(“H”)—If not set, it is set to the value of the IO("HFSIO") variable in the ^%ZIS: Standard Device Call API.
ZTIO(“P”)—If not set, it is set to the value of the IOPAR variable in the ^%ZIS: Standard Device Call API.
	ZTRTN:	(optional) The API TaskMan will DO to start the task. You can specify it as “LABEL^ROUTINE” or “^ROUTINE” or “ROUTINE”. If it is not passed, the original API is used.
	ZTSAVE:	(optional) Input variable array. An array whose nodes specify input variables to the task beyond the usual set all tasks receive. It is set up in the same format as the ZTSAVE input variable for the ^%ZTLOAD API.
Output Variables:	ZTSK(0):	Returns:
1—Task is defined.
0—Task is not defined or ZTDTH was passed in a bad format.

[bookmark: _Toc458599355]Example
This example is a job that consists of gathering information and then printing it. Assume that the gathering takes a few hours. You do not want the device that the user selects to be tied up for that time, so divide the job into two tasks. The first task gathers the information and the second task prints it. Use the ^%ZIS: Standard Device Call API to select the device, the ^%ZTLOAD: Queue a Task API to queue the print task and schedule the gather task. Use the REQ^%ZTLOAD API to schedule the print task when the gather task finishes.
[image: Note]	NOTE: This process is made easier by using the $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call and $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task APIs.
[bookmark: _Toc200270045][bookmark: _Toc458599951]Figure 112: REQ^%ZTLOAD API—Sample code
ARHBQQ ;SFVAMC/GB - Demo of ‘gather’ and ‘print’ in 2 tasks ;1/19/06 08:31
 ;;1.1
ZTLOAD ;
 N ARH,ARHZTSK,X,ZTSAVE,%ZIS,ZTSK,ZTDTH,ZTRTN,ZTDESC,ZTIO,POP
 W !,“Queue the second task (the print task) first.”,!
 ;Let’s deal with the second task first.
 ;The user doesn’t know it, but he’s actually queuing the second task,
 ;the “print” portion of the job. The only question the user will be
 ;asked is to select the device.
 ;
 S %ZIS=“QM”
 S IOP=“Q” ;Force queuing.
 D ^%ZIS Q:POP ; Select Device
 W !,“Finished with %ZIS.”
 ;
 S ZTDTH=“@” ;Don’t schedule the task to run, we’ll do it later
 ;If we didn’t need to set ZTDTH, we could use EN^XUTMDEVQ, but that
 ;I ‘new’s ZTDTH, so we can’t set it.
 ;
 ;BTW, Did you know that there’s a 5th parameter in EN^XUTMDEVQ?
 ;Usually, EN^XUTMDEVQ will ‘new’ ZTSK, so you can’t get to it.
 ;If you put “1” as the 5th parameter, ZTSK will exist when EN returns.
 ;D EN^XUTMDEVQ(“PRINT^ARHBQQ”,“ARHB Print”,.ZTSAVE,.%ZIS,1)
 ;
 S ZTRTN=“PRINT^ARHBQQ”
 S ZTDESC=“ARHB Print”
 D ^%ZTLOAD
 D HOME^%ZIS
 W !,“ZTSK=”,$G(ZTSK)
 Q:’$D(ZTSK)
 S ARHZTSK=ZTSK
 ;
 N ZTSAVE,%ZIS,ZTSK,ZTDTH,ZTRTN,ZTDESC,ZTIO,IOP
 W !,“Now queue the first task (the gather task).”,!
 ;Now queue the first task, the “gather” portion of the job.
 ;Since we don’t need a device,
 ;the user will only be asked when to start the task.
 ;(I wasn’t able to get EN^XUTMDEVQ to work for me. I tried setting
 ;IOP=“Q;” to let it know that it should be queued and it didn’t need
 ;a device, but it did nothing, and returned a null ZTSK.)
 F I=“ARHZTSK” S ZTSAVE(I)=“” ; Save the ZTSK of the “print” task.
 S ZTIO=“” ; We don’t need a device.
 S IOP=“Q” ; Force queuing.
 S ZTRTN=“GATHER^ARHBQQ”
 S ZTDESC=“ARHB Gather”
 D ^%ZTLOAD
 D HOME^%ZIS
 W !,“ZTSK=”,$G(ZTSK)
 Q
GATHER ;
 N ARHJ
 S ZTREQ=“@”
 S ARHJ=“ARHB-QQ”_”-”_$J_”-”_$H ; namespace + unique ID
 K ^XTMP(ARHJ) ; Use ^XTMP to pass a lot of data between tasks.
 S ^XTMP(ARHJ,0)=$$FMADD^XLFDT(DT,1)_U_DT ; Save-thru and create dates.
 S ^XTMP(ARHJ)=“HI MOM!” ; Pretend this is a lot of data.
 D SPRINT
 Q
SPRINT ; Now schedule the “print” task to run.
 N ZTSK,ZTDTH,I,ZTRTN,ZTDESC,ZTIO,ZTSAVE ; Very important to NEW the
 ; input variables to REQ^%ZTLOAD, otherwise they retain the values of
 ; the currently running task, and you could unintentionally change the
 ; “print” task to rerun the “gather” task.
 F I=“ARHJ” S ZTSAVE(I)=“” ; Let the “print” task know the “$J” value.
 S ZTSK=ARHZTSK
 S ZTDTH=$H
 D REQ^%ZTLOAD
 ;Instead of the above 8 lines we could have simply:
 ;S X=$$REQQ^XUTMDEVQ(ARHZTSK,$H,“ARHJ”)
 Q
PRINT ;
 S ZTREQ=“@”
 U IO ; Don’t need this if invoked using a ^XUTMDEVQ API.
 W !,“The secret message is: ‘”,$G(^XTMP(ARHJ)),“‘”
 K ^XTMP(ARHJ)
 Q

[bookmark: _Toc458599356]Code Execution
[bookmark: _Toc200270046][bookmark: _Toc458599952]Figure 113: ^%ZTLOAD API—Sample code execution
VAH>D ZTLOAD^ARHBQQ

Queue the second task (the print task) first.
QUEUE TO PRINT ON
DEVICE: HOME// P-MESS

 1 P-MESSAGE-ENGWO-HFS-VXD HFS FILE ==> MAILMESSAGE
 2 P-MESSAGE-HFS-VXD HFS FILE ==> MAILMESSAGE
Choose 1-2> 2 <Enter> P-MESSAGE-HFS-VXD HFS FILE ==> MAILMESSAGE

Subject: MY PRINT

 Select one of the following:

 M Me
 P Postmaster

From whom: Postmaster// <Enter>
Send mail to: XUUSER,ONE// <Enter> XUUSER,ONE
Select basket to send to: IN// <Enter>
And Send to: <Enter>
Finished with %ZIS.
ZTSK=2921497
Now queue the first task (the gather task).

Requested Start Time: NOW// <Enter> (JAN 25, 2005@11:30:35)
ZTSK=2921499

[bookmark: _Toc458599357]Output
[bookmark: _Toc200270047][bookmark: _Toc458599953]Figure 114: ^%ZTLOAD API—Sample output
Subj: MY PRINT [#28881111] 01/25/05@11:30 2 lines
From: POSTMASTER (Sender: XUUSER,ONE - COMPUTER SPECIALIST) In ‘IN’
basket.
Page 1 *New*

The secret message is: ‘HI MOM!’

Enter message action (in IN basket): Ignore//

[bookmark: _Toc458599358]RTN^%ZTLOAD(): Find Tasks that Call a Routine
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API finds TaskMan tasks that call a specific routine.
Format:	RTN^%ZTLOAD(routine,list)
Input Parameters:	routine:	(required) The name of the specific routine called.
Output:	list:	Returns a list of TaskMan tasks that call the specified routine.

[bookmark: _Toc458599359]$$S^%ZTLOAD(): Check for Task Stop Request
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This extrinsic function is used within a task to determine if the task has been asked to stop. Using the $$S^%ZTLOAD() function in longer tasks is highly recommended. Tasks should test $$S^%ZTLOAD to check if the user who queued the task has requested that the task be stopped. If the task has been asked to stop, it should set the local variable ZTSTOP to 1 before quitting. This alerts the submanager to set the task’s status to STOPPED instead of FINISHED, to give the user feedback that the task has obeyed their request.

You can use the optional message parameter to inform the user of the progress of a job. It is displayed when the task is listed by one of the many options that list tasks.
Format:	$$S^%ZTLOAD([message])
Input Parameters:	message:	(optional) Allows you to leave a message for the creator of the TaskMan task.
Output:	returns:	Returns:
1—Creator of the task that has asked the task to stop.
0—For all other cases.

[bookmark: _Toc458599360]STAT^%ZTLOAD: Task Status
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API looks up tasks and retrieves their current status. The status of a task returned by STAT^%ZTLOAD is expressed in the general terms of whether the task ran, is running, or runs. ZTSK(1) and (2) return the code and text of the current status. This status is an abstraction based on the more complex system used by TaskMan.
An active task is one that either is expected to start or is currently running. An inactive task does not start in the future without outside intervention; this can be because it has already completed, was never scheduled, or was interrupted. The “running” status is not based on direct examination of the system tables but is inferred from TaskMan’s information about the task.
When interpreting the output of STAT^%ZTLOAD, consider that:
If a task is transferred to another volume set, it becomes undefined on the original volume set.
A status of “running” is a guess.
“Finished” does not necessarily mean the task accomplished what it set out to do.
An interrupted task may or may not run correctly if edited and rescheduled.
Format:	STAT^%ZTLOAD
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	ZTSK:	(required) The TaskMan task number to look up. It must be defined on the current volume set.
Output Variables:	ZTSK(0):	Returns:
1—Task is defined.
0—Task is not defined.
	ZTSK(1):	Numeric status code from 0 to 5 indicating the status of the task.
	ZTSK(2):	Status text describing the status of the task. Its value corresponds with the status code in ZTSK(1). The possible values and their meanings are as follows:
ZTSK(1) = 0 and ZTSK(2) = “Undefined” means the task does not exist on this volume set.
ZTSK(1) = 1 and ZTSK(2) = “Active: Pending” means the task is scheduled, waiting for an I/O device, waiting for a volume set link, or waiting for a partition in memory.
ZTSK(1) = 2 and ZTSK(2) = “Active: Running” means the task has started running.
ZTSK(1) = 3 and ZTSK(2) = “Inactive: Finished” means the task quit normally after running.
ZTSK(1) = 4 and ZTSK(2) = “Inactive: Available” means the task was created without being scheduled or was edited without being rescheduled.
ZTSK(1) = 5 and ZTSK(2) = “Inactive: Interrupted” means the task was interrupted before it would have quit normally. Causes can include bad data, user intervention, hard error, and many other possibilities.

[bookmark: _Toc458599361]$$TM^%ZTLOAD: Check if TaskMan is Running
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This extrinsic function determines if TaskMan is running. Use this function if you need to know the status of TaskMan.
Format:	$$TM^%ZTLOAD
Input Parameters:	none.
Output:	returns:	Returns:
1—TaskMan is running on the current volume set.
0—TaskMan is not running on the current volume set.

[bookmark: _Toc458599362]ZTSAVE^%ZTLOAD(): Build ZTSAVE Array
Reference Type:	Supported
Category:	TaskMan
ICR #:	10063
Description:	This API stores a string of variables in the ZTSAVE array.
Format:	ZTSAVE^%ZTLOAD(string_of_variables[,kill_ztsave_flag])
Input Parameters:	string_of_variables:	(required) Sting of variable names to be stored in the ZTSAVE array.
	kill_ztsave_flag:	(optional) Any positive value first KILLs the ZTSAVE array.
Output:	returns:	Stores the string of input variables in the ZTSAVE array.

TaskMan: Developer Tools

[bookmark: _Ref212961720][bookmark: _Ref212961721][bookmark: _Toc458599363]Toolkit: Developer Tools
Several tools and Application Programming Interfaces (APIs) are available for developers to work with Kernel Toolkit. This section describes these APIs by type.
[bookmark: _Ref229206234][bookmark: _Toc458599364]Toolkit—Data Standardization
[bookmark: _Toc458599365]Overview
The API set in this section has been developed to support Data Standardization’s effort to allow the mapping of one term to another term. Mapping of terms is done via the REPLACED BY VHA STANDARD TERM field (#99.97) and provides the high-level goals of the following:
Non-standard terms inheriting standardized characteristics.
Deprecating a term and replacing it with a new term.
The Data Standardization API set:
Maps one term to another term.
Obtains the term in which another term is mapped.
Extracts field values from the term in which another term is mapped.
Shows the mapping relationships that a term has with other terms.
Keywords:
[bookmark: toolkit_vha_unique_id_vuid]VHA Unique ID (VUID)
Data Standardization
Term
Replacement Term
[bookmark: _Ref413322516][bookmark: _Toc458599366]Replacement Relationships
Use the following replacement relationships to map the Data Standardization API set in context. These APIs are documented in this section:
[bookmark: _Toc458599954]Figure 115: Toolkit—Replacement relationships: Data standardization
 A --> B --> C --> D A is replaced by B G is replaced by C
 ^ ^ ^ ^ B is replaced by C H is replaced by C
 | \ | \ C is replaced by D I is replaced by F
 | \ | \ D has no replacement J is replaced by F
 | \ | \ E is replaced by A K is replaced by H
 | F | H F is replaced by A L is replaced by H
 | ^ ^ | ^ ^
 | / \ | / \
 E I J G K L

 $$GETRPLC(B) would return C

 $$RPLCMNT(B) would return D

 $$RPLCVALS(J) would return the requested field values from entry D

 $$RPLCTRL(G) in both directions would return D and the output array would
 be set as follows:

 OutArr(“BY”,A) = B OutArr(“FOR”,A,E) = “”
 OutArr(“BY”,B) = C OutArr(“FOR”,A,F) = “”
 OutArr(“BY”,C) = D OutArr(“FOR”,B,A) = “”
 OutArr(“BY”,D) = “” OutArr(“FOR”,C,B) = “”
 OutArr(“BY”,E) = A OutArr(“FOR”,C,G) = “”
 OutArr(“BY”,F) = A OutArr(“FOR”,C,H) = “”
 OutArr(“BY”,G) = C OutArr(“FOR”,D,C) = “”
 OutArr(“BY”,H) = C OutArr(“FOR”,F,I) = “”
 OutArr(“BY”,I) = F OutArr(“FOR”,F,J) = “”
 OutArr(“BY”,J) = F OutArr(“FOR”,H,K) = “”
 OutArr(“BY”,K) = H OutArr(“FOR”,H,L) = “”
 OutArr(“BY”,L) = H

 $$RPLCTRL(L) in the forward direction would return D and the output array
 would be set as follows:

 OutArr(“BY”,C) = D OutArr(“FOR”,C,H) = “”
 OutArr(“BY”,D) = “” OutArr(“FOR”,D,C) = “”
 OutArr(“BY”,H) = C OutArr(“FOR”,H,L) = “”
 OutArr(“BY”,L) = H

 $$RPLCTRL(B) in the backward direction would return D and the output array
 would be set as follows:

 OutArr(“BY”,A) = B OutArr(“FOR”,A,E) = “”
 OutArr(“BY”,E) = A OutArr(“FOR”,A,F) = “”
 OutArr(“BY”,F) = A OutArr(“FOR”,B,A) = “”
 OutArr(“BY”,I) = F OutArr(“FOR”,F,I) = “”
 OutArr(“BY”,J) = F OutArr(“FOR”,F,J) = “”

 $$RPLCLST(G) in both directions would return D and the output array would
 be set as follows:

 OutArr(1) = G ^ 0 OutArr(“INDEX”,A) = 8
 OutArr(2) = C ^ 0 OutArr(“INDEX”,B) = 7
 OutArr(3) = D ^ 1 OutArr(“INDEX”,C) = 2
 OutArr(4) = H ^ 0 OutArr(“INDEX”,D) = 3
 OutArr(5) = K ^ 0 OutArr(“INDEX”,E) = 9
 OutArr(6) = L ^ 0 OutArr(“INDEX”,F) = 10
 OutArr(7) = B ^ 0 OutArr(“INDEX”,G) = 1
 OutArr(8) = A ^ 0 OutArr(“INDEX”,H) = 4
 OutArr(9) = E ^ 0 OutArr(“INDEX”,I) = 11
 OutArr(10) = F ^ 0 OutArr(“INDEX”,J) = 12
 OutArr(11) = I ^ 0 OutArr(“INDEX”,K) = 5
 OutArr(12) = J ^ 0 OutArr(“INDEX”,L) = 6

 $$RPLCLST(L) in the forward direction would return D and the output array
 would be set as follows if the status history was also included:

 OutArr(1) = L ^ 0 OutArr(“INDEX”,C) = 3
 OutArr(1,3080101.0954) = 0 OutArr(“INDEX”,D) = 4
 OutArr(2) = H ^ 0 OutArr(“INDEX”,H) = 2
 OutArr(2,3080101.1308) = 1 OutArr(“INDEX”,L) = 1
 OutArr(2,3080105.09) = 0
 OutArr(3) = C ^ 0
 OutArr(3,3080105.0859) = 1
 OutArr(3,3080112.1722) = 0
 OutArr(4) = D ^ 1
 OutArr(4,3080112.1723) = 1

 $$RPLCLST(B) in the backward direction would return D and the output array
 would be set as follows:

 OutArr(1) = A ^ 0 OutArr(“INDEX”,A) = 1
 OutArr(2) = E ^ 0 OutArr(“INDEX”,E) = 2
 OutArr(3) = F ^ 0 OutArr(“INDEX”,F) = 3
 OutArr(4) = I ^ 0 OutArr(“INDEX”,I) = 4
 OutArr(5) = J ^ 0 OutArr(“INDEX”,J) = 5

[bookmark: _Toc212963920][bookmark: _Toc218350046][bookmark: _Toc218369076][bookmark: _Toc212963916][bookmark: _Toc458599367]Application Programming Interfaces (APIs)
[bookmark: _Toc458599368]$$GETRPLC^XTIDTRM(): Get Mapped Terms (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—Data Standardization
ICR #:	5078
Description:	This extrinsic function gets the REPLACED BY VHA STANDARD TERM field (#99.97) for a given entry.
[image: Note]	REF: For an overview of the Data Standardization API set, see Toolkit—Data Standardization APIs.

For a chart mapping the Data Standardization API set in context, see Replacement Relationships.
Format:	$$GETRPLC^XTIDTRM(file,ien)
Input Parameters:	file:	(required) File number.
	ien:	(required) Internal Entry Number (IEN).
Output:	returns:	Returns the REPLACED BY VHA STANDARD TERM field (#99.97) for a given entry.

[bookmark: _Toc458599369]Example
This extrinsic function sets X to IEN_”;”_FileNumber of entry that replaces the input entry:
>S X=$$GETRPLC^XTIDTRM(file,ien)
[image: Note]	NOTE:
Null is returned on error. This typically occurs when the input entry does not exist.
If the input entry is not replaced by another term then a reference to the input term is returned.
[bookmark: _Toc212963919][bookmark: _Toc218350047][bookmark: _Toc218369077][bookmark: _Toc458599370]$$RPLCLST^XTIDTRM(): Get Replacement Terms, w/Optional Status Date & History (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—Data Standardization
ICR #:	5078
Description:	This extrinsic function traverses the REPLACED BY VHA STANDARD TERM field (#99.97) forwards and backwards to find all terms that are replacement terms for the input entry and all terms for which the input entry is a replacement. This is recursively done so that each potential branch of replacement terms forwards and backwards is traversed.
Format:	$$RPLCLST^XTIDTRM(file,ien,drctn,statdate,stathst,outarr)
Input Parameters:	file:	(required) File number.
	ien:	(required) Entry number.
	drctn:	(optional) Flags denoting which direction to follow the trail of replacement terms. Possible flag values are:
F (default)—Follow the trail forwards.
B—Follow the trail backwards.
*—Follow the trail in both directions (same as FB/BF).
	statdate:	(optional) VA FileMan date/time in which to return term’s status. Defaults to current date/time.
	stathst:	(optional) Flag denoting if a term’s full status history should be included in the output:
0 (default)—No.
1—Yes.
Input/Output
Parameters:	outarr:	I: (required) Array to put trail of replacement terms into (closed root).
O: The output array contains the list terms to which the input entry is somehow related.
OutArr(1..n) = Term ^ StatusCode (based on input StatDate).
OutArr(1..n,StatusDateTime) - StatusCode on this date/time.
This node is only returned if StatHst is set to “1” (Yes).
OutArr(“INDEX”,Term) = 1..n.
[image: Note]	NOTE: Term is in the format IEN;FileNumber.

StatusCode:
1—Active.
0—Inactive.
StatusDateTime is in VA FileMan format.
[bookmark: _Toc458599371]Example
This extrinsic function sets X=IEN_”;”_FileNumber of the entry that ultimately replaces the input entry:
>S X=$$RPLCLST^XTIDTRM(File,IEN,Drctn,StatDate,StatHst,OutArr)
[image: Note]	NOTE:
Null is returned on error. This typically occurs when the input entry does not exist.
If the input entry is not replaced by another term then a reference to the input term is returned.
[bookmark: _Toc218350048][bookmark: _Toc218369078][bookmark: _Toc458599372]$$RPLCMNT^XTIDTRM(): M One Term to Another (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—Data Standardization
ICR #:	5078
Description:	This extrinsic function recursively traverses the REPLACED BY VHA STANDARD TERM field (#99.97) until the final replacement term is reached.
Format:	$$RPLCMNT^XTIDTRM(fle,ien)
Input Parameters:	file:	(required) File number.
	ien:	(required) Internal Entry Number (IEN).
Output:	none.

[bookmark: _Toc458599373]Example
This extrinsic function sets X to IEN_”;”_FileNumber of the entry that ultimately replaces the input entry:
>S X=$$RPLCMNT^XTIDTRM(file,ien)
[image: Note]	NOTES:
Null is returned on error. This typically occurs when the input entry does not exist.
If the input entry is not replaced by another term then a reference to the input term is returned.
[bookmark: _Toc212963918][bookmark: _Toc218350049][bookmark: _Toc218369079][bookmark: _Toc212963917][bookmark: _Toc458599374]$$RPLCTRL^XTIDTRM(): Get Replacement Trail, w/ Replaced “BY” & Replacement “FOR” Terms
Reference Type:	Supported
Category:	Toolkit—Data Standardization
ICR #:	5078
Description:	This extrinsic function traverses the REPLACED BY VHA STANDARD TERM field (#99.97) forwards and backwards to find all terms that are replacement terms for the input entry and all terms for which the input entry is a replacement. This is recursively done so that each potential branch of replacement terms forwards and backwards is traversed.
Format:	$$RPLCTRL^XTIDTRM(file,ien,drctn,outarr)
Input Parameters:	file:	(required) File number.
	ien:	(required) Internal Entry Number (IEN).
	drctn:	(optional) Flags denoting which direction to follow the trail of replacement terms. Possible flag values are:
F (default)—Follow the trail forwards.
B—Follow the trail backward.
*—Follow the trail in both directions (same as FB/BF).
Input/Output
Parameters:	outarr:	I: (required) Array to put trail of replacement terms into (closed root).
O: The output array contains the trail of replacement terms.
OutArr(“BY”,Term) = Replacement Term means: Entry “Term” is replaced BY entry “Replacement Term.”
OutArr(“FOR”,Replacement Term, Term) = “” means: Entry “Replacement Term” is a replacement FOR entry “Term.”
Term and Replacement Term is in the format IEN;FileNumber.

[bookmark: _Toc458599375]Example
This extrinsic function sets X to IEN_”;”_FileNumber of the entry that ultimately replaces the input entry:
>S X=$$RPLCTRL^XTIDTRM(file,ien,drctn,outarr)
[bookmark: _Toc218350050][bookmark: _Toc218369080][image: Note]	NOTES:
Null is returned on error. This typically occurs when the input entry does not exist.
If the input entry is not replaced by another term then a reference to the input term is returned.
[bookmark: _Toc458599376]$$RPLCVALS^XTIDTRM(): Get Field Values of Final Replacement Term (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—Data Standardization
ICR #:	5078
Description:	This extrinsic function retrieves one or more fields of data from an entry’s final replacement term. The REPLACED BY VHA STANDARD TERM field (#99.97) is recursively traversed until the final replacement term is reached. The requested fields of the final replacement term are returned. It effectively bundles $$RPLCMNT^XTIDTRM and GETS^DIQ into a single call.
Format:	$$RPLCVALS^XTIDTRM(file,ien,fields,flags,outarr)
Input Parameters:	file:	(required) File number.
	ien:	(required) Internal Entry Number (IEN).
	fields:	(required) Fields for which you wish to get values.
[image: Note] REF: For detailed description, see the definition of the FIELD parameter in the GETS^DIQ API in the VA FileMan Developer’s Guide.
	flags:	(required) Flags that control output format.
[image: Note] REF: For detailed description, see the definition of the FLAGS parameter in the GETS^DIQ API in the VA FileMan Developer’s Guide.
Input/Output:
Parameters	outarr:	Input/Output:
I:	(required) Array to put output field values into (closed root).
O:	The output array is in FDA format.
[image: Note] REF: For example output, see the GETS^DIQ API in the VA FileMan Developer’s Guide.

[bookmark: _Toc458599377]Example
This extrinsic function sets X to IEN_”;”_FileNumber of the entry that ultimately replaces the input entry:
>S X=$$RPLCVALS^XTIDTRM(file,ien,fields,flags,outarr)
[image: Note]	NOTES:
Null is returned on error. This typically occurs when the input entry does not exist.
If an error occurs when extracting the requested fields from the final replacement term then a reference to the final replacement term is still returned and outarr is KILLed.
If the input entry is not replaced by another term then a reference to the input term is returned and outarr() contains the field values for the input entry.
[bookmark: _Toc212963921][bookmark: _Toc218350051][bookmark: _Toc218369081][bookmark: _Toc458599378]$$SETRPLC^XTIDTRM(): Set Replacement Terms (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—Data Standardization
ICR #:	5078
Description:	This extrinsic function sets the REPLACED BY VHA STANDARD TERM field (#99.97).
Format:	$$SETRPLC^XTIDTRM(file,ien,rplcmnt)
Input Parameters:	file:	(required) File number.
	ien:	(required) Internal Entry Number (IEN).
	rplcmnt:	(required) Entry number of replacement term.
Output Variables:	X:	Results:
1 (success)—If pointer to replacement term stored.
0 (failure)—If unable to store pointer to replacement term.

[bookmark: _Toc458599379]Example
This extrinsic function sets X to 1 if Pointer to replacement term stored (i.e., success) or 0 if Unable to store pointer to replacement term (i.e., failure):
>S X=$$SETRPLC^XTIDTRM(File,IEN,Rplcmnt)

[bookmark: _Toc158517299][bookmark: _Ref241381093][bookmark: _Ref357667485][bookmark: _Toc458599380]
Toolkit—Duplicate Record Merge
[bookmark: _Ref421542374][bookmark: _Toc458599381]Overview
A file in which entries need to be merged can be entered in the DUPLICATE RESOLUTION file (#15.1). This requires adding the file as one that can be selected as the variable pointer, and search criteria would usually need to be specified to assist in identifying potential duplicate pairs (although an option can be used by which selected pairs can be added directly to the DUPLICATE RECORD file (#15) as verified duplicates). Verified duplicate pairs may be approved for merging, and a merge process generated for those approved pairs. A DUPLICATE RECORD file (#15) entry also has handle files that are not associated as normal pointers identified in the PACKAGE file (#9.4) under the AFFECTS RECORD MERGE subfile with special processing routines.
[image: Caution]	CAUTION: If a file has related files that are not normal pointers, they should be handled only as entries in the duplicate record file and the Kernel Toolkit options used for merges involving the file.
The merge utility of Kernel Toolkit as revised by Kernel Toolkit patch XT*7.3*23 provides an entry point that is available to developers for the merging of one or more pairs of records (a FROM record and a TO record) in a specified file. The merge process merges the data of the FROM record into that of the TO record and deletes the FROM record, restoring by a hard set only the zero node with the .01 value on it until the merge process is completed (such that any references to that location via pointers does not error out). Any files that contain entries DINUMed with the data pairs are then also merged (and any files that are related to them by DINUM as well). Any pointers that can be identified rapidly by cross-references are modified so that references for the FROM entry become references to the TO entry instead. Following this, any files that contain other pointers are searched entry by entry to test for pointers to a FROM entry, and when found are modified to reference the TO entry. This search for pointer values is the most time consuming part of the entire process and may take an extended period depending upon the number of files that must be searched, the number of entries in those files, and how many levels at which subfiles pointers may be located. Since the search through these files takes the same period of time independent of the number of pairs that are being merged, it is suggested that as many pairs as convenient be combined in one process. At the end of the conversion of these pointers, the zero node stubs are removed from the primary file and all related DINUMed files.
The merge process is a single job that is tracked with frequent updates on location and status from start to finish. The job can be stopped at any time if necessary using TaskMan utilities (or in the event of a system crash, etc.) and restarted at the point of interruption at a later time.
[bookmark: _Toc458599382]Manner in which data is Merged
When a primary file or a DINUMed files entries are merged, any top level (single value) fields that are present in the FROM entry that are not present in the TO entry is merged into the TO entries data. Any of these fields that contain cross-references are entered using a VA FileMan utility (FILE^DIE) so that the cross-references are fired. Other fields (those without cross-references) are directly set into the data global.
If a subfile entry (Multiple) exists in the FROM record that is not present in the TO record (as identified by the .01 value), that entry is created with a VA FileMan utility (UPDATE^DIE) and the rest of the subfile merged over into the TO record and the cross-references within the subfile and any descendent subfiles run.
If a subfile entry (Multiple) exists in the FROM record and an identical .01 value exists in the TO record, the subfile in the FROM record is searched for any descendent subfiles that are not present in the TO record subfile. If such a subfile is found it is merged into the subfile in the TO record and any cross-references in the merged subfile run.
For fields that are simple pointers to the primary file (or any other file DINUMed to the primary file) the reference to the FROM record is changed to a reference to the TO record. If the field contains a cross-reference this editing is performed using a VA FileMan Utility call (FILE^DIE), otherwise it is set directly into the global node.
[bookmark: _Ref442366223][bookmark: _Toc458599383]Developing a File Merge Capability
This topic provides developers with a set of instructions to follow in building a merge capability for a file. After a developer identifies a file that has a substantial number of duplicates and that the nature and use of the file warrants a merge utility, he/she then follows the steps outlined in this section in developing that merge capability.
For demonstration purposes, the rest of this section uses a specific example of developing a Patient Merge using the Duplicate Resolution Utilities.
[bookmark: _Toc458599384]Step 1
Notify the Kernel Toolkit developers of the perceived need for a duplicate checking/merge capability for a particular file. They will do the following:
1. Assists the developer in deciding whether there is indeed a need for a Duplicate Resolution Utility for this particular file.
Add the file to the .01 and .02 variable pointer field definitions in the DUPLICATE RECORD file (#15).
Notifies the application developer when the modified dictionary is to be released to the field.
[bookmark: _Toc458599385]Step 2
The developer needs to now communicate to the larger development community his/her intention to develop a merge capability for this file. All developers need to determine if the merging and deleting of records in this file affects their package in such a way that they need to have their own unique merge routine that deals with only their package's files. A developer usually has to write their own unique merge routine if any of the following conditions exist:
Patient pointer field is defined as a numeric or free text field rather than a pointer.
Developer wants their end users to complete some task prior to the merge occurring.
There are compound cross references that include the patient pointer on another field but the cross reference is not triggered by the changing of the patient pointer.
Merge (Duplicate Resolution Utilities) does not do what the package developer desires.
[bookmark: _Toc458599386]Description of What Occurs during the Merge
The following is a brief description of what occurs during the merge process:
1. The base file (e.g., PATIENT file, #2) is checked to see if it exists.
1. The PT nodes (e.g., ^DD(2,0,"PT",) are checked and any false positives are removed.
1. Creates a list of files and fields within those files that point to the file being merged (e.g., in this example the file being merged is the PATIENT file, #2).
1. If a file is pointing to the file being merged by its .01 field, and if that .01 field is DINUM, then all files/fields that point to that file are also gathered. The DINUM rule also applies to that file and any files pointing to it, to any depth.
Each file/field is checked and re-pointed/merged as follows:
If the field pointing is not a .01 field, the "FROM entry" is changed to the "TO entry".
If the field pointing is the .01 field but not DINUM, the "FROM entry" is changed to the "TO entry".
Each pointing .01 DINUM field is handled as follows:
If the .01 DINUM field is at the file level, ^DIT0 is called to merge the "FROM entry" to the "TO entry" and then the "FROM entry" is deleted.

^DIT0 merges field by field but does not change any value in the "TO entry". That means that NULL fields in the "TO entry" get the value from the same field in the "FROM entry" if it is not NULL, and valued fields in the "TO entry" remain the same.

^DIT0 also merges Multiples. If a Multiple entry in the "FROM entry" cannot be found in the "TO entry", it is added to the "TO entry". If a Multiple entry in the "FROM entry" can be found in the "TO entry", then that Multiple entry is merged field by field.
If the .01 DINUM field is at the subfile level (in a Multiple), it is handled as follows:
If there is a "FROM entry" but no "TO entry", the "FROM entry" is added to the "TO entry", changing the .01 field value in the process, and the "FROM entry" is deleted.
If there is a "FROM entry" and also a "TO entry", the "FROM entry" is deleted and the "TO entry" remains unchanged.
If it is determined that a developer must have their own unique merge that deals with their files, they must make the appropriate entries in the PACKAGE file (#9.4). If they have to have some sort of action taken by end-users prior to the merging of the records, they must update the MERGE PACKAGES Multiple in the DUPLICATE RECORD file (#15) for that pair of records.
[bookmark: _Toc458599387]Entries Needed in the PACKAGE File (#9.4)
In the PACKAGE file (#9.4) make entries in the following fields:
AFFECTS RECORD MERGE field (#20)
.01 field—Enter the file affected (e.g., PATIENT file, #2)
NAME OF MERGE ROUTINE field—Enter the name of the merge routine, which is executed via indirection by Duplicate Resolution Utilities.

If you leave this field blank but still place an entry in the PACKAGE file (#9.4), Duplicate Resolution Utilities assumes that you have some sort of interactive merge process that your end-users must complete prior to the main merging of the two records. It also assumes that this interactive merge process is on a separate option within the developer's package options. The values of the two records being merged are placed in:
^TMP("XDRMRGFR",$J,XDRMRG("FR"),
^TMP("XDRMRGTO",$J,XDRMRG("TO"),
These should be referenced by the developer if they need any certain field values since the values might have been changed prior to the execution of their merge routine.
RECORD HAS PACKAGE DATA field—Enter a string of M executable code that is passed the variable XDRMRG("FR") (the "FROM record" IEN) and set XDRZ to 0. The code should set XDRZ=1 if XDRMRG("FR") has data within your package files.
Remember to only make these entries in the PACKAGE file (#9.4) if the normal merge does not suffice for your package. If you have an entry in the PACKAGE file (#9.4) the repointing and merging as described above does not take place for those files within your Package entry.
At the completion of your interactive merge process the developer must set the STATUS field of the MERGE PACKAGES Multiple for their package in the DUPLICATE RECORD file (#15) entry to Ready. This must be done using VA FileMan, because of the trigger that is on the STATUS field. Once all of the MERGE PACKAGE entries have a STATUS of Ready, the main merging of the two records can occur.
[bookmark: _Toc458599388]Step 3
The developer needs to add an entry in the DUPLICATE RESOLUTION file (#15.1) for the file being built. The following fields need to be updated in the DUPLICATE RESOLUTION file (#15.1) and data should be entered by the developer:
.01 FILE TO BE CHECKED (required)
.06 CROSS-REF FOR NEW SEARCH (optional)
.09 CANDIDATE COLLECTION ROUTINE (required)
.11 DUPLICATE MANAGER MAIL GROUP (optional)
.15 POTENTIAL DUPLICATE THRESHOLD% (required)
.16 VERIFIED DUPLICATE MAIL GROUP (optional)
.17 VERIFIED DUPLICATE MSG ROUTINE (optional)
.18 VERIFIED DUPLICATE THRESHOLD% (optional)
.25 MERGE STYLE (required)
.26 DELETE FROM ENTRY (optional)
.27 PRE-MERGE ROUTINE (optional)
.28 POST-MERGE ROUTINE (optional)
.29 MERGE MAIL GROUP (optional)
.31 MERGE MSG ROUTINE (optional)
.33 MERGE DIRECTION INP TRANSFORM (optional)
1100 DUPLICATE TESTS (required)
.01 DUPLICATE TEST (required)
.02 ORDER OF TEST (required)
.03 DUPLICATE TEST ROUTINE (required)
.04 FILE FOR INFORMATION (optional)
.05 FIELD TO BE CHECKED (required)
.06 SUCCESSFUL MATCH WEIGHT (required)
.07 UNSUCCESSFUL MATCH WEIGHT (required)
1200 DINUM FILES FOR MERGE (optional)
.01 DINUM FILES FOR MERGE (optional)
[bookmark: _Toc458599389]Explanation of Fields in Logical Order of Entry
Selected fields are explained in the logical order of entry versus strict numeric field order as follows:
.01 FILE TO BE CHECKED
Enter the file for which the developer wants to check and merge duplicates. You can only enter files that are also defined in the .01 variable pointer field of the DUPLICATE RECORD file (#15). If the file you are interested in is not there, contact the Kernel Toolkit team for coordination.
.09 CANDIDATE COLLECTION ROUTINE
This field is updated with the name of the routine that the Duplicate Resolution Utilities executes to generate the list of potential duplicate candidates. The list of candidates is passed back to the merge shell in ^TMP(“XDRD”,$J,file number. For example, if this is a patient merge utility, the candidate collection routine might pass back, to the merge shell, all patients who have the same last name as the record being processed, the same DOB as the record being processed, or who have the same or similar Social Security Number (SSN). This candidate collection routine is used to minimize the number of records the merge shell has to process in determining potential duplicates.
[image: Note]	REF: For an example of a Candidate Collection routine, see the “Candidate Collection Routine for Patient Merge Example” section.
Selecting Fields to Compare in Candidate Collection:
The developer needs to give this considerable thought as selecting wrong fields for candidate collection results in missed or many false potential duplicate candidates.
The most important characteristic that a field should have is the probability of containing data. If a SSN field exists in a file but the field is rarely filled in, it would not be a good field from which to build candidates.
Since selection of candidates deals with minimizing the set of records to test further, look at the whole file initially. It becomes desirable for the field to have a cross reference.
Uniqueness of a field is also important. If all records contain one of two possible values (e.g., Male or Female), it makes little sense for you to select all records that are the same value as the record compared. However, such a field can be useful later in performing individual tests.
One final point to keep in mind is, if you finally come up with very few fields to collect candidates on, you may need to be very liberal in the comparison. Furthermore, you might want to make more than one pass through the same field with different comparison logic, hoping to find additional records that we missed initially.
1100 DUPLICATE TESTS
The developer must identify data items/fields to be used to assist in determining if a pair of records are duplicates. These items/fields must be single valued fields (i.e., data in multiple fields is not supported), as follows:
.01 DUPLICATE TEST
This is a free text name for the test (e.g., Name, SSN, and DOB).
.02 ORDER OF TEST
Enter in the numeric value of the order you want the tests executed.
.03 DUPLICATE TEST ROUTINE
Enter the name of the routine that is called to do the actual comparison of the two records for a specific field.
[image: Note]	REF: For examples of duplicate test routines, see the “Duplicate Test Routine Examples” section.
[bookmark: _Toc458599955]Figure 116: .03 DUPLICATE TEST ROUTINE—Variables passed to the test routine
	Variable
	Value

	XDRCD
	IEN of Record 1.

	XDRCD2
	IEN of Record 2.

	XDRFL
	File number being checked

	XDRDTEST(xdrdto
	zero node of the test entry from the DUPLICATE RESOLUTION file (#15.1)

	XDRDCD(XDRFL,XDRCD,field number,"I")
	Internal data value for this field for Record 1.

	XDRDCD2(XDRFL,XDRCD2,field number,"I")
	Internal data value for this field for Record 2.

	XDRD("test score")
	0; This variable is used to pass the test score back to XDRDUP.

The successful maximum score can be obtained from the following:
$P(XDRDTEST(XDRDTO),U,6)

The unsuccessful score can be obtained from the following:
$P(XDRDTEST(XDRDTO),U,7)

Within the duplicate test routine, the developer can assign the entire successful match weight if both records’ data is exactly the same, or he can assign a percentage of the match score if the data is similar, but not exactly the same. For example, if record 1 has a NAME of XUPATIENT,ONE-TWO and record 2 has a NAME of XUPATIENT,ONE and the successful match weight for NAME is 50 points, this pair might be assigned 90% of the total 50 points. The developers have to go through trial and error methods of changing and calculating the percent of the total match score that is assigned.
[image: Note]	REF: For examples of duplicate test routines, see the “Duplicate Test Routine Examples” section.
.04 FILE FOR INFORMATION
If the field that is being tested is not in the base file being checked, the developer must enter the file where the information is stored. For example, in the Indian Health Service (IHS) Patient Merge, the TRIBE OF MEMBERSHIP is a field used for a duplicate test, and this data field is stored in the IHS PATIENT file (#2). If no entry is made in this field, the Merge (Duplicate Resolution Utilities) assumes the base file.
.05 FIELD TO BE CHECKED
This field contains the field number of the data being used for this test. The developer must be aware that Multiple fields cannot be used for duplicate tests.
.06 SUCCESSFUL MATCH WEIGHT
This is the score or total number of points assigned when a match is made on the data item being checked. This score can be anywhere from 0 to 99. The development team needs to determine the level of confidence associated with each test. The higher confidence fields would be assigned a greater successful match score than the lower confidence fields. For example, in a Patient Merge, if NAME matches exactly, a total of 60 points might be given, but if SEX or TRIBE OF MEMBERSHIP match exactly only 10 points is given. The total number of points between all the tests does not have to equal 100. The calculations to determine whether or not the pair is a potential duplicate is based on a percentage of the total possible score. If a data item is missing, it does not figure in the denominator in calculating the percentage.
.07 UNSUCCESSFUL MATCH WEIGHT
This is the score or total number of points assigned when the data items for the two records being checked do not match. This score is normally a negative number. For example, if the DOB for the two records is different, a score of -40 might be assigned. This score can be anywhere from 0 to -99. The development team needs to determine the level of confidence associated with each test. The higher confidence fields would be assigned a greater negative unsuccessful match score than the lower confidence fields.
.15 POTENTIAL DUPLICATE THRESHOLD%
This is the possible percentage out of 100 after the accumulation of the test scores. If the final accumulated test score is equal to or greater than this percentage of the total possible points, the record pair is added to the DUPLICATE RECORD file (#15) as a potential duplicate pair. The percentage has to be experimented with to find the best percentage to use. It is recommended that the percentage be set low at first and gradually increased to find the best possible percentage, so that you do not have a large number of false negatives.
.25 MERGE STYLE
This determines whether or not the merge process is to be interactive or not. It is highly recommended that the merge be interactive. If it is interactive, the user is able to select fields from both the "from" and the "target" record. If non-interactive, all values are taken from the source record.
.11 DUPLICATE MANAGER MAIL GROUP
This field contains a pointer to the mail group that receives messages in cases when the duplicate checking process could not be started. Some examples of conditions that would generate bulletins include:
Test routine is not present.
No entry in the DUPLICATE RESOLUTION file (#15.1) for this field.
Global root node in ^DIC is undefined.
.16 VERIFIED DUPLICATE MAIL GROUP
This field contains a pointer to the mail group that receives messages when a pair of records have been verified as duplicates. For example, in the case of a patient merge, there might be things that pharmacy or lab staff want to do before the two records are merged.
.17 VERIFIED DUPLICATE MSG ROUTINE
This field allows a software developer to send a customized bulletin notifying the Verified Duplicate Mail Group about verified duplicates. If nothing is entered, the Kernel Duplicate Resolution software sends a brief bulletin to the members of the mail group. This bulletin only provides the .01 value and the DFN numbers of the two records. The Duplicate Resolution software passes the XDRMFR and XDRMTO routines and it is up to this routine to gather any other information it wants to send in the bulletin and also to send the bulletin to the Verified Duplicate Mail Group. A label entry point is allowed but you must use a “-” instead of the normal “^” (e.g., ENTRY POINT-).
.29 MERGE MAIL GROUP
This field contains a pointer to the mail group that receives messages when a pair of records have been merged. Generally, this is the same mail group as the VERIFIED DUPLICATE MAIL GROUP (#.16). These recipients can examine the merged-to record to make sure that all data transferred from the merged-from record successfully.
.31 MERGE MSG ROUTINE
This field is allows a software developer to send a customized bulletin notifying the Merge Mail Group about merged duplicate pairs. If nothing is entered, the Kernel Duplicate Resolution software sends a brief bulletin to the members of the mail group. The Kernel Bulletin only provides the .01 values and the DFN's of the two records. The Duplicate Resolution software passes the XDRMFR and XDRMTO routines and it is up to the routine to gather any information it wants to send in the bulletin and also to send the bulletin to the Merge Mail Group. A label entry point is allowed but you must use a “-” instead of the normal “^” (e.g., ENTRY POINT-ROUTINE). This entry point is executed by the Duplicate Resolution software after transforming the “-” into a “^”.
Also, this routine might very well need to be different from the VERIFIED DUPLICATE MSG ROUTINE (#.17), because the information that users need to see after the merge is different from before.
.18 VERIFIED DUPLICATE THRESHOLD%
If this field contains a percentage from 0 to 100, the Duplicate Resolution Utilities (XDR namespace) software automatically marks the two records as Verified Duplicates if the comparison score percentage is equal or greater to this value. This number, if entered, needs to be somewhat high, probably above 90% (e.g., IHS does not use this field in the case of the patient merge, because they would like human determination if the two records are indeed duplicates).
[bookmark: _Ref442371269][bookmark: _Toc458599390]Special Processing Routine Examples
[bookmark: _Toc415281289][bookmark: _Toc415967461][bookmark: _Ref442371459][bookmark: _Ref442371513][bookmark: _Toc458599391]Candidate Collection Routine for Patient Merge Example
[bookmark: _Toc458599956]Figure 117: Special Processing Routine Examples—Candidate Collection Routine for Patient Merge
DPTDCAN	;IHS/OHPRD/JCM - GETS POSSIBLE DUPLICATE CANDIDATES ;09/16/93/ 08:19
	;;1.0;DPTD;;
	;
	; Calls: EN^DIQ1
	;
START	;
	K ^TMP("XDRD",$J,XDRFL),DPTDCAN
	Q:$P(^DPT(XDRCD,0),U,19)
	D VALUE
	D NAME
	D SSN
	D DOB
END	D EOJ
	Q
	;
VALUE	;
	S DIC=2,DA=XDRCD,DIQ(0)="I",DIQ="DPTDCAN",DR=".01;.03;.09"
	D EN^DIQ1 K DIC,DA,DR,DIQ
	Q
	;
NAME	;Get patients with the same last name and first initial
	G:DPTDCAN(XDRFL,XDRCD,.01,"I")']"" NAMEX
	S DPTDCAN("NAME")=DPTDCAN(XDRFL,XDRCD,.01,"I")
	S DPTDCAN("LNAME&FI")=$P(DPTDCAN("NAME"),",",1)_","_$E($P(DPTDCAN("NAME"
),",",2),1)_"AAA"
	S DPTDCAN("BNAME")=DPTDCAN("LNAME&FI")
	F I=0:0 S DPTDCAN("BNAME")=$O(^DPT("B",DPTDCAN("BNAME"))) Q:DPTDCAN("BNA
ME")=""!(($P(DPTDCAN("NAME"),",",1)_","_$E($P(DPTDCAN("NAME"),",",2),1)
)'=($P(DPTDCAN("BNAME"),",",1)_","_$E($P(DPTDCAN("BNAME"),",",2),1)))
D
. S DPTDCAN("BNAMEDFN")=0 F S DPTDCAN("BNAMEDFN")=$O(^DPT("B",DPTDCAN("
BNAME"),DPTDCAN("BNAMEDFN"))) Q:DPTDCAN("BNAMEDFN")="" S:DPTDCAN("BNAM
EDFN")'=XDRCD ^TMP("XDRD",$J,XDRFL,DPTDCAN("BNAMEDFN"))="".
QNAMEX	Q
	;
SSN	;Get patients with same last four digits of ssn
	G:DPTDCAN(XDRFL,XDRCD,.09,"I")']"" SSNX
	S DPTDCAN("SSN")=DPTDCAN(XDRFL,XDRCD,.09,"I")
	S DPTDCAN("L4SSN")=$E(DPTDCAN("SSN"),6,9)
	S DPTDCAN("BL4SSN")=XDRCD
	F %=0:0 S DPTDCAN("BL4SSN")=$O(^DPT("BS",DPTDCAN("L4SSN"),DPTDCAN("BL4SS
N"))) Q:'DPTDCAN("BL4SSN") S ^TMP("XDRD",$J,XDRFL,DPTDCAN("BL4SSN"))=""
	;
	; Check SSNS with same first five digits
	; Commented out the following line, is not specific enough for IHS
	; but would be useful for the VA
	;
	;S DPTDCAN("F5SSN")=$E(DPTDCAN("SSN"),1,5)_"0000",DPTDCAN("5SSN")=DPTDCA
N("F5SSN") D
	. F %=0:0 S DPTDCAN("5SSN")=$O(^DPT("SSN",DPTDCAN("5SSN"))) Q:DPTDCAN("5
SSN")'=+DPTDCAN("5SSN")!($E(DPTDCAN("5SSN"),1,5)'=$E(DPTDCAN("SSN"),1,5
)) S ^TMP("DPTDCAN",$J,XDRFL,$O(^DPT("SSN",DPTDCAN("5SSN"),"")))=""
	. Q
SSNX	Q
	;
DOB	;Get patients with same date of birth
	G:DPTDCAN(XDRFL,XDRCD,.03,"I")']"" DOBX
	S DPTDCAN("DOB")=DPTDCAN(XDRFL,XDRCD,.03,"I")
	S DPTDCAN("BDOB")=XDRCD
	F %=0:0 S DPTDCAN("BDOB")=$O(^DPT("ADOB",DPTDCAN("DOB"),DPTDCAN("BDOB"))
) Q:'DPTDCAN("BDOB") S ^TMP("XDRD",$J,XDRFL,DPTDCAN("BDOB"))=""
	;
	;Transpose day of birth and get patients with same date of birth
	;
	S DPTDCAN("TDOB")=$E(DPTDCAN("DOB"),1,5)_$E(DPTDCAN("DOB"),7)_$E(DPTDCAN
("DOB"),6)
	S DPTDCAN("BDOB")=XDRCD
	F %=0:0 S DPTDCAN("BDOB")=$O(^DPT("ADOB",DPTDCAN("TDOB"),DPTDCAN("BDOB")
)) Q:'DPTDCAN("BDOB") S ^TMP("XDRD",$J,XDRFL,DPTDCAN("BDOB"))=""
DOBX	Q
	;
EOJ	;
	K DPTDCAN,%
	Q

[bookmark: _Hlt415281603][bookmark: _Toc415281290][bookmark: _Toc415967462][bookmark: _Ref442371795][bookmark: _Ref442371927][bookmark: _Toc458599392]Duplicate Test Routine Examples

Name Test Routine for a Patient Merge Example
[bookmark: _Toc458599957]Figure 118: Special Processing Routine Examples—Name Test Routine for a Patient Merge
DPTDN	;IHS/OHPRD/JCM;COMPARES NAMES; [06/08/92 12:14 PM]
	;;1.0;DPTD;;AUG 13, 1991
	;
	; Calls: SOU^DICM1
	;
START	;
	D INIT
	D NAME
	I $O(^DPT(XDRCD,.01,0)) D OTHER
END	D EOJ
	Q
	;
EN	; EP - Entry Point for any routines comparing names
	;
	D INIT1
	D COMPARE
	D EOJ
	Q
	;
INIT	;
	D EOJ
	S DPTDN("MATCH")=$P(XDRDTEST(XDRDTO),U,6)
	S DPTDN("NO MATCH")=$P(XDRDTEST(XDRDTO),U,7)
	S DPTDN=$G(XDRCD(XDRFL,XDRCD,.01,"I")),DPTDN2=$G(XDRCD2(XDRFL,XDRCD2,.01
,"I"))
	;
INIT1	S DPTDNL=$P(DPTDN,","),DPTDNF=$P($P(DPTDN,",",2)," "),DPTDNFI=$E(DPTDNF)
	,DPTDNM=$P($P(DPTDN,",",2)," ",2),DPTDNMI=$E(DPTDNM)
	;
INIT2	S DPTDNL2=$P(DPTDN2,","),DPTDNF2=$P($P(DPTDN2,",",2)," "),DPTDNFI2=$E(DP
TDNF2),DPTDNM2=$P($P(DPTDN2,",",2)," ",2),DPTDNMI2=$E(DPTDNM2)
	Q
	;
NAME	;
	D COMPARE
	D:$O(^DPT(XDRCD2,.01,0)) OTHER2
	Q
	;
OTHER	;
	F DPTDNO=0:0 S DPTDNO=$O(^DPT(XDRCD,.01,DPTDNO)) Q:'DPTDNO S DPTDN=$P(^
DPT(XDRCD,.01,DPTDNO,0),U,1) S:'$D(DPTDN2) DPTDN2=XDRCD2(XDRFL,XDRCD2,.01,"I") D INIT1,NAME
	Q
	;
OTHER2	;
	F DPTDNO2=0:0 S DPTDNO2=$O(^DPT(XDRCD2,.01,DPTDNO2)) Q:'DPTDNO2 S DPTDN
2=$P(^DPT(XDRCD2,.01,DPTDNO2,0),U,1) D INIT2,COMPARE
	Q
	;
COMPARE	;
	S:'$D(DPTDN("TEST SCORE")) DPTDN("TEST SCORE")=DPTDN("NO MATCH")
	I DPTDN=DPTDN2 S DPTDN("TEST SCORE2")=DPTDN("MATCH") G COMPAREX
	
 I DPTDNF=DPTDNF2,DPTDNL=DPTDNL2 S DPTDN("TEST SCORE2")=DPTDN("MATCH")*.8
 G COMPAREX
	I DPTDNFI=DPTDNFI2,DPTDNL=DPTDNL2 S DPTDN("TEST SCORE2")=DPTDN("MATCH")*
.6 G COMPAREX
	I DPTDNL=DPTDNL2 S DPTDN("TEST SCORE2")=DPTDN("MATCH")*.4 G COMPAREX
	S X=DPTDNL D SOU^DICM1 S DPTDNLS=X S X=DPTDNL2 D SOU^DICM1 S DPTDNL2S=X
	S X=DPTDNF D SOU^DICM1 S DPTDNFS=X S X=DPTDNF2 D SOU^DICM1 S DPTDNF2S=X
	I DPTDNLS=DPTDNL2S,DPTDNFS=DPTDNF2S S DPTDN("TEST SCORE2")=DPTDN("MATCH"
)*.6 G COMPAREX
	I DPTDNFS=DPTDNF2S S DPTDN("TEST SCORE2")=DPTDN("MATCH")*.2 G COMPAREX
	S DPTDN("TEST SCORE2")=DPTDN("NO MATCH")
COMPAREX	;
	S:DPTDN("TEST SCORE2")>(DPTDN("TEST SCORE")) DPTDN("TEST SCORE")=DPTDN("
TEST SCORE2")
	K X,DPTDNLS,DPTDNL2S,DPTDNFS,DPTDNF2S,DPTDN("TEST SCORE2")
	Q
	;
EOJ	;
	S:$D(DPTDN("TEST SCORE")) XDRD("TEST SCORE")=DPTDN("TEST SCORE")
	K DPTDN,DPTDN2,DPTDNF,DPTDNF2,DPTDNL,DPTDNL2,DPTDNM,DPTDNM2
	K DPTDNMI,DPTDNMI2,DPTDNFI,DPTDNFI2,DPTDNO,DPTDNO2
	Q

Date of Birth test Routine for a Patient Merge Example
[bookmark: _Toc458599958]Figure 119: Special Processing Routine Examples—Date of Birth test Routine for a Patient Merge
DPTDOB	;IHS/OHPRD/JCM;COMPARES DATE OF BIRTHS; [06/08/92 12:10 PM]
	;;1.0;DPTD;;AUG 13, 1991
START	;
	D INIT
EN	; EP - Entry point for comparing dates
	D COMPARE
END	D EOJ
	Q
	;
INIT	;
	K DPTDOB,DPTDOB2
	S DPTDOB=$G(XDRCD(XDRFL,XDRCD,.03,"I")),DPTDOB2=$G(XDRCD2(XDRFL,XDRCD2,.
03,"I"))
	S DPTDOB("MATCH")=$P(XDRDTEST(XDRDTO),U,6)
	S DPTDOB("NO MATCH")=$P(XDRDTEST(XDRDTO),U,7)
	Q
	;
COMPARE	;
	I DPTDOB']""!(DPTDOB2']"") G COMPAREX
	I DPTDOB=DPTDOB2 S XDRD("TEST SCORE")=DPTDOB("MATCH") G COMPAREX
	S DPTDOB("CNT")=0
	F DPTDOBI=1:1:7 Q:DPTDOB("CNT")>2 I $E(DPTDOB,DPTDOBI)'=$E(DPTDOB2,DPTD
OBI) S DPTDOB("CNT")=DPTDOB("CNT")+1
	K DPTDOBI
	S XDRD("TEST SCORE")=$S(DPTDOB("CNT")>2:DPTDOB("NO MATCH"),1:(DPTDOB("MA
TCH")*.8))
COMPAREX Q
	;
EOJ	;
	K DPTDOB,DPTDOB2
	Q

[bookmark: _Toc458599393]Application Programming Interfaces (APIs)
[bookmark: _Toc158517301][bookmark: _Toc458599394]EN^XDRMERG(): Merge File Entries
Reference Type:	Supported
Category:	Toolkit—Duplicate Record Merge
ICR #:	2365
Description:	This API provides for merging of one or more pairs of records in a specified file. This entry point takes two (2) arguments, the file number (a numeric value) and a closed reference to the location where the program finds an array with subscripts indicating the record pairs to be merged (a text value).
Format:	EN^XDRMERG(file,arraynam)
Input Parameters:	file:	(required) Specifies the FILE NUMBER of the file in which the indicated entries are to be merged.
Input/Output
Parameter:	arraynam:	(required) This parameter contains the name of the array as a closed root under which the subscripts indicating the FROM and TO entries are found. The data can have either two or four subscripts descendent from the array, which is passed.
[image: Note]	REF: For examples of its usage, see the “Overview” section.

[bookmark: _Toc458599395]Examples
The following command would result in record pairs specified as subscripts in the array MYLOC to be merged in a hypothetical file #999000014:
D EN^XDRMERG(999000014,“MYLOC”)
The array MYLOC might have been set up prior to this call in the following manner (or any equivalent way) where the subscripts represent the internal entry numbers of the FROM and TO records, respectively.
S MYLOC(147,286)=“”,MYLOC(182,347)=“”,MYLOC(2047,192)=“”
S MYLOC(837,492)=“”,MYLOC(298,299)=“”
This would result in five record pairs being merged with record 147 (the FROM record) being merged into record 286 (the TO record), record 182 being merged into record 347, etc., to record 298 being merged into 299. Merges using the two subscript format occurs without a specific record of the entries prior to the merge (The internal entry numbers merged would be recorded under the file number in XDR REPOINTED ENTRY file [#15.3]) An alternative is a four subscript format for the data array that uses variable pointer formats for the FROM and TO records as the third and fourth subscripts. If the merge is performed with this four subscript array, then a pre-merge image of the data of both the FROM and TO records in the primary file and all other merged files (those related by DINUM) and information on all single value pointer values modified is stored in the MERGE IMAGE file (#15.4).
For the sample data above [assuming that the global root for the hypothetical file #999000014 is ^DIZ(999000014,] the four subscript array might be generated using the following code:
S MYROOT=“;DIZ(99900014,” <--- note the leading ^ is omitted
S MYLOC(147,286,147_MYROOT,286_MYROOT)=“”
S MYLOC(182,347,182_MYROOT,347_MYROOT)=“”
S MYLOC(2047,192,2047_MYROOT,192_MYROOT)=“”
S MYLOC(837,492,837_MYROOT,492_MYROOT)=“”
S MYLOC(298,299,298_MYROOT,299_MYROOT)=“”
;
D EN^XDRMERG(99900014,“MYLOC”)
Exclusion of Multiple Pairs For a Record—To insure that there are no unanticipated problems due to relationships between a specific record in multiple merges, prior to actually merging any data the various FROM and TO records included in the process are examined, and if one record is involved in more than one merge, all except the first pair of records involving that one are excluded from the merge. If any pairs are excluded for this reason, a mail message is generated to the individual responsible for the merge process as indicated by the DUZ.
If the following entries were included in the MYLOC array:
MYLOC(128,247)
MYLOC(128,536) and
MYLOC(247,128)
Only the first of these entries (based on the numeric sorting of the array) would be permitted to remain in the merge process, while the other two pairs would be omitted). And although it may seem unlikely that someone would indicate that a record should be merged into two different locations, while another location should be merged into one that was merged away, if the pairs are selected automatically and checks are not included to prohibit such behavior, they show up. That is why the merge process does not include more than one pair with a specific record in it.
[bookmark: _Toc458599396]Problems Related To Data Entry While Merging
The Merge Process has been designed to combine data associated with the two records in the manner described above. On occasion, however, there are problems that cause VA FileMan to reject the data that is being entered. This may happen for a number of reasons. Some examples that have been observed include:
Clinics that had been changed so they no longer were indicated as Clinics (so they would not add to the number that people had to browse through to select a clinic), but were rejected since the input transform checked that they be clinics.
Pointer values that no longer had a valid value in the pointed to file (dangling pointers).
Fields that have input transforms that prohibit data entry.
It is possible to use a validity checker on your data prior to initiating the actual merge process (this is the action taken by merges working from the Potential Duplicate file). The data pairs are processed in a manner similar to the actual merge, so only that data in any of the files that would be merged and for which the data would be entered using VA FileMan utilities for the specific pair are checked to insure they pass the input transform. Any problems noted are incorporated into a mail message for resolution prior to attempting to merge the pair again, and the pair is removed from the data array that was passed in. Pairs that pass through this checking should not encounter any data problems while being merged.
[bookmark: _Toc158517302][bookmark: _Toc458599397]RESTART^XDRMERG(): Restart Merge
Reference Type:	Supported
Category:	Toolkit—Duplicate Record Merge
ICR #:	2365
Description:	This API restarts a merge that has been stopped. The information necessary for restarting can be viewed using the CHKLOCAL^XDRMERG2 API (see LOCAL MERGE STATUS).
Format:	RESTART^XDRMERG(file,arraynam,phase,currfile,currien)
Input Parameters:	file:	(required) Specifies the FILE NUMBER of the file in which the indicated entries are to be merged.
	arraynam:	(required) This parameter contains the name of the array as a closed root under which the subscripts indicating the FROM and TO entries are found. The data can have either two or four subscripts descendent from the array, which is passed.
[image: Note]	REF: For examples of its usage, see the overall description provided.
	phase:	(required) This variable indicates the phase of the merge process in which the merge should be restarted. The value is a number in the range of 1 to 3, with no decimal places. Phase 1 is usually quite short and is the merge of the specified entries in the primary file. Phase 2 is the merging of entries in files that are DINUMed to the primary file and changing pointers that can be identified from cross-references. Phase 3 is finding pointer values by searching each entry in a file. This is usually the longest phase of the merge process.
	currfile:	(required) This is the current file NUMBER on which the merge process is operating.
	currien:	(required) This is the current internal entry number in the file on which the merge process is operating.
Output:	none.
[bookmark: _Toc158517303]
[bookmark: _Toc458599398]SAVEMERG^XDRMERGB(): Save Image of Existing and Merged Data
Reference Type:	Controlled Subscription
Category:	Toolkit—Duplicate Record Merge
ICR #:	2338
Description:	During special processing related to the Patient Merge, the routine IBAXDR needs to call the entry point SAVEMERG^XDRMERGB. This API saves the file image of an entry involved in the merge process when only one of the entries (the entry being merged or the entry being merged into) is present in [FILENUM]. Normally, the merge process would handle when it can identify a FROM or a TO entry that is not present based on the DINUMed values. For [FILENUM], however, the internal entry numbers are determined from the “B”-cross- reference, and missing entries need to be handled separately.
This API acts to save an image of the currently existing data for the merge entry and merged into entry in the MERGE IMAGE file (#15.4).
Format:	SAVEMERG^XDRMERGB([filenum],ienfrom,iento)
Input Parameters:	filenum:	(required) This is the file number for the file that is being merged and for which the images are to be saved.
	ienfrom:	(required) The internal entry number of the FROM entry (the entry being merged into another entry).
	iento:	(optional) The internal entry number of the TO entry (the entry into which the entry is being merged).
Output:	results:	Stored image.

[bookmark: _Ref275166273][bookmark: _Toc458599399]Toolkit—HTTP Client
[bookmark: _Ref458594248][bookmark: _Toc458599400]Overview
The Kernel Toolkit Hypertext Transfer Protocol (HTTP) Client Helper software release adds a new tool in a set of Infrastructure software tools that developers can use. HTTP is a fast and reliable way for an application to collect data from another source. Kernel Toolkit patch XT*7.3*123 allows VistA to t into this information and retrieve Web data.
[image: Note]	NOTE: Kernel Toolkit patch XT*7.3*138 adds support for IPv6, HTTP/1.1, and HTTPS.
This code was originally developed by another VistA application that had a pressing need for this capability. The Kernel Toolkit development team is providing and maintaining it as generic tool so that other developers may use its functionality for their needs. For example:
KIDS: Uses it to get the checksums from FORUM of patches that are sent in a Host File System (HFS) file.
Pharmacy: Uses it to request the printing of FDA data sheets.
[image: Note]	NOTE: XTHC* routines are part of the HTTP Client Helper application for developers.
[bookmark: _Ref275166320][bookmark: _Toc458599401]Application Programming Interfaces (APIs)
[bookmark: _Ref423007867][bookmark: _Toc458599402]$$GETURL^XTHC10: Return URL Data Using HTTP
Reference Type:	Supported
Category:	Toolkit—HTTP Client Helper
ICR #:	5553
Description:	This extrinsic function is a Hypertext Transfer Protocol (HTTP)/1.1 client that can request a web page from another system and pass the returned data to the calling routine.
It can make both GET and POST requests.
It is the main API and returns in xt8rdat the returned data from the website.
This API was released with Kernel Toolkit patch XT*7.3*123.
[image: Note]	NOTE: XTHC* routines are part of the HTTP Client Helper application for developers.
[image: Note]	NOTE: This API is IPv6 compliant as of Kernel Toolkit patch XT*7.3*138.
Format:
	$$GETURL^XTHC10(url[,xt8flg],xt8rdat,.xt8rhdr[,xt8sdat][,.xt8shdr][,.xt8meth])
Input Parameters:	url:	(required) This is the Universal Resource Locator (URL) to access (http://host:port/path). It could be as simple as "www.va.gov".
	xt8flg:	(optional) Request timeout. Default is 5 seconds.
	xt8sdat:	(optional) Closed root of a variable containing the body of the request message. Data should be formatted as described in the xt8rdat parameter.
[image: Note]	NOTE: If this parameter is defined (i.e., not empty) and the referenced array contains data, then the POST request is generated; otherwise, the GET request is sent.
	.xt8shdr:	(optional) Reference to a local variable containing header values, which is added to the request. For example:
XT8SHDR("CONTENT-TYPE")="text/html"
	.xt8meth:	(optional) Flag to indicate the request method:
"GET"—Default if xt8sdat contains no data.
"POST"—Default if xt8sdat contains data.
"HEAD"
"PUT"
"OPTIONS"
"DELETE"
"TRACE"
Output / Output
Parameters:	xt8rdat:	(required) Closed root of the variable where the message body is returned. Data is stored in consecutive nodes (numbers starting from 1). If a line is longer than 245 characters, only 245 characters are stored in the corresponding node. After that, overflow sub-nodes are created. For example:
@XT8DATA@(1)="<html>"
 @XT8DATA@(2)="<head><title>VistA</title></head>"
 @XT8DATA@(3)="<body>"
 @XT8DATA@(4)="<p>"
 @XT8DATA@(5)="Beginning of a very long line"
 @XT8DATA@(5,1)="Continuation #1 of the long line"
 @XT8DATA@(5,2)="Continuation #2 of the long line"
 @XT8DATA@(5,...)=...
 @XT8DATA@(6)="</p>"
	.xt8rhdr: 	(required) Reference to a local variable where the parsed headers are returned. Header names are converted to uppercase; the values are left "as is". The root node contains the status line. For example:
XT8HDR="HTTP/1.1 200 OK"
XT8HDR("ACCEPT-RANGES")="bytes"
XT8HDR("CONNECTION")="close"
XT8HDR("CONTENT-LENGTH")="16402"
XT8HDR("CONTENT-TYPE")="text/html; charset=UTF-8"
XT8HDR("DATE")="Thu, 25 Jun 2015 14:43:01 GMT"
XT8HDR("ETAG")="a93a2-4012-5180156550680"
XT8HDR("LAST-MODIFIED")="Mon, 08 Jun 2015 13:08:26 GMT"
XT8HDR("SERVER")="Apache/2.2.15 (CentOS)"
Output:	returns:	Returns:
Success: HTTP_Status_Code^Description

Common HTTP status codes returned:
[bookmark: _Toc458600027]Table 32: $$GETURL^XTHC10—Common HTTP Status Codes Returned
	Status Code
	Description

	200
	OK

	301
	Moved Permanently

	400
	Bad Request

	401
	Unauthorized

	404
	Not Found

	407
	Proxy Authentication Required

	408
	Request Time-out

	500
	Internal Server Error

	505
	HTTP Version not supported

Fail: -1^Error Descriptor (additional error information can be found in the VistA error trap or ^XTER in programmer mode)
[image: Note]	REF: For more details, visit the HTTP Frequently Asked Questions (FAQ) website at: http://www.faqs.org/rfcs/rfc1945.html or the Internet Engineering Task Force (IETF) sites at: http://www.ietf.org/rfc/rfc2616.txt (HTTP/1.1) and http://www.ietf.org/rfc/rfc2617.txt (HTTP Authentication).
[bookmark: _Ref275184781]
[bookmark: _Ref423071594][bookmark: _Toc458599403]$$ENCODE^XTHCURL: Encodes a Query String
Reference Type:	Supported
Category:	Toolkit—HTTP Client Helper
ICR #:	5554
Description:	This extrinsic function encodes the query string. The $$MAKEURL^XTHCURL: Creates a URL from Components API uses this extrinsic function.
This API was introduced with Kernel Toolkit patch XT*7.3*123.
[image: Note]	NOTE: XTHC* routines are part of the HTTP Client Helper application for developers.
Format:	$$ENCODEURL^XTHCURL(str)
Input Parameters:	str:	(required) String of data to be encoded.
Output:	returns:	Returns:
Success: Encoded query string.
Fail: -1^String not defined (if missing str parameter).

[bookmark: _Toc458599404]Example
W $$ENCODE^XTHCURL(“123+main+st.,Anycity,CA”)
123%2Bmain%2Bst.%2CAnycity%2CCA

[bookmark: _Ref275183790][bookmark: _Toc458599405]$$MAKEURL^XTHCURL: Creates a URL from Components
Reference Type:	Supported
Category:	Toolkit—HTTP Client Helper
ICR #:	5554
Description:	This extrinsic function creates a URL from components.
This API was introduced with Kernel Toolkit patch XT*7.3*123.
[image: Note]	NOTE:	XTHC* routines are part of the HTTP Client Helper application for developers.
[image: Note]	NOTE: This API is IPv6 compliant as of Kernel Toolkit patch XT*7.3*138.

Format:	$$MAKEURL^XTHCURL(host[,port][,path][,.query])
Input Parameters:	host:	(required) The Fully Qualified Domain Name (FQDN) or Internet Protocol (IP) address of the system to which it connects.
	port:	(optional) The port to use. Default is port 80 for http or port 443 for https.
	path:	(optional) The path to the web page on the called server.
	.query:	(optional) An array of query parameters.
Output:	returns:	Returns:
Success: Normalized path (see Example).
Fail: -1^Host not defined (if missing host parameter).

[bookmark: _Toc458599406]Example
[bookmark: _Toc458599959]Figure 120: $$MAKEURL^XTHCURL API—Example
S host="http://www.map.com"
S path="api/staticmap"
S query("center")="main+st.,Anycity,CA"
S query("sensor")="false"
W $$MAKEURL^XTHCURL(host,,path,.query)

http://www.map.com/api/staticmap?center=main%2Bst.%2CAnycity%2CCA&sensor=false

[bookmark: _Ref275184854][bookmark: _Toc458599407]$$PARSEURL^XTHCURL: Parses a URL
Reference Type:	Supported
Category:	Toolkit—HTTP Client Helper
ICR #:	5554
Description:	This extrinsic function parses a URL using into host, port, and path (path includes query string).
This API was introduced with Kernel Toolkit patch XT*7.3*123.
[image: Note]	NOTE:	XTHC* routines are part of the HTTP Client Helper application for developers.
[image: Note]	NOTE: This API is IPv6 compliant as of Kernel Toolkit patch XT*7.3*138.
Format:	$$PARSEURL^XTHCURL(url,.host,.port,.path)
Input Parameters:	url:	(required) Reference to variable where host name is to be returned.
Output Parameters:	host:	(required) Input URL.
	port:	(required) Reference to variable where port is to be returned.
	.path:	(required) Reference to variable where path string is to be returned.
Output:	returns:	Returns:
Success: 0.
Fail: -1^Error Description.

[bookmark: _Toc458599408]Example
D PARSEURL^XTHCURL(“http://cgi.vagroup.va.gov:9999/tpl/PKG”,.ZH,.ZP,.ZA)
W ZH,!,ZP,!,ZA

vagroup.va.gov
9999
/tpl/PKG

[bookmark: _Ref275184893][bookmark: _Toc458599409]$$DECODE^XTHCUTL: Decodes a String
Reference Type:	Supported
Category:	Toolkit—HTTP Client Helper
ICR #:	5555
Description:	This extrinsic function is used with the HTTP/1.1 Client. It decodes one string replacing the following:
< with <
> with >
& with &
 with “ “
&os; with ‘
" with “
A with A
This API was introduced with Kernel Toolkit patch XT*7.3*123.
[image: Note]	NOTE:	XTHC* routines are part of the HTTP Client Helper application for developers.
Format:	$$DECODE^XTHCUTL(str)
Input Parameters:	str:	(required) String to be decoded.
Output:	returns:	Returns:
Success: Decoded string.
Fail: -1^String not defined (if missing str parameter).

[bookmark: _Toc458599410]Example
$$DECODE^XTHCUTL("123%2Bmain%2Bst.%2CAnytown%2CCA")
 123%2Bmain%2Bst.%2CAnytown%2CCA

[bookmark: _Toc158517304][bookmark: _Ref241384196][bookmark: _Ref421613815][bookmark: _Toc458599411]
Toolkit—KERMIT APIs
[bookmark: _Ref158425839][bookmark: _Ref158515074][bookmark: _Ref158515116][bookmark: _Toc158517305][bookmark: _Toc458599412]RFILE^XTKERM4: Add Entries to Kermit Holding File
Reference Type:	Supported
Category:	Toolkit—KERMIT
ICR #:	2075
Description:	This API allows access to the KERMIT HOLDING file (#8980) and the API that adds entries to it, RFILE^XTKERM4. The “AOK” cross-reference of the KERMIT HOLDING file (#8980) can be checked to see if the user has an entry in the KERMIT HOLDING file (#8980). If not, RFILE^XTKERM4 can be called to add an entry to the file.
[image: Note]	NOTE: A call to RFILE^XTKERM4 allows a user to add or select an entry in the KERMIT HOLDING file (#8980).
Format:	RFILE^XTKERM4
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Output Variables:	XTKDIC:	This variable returns the global root and is a calling variable used by calls to RECEIVE^XTKERMIT: Load a File into the Host or SEND^XTKERMIT: Send Data from Host APIs.
	XTMODE:	This variable is returned. It is used as input to calls to RECEIVE^XTKERMIT: Load a File into the Host or SEND^XTKERMIT: Send Data from Host APIs.

[bookmark: _Toc458599413]RECEIVE^XTKERMIT: Load a File into the Host
Reference Type:	Supported
Category:	Toolkit—KERMIT
ICR #:	10095
Description:	The API loads a file into the host.
Format:	RECEIVE^XTKERMIT
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Variables to call
from outside of
KERMIT:	XTKDIC:	(required) Set XTKDIC to VA FileMan type global root.
	DWLC:	(required) Set DWLC to last current data node.
Return DWLC to last data node, XTKDIC is KILLed.
	TIREF:	(optional) Set XTKMODE as follows to send/receive:
0—Send/Receive in IMAGE mode (no conversion).
1—Send/Receive in DATA mode (just convert control character).
2—Send/Receive as TEXT (VA FileMan word-processing). Text mode sends a carriage return (CR) after each global node; makes a new global node for each CR received. XTKMODE set to 2 would be normal for most VistA applications.
[bookmark: _Toc158517306]
[bookmark: _Ref158425853][bookmark: _Ref158515075][bookmark: _Ref158515137][bookmark: _Toc158517307][bookmark: _Toc458599414]SEND^XTKERMIT: Send Data from Host
Reference Type:	Supported
Category:	Toolkit—KERMIT
ICR #:	10095
Description:	The API sends data from host.
Format:	SEND^XTKERMIT
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Variables to call
from outside of
KERMIT:	XTKDIC:	(required) Set XTKDIC to VA FileMan type global root.
	DWLC:	(required) Set DWLC to last current data node.
Return DWLC to last data node, XTKDIC is KILLed.
	TIREF:	(optional) Set XTKMODE as follows to send/receive:
0—Send/Receive in IMAGE mode (no conversion).
1—Send/Receive in DATA mode (just convert control character).
2—Send/Receive as TEXT (VA FileMan word-processing). Text mode sends a carriage return (CR) after each global node; makes a new global node for each CR received. XTKMODE set to 2 would be normal for most VistA applications.

[bookmark: _Toc158517308][bookmark: _Ref241384197][bookmark: _Ref421613837][bookmark: _Toc458599415]
Toolkit—Multi-Term Look-Up (MTLU) APIs
[bookmark: _Toc150679319][bookmark: _Toc158517309][bookmark: _Toc458599416]How to Override
If files are fully configured for the special Multi-Term Look-Up, all standard VA FileMan lookups invoke MTLU. The following procedures can be taken to override MTLU::
Users can enter an accent grave (`) as a prefix to request a lookup by the Internal Entry Number (IEN).
Users can enter a tilde (~) as a prefix to force a standard VA FileMan lookup.
[image: Note]	NOTE: In the event that a search produces no matches, MTLU continues with a standard VA FileMan search by default.
Developers can override MTLU by setting the variable XTLKUT=“” prior to referencing the file and KILLing it upon exit, or set DIC(0) to include “I”:
S DIC=81,DIC(0)=“AEMQI”,X=“” D ^DIC
[bookmark: _Toc458599417]Application Programming Interfaces (APIs)
[bookmark: _Toc458599418]MTLU and VA FileMan Supported Calls
Developers can perform any supported VA FileMan calls on files fully configured for MTLU.
The preferred method of performing lookups from Programmer mode is to add the target file to the LOCAL LOOKUP file (#8984.4) and call LKUP^XTLKMGR. However, Multi-Term Look-Ups can be performed on any VA FileMan file, even if it has not been configured for use by MTLU. Using the developer API, the lookup can be performed using any index contained within the file, such as a VA FileMan KWIC cross-reference.
Entry Point:	XTLKKWL
Required Input
Parameters:	(XTLKGBL, XTLKKSCH(“GBL”)):	This is the global root (same as DIC).
	XTLKKSCH(“DSPLY”):	This variable displays the routine. For example:
DGEN^XTLKKWLD
	XTLKKSCH(“INDEX”):	Cross-reference selected by the developer for performing a multi-term lookup.
	XTLKX:	This is the user input.
Optional Input
Variables:	XTLKSAY:	This variable equals 1 or 0. If XTLKSAY = 1, MTLU displays details during the lookup.
[image: Note]	NOTE: The purpose of XTLKSAY is to control the degree of output to the screen, not the amount of “file information” displayed.
	XTLKHLP:	Executable code to display custom help.

[bookmark: _Toc458599419]Kernel Toolkit Enhanced APIs
Programmer calls to MTLU-configured files return all standard VA FileMan variables (i.e., Y, DTOUT, DUOUT, DIROUT, and DIRUT).
The programmer’s API for performing a lookup has been enhanced functionally, simplified, and converted to a procedure call.
Procedure calls provide full, non-interactive management of the following MTLU control files: LOCAL KEYWORD (#8984.1), LOCAL SHORTCUT (#8984.2), LOCAL SYNONYM (#8984.3), and LOCAL LOOKUP (#8984.4).
All procedure calls are contained in the routine ^XTLKMGR.
Errors are returned in the XTLKER() array. KILL this array before calling any of these new procedure calls, and check the array after returning from the calls. All calls require that the target file be defined in the LOCAL LOOKUP file (#8984.4). If removing an entry from the LOCAL LOOKUP file (#8984.4), all shortcuts, synonyms, and keywords associated with that file must be deleted first.
[bookmark: _Toc158517310][bookmark: _Toc458599420]XTLKKWL^XTLKKWL: Perform Supported VA FileMan Calls on Files Configured for MTLU
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10122
Description:	This API lets developers perform any supported VA FileMan calls on files configured for MTLU. To ignore the special lookup routine, XTLKDICL, be sure that DIC(0) includes an “I.” Alternatively, multi-term lookups can be performed on any VA FileMan file, even if it has not been configured for primary use by MTLU. Using the programmer API, the lookup can be performed using any index contained within the file, such as a VA FileMan Key Word In Context (KWIC) cross-reference.
Format:	XTLKKWL^XTLKKWL
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Variables:	(XTLKGBL, XTLKKSCH(“GBL”)):	(required) This is the global root (same as DIC).
	XTLKKSCH(“DSPLY”):	(required) This variable displays the routine. For example:
DGEN^XTLKKWLD
	XTLKKSCH(“INDEX”):	(required) Cross-reference selected by the developer for performing a MTLU.
	XTLKX:	(required) This is the user input.
	XTLKSAY:	(optional) XTLKSAY values:
1—MTLU displays details during the lookup.
0.
[image: Note]	NOTE: The purpose of XTLKSAY variable is to control the degree of output to the screen, not the amount of “file information” displayed.
	XTLKHLP:	(optional) XTLKHLP=Executable code to display custom help.
[bookmark: _Toc158517311]
[bookmark: _Toc458599421]DK^XTLKMGR(): Delete Keywords from the Local Keyword File
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API deletes keywords from the LOCAL KEYWORD file (#8984.1).
Format:	DK^XTLKMGR(xtlk1,xtlk2)
Input Parameters:	xtlk1:	(required) File name.
	xtlk2:	(required) Leave this parameter undefined to delete all keywords for a given target file or pass in an array for selected keywords.
Output:	none.
[bookmark: _Toc158517312]
[bookmark: _Toc458599422]DLL^XTLKMGR(): Delete an Entry from the Local Lookup File
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API deletes an entry from the LOCAL LOOKUP file (#8984.4).
Format:	DLL^XTLKMGR(xtlk1)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	xtlk1:	(required) The associated file name or number.
Output
Variables:	XTLKER(1,FILENAME):	File is not in the LOCAL LOOKUP file (#8984.4).
	XTLKER:	Entries exist for keywords, shortcuts, or synonyms for the associated file. These must be deleted first.

[bookmark: _Toc158517313][bookmark: _Toc458599423]DSH^XTLKMGR(): Delete Shortcuts from the Local Shortcut File
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API deletes shortcuts from the LOCAL SHORTCUT file (#8984.2).
Format:	DSH^XTLKMGR(xtlk1,xtlk2)
Input Parameters:	xtlk1:	(required) File name.
	xtlk2:	(required) Leave this parameter undefined to delete all shortcuts for a given target file or pass in an array for selected shortcuts.
Output:	none.
[bookmark: _Toc158517314]
[bookmark: _Toc458599424]DSY^XTLKMGR(): Delete Synonyms from the Local Synonym File
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API deletes synonyms from the LOCAL SYNONYM file (#8984.3).
Format:	DSY^XTLKMGR(xtlk1,xtlk2)
Input Parameters:	xtlk1:	(required) File name.
	xtlk2:	(required) Leave this parameter undefined to delete all synonyms for a given target file or pass in an array for selected synonyms.
Output:	none.

[bookmark: _Toc158517315][bookmark: _Toc458599425]K^XTLKMGR(): Add Keywords to the Local Keyword File
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API adds Keywords to the LOCAL KEYWORD file (#8984.1).
Format:	K^XTLKMGR(xtlk1,xtlk2,xtlk3)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	xtlk1:	(required) Associated file.
	xtlk2:	(required) Code in the associated file.
	xtlk3:	(required) Keyword.
Output Variables:	XTLKER(1,FILENAME):	File not defined in the LOCAL LOOKUP file (#8984.4).
	XTLKER(2,CODE):	The code is not in the associated file.
	XTLKER(3,SYNONYM):	The keyword could not be added.
[bookmark: _Toc158517316]
[bookmark: _Toc458599426]L^XTLKMGR(): Define a File in the Local Lookup File
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API defines a file in the LOCAL LOOKUP file (8984.4). Adding the target file here does not automatically place the special lookup routine, ^XTLKDICL, in the file’s Data Dictionary. Since use of this routine is at the discretion of the developer, it should be manually added via the Edit File option under VA FileMan’s Utilities Menu.
[image: Note]	REF: For information on the Edit File option, see the “Utility Functions” section in the VA FileMan User Manual.
Format:	L^XTLKMGR(xtlk1[,xtlk2],xtlk3,xtlk4)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	xtlk1:	(required) File name or number.
	xtlk2:	(optional) Application-specific display protocol.
	xtlk3:	(required) MTLU index to use for lookups.
	xtlk4:	(required) Variable pointer prefix.
Output Variables:	XTLKER(1,FILENAME):	File could not be added.
The following are examples (index and prefix can differ from actual implementation):
For the ICD DIAGNOSIS file (#80):
>K XTLKER
>D L^XTLKMGR(80,“DSPLYD^XTLKKWLD”,“AIHS”,“D”)
For the ICD OPERATION/PROCEDURE file (#80.1):
>K XTLKER
>D L^XTLKMGR(80.1,“DSPLYO^XTLKKWLD”,“KWIC”,“O”)
[bookmark: _Toc158517317][bookmark: _Ref158609786]
[bookmark: _Toc458599427]LKUP^XTLKMGR(): General Lookup Facility for MTLU
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API adds terms and synonyms to the LOCAL SYNONYM file (#8984.3).
Format:	LKUP^XTLKMGR(fil,xtlkx[,xtlksay][,xtlkhlp][,xtlkmore])
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	fil:	(required) Target file (must be defined in the LOCAL LOOKUP file (#8984.4).
	xtlkx:	(required) Word or phrase to use in lookup.
	xtlksay:	(optional) -1, 0, or 1 (default=1). Set to “0” to minimize, “-1” to prevent screen display, “1” or “” for full screen (normal) display.
[image: Note] NOTE: The purpose of XTLKSAY is to control the degree of output to the screen, not the amount of “file information” displayed.

If screen displays are turned off, MTLU matches can be processed by checking the count in ^TMP(“XTLKHITS”,$J). ^TMP(“XTLKHITS”,$J,count)=IEN of the entry in the target file. ^TMP(“XTLKHITS”) should be killed after processing.
	xtlkhlp:	(optional) The lookup was successful.
	xtlkmore:	(optional) Set to “1” to continue with FileMan search (default=1).
Output Variables:	Y=-1:	File not defined in the LOCAL LOOKUP file (#8984.4).
	Y=N^S:	N is the internal entry number (IEN) of the entry in the file and S is the value of the .01 field for that entry.
	Y=N^S^1:	N and S are defined as above and the 1 indicates that this entry has just been added to the file.

[bookmark: _Toc458599428]Examples
Example 1
[bookmark: _Toc200270048][bookmark: _Toc458599960]Figure 121: LKUP^XTLKMGR API—Example 1: Standard Lookup; Single term entered
VAH,MTL>D LKUP^XTLKMGR(80,“MALIG”)
(MALIG/MALIGNANT)
..
..
...

The following 443 matches were found:

 1: 140.1 (MAL NEO LOWER VERMILION)
 MALIGNANT NEOPLASM OF LOWER LIP, VERMILION BORDER

 2: 140.3 (MAL NEO UPPER LIP, INNER)
 MALIGNANT NEOPLASM OF UPPER LIP, INNER ASPECT

 3: 140.4 (MAL NEO LOWER LIP, INNER)
 MALIGNANT NEOPLASM OF LOWER LIP, INNER ASPECT

 4: 140.5 (MAL NEO LIP, INNER NOS)
 MALIGNANT NEOPLASM OF LIP, UNSPECIFIED, INNER ASPECT

 5: 140.6 (MAL NEO LIP, COMMISSURE)
 MALIGNANT NEOPLASM OF COMMISSURE OF LIP

Press <RET> or Select 1-5: ^
...Nothing selected. Attempting Fileman lookup.

[image: Note]	NOTE: Pressing the <Enter> key continues listing the MTLU matches. If no selection is made, MTLU initiates a standard VA FileMan lookup (using all available cross-references).
Example 2
[bookmark: _Toc200270049][bookmark: _Toc458599961]Figure 122: LKUP^XTLKMGR API—Example 2: Standard Lookup; Multiple terms entered
VAH,MTL>D LKUP^XTLKMGR(80,“MALIGNANCY OF THE LIP”)

(LIP/LIPIDOSES/LIPODYSTROPHY/LIPOID/LIPOMA/LIPOPROTEIN/LIPOTROPIC/LIPS MALIGNAN/MALIGNANT)

The following words were not used in this search:
 OF
 THE
............

The following 12 matches were found:

 1: 140.1 (MAL NEO LOWER VERMILION)
 MALIGNANT NEOPLASM OF LOWER LIP, VERMILION BORDER

 2: 140.3 (MAL NEO UPPER LIP, INNER)
 MALIGNANT NEOPLASM OF UPPER LIP, INNER ASPECT

 3: 140.4 (MAL NEO LOWER LIP, INNER)
 MALIGNANT NEOPLASM OF LOWER LIP, INNER ASPECT

 4: 140.5 (MAL NEO LIP, INNER NOS)
 MALIGNANT NEOPLASM OF LIP, UNSPECIFIED, INNER ASPECT

 5: 140.6 (MAL NEO LIP, COMMISSURE)
 MALIGNANT NEOPLASM OF COMMISSURE OF LIP

Press <RET> or Select 1-5: ^
...Nothing selected. Attempting Fileman lookup. ??

Example 3
[bookmark: _Toc200270050][bookmark: _Toc458599962]Figure 123: LKUP^XTLKMGR API—Example 3: Display minimized by setting the 3rd parameter = 0
VAH,MTL>S XTLKX=“MALIGNANCY OF THE LIP”

VAH,MTL>D LKUP^XTLKMGR(80,XTLKX,0)

The following 12 matches were found:

 1: 140.1 (MAL NEO LOWER VERMILION)
 MALIGNANT NEOPLASM OF LOWER LIP, VERMILION BORDER

 2: 140.3 (MAL NEO UPPER LIP, INNER)
 MALIGNANT NEOPLASM OF UPPER LIP, INNER ASPECT

 3: 140.4 (MAL NEO LOWER LIP, INNER)
 MALIGNANT NEOPLASM OF LOWER LIP, INNER ASPECT

 4: 140.5 (MAL NEO LIP, INNER NOS)
 MALIGNANT NEOPLASM OF LIP, UNSPECIFIED, INNER ASPECT

 5: 140.6 (MAL NEO LIP, COMMISSURE)
 MALIGNANT NEOPLASM OF COMMISSURE OF LIP

Press <RET> or Select 1-5: ^ <Enter> ??
VAH,MTL>

Example 4
[bookmark: _Toc200270051][bookmark: _Toc458599963]Figure 124: LKUP^XTLKMGR API—Example 4: MTLU with screen display turned off
VAH,MTL>D LKUP^XTLKMGR(80,XTLKX,-1)

VAH,MTL>D ^%G

Global ^TMP(“XTLKHITS”,$J
 TMP(“XTLKHITS”,$J
^TMP(“XTLKHITS”,591795907) = 12
^TMP(“XTLKHITS”,591795907,1) = 167
NOTE:

“167” is the IEN of the target file.
^ICD9(167,0) = 140.1^Y^MAL NEO LOWER VERMILION^^3^^^^
^ICD9(167,1) = MALIGNANT NEOPLASM OF LOWER LIP, VERMILION
BORDER
^ICD9(167,“DRG”) = 64^^ VERMILION^^3^^^^

^TMP(“XTLKHITS”,591795907,2) = 168
^TMP(“XTLKHITS”,591795907,3) = 169
^TMP(“XTLKHITS”,591795907,4) = 170
^TMP(“XTLKHITS”,591795907,5) = 171
^TMP(“XTLKHITS”,591795907,6) = 172
^TMP(“XTLKHITS”,591795907,7) = 173
^TMP(“XTLKHITS”,591795907,8) = 220
^TMP(“XTLKHITS”,591795907,9) = 221
^TMP(“XTLKHITS”,591795907,10) = 8595
^TMP(“XTLKHITS”,591795907,11) = 8623
^TMP(“XTLKHITS”,591795907,12) = 8624

[bookmark: _Toc158517318][bookmark: _Toc458599429]SH^XTLKMGR(): Add Shortcuts to the Local Shortcut File
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API adds Shortcuts to the LOCAL SHORTCUT file (#8984.2).
Format:	SH^XTLKMGR(xtlk1,xtlk2,xtlk3)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	xtlk1:	(required) Associated file.
	xtlk2:	(required) Code in the associated file.
	xtlk3:	(required) Shortcut (word or phrase).
Output Variables:	XTLKER(1,FILENAME):	File not defined in the LOCAL LOOKUP file (#8984.4).
	XTLKER(2,CODE):	The code is not in the associated file.
	XTLKER(3,SHORTCUT):	The shortcut could not be added.

[bookmark: _Toc158517319][bookmark: _Toc458599430]SY^XTLKMGR(): Add Terms and Synonyms to the Local Synonym File
Reference Type:	Supported
Category:	Toolkit—Multi-Term Look-Up (MTLU)
ICR #:	10153
Description:	This API adds Terms and Synonyms to the LOCAL SYNONYM file (#8984.3).
Format:	SY^XTLKMGR(xtlk1,xtlk2,xtlk3)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	xtlk1:	(required) Associated file.
	xtlk2:	(required) Term.
	xtlk3:	(required) Synonym (or optional array for multiple synonyms per term).
[image: Note] NOTE: Use one-dimensional arrays wherever supported in ^XTLKMGR as in the following example:
SYN(1)=<first synonym>
SYN(2)=<second synonym>
SYN(3)=<third synonym>
>D SY^ROUTINE(XTLK1,XTLK2,.SYN)
Output Variables:	XTLKER(1,FILENAME):	File not defined in the LOCAL LOOKUP file (#8984.4).
	XTLKER(2,TERM):	The term could not be added.
	XTLKER(3,SYNONYM):	The synonym could not be added.

[bookmark: _Toc401658977][bookmark: _Ref409599377][bookmark: _Ref410207747][bookmark: _Ref421613866][bookmark: _Ref158180320][bookmark: _Toc158517320][bookmark: _Ref241384205][bookmark: _Toc458599431]
Toolkit—M Unit Utility
[bookmark: _Toc401658978][bookmark: _Ref458595717][bookmark: _Toc458599432]Overview
M Unit is a utility (tool) that permits a series of tests to be written to address specific tags or entry points within a project and act to verify that the return results are as expected for that code. Kernel Toolkit patch XT*7.3*81 provides the M Unit code, but was never released to production. It is available to M developers upon request from the Kernel development team.
If run routinely any time that the project is modified, the tests indicate whether the intended function has been modified inadvertently, or whether the modification has had unexpected effects on other functionality within the project. The set of unit tests for a project should run rapidly (usually within a matter of seconds) and with minimal disruption for developers. Another function of unit tests is that they indicate what the intended software was written to do. This can be especially useful when new developers start working with the software or a programmer returns to a project after a prolonged period. Ensuring that well-designed unit tests are created for each project; therefore, it does the following:
Assists development.
Enhances maintainability.
Improves end-user confidence in the deployed software.
[image: Note]	NOTE: None of the Application Programming Interfaces (APIs), extrinsic functions, or sections of code in the M Unit are callable from outside a unit test, but are all part of a unit test. M UNIT is a self-contained application.
[bookmark: _Toc401658979][bookmark: _Toc458599433]Introduction to M Unit Testing
A Unit Test framework permits small tests to be written to verify that the code under examination is doing what you expect it to do. Generally, the tests are performed on the smaller blocks of the application, and do not necessarily test all of the functionality within the application. These tests can be run frequently to validate that no errors have been introduced subsequently as changes are made in the code. The phrase “Test-Driven Development” is frequently used to indicate the strong use of unit testing during development; although, some think of it as equivalent to “Test First Development”, in which the tests for code are written prior to writing the code. In “Test First Development”, the test should initially fail (since nothing has been written) and then pass after the code has been written.
For client side languages, Junit (for Java), DUnit (for Delphi), NUnit and HarnessIt (for dotNet) all provide Unit Test frameworks. The ^XTMUNIT and ^XTMUNIT1 routines provide the same capabilities for unit testing M code. The tests are console-based (i.e., command line text, not windows).
For those who have problems keeping track of routine names for unit testing and with which application they are associated, the MUNIT TEST GROUP file (#8992.8) can be used to maintain groups of unit test routines with the MUnit Test Group edit option [XTMUNIT GROUP EDIT]. These unit tests can be run using either of the following:
Menu Option: Run MUnit Tests from Test Groups option [XTMUNIT GROUP RUN]
Direct Mode Utility: D RUNSET^XTMUNIT(setname).
While the order of processing within M Unit tests can be fairly constant, or at least appear to be so, it is preferable to have the unit tests independent of the order in which they are run. Having dependencies between tests can result in problems if the order were to change or if changes are made in the test being depended upon.
[bookmark: _Toc401658980][bookmark: _Toc458599434]M Unit Test Definitions
Supported References in ^XTMUNIT are:
EN
CHKTF
CHKEQ
FAIL
SUCCESS
CHKLEAKS
ISUTEST
RUNSET
[bookmark: _Toc401658981][bookmark: _Toc458599435]Getting Started
If you are going to modify sections of your code, it is best to create a unit test for those areas that you want to work. Then, the unit tests can be run as changes are made to ensure that nothing unexpected has changed. For modifications, the unit tests are then written to reflect the new expected behavior and used to ensure that it is what is expected.
A sample unit test can be found in the ^XTMZZUT1 routine.
[bookmark: _Toc458599436]Application Programming Interfaces (APIs)
[image: Note]	NOTE: None of the Application Programming Interfaces (APIs), extrinsic functions, or sections of code in the M Unit are callable from outside a unit test, but are all part of a unit test. M UNIT is a self-contained application.
[bookmark: _Toc401658982][bookmark: _Ref410193782][bookmark: _Toc458599437]EN^XTMUNIT(): Run Unit Tests
Reference Type:	N/A; Not callable from outside a unit test.
Category:	Toolkit—M Unit Utility
ICR #:	N/A
Description:	This API runs unit tests. It is typically the first command within a suite of unit test routines, so that the entire suite of tests (multiple routines) can be run by executing the first routine of the suite. For example, the unit tests for testing M Unit can be run by:
>D ^XTMZZUT1”
The EN^XTMUNIT API starts the unit testing process.
Format:	D EN^XTMUNIT(rouname,[verbose,][break])
Input Parameters:	rouname:	(required) provides the name of the routine where the testing should be started. That routine must have at least one test entry point (and possibly more) either specified as follows:
In the lines immediately following the XTENT tag as the third semi-colon piece on the line.

OR

It can have tags with @TEST as the first text of the comment for the tag line.
	verbose:	(optional) If it evaluates to True (e.g., 1), it turns on verbose mode, which lists each individual test being run as well as its result.
	break:	(optional) If it evaluates to True, it causes the M Unit test process to terminate upon a failure or error instead of continuing until all tests have been evaluated.
Output:	returns:	Results of the unit tests.

[bookmark: _Toc401658983]The following sections of code in the XTMUNIT routine are additional test entry points added by the developer; however, they are not callable by the developer from inside or outside of the routine:
STARTUP
SHUTDOWN
SETUP
TEARDOWN
XTENT: List Unit Test Entry Points
XTROU: List of Routines Containing Additional Tests
[bookmark: _Ref410137423][bookmark: _Toc458599438]STARTUP
This section of code in the XTMUNIT routine runs before anything else. It is useful for setting up an environment or variable values that are common to all of the tests.
[bookmark: _Toc401658984][bookmark: _Ref410137424][bookmark: _Toc458599439]SHUTDOWN
This section of code in the XTMUNIT routine runs after everything else. It is useful for shutting down an environment or clearing variable values that are common to all of the tests. It can also be used for cleaning up global or file entries that are left as a result of testing.
[bookmark: _Toc401658985][bookmark: _Ref410137425][bookmark: _Toc458599440]SETUP
This section of code in the XTMUNIT routine runs before every test. It is useful for resetting an environment or variable values that are used by the tests.
[bookmark: _Toc401658986][bookmark: _Ref410137429][bookmark: _Toc458599441]TEARDOWN
This section of code in the XTMUNIT routine runs after every test. It is useful for cleaning up an environment or variable values that are used by the tests.
[bookmark: _Toc401658993][bookmark: _Ref410193287][bookmark: _Toc401658987][bookmark: _Toc458599442]XTENT: List Unit Test Entry Points
This section of code in the XTMUNIT routine is used to store information required by the EN^XTMUNIT(): Run Unit Tests API to run a unit test. It provides a list of unit test entry points. Each entry describes a group of tests.
[bookmark: _Toc458599964]Figure 125: XTENT: List Unit Test Entry Points
;;T4;Entry point using XTMENT
;;T5;Error count check

[bookmark: _Toc401658994][bookmark: _Ref410193311][bookmark: _Toc458599443]XTROU: List of Routines Containing Additional Tests
This section of code in the XTMUNIT routine is used to store information required by the EN^XTMUNIT(): Run Unit Tests API to run a unit test. It provides a list of routines containing additional tests. It extends a suite of tests beyond the limits of a single routine.
[bookmark: _Toc458599965]Figure 126: XTROU: List of Routines Containing Additional Tests
;;XTMZZUT2;
;;XTMZZUT3;

[bookmark: _Toc401658988][bookmark: _Toc458599444]CHKEQ^XTMUNIT: Check Two Values for Equivalence
Reference Type:	Not callable from outside a unit test.
Category:	Toolkit—M Unit Utility
ICR #:	N/A
Description:	This API runs a test that checks two values for equivalence.
Format:	D CHKEQ^XTMUNIT(expect,actual,msg)
Input Parameters:	expect:	(required) The expected value.
	actual:	(required) The actual value.
	msg:	(required) The error message to be generated if the result of the test is False (not equal).
Output:	returns:	Returns:
A period or “dot”—If the result of the test is True.
The <expected value>, the <actual value>, and the error message “msg” —If the result of the test is False.

[bookmark: _Toc401658991][bookmark: _Toc458599445]CHKLEAKS^XTMUNIT(): Check for Variable Leaks
Reference Type:	Not callable from outside a unit test
Category:	Toolkit—M Unit Utility
ICR #:	N/A
Description:	This API runs a test that can be used within unit tests or in a standalone test for variable leaks (those created within called code that are allowed to leak into the calling environment, unintentionally).
Format:	D CHKLEAKS^XTMUNIT(code,testloc,.nameinpt)
Input Parameters:	code:	(required) Contains a command to be executed in the test for leaks. For example:
S X=$$NOW^XLFDT()
	testloc:	(required) Indicates the location under test. For example:
$$NOW^XLFDT() leak test
Or simply:
$$NOW^XLFDT
	.nameinpt:	(required) This parameter is passed by reference, and is an array that contains a list of all variables that the user is passing in and/or expects to be present when the code is finished (the variable X would be in the latter category, since it would then be present). The input is in the form of an array:
NAMEINPT(“VARNAME”)=“VARVALUE”
Where:
VARNAME—Name of a variable.
VARVALUE—Value that is to be assigned to the variable before the contents of the code input parameter is to be executed.
Output:	returns:	Returns:
Inside a unit test environment—When run in a unit test environment, variables that are present after the contents of the code input parameter is executed that were not included in NAMEINPT array as variables, are listed as failures.
Outside a unit test environment—When called outside of a unit test environment, any leaked variables are listed on the current device.

[bookmark: _Toc458599446]CHKTF^XTMUNIT(): Test Conditional Values
Reference Type:	Not callable from outside a unit test.
Category:	Toolkit—M Unit Utility
ICR #:	N/A
Description:	This API runs a test that checks conditional values (True or False).
Format:	D CHKTF^XTMUNIT(val,msg)
Input Parameters:	val:	The conditional value to be tested.
	msg:	The error message to be generated if the result of the test is False.
Output:	returns:	Returns:
A period or “dot”—If the result of the test is True.
An error message—If the result of the test is False.

[bookmark: _Toc401658989][bookmark: _Ref410138540][bookmark: _Toc458599447]FAIL^XTMUNIT(): Generate an Error Message
Reference Type:	Not callable from outside a unit test
Category:	Toolkit—M Unit Utility
ICR #:	N/A
Description:	This API runs a test that simply generates an error message This command is useful for more complex unit tests that are built within the unit test routine itself.
Format:	D FAIL^XTMUNIT(msg)
Input Parameters:	msg:	(required) The text of the error message.
Output:	returns:	Returns the error message.

[bookmark: _Toc401658992][bookmark: _Toc401658990][bookmark: _Toc458599448]$$ISUTEST^XTMUNIT: Evaluate if Unit Test is Running
Reference Type:	Not callable from outside a unit test
Category:	Toolkit—M Unit Utility
ICR #:	N/A
Description:	This extrinsic function is used to evaluate if a unit test is currently running. If a test is running, it returns a value of 1; otherwise, it returns a value of zero. This can be used to select code to be run based on whether it is currently being tested (or something else that calls it is being tested).
Format:	S X=$$ISUTEST^XTMUNIT
Input Parameters:	none.
Output:	returns:	Returns:
1—If a test is running.
Zero (0)—If a test is not running.

[bookmark: _Toc458599449]SUCCEED^XTMUNIT: Increment Test Counter
Reference Type:	Not callable from outside a unit test
Category:	Toolkit—M Unit Utility
ICR #:	N/A
Description:	This API runs a test command that increments the test counter; writes a “dot” to the screen for activity, which indicates a successful test. This command is useful for indicating a successful test within a more complex unit test built within the unit test routine itself, and is the counterpart to the FAIL^XTMUNIT(): Generate an Error Message API.
Format:	D SUCCEED^XTMUNIT
Input Parameters:	none.
Output:	returns:	Increments test counter; writes a period or “dot” to the screen for activity, which indicates a successful test.
[bookmark: _Toc401658995]
[bookmark: _Toc458599450]Sample M Unit Utility Output
Figure 127 is an example of the output from running a suite of unit tests to test M Unit:
[bookmark: _Ref409619839][bookmark: _Toc458599966]Figure 127: Sample output from the M Unit test tool—Verbose
VISTA>D ^XTMZZUT1

T1 - - Make sure Start-up Ran.--- [OK]
T2 - - Make sure Set-up runs.-- [OK]
T3 - - Make sure Teardown runs.-- [OK]
T4 - Entry point using XTMENT-- [OK]
T5 - Error count check
T5^XTMZZUT1 - Error count check - This is an intentional failure.
.
T5^XTMZZUT1 - Error count check - Intentionally throwing a failure
.-- [FAIL]
T6 - Succeed Entry Point...-- [OK]
T7 - Make sure we write to principal even though we are on another device[OK]
T8 - If IO starts with another device, write to that device as if it’s the princi
pal device--- [OK]
T11 - An @TEST Entry point in Another Routine invoked through XTROU offsets.[OK]
T12 - An XTENT offset entry point in Another Routine invoked through XTROU offse
ts.-- [OK]
MAIN - - Test coverage calculations------------------------------------ [OK]
NEWSTYLE - identify new style test indicator functionality.------------ [OK]
OLDSTYLE - identify old style test indicator functionality..---------- [OK]
OLDSTYL1 - identify old style test indicator 2.----------------------- [OK]
BADCHKEQ - CHKEQ should fail on unequal value
BADCHKEQ^XTMZZUT5 - CHKEQ should fail on unequal value - <4> vs <3> - SET UNEQU
AL ON PURPOSE - SHOULD FAIL
--- [FAIL]
BADCHKTF - CHKTF should fail on false value
BADCHKTF^XTMZZUT5 - CHKTF should fail on false value - SET FALSE (0) ON PURPOSE
 - SHOULD FAIL
--- [FAIL]
BADERROR - throws an error on purpose
BADERROR^XTMZZUT5 - throws an error on purpose - Error: <UNDEFINED>BADERROR+6^X
TMZZUT5 *Q
--- [FAIL]
CALLFAIL - called FAIL to test it
CALLFAIL^XTMZZUT5 - called FAIL to test it - Called FAIL to test it
--- [FAIL]
LEAKSOK - check leaks should be ok------------------------------------- [OK]
LEAKSBAD - check leaks with leak
LEAKSBAD^XTMZZUT5 - check leaks with leak - LEAKSBAD TEST - X NOT SPECIFIED VARI
ABLE LEAK: X
--- [FAIL]
NVLDARG1 - check invalid arg in CHKEQ
NVLDARG1^XTMZZUT5 - check invalid arg in CHKEQ - NO VALUES INPUT TO CHKEQ^XTU -
no evaluation possible
--- [FAIL]
ISUTEST - check ISUTEST inside unit test.------------------------------ [OK]
CHKCMDLN - check command line processing of XTMZZUT5------------------- [OK]
CHKGUI - check GUI processing of XTMZZUT5------------------------------ [OK]
CKGUISET - check list of tests returned by GUISET---------------------- [OK]
NEWSTYLE - test return of valid new style or @TEST indicators...------- [OK]

Ran 5 Routines, 26 Entry Tags
Checked 25 tests, with 7 failures and encountered 1 error.
Menu Manager: Developer Tools

[bookmark: _Ref421613886][bookmark: _Toc458599451]Toolkit—Parameter Tools
[bookmark: _Toc458599452]Overview
Parameter Tools is a generic method of handling parameter definitions, assignments, and retrieval. A parameter may be defined for various entities where an entity is the level at which you want to allow the parameter defined (e.g., package level, system level, division level, location level, user level, etc.). A developer can then determine in which order the values assigned to given entities are interpreted.
[image: Note]	REF: Integration Control Registration (ICR) #2263 defines the various callable entry points in the XPAR routine.

ICR #2336 defines the various callable entry points in the XPAREDIT routine.
[bookmark: _Ref413326286][bookmark: _Toc458599453]Definitions
The following are some basic definitions used by Parameter Tools:
[bookmark: _Toc458599454]Entity
An entity is a level at which you can define a parameter. The entities allowed are stored in the PARAMETER ENTITY file (#8989.518). The list of allowable entities at the time this utility was released was as follows:
[bookmark: _Ref212540468][bookmark: _Toc200270052][bookmark: _Toc458600028]Table 33: Parameter Tool—Parameter entity levels
	[bookmark: COL001_TBL026]Entity Prefix
	Message
	Points to File

	PKG
	Package
	PACKAGE (#9.4)

	SYS
	System
	DOMAIN (#4.2)

	DIV
	Division
	INSTITUTION (#4)

	SRV
	Service
	SERVICE/SECTION (#49)

	LOC
	Location
	HOSPITAL LOCATION (#44)

	TEA
	Team
	TEAM (#404.51)

	CLS
	Class
	USR CLASS (#8930)

	USR
	User
	NEW PERSON (#200)

	BED
	Room-Bed
	ROOM-BED (#405.4)

	OTL
	Team (OE/RR)
	OE/RR LIST (#100.21)

	DEV
	Device
	DEVICE (#3.5)

[image: Note]	NOTE: Entries are maintained via Kernel Toolkit patches. Entries existing in the file at the time it is referenced are considered supported.
[bookmark: _Toc458599455]Parameter
A parameter is the actual name under which values are stored. The name of the parameter must be namespaced and it must be unique. Parameters can be defined to store the typical package parameter data (e.g., the default add order screen in OE/RR), but they can also be used to store GUI application screen settings a user has selected (e.g., font or window width). When a parameter is defined, the entities that can set that parameter are also defined. The definition of parameters is stored in the PARAMETER DEFINITION file (#8989.51).
[bookmark: _Toc458599456]Value
A value may be assigned to every parameter for the entities allowed in the parameter definition. Values are stored in the PARAMETERS file (#8989.5).
[bookmark: _Toc458599457]Instance
Most parameters set instance to 1. Instances are used when more than one value may be assigned to a given entity/parameter combination. An example of this would be lab collection times at a division. A single division may have multiple collection times. Each collection time would be assigned a unique instance.
[bookmark: _Toc458599458]Parameter Template
A parameter template is similar to an input template. It contains a list of parameters that can be entered through an input session (e.g., option). Templates are stored in the PARAMETER TEMPLATE File (#8989.52). Entries in this file must also be namespaced.
[bookmark: _Toc458599459]Application Programming Interfaces (APIs)
[bookmark: _Toc158517322][bookmark: _Toc458599460]ADD^XPAR(): Add Parameter Value
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API adds a new parameter value as an entry to the PARAMETERS file (#8989.5) if the Entity/Parameter/Instance combination does not already exist.
[image: Note] REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	ADD^XPAR(entity,parameter[,instance],value[,.error])
Input / Output
Parameters	See EN^XPAR	For the definition of the input and output parameters used in this API, see the EN^XPAR(): Add, Change, Delete Parameters API.

[bookmark: _Toc458599461]Example:
>D ADD^XPAR(“PKG.KERNEL”,“XPAR TEST FREE TEXT”,,“Today Good”,.ERROR)

[bookmark: _Toc158517323][bookmark: _Toc458599462]CHG^XPAR(): Change Parameter Value
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API changes the value assigned to an existing parameter if the Entity/Parameter/Instance combination already exists.
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	CHG^XPAR(entity,parameter[,instance],value[,.error])
Input / Output
Parameters:	See EN^XPAR	For the definition of the input and output parameters used in this API, see the EN^XPAR(): Add, Change, Delete Parameters API.

[bookmark: _Toc458599463]Example
>D CHG^XPAR(“PKG.KERNEL”,“XPAR TEST FREE TEXT”,,“Tomorrow Hot”,.ERROR)

[bookmark: _Toc158517324][bookmark: _Toc458599464]DEL^XPAR(): Delete Parameter Value
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API deletes an existing parameter instance if the value assigned is “@”.
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	DEL^XPAR(entity,parameter[,instance][,.error])
Input / Output
Parameters:	See EN^XPAR	For the definition of the input and output parameters used in this API, see the EN^XPAR(): Add, Change, Delete Parameters API.

[bookmark: _Toc458599465]Example
>D DEL^XPAR(“PKG.KERNEL”,“XPAR TEST FREE TEXT”,),.ERROR) I ERROR>0 W !.ERROR

[bookmark: _Ref158179979][bookmark: _Toc158517325][bookmark: _Toc458599466]EN^XPAR(): Add, Change, Delete Parameters
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API performs any one of the following functions:
Adds the value as a new entry to the PARAMETERS file (#8989.5) if the Entity|Parameter|Instance combination does not already exist.
Changes the value assigned to the parameter in the PARAMETERS file (#8989.5) if the Entity|Parameter|Instance combination already exists.
Deletes the parameter instance in the PARAMETERS file (#8989.5) if the value assigned is “@”.
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
[bookmark: EN]Format:	EN^XPAR(entity,parameter[,instance],value[,.error])
[bookmark: entity]Input Parameters:	entity:	(required) Entity can be set to the following:
Internal variable pointer (nnn;GLO(123,)
External format of the variable pointer using the three-character prefix (prefix.entryname)
Prefix alone to set the parameter based on the current entity selected. This works for the following entities:
“USR”—Uses current value of DUZ.
“DIV”—Uses current value of DUZ(2).
“SYS”—Uses system (domain).
“PKG”—Uses the package to which the parameter belongs.
[bookmark: parameter]	parameter:	(required) Can be passed in external or internal format. Identifies the name or internal entry number (IEN) of the parameter as defined in the PARAMETER DEFINITION file (#8989.51).
[bookmark: instance]	instance:	(optional) Defaults to 1 if not passed. Can be passed in external or internal format. Internal format requires that the value be preceded by the grave accent (`) character.
	value:	(required) Can be passed in external or internal format. If using internal format for a pointer type parameter, the value must be preceded by the accent grave (`) character.
If the value is being assigned to a word-processing parameter, the text can be passed in the subordinate nodes of Value (e.g., Value(1,0)=Text) and the variable “Value” itself can be defined as a title or description of the text.
[bookmark: error]Output Parameter:	.error:	(optional) If used, must be passed in by reference. It returns any error condition that may occur:
0 (Zero)—If no error occurs.
#^errortext—If an error does occur.

The “#” is the number in the VA FileMan DIALOG file (#.84) and the “errortext” describes the error.

[bookmark: _Toc458599467]Example
>D EN^XPAR(“SYS”,“XPAR TEST FREE TEXT”,0,“Good times”,.ERROR)
>D EN^XPAR(“SYS”,“XPAR TEST FREE TEXT”,1,“to night”,.ERROR)

[bookmark: _Ref158453378][bookmark: _Toc158517326][bookmark: _Ref158443959][bookmark: _Toc458599468]ENVAL^XPAR(): Return All Parameter Instances
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API returns all parameter instances.
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	ENVAL^XPAR(.list,parameter,instance[,.error][,gbl])
Input / Output
Parameters:	.list:	(required) If the gbl parameter is set to 1, then the .list parameter becomes an input and holds the closed root of a global where the GETLST^XPAR(): Return All Instances of a Parameter API should put the output. For example:
$NA(^TMP($J,“XPAR”))
Input Parameters:	parameter:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
	instance:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
	gbl:	(optional) If this optional parameter is set to 1, then the parameter “.list” must be set before the call to the closed global root where the return data should be put. For example:
S LIST=$NA(^TMP($J)) ENVAL^XPAR(LIST,par,inst,.error,1
If this optional variable is set to 1. Then the parameter List must be set before the call to the closed global root where the return data should be put. For example:
GETLST^XPAR($NA(^TMP($J)),ent,par,fmt,.error,1)
Output Parameters:	.error:	(optional) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
[bookmark: _Ref158516370][bookmark: _Toc158517327]
[bookmark: _Toc458599469]$$GET^XPAR(): Return an Instance of a Parameter
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This extrinsic function retrieves the value of a parameter. The value is returned from this call in the format defined by the input parameter named “format.”
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	$$GET^XPAR(entity,parameter,instance[,format])
[bookmark: entity_GET_XPAR]Input Parameters:	entity:	(required) Entity is defined as the single entity or group of entities you want to look at in order to retrieve the value. Entities may be passed in internal or external format (e.g., LOC.PULMONARY or LOC.’57 or 57;SC(). The list of entities in this variable may be defined as follows:
A single entity to look at (e.g., LOC.PULMONARY).
The word “ALL” that tells the utility to look for values assigned to the parameter using the entity precedence defined in the PARAMETER DEFINITION file (#8989.51).
A list of entities you want to search (e.g., ”USR^LOC^SYS^PKG”). The list is searched from left to right with the first value found returned.
Items 2 or 3 with specific entity values referenced such as:
ALL^LOC.PULMONARY—To look at the defined entity precedence, but when looking at location, only look at the PULMONARY location.
USR^LOC.PULMONARY^SYS^PKG—To look for values for all current user, PULMONARY location, system, or package).
	parameter:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
	instance:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
[bookmark: format]	format:	(optional) The format input parameter determines how the value is returned. It can be set to the following:
“I”—Internal; returns list(#) = “internal value”.
“Q”—Quick; returns list(#) = “internal instance^internal value”. Returns the value in the quickest manner (default if not specified).
“E”—External; returns list(#) = “external instance^external value”.
“B”—Both; returns both list(#,“N”) = “internal instance^external instance” and list(#,“V”) = “internal value^external value”.
“N”—Returns list(#) = “internal value^external value”.
Output:	returns:	Returns the parameter value in the format defined by the format input parameter.
[bookmark: _Ref158444234][bookmark: _Toc158517328]
[bookmark: _Ref421202184][bookmark: _Toc458599470]GETLST^XPAR(): Return All Instances of a Parameter
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API is similar to the ENVAL^XPAR(): Return All Parameter Instances API; however, it returns all instances of a parameter.
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	GETLST^XPAR(.list,entity,parameter[,format][,.error][,gbl])
Input/ Output
Parameters:	.list:	(required) The array passed as List is returned with all of the possible values assigned to the parameter.
[image: Note]	REF: To see how this data can be returned, see the “format” parameter description.
If the gbl parameter is set to 1, then the .list parameter becomes an input and holds the closed root of a global where the GETLST^XPAR API should put the output [i.e., $NA(^TMP($J,“XPAR”))].
Input Parameters:
	entity:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
	parameter:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
[bookmark: format_parameter]	format:	(optional) For a description of this parameter, see the $$GET^XPAR(): Return an Instance of a Parameter API.
	gbl:	(optional) If this optional variable is set to 1. Then the parameter “.list” must be set before the call to the closed global root where the return data should be put. For example:
GETLST^XPAR($NA(^TMP($J)),ent,par,fmt,.error,1)
Output Parameters:	.error:	(optional) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.

[bookmark: _Toc458599471]Example:
>D GETLST^XPAR(.LIST,“SYS”,“XPAR TEST MULTI FREE TEXT”,,.ERROR)

[bookmark: _Toc158517329][bookmark: _Toc458599472]GETWP^XPAR(): Return Word-processing Text
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API returns word-processing text in the returnedtext parameter. The returnedtext parameter itself contains the value field, which is free text that may contain a title, description, etc. The word-processing text is returned in returnedtext(#,0).
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	GETWP^XPAR(returnedtext,entity,parameter[,instance][,.error])
Input / Output
Parameters:	.returnedtext:	(required) This parameter is defined as the name of an array in which you want the text returned. The .returnedtext parameter is set to the title, description, etc. The actual word-processing text is returned in returnedtext(#,0). For example:
>returnedtext=“Select Notes Help”
>returnedtext(1,0)=“To select a progress note from the list, “
>returnedtext(2,0)=“click on the date/title of the note.”
Input Parameters:	entity:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
	parameter:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
	instance:	(optional) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
Output Parameters:	.error	(optional) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.

[bookmark: _Toc458599473]Example:
>D GETWP^XPAR(.X,“PKG”,“ORW HELP”,“lstNotes”,.ERROR)

[bookmark: _Toc158517330][bookmark: _Toc458599474]NDEL^XPAR(): Delete All Instances of a Parameter
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API deletes the value for all instances of a parameter for a given entity.
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Forma t:	NDEL^XPAR(entity,parameter[,.error])
Input / Output
Parameters:	See EN^XPAR	For the definition of the input and output parameters used in this API, see the EN^XPAR(): Add, Change, Delete Parameters API.

[bookmark: _Toc458599475]Example
>D NDEL^XPAR(“SYS”,“XPAR TEST MULTI FREE TEXT”,.ERROR)

[bookmark: _Toc158517331][bookmark: _Toc458599476]PUT^XPAR(): Add/Update Parameter Instance
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API adds or updates a parameter instance and bypass the input transforms.
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	PUT^XPAR(entity,parameter[,instance],value[,.error])
Input / Output
Parameters:	See EN^XPAR	For the definition of the input and output parameters used in this API, see the EN^XPAR(): Add, Change, Delete Parameters API.

[bookmark: _Toc458599477]Example:
>D PUT^XPAR(“SYS”,“XPAR TEST MULTI FREE TEXT”,0,“Good times”,.ERROR)

[bookmark: _Toc158517332][bookmark: _Toc458599478]REP^XPAR(): Replace Instance Value
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2263
Description:	This API replaces the value of an instance with another value.
[image: Note]	REF: For descriptive information about the elements and how they are used in the callable entry points into XPAR, see the “Definitions” section.
Format:	REP^XPAR(entity,parameter,currentinstance,newinstance[,.error])
Input Parameters:	entity:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
	parameter:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
	currentinstance:	(required) The instance for which the value is currently defined.
	newinstance:	(required) The instance to which you want to assign the value that is currently assigned to currentinstance.
Output Parameters:	.error:	(optional) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
[bookmark: _Toc158517333]
[bookmark: _Toc458599479]BLDLST^XPAREDIT(): Return All Entities of a Parameter
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2336
Description:	This API returns in the array “list” all entities allowed for the input parameter named “parameter.”
Format:	BLDLST^XPAREDIT(.list,parameter)
Input Parameters:	.list:	(required) Name of array to receive output.
	parameter:	(required) Internal Entry Number (IEN) of entry in the PARAMETER DEFINITION file (#8989.51).
Output Parameters:	.list:	The array passed as “list” is returned with all of the possible values assigned to the parameter.
Data is returned in the following format:
list(ent,inst)=val

[bookmark: _Toc158517334][bookmark: _Toc458599480]EDIT^XPAREDIT(): Edit Instance and Value of a Parameter
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2336
Description:	This API interactively edits the instance (if multiple instances are allowed) and the value for a parameter associated with a given entity.
Format:	EDIT^XPAREDIT(entity,parameter)
Input Parameters:	entity:	(required) Identifies the specific entity for which a parameter can be edited. The entity must be in variable pointer format.
	parameter:	(required) Identifies the parameter that should be edited. Parameter should contain two pieces:
IEN^DisplayNameOfParameter
Output:	results:	Returns parameter for Interactive edits.

[bookmark: _Toc158517335][bookmark: _Toc458599481]EDITPAR^XPAREDIT(): Edit Single Parameter
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2336
Description:	This API edits a single parameter.
Format:	EDITPAR^XPAREDIT(parameter)
Input Parameters:	parameter:	(required) For a description of this parameter, see the EN^XPAR(): Add, Change, Delete Parameters API.
Output:	returns:	Returns requested parameter.
[bookmark: _Toc158517336]
[bookmark: _Toc458599482]EN^XPAREDIT: Parameter Edit Prompt
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2336
Description:	This API prompts the user for a parameter to edit. This is provided as a tool for developers and is not intended for exported calls as it allows editing of any parameter.
Format:	EN^XPAREDIT
Input Parameters:	none.
Output:	none.
[bookmark: _Toc158517337]
[bookmark: _Toc458599483]GETENT^XPAREDIT(): Prompt for Entity Based on Parameter
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2336
Description:	This API interactively prompts for an entity, based on the definition of a parameter.
Format:	GETENT^XPAREDIT(.entity,parameter[,.onlyone?])
Input Parameters:	.entity:	(required) Returns the selected entity in variable pointer format.
	parameter:	(required) Identifies the parameter that should be edited. Parameter should contain two pieces:
IEN^DisplayNameOfParameter
Output:	.onlyone?:	(optional) Returns “1” if there is only one possible entity for the value. For example:
1—If the parameter can only be set for the system, onlyone?
0—If the parameter could be set for any location, onlyone?

[bookmark: _Toc158517338][bookmark: _Toc458599484]GETPAR^XPAREDIT(): Select Parameter Definition File
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2336
Description:	This API allows the user to select the PARAMETER DEFINITION file (#8989.51) entry.
Format:	GETPAR^XPAREDIT(.variable)
Make sure to perform the following steps before calling this API:
1. NEW all non-namespaced variables.
Set all input variables.
Call the API.
Input Parameters:	.variable:	(required) The name of the variable where data is returned.
Output Variables:	.OUTPUTVALU:	Returns the value Y in standard DIC lookup format.

[bookmark: TED][bookmark: _Ref158443634][bookmark: _Toc158517339][bookmark: _Toc458599485]TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers)
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2336
Description:	This API allows editing of parameters defined in a template. The parameters in the template are prompted in VA FileMan style—prompt by prompt. No dashed line dividers are displayed between each parameter.
Since the dashed line headers are suppressed, it is important to define the VALUE TERM for each parameter in the template, as this is what prompts for the value.
Format:	TED^XPAREDIT(template[,reviewflags][,allentities])
Input Parameters:	template:	(required) The Internal Entry Number (IEN) or NAME of an entry in the PARAMETER TEMPLATE file (#8989.52).
	reviewflags:	(optional) There are two flags (A and B) that can be used individually, together, or not at all:
A—Indicates that the new values for the parameters in the template are displayed after the prompting is done.
B—Indicates that the current values of the parameters are displayed before editing.
	allentities:	(optional) This is a variable pointer that should be used as the entity for all parameters in the template. If left blank, prompting for the entity is done as defined in the PARAMETER TEMPLATE file (#8989.52).
Output:	none.
[bookmark: _Toc158517340]
[bookmark: _Toc458599486]TEDH^XPAREDIT(): Edit Template Parameters (with Dash Dividers)
Reference Type:	Supported
Category:	Toolkit—Parameter Tools
ICR #:	2336
Description:	This API is similar to the TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers) API except that the dashed line headers are shown between each parameter.
It allows editing of parameters defined in a template. The parameters in the template are prompted in VA FileMan style—prompt by prompt.
Format:	TEDH^XPAREDIT(template[,reviewflags][,allentities])
Input Parameters:	template:	(required) For a description of this parameter, see the TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers) API.
	reviewflags:	(optional) For a description of this parameter, see the TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers) API.
	allentities:	(optional) For a description of this parameter, see the TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers) API.
Output:	none.

[bookmark: _Toc158517358][bookmark: _Ref241384236][bookmark: _Toc458599487]
Toolkit—VHA Unique ID (VUID) APIs
[bookmark: _Toc158517359][bookmark: _Ref178057318][bookmark: _Toc458599488]GETIREF^XTID(): Get IREF (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—VHA Unique ID (VUID)
ICR #:	4631
Description:	This API searches and returns a list of terms/concepts for a given VHA Unique ID (VUID; i.e., “vuid” input parameter). Filtering of the list is applied when the following optional input parameters are defined:
file
field
master
Format:	GETIREF^XTID([file][,field],vuid,array[,master])
Input Parameters:	file:	(optional) VistA file/subfile number where term/concept is defined.
Defined—If defined, the search is limited to those term/concepts that exist in that file and have the VUID assigned to the “vuid” input parameter.
Not Defined—If not defined, the search includes term/concepts that have the VUID assigned to “vuid” input parameter and can exist in both file terms and in SET OF CODES terms.
	field:	(optional) Field number, in the “file” input parameter, where term/concept is defined.
Defined—The search finds those terms/concepts that have the VUID assigned to the “vuid” input parameter and is limited to those terms/concepts that exist in the given file/field combination.
Entered as .01, it represents the terms defined in the file entered in the “file” input parameter.
Otherwise, the field number entered must be a SET OF CODES data type field in the file entered in the “file” input parameter.
Not Defined—The search finds those terms/concepts that have the VUID assigned to the “vuid” input parameter and is limited to those terms/concepts found in the file defined in the “file” input parameter.
	vuid:	(required) The VHA Unique ID (VUID) value, which is specified to limit the search.
	array:	(required) The name of the array (local or global) where results of the search is stored.
	master:	(optional) Flag to limit the search of terms based on the value of the MASTER ENTRY FOR VUID field.
Returns:
0—Include all terms.
1—Include only those terms designated as MASTER ENTRY FOR VUID.
Output:	array:	Returns the given array populated as follows:
@TARRAY = <list count> @TARRAY@(<file#>,<field#>,<internalreference>) = <status info>
Where the <status info> is defined as “<internal value>^<VA FileMan effective date/time>^<external value>^<master entry?> ”
Empty Array—Unpopulated array when no entries are found.
Error Array—When an error occurs, the array is populated as follows:
@TARRAY(“ERROR”)=“<error message>”

[bookmark: _Toc458599489]Examples
Example 1
[bookmark: _Toc458599967]Figure 128: GETIREF^XTID API—Example 1
>N array S array=“MYARRAY”
>S file=16000009,field=.01,vuid=12343,master=0
>D GETIREF^XTID(file,field,vuid,array,master)
>ZW MYARRAY

MYARRAY=2
MYARRAY(16000009,.01,“1,”)=1^3050202.153242^ACTIVE^0
MYARRAY(16000009,.01,“3,”)=0^3050215.07584^INACTIVE^1

Example 2
When no entries are found, the named array is populated as follows.
>ZW MYARRAY

MYARRAY=0

Example 3
When an error occurs, the named array is populated as follows:
>ZW MYARRAY
MYARRAY(“ERROR”)=<error message>

[bookmark: _Toc158517360][bookmark: _Ref178057319][bookmark: _Toc458599490]$$GETMASTR^XTID(): Get Master VUID Flag (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—VHA Unique ID (VUID)
ICR #:	4631
Description:	This extrinsic function retrieves the value of the flag MASTER ENTRY FOR VUID for a given term/concept reference.
Format:	$$GETMASTR^XTID(file[,field],iref)
Input Parameters:	file:	(required) VistA file/subfile number where term/concept is defined.
	field:	(optional) Field number in the “file” input parameter where term/concept is defined.
	iref:	(required) Internal reference for term/concept:
File Entries—This is an IENS. For example:

iref=“5,”
SET OF CODES—This is the internal value of the code. For example:

iref = 3 or
iref = “f” or
iref = “M”
Output:	returns:	Returns results of operation as follows:
Successful—Internal value of the MASTER ENTRY FOR VUID field as follows:
0—NO.
1—YES.
Unsuccessful—^<error message>

[bookmark: _Toc458599491]Examples
Example 1
For terms defined in fields that are SET OF CODES:
>S file=2,field=.02,iref=“M”
>W $$GETMASTR^XTID(file,field,iref)
1

Example 2
For terms defined in a single file:
>S file=16000009,field=.01,iref=“3,”
>W $$GETMASTR^XTID(file,field,iref)
0

[bookmark: _Toc158517361][bookmark: _Ref178057320][bookmark: _Toc458599492]$$GETSTAT^XTID(): Get Status Information (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—VHA Unique ID (VUID)
ICR #:	4631
Description:	This extrinsic function retrieves the status information for a given term/concept reference and a specified date/time.
Format:	$$GETSTAT^XTID(file[,field],iref[,datetime])
Input Parameters:	file:	(required) VistA file/subfile number where term/concept is defined.
	field:	(optional) Field number, in the “file” input parameter where term/concept is defined.
Not Defined—If not defined, this field defaults to the .01 field number, and it represents terms defined in the file “file” input parameter.
Defined:
Entered as .01, it represents the terms defined in the file entered in the “file” input parameter.
Otherwise, the field number entered must be a SET OF CODES data type field in the file entered in the “file” input parameter.
	iref:	(required) Internal reference for term/concept.
File entries—This is an IENS. For example:
iref = “5,”
SETS OF CODES—This is the internal value of the code. For example:
iref = 3 or
iref = “f” or
iref = “M”
	datetime:	(optional) VA FileMan date/time. It defaults to NOW.
Output:	returns:	Returns results of operation as follows:
Successful—<internal value>^<VA FileMan effective date/time>^<external value>

For example:
0^3050220.115720^INACTIVE
1^3050225.115711^ACTIVE
Unsuccessful—^<error message>
[image: Note]	NOTE: The first piece is empty. This differentiates it from the successful case, where the first piece is either 0 or 1.

[bookmark: _Toc458599493]Examples
Example 1
For terms defined in fields that are SET OF CODES:
>S file=2,field=.02,iref=“M”,datetime=$$NOW^XLFDT
>W $$GETSTAT^XTID(file,field,iref,datetime)
1^3050121.154752^ACTIVE

Example 2
For terms defined in a single file:
>S file=16000009,field=.01,iref=“3,”,datetime=“”
>W $$GETSTAT^XTID(file,field,iref,datetime)
0^3050122.154755^INACTIVE

[bookmark: _Toc158517362][bookmark: _Ref178057321][bookmark: _Toc458599494]$$GETVUID^XTID(): Get VUID (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—VHA Unique ID (VUID)
ICR #:	4631
Description:	This extrinsic function retrieves the VHA Unique ID (VUID) for a given term/concept reference.
Format:	$$GETVUID^XTID(file[,field],iref)
Input Parameters:	file:	(required) VistA file/subfile number where term/concept is defined.
	field:	(optional) Field number in the “file” input parameter where term/concept is defined.
Not Defined—If not defined, this field defaults to the .01 field number, and it represents terms defined in the file entered in the “file” input parameter.
Defined:
Entered as .01, it represents the terms defined in the file entered in the “file” input parameter.
Otherwise, the field number entered must be a SET OF CODES data type field in the file entered in the “file” input parameter.
	iref:	(required) Internal reference for term/concept:
File Entries—This is an IENS. For example:
iref=“5,”
SET OF CODES—This is the internal value of the code. For example:
iref = 3 or
iref = “f” or
iref = “M”
Output:	returns:	Returns results of operation as follows:
Successful—VHA Unique ID (VUID)
Unsuccessful—0^<error message>

[bookmark: _Toc458599495]Examples
Example 1
For terms defined in fields that are SET OF CODES:
>S file=2,field=.02,iref=“M”
>W $$GETVUID^XTID(file,field,iref)
123456

Example 2
For terms defined in a single file:
>S file=16000009,field=.01,iref=“3,”
>W $$GETVUID^XTID(file,field,iref)
123457

[bookmark: _Toc158517363][bookmark: _Ref178057317][bookmark: _Toc458599496]$$SCREEN^XTID(): Get Screening Condition (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—VHA Unique ID (VUID)
ICR #:	4631
Description:	As of Kernel Toolkit patch XT*7.3*108, this extrinsic function retrieves the screening condition for a given term/concept reference and specified date/time. It returns whether or not a given entry should be screened out of selection lists. This API should not be used to determine if the given entry is active/inactive, since the API takes into consideration where in the standardization process the facility is. It returns the following values:
0—If the given entry is selectable (i.e., “do not screen it out”).
1—If the entry is not selectable (i.e., “screen it out”).
Format:	$$SCREEN^XTID(file[,field],iref[,datetime][,.cached])
Input Parameters:	file:	(required) VistA file/subfile number where term/concept is defined.
	field:	(optional) Field number, in the “file” input parameter where term/concept is defined.
Not Defined—If not defined, this field defaults to the .01 field number, and it represents terms defined in the file entered in the “file” input parameter.
Defined:
Entered as .01, it represents the terms defined in the file entered in the “file” input parameter.
Otherwise, the field number entered must be a SET OF CODES data type field in the file entered in the “file” input parameter.
	iref:	(required) Internal reference for term/concept:
File entries—This is an IENS. For example:
iref = “5,”
SET OF CODES—This is the internal value of the code. For example:
iref = 3 or
iref = “f” or
iref = “M”
	datetime:	(optional) VA FileMan date/time against which screening is checked. It defaults to NOW.
[image: Note]	NOTE: If the value of the datetime parameter contains a date and no time, no entries are returned for the first day.
	.cached:	(optional) Flag to indicate caching. Used mainly when defining the “screen” parameter [e.g., DIC(“S”)] while searching large files. This improves the speed of the search.
[image: Note]	NOTE: It must be KILLed before initiating each search query (e.g., before calling the ^DIC).
Output:	returns:	Returns the screening condition as follows:
0—When term/concept is selectable (i.e., do not screen it out).
1—When term/concept is not selectable (i.e., screen it out).

[bookmark: _Toc458599497]Examples
Example 1
For terms defined in fields that are SET OF CODES:
>S file=2,field=.02,iref=“M”,datetime=$$NOW^XLFDT
>W $$SCREEN^XTID(file,field,iref,datetime)
0

Example 2
For terms defined in a single file:
>S file=16000009,field=.01,iref=“3,”,datetime=“”
>W $$SCREEN^XTID(file,field,iref,datetime)
0

Example 3
When searching a large file:
>S file=120.52,field=.01,datetime=“”
>S SCREEN=“I ‘$$SCREEN^XTID(file,field,Y_”“,”“,datetime,.cached)”
>. . .
>K cached
>D LIST^DIC(file,,“.01;99.99”,,“*”,,,,SCREEN,,“LIST”,“MSG”)
>K cached

[bookmark: _Toc158517364][bookmark: _Ref178057322][bookmark: _Toc458599498]$$SETMASTR^XTID(): Set Master VUID Flag (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—VHA Unique ID (VUID)
ICR #:	4631
Description:	This extrinsic function stores (sets) the value of the MASTER ENTRY FOR VUID flag for a given term/concept reference. The MASTER ENTRY FOR VUID flag distinguishes references that might be duplicates.
Format:	$$SETMASTR^XTID(file[,field],iref,mstrflag)
Input Parameters:	file:	(required) VistA file/subfile number where term/concept is defined.
	field:	(optional) Field number in the “file” input parameter where term/concept is defined.
Not Defined—If not defined, this field defaults to the .01 field number. It represents the terms defined in the file entered in the “file” input parameter.
Defined:
Entered as .01; it represents the terms defined in the file entered in the “file” input parameter.
Otherwise, the field number entered must be a SET OF CODES data type field in the file entered in the “file” input parameter.
	iref:	(required) Internal reference for term/concept:
File Entries—This is an IENS. For example:
iref=“5,”
SET OF CODES—This is the internal value of the code. For example:
iref = 3 or
iref = “f” or
iref = “M”
	mstrflag:	(required) The internal value of the MASTER ENTRY FOR VUID field. Possible values are as follows:
0—NO.
1—YES.
Output:	returns:	Returns results of operation as follows:
Successful—1
Unsuccessful—0^<error message>

[bookmark: _Toc458599499]Examples
Example 1
For terms defined in fields that are SET OF CODES:
>S file=2,field=.02,iref=“M”,mstrflag=0
>W $$SETMASTR^XTID(file,field,iref,mstrflag)
1

Example 2
For terms defined in a single file:
>S file=16000009,field=.01,iref=“3,”,mstrflag=1
>W $$SETMASTR^XTID(file,field,iref,mstrflag)
1

Example 3
>S file=16000009,field=.01,iref=“6,”,mstrflag=1
>W $$SETMASTR^XTID(file,field,iref,mstrflag)
0^pre-existing master entry

[bookmark: _Toc158517365][bookmark: _Ref178057323][bookmark: _Toc458599500]$$SETSTAT^XTID(): Set Status Information (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—VHA Unique ID (VUID)
ICR #:	4631
Description:	This extrinsic function stores (sets) the status and effective date/time for the given term/concept.
Format:	$$SETSTAT^XTID(file[,field],iref,status[,datetime])
Input Parameters:	file:	(required) VistA file/subfile number where term/concept is defined.
	field:	(optional) Field number in the “file” input parameter where term/concept is defined.
Not Defined—If not defined, this field defaults to the .01 field number, and it represents terms defined in the file entered in the “file” input parameter.
Defined:
Entered as .01, it represents the terms defined in the file entered in the “file” input parameter.
Otherwise, the field number entered must be a SET OF CODES data type field in the file entered in the “file” input parameter.
	iref:	(required) Internal reference for term/concept:
File entries—This is an IENS. For example:
iref = “5,”
SET OF CODES—This is the internal value of the code. For example:
iref = 3 or
iref = “f” or
iref = “M”
	status:	(required) The status internal value. Possible values are as follows:
0—INACTIVE.
1—ACTIVE.
	datetime:	(optional) VA FileMan date/time. It defaults to NOW.
Output:	returns:	Returns results of operation as follows:
Successful—1
Unsuccessful—0^<error message>

[bookmark: _Toc458599501]Examples
Example 1
For terms defined in fields that are SET OF CODES:
>S file=2,field=.02,iref=“M”,status=1,datetime=$$NOW^XLFDT
>W $$SETSTAT^XTID(file,field,iref,status,datetime)
1

Example 2
For terms defined in a single file:
>S file=16000009,field=.01,iref=“3,”,status=1,datetime=$$NOW^XLFDT
>W $$SETSTAT^XTID(file,field,iref,status,datetime)
1

[bookmark: _Toc158517366][bookmark: _Ref178057324][bookmark: _Toc458599502]$$SETVUID^XTID(): Set VUID (Term/Concept)
Reference Type:	Supported
Category:	Toolkit—VHA Unique ID (VUID)
ICR #:	4631
Description:	This extrinsic function populates (sets) the VHA Unique ID (VUID) for a given term/concept reference.
It also automatically sets the MASTER ENTRY FOR VUID field to distinguish references that might be duplicates. If this is the first reference assigned the VUID, it sets the MASTER ENTRY FOR VUID equal to 1. If another entry already has the given VUID, it sets the MASTER ENTRY FOR VUID equal to 0.
Format:	$$SETVUID^XTID(file[,field],iref,vuid)
Input Parameters:	file:	(required) VistA file/subfile number where term/concept is defined.
	field:	(optional) Field number in the “file” input parameter where term/concept is defined.
Not Defined—If not defined, this field defaults to the .01 field number, and it represents terms defined in the file entered in the “file” input parameter.
Defined:
Entered as .01, it represents the terms defined in the file entered in the “file” input parameter.
Otherwise, the field number entered must be a SET OF CODES data type field in the file entered in the “file” input parameter.
	iref:	(required) Internal reference for term/concept.
File entries—This is an IENS. For example:
iref = “5”
SET OF CODES—This is the internal value of the code. For example:
iref = 3 or
iref = “f” or
iref = “M”
	vuid:	(required) The VHA Unique ID (VUID) to assign the given term/concept reference.
Output:	returns:	Returns results of operation as follows:
Successful—1
Unsuccessful—0^<error message>

[bookmark: _Toc458599503]Examples
Example 1
For terms defined in fields that are SET OF CODES:
>S file=2,field=.02,iref=“M”,vuid=123456
>W $$SETVUID^XTID(file,field,iref,vuid)
1

Example 2
For terms defined in a single file:
>S file=16000009,field=.01,iref=“3,”,vuid=123457
>W $$SETVUID^XTID(file,field,iref,vuid)
1

[bookmark: _Toc139170379][bookmark: _Toc146428402][bookmark: _Toc236534886][bookmark: _Toc241305703][bookmark: _Ref241378561][bookmark: _Ref241382208][bookmark: _Toc458599504]Toolkit—Routine Tools
Kernel Toolkit provides developer utilities for working with M routines and globals. This section describes the routine tools exported with Kernel Toolkit. These tools are useful to system administrators and VistA software developers.
[bookmark: _Toc458599505]Direct Mode Utilities
Several Kernel Toolkit direct mode utilities are available for developers to use at the M prompt, usually involving the DO command. They are not APIs and cannot be used in software application routines.
[bookmark: _Toc200270057][bookmark: _Toc458600029]Table 34: Routine Tools—Direct Mode Utilities
	[bookmark: COL001_TBL027]Direct Mode Utility
	Description

	>D ^XTFCR
	Generate a flow chart of an entire routine.

	>D ^XTFCE
	Generate a flow chart of the processing performed from a specified entry point to the termination of processing resulting from that entry point.

	>D ^%INDEX
	(obsolete) To run %INDEX.

	>D ^XINDEX
	To run XINDEX.

	>X ^%Z
	Invokes the ^%Z editor.

	>D ^XTRGRPE
	Edit a group of routines.

	>D ^XTVCHG
	Changes all occurrences of one variable to another.

	>D ^XTVNUM
	Update or set the version number into a set of routines.

	>D ^%ZTP1
	A summary listing of the first, and optionally the second, line of one or more routines can be obtained.

	>D ^%ZTPP
	Print a listing of entire routines.

	>D ^XTRCMP
	Compare two routines with different names and display the differences (using MailMan’s PackMan compare utilities).

	>D TAPE^XTRCMP
	Compares routines in a Host File Server (HFS) file to an installed routine and displays the differences.
[image: Note] NOTE: While it is still called a “TAPE” compare, it is actually comparing a routine in an HFS file to an installed routine.

	>D ^%ZTRDEL
	Delete one or more routines.

	>D ^%RR (OS-specific)
	Loads routines from an external device, such as magtape.

	>D ^%RS (OS-specific)
	Output routines to an external device, such as a magtape.

[bookmark: _Toc458599506]Routine Tools Menu
Most of these tools are available as options on the Routine Tools menu [XUPR-ROUTINE-TOOLS] located on the Programmer Options menu [XUPROG], which is locked with the XUPROG security key. Some subordinate menu options are locked with the XUPROGMODE or XUPROG security keys as an extra level of security.
Routines can be edited, analyzed by flow-charting, printed, compared, deleted, and moved by using an option or its corresponding direct mode utility.
The Routine Tools menu is shown in Figure 129:
[bookmark: _Ref454453940][bookmark: _Toc193181925][bookmark: _Toc241305111][bookmark: _Toc458599968]Figure 129: Routine Tools—Menu options
SYSTEMS MANAGER MENU ... 	[EVE]
 Programmer Options ... <locked with XUPROG>	[XUPROG]
 Routine Tools ... 	[XUPR-ROUTINE-TOOLS]
 %Index of Routines	[XUINDEX]
 Compare local/national checksums report	[XU CHECKSUM REPORT]
 Compare routines on tape to disk	[XUPR-RTN-TAPE-CMP]
 Compare two routines	[XT-ROUTINE COMPARE]
 Delete Routines <locked with XUPROGMODE>	[XTRDEL]
 Flow Chart Entire Routine	[XTFCR]
 Flow Chart from Entry Point	[XTFCE]
 Group Routine Edit <locked with XUPROGMODE>	[XTRGRPE]
 Input routines <locked with XUPROG>	[XUROUTINE IN]
 List Routines	[XUPRROU]
 Load/refresh checksum values into ROUTINE file	[XU CHECKSUM LOAD]
 Output routines	[XUROUTINE OUT]
 Routine Edit <locked with XUPROGMODE>	[XUPR RTN EDIT]
 Routines by Patch Number	[XUPR RTN PATCH]
 Variable changer <locked with XUPROGMODE>	[XT-VARIABLE CHANGER]
 Version Number Update <locked with XUPROGMODE>	[XT-VERSION NUMBER]

These options are documented in the sections that follow, grouped by routine type.
[bookmark: _Toc236534889][bookmark: _Toc241305706][bookmark: _Toc458599507]Analyzing Routines
[bookmark: _Toc241305707][bookmark: _Ref241382143][bookmark: _Ref310316915][bookmark: _Ref311036809]%Index of Routines Option—XINDEX
The %Index of Routines option [XUINDEX] calls Kernel Toolkit’s XINDEX utility (formerly known as %INDEX utility). XINDEX is a static analysis tool that plays the dual role of a VistA-aware cross-referencing tool and a code checker (or recognizer).
As of Kernel Toolkit patch XT*7.3*132, the %Index of Routines option [XUINDEX] allows users to check the contents of any of the following:
Routines—XINDEX checks the specified routines (e.g., XU*).
Builds—XINDEX checks the contents of the specified build defined in the BUILD file (#9.6). XINDEX checks all components of the build on the current system, which includes, routines, options, templates, data dictionaries, etc.
Installs—XINDEX checks the contents of the specified install defined in the INSTALL file (#9.7). XINDEX checks all components of the install that have temporarily been loaded into ^XTEMP global, which includes, routines, options, templates, data dictionaries, etc.
Packages—XINDEX checks the contents of the specified package defined in the PACKAGE file (#9.4). XINDEX checks all components of the package on the current system, which includes, routines, options, templates, data dictionaries, etc.
[bookmark: _Toc458599969]Figure 130: %Index of Routines option—Sample user entries
Select Routine Tools Option: %INDEX <Enter> of Routines

 V. A. C R O S S R E F E R E N C E R 7.3
 [2008 VA Standards & Conventions]
 UCI: KRN CPU: KRN Dec 13, 2011@07:40:44

All Routines? No => NO

Routine: HLUOPT
Routine: <Enter>
1 routine

As of Kernel Toolkit patch XT*7.3*132: Choose 1 of these 3 options and skip the other prompts.

Select BUILD NAME: <Enter>
Select INSTALL NAME: <Enter>
Select PACKAGE NAME: <Enter>

Print more than compiled errors and warnings? YES// <Enter>

Print summary only? NO// <Enter>

Print routines? YES// <Enter>

Or enter “S” for an indented report.

Print (R)egular,(S)tructured or (B)oth? R// <Enter>

Print errors and warnings with each routine? YES// <Enter>

Or enter YES to store the parameters.

Save parameters in ROUTINE file? NO// <Enter>

Index all called routines? NO// <Enter>
DEVICE: <Enter> Telnet Terminal Right Margin: 80// <Enter>

 V. A. C R O S S R E F E R E N C E R 7.3
 [2008 VA Standards & Conventions]
 UCI: KRN CPU: KRN Dec 13, 2011@07:40:44
Routines: 1 Faux Routines: 0

HLUOPT

--- CROSS REFERENCING ---

 Press return to continue: <Enter>

After pressing Enter, the option displays the selected routine (only the first two lines included here).

Compiled list of Errors and Warnings Dec 13, 2011@07:40:44 page 1

HLUOPT * * 69 Lines, 3758 Bytes, Checksum: B18177059

Warning error message is displayed for this routine.

HOLD+4 W - Null line (no commands or comment).

--- Routine Detail --- with REGULAR ROUTINE LISTING ---
 Press return to continue:
<Enter>

HLUOPT * * 69 Lines, 3758 Bytes, Checksum: B18177059
 Dec 13, 2011@07:40:44 page 2
 548 bytes in comments
HLUOPT ;AISC/SAW-Main Menu for HL7 Module ;07/26/99 08:47
 ;;1.6;HEALTH LEVEL SEVEN;**57**;Oct 13, 1995

[image: Note]	REF: For more information on the XINDEX utility, see the “XINDEX” section.
[bookmark: _Toc241305708]Flow Chart Entire Routine Option
The Flow Chart Entire Routine option [XTFCR] generates a flow chart, showing the processing performed within an entire routine.
The following corresponding direct mode utility can be used in programmer mode:
>D ^XTFCR
[bookmark: _Toc241305709]Flow Chart From Entry Point Option
The Flow Chart from Entry Point option [XTFCE] generates a flow chart of the processing performed from a specified entry point to its termination of processing. It also allows the user to expand the code in other routines or entry points referenced by DO or GOTO commands.
The following corresponding direct mode utility can be used in programmer mode:
>D ^XTFCE
[bookmark: _Toc236534890][bookmark: _Toc241305710][bookmark: _Toc458599508]Editing Routines
[bookmark: _Toc241305711]Group Routine Edit Option
The Group Routine Edit option [XTRGRPE] calls the XTRGRPE routine to edit a group of routines. Once several routines are identified, the Kernel Toolkit ^%Z editor is called. This option is locked with XUPROGMODE.
The corresponding direct mode utility can be used in programmer mode as follows:
>D ^XTRGRPE
[bookmark: _Toc241305712]Routine Edit Option
The Routine Edit option [XUPR RTN EDIT] invokes the ^%Z editor. The ^%Z editor can be used to edit a group of routines with the Group Routine Edit option. This allows developers at an external site (e.g., on the site manager’s staff) to edit M routines. This option is locked with the XUPROGMODE security key.
The corresponding direct mode utility can be used in programmer mode as follows:
>X ^%Z
[image: Note]	REF: For more information on the ^%Z Editor, see the “^%Z Editor” section in Section 17, “Miscellaneous: Developer Tools.”
[bookmark: _Toc241305713]Routines by Patch Number Option
The Routines by Patch Number option [XUPR RTN PATCH] allows users to print routines associated with a patch. When prompted, enter a list of routines. The output is sorted by patch number.
[bookmark: _Toc241305714]Variable Changer Option
The Variable Changer option [XT-VARIABLE CHANGER] runs the XTVCHG routine, which changes all occurrences of one variable to another. This option is locked with the XUPROGMODE security key.
[image: Caution]	CAUTION: This option changes DOs and GOTOs also, but it does not change the target of the DOs and GOTOs. For example, if you request to change all occurrences of “TAG” to “TAGS”, “DO TAG” would be changed to “DO TAGS”. However, the actual Line Label called TAG would not be changed.
The corresponding direct mode utility can be used in programmer mode as follows:
>D ^XTVCHG
[bookmark: _Toc241305715]Version Number Update Option
The Version Number Update option [XT-VERSION NUMBER] updates version numbers of one or more routines. This option runs the XTVNUM routine to update or set the version number into a set of routines. This option is locked with the XUPROGMODE security key.
The corresponding direct mode utility can be used in programmer mode as follows:
>D ^XTVNUM
[bookmark: _Toc236534891][bookmark: _Toc241305716][bookmark: _Toc458599509]Printing Routines
[bookmark: _Toc241305717]List Routines Option
The List Routines option [XUPRROU] uses the %ZTPP utility to print a listing of entire routines.
The corresponding direct mode utility can be used in programmer mode as follows:
>D ^%ZTPP
[bookmark: _Toc236534892][bookmark: _Toc241305718][bookmark: _Toc458599510]Comparing Routines
[bookmark: _Toc241305719]Compare local/national checksums report Option
The Compare local/national checksums report option [XU CHECKSUM REPORT] compares checksums for routines to the values in the ROUTINE file (#9.8). It produces a report listing routines that differ by the following criteria:
Patch or version, where the version or patch may be correct but checksums are off
Local routines being tracked
Information is not on record for a patch (e.g., test patches)
Nationally released routine checksums are sent by Master File Updates to the local ROUTINE file (#9.8) automatically. Local sites may also record checksums in the CHECKSUM VALUE field in the ROUTINE file (#9.8). To compare local routines that are being tracked, the CHECKSUM REPORT field should be set to “Local – report.”
As of Kernel patch XU*8.0*369, the integrity checking CHECK1^XTSUMBLD routine supports the Compare local/national checksums report option [XU CHECKSUM REPORT].
As of Kernel patch XU*8.0*393, KIDS was modified to send a message to a server on FORUM when a KIDS build is sent to a Host File Server (HFS) device. This message contains the checksums for the routines in the patch. The server on FORUM matches the message with a patch if the sending domain is authorized on FORUM. There is no longer a need for developers to manually include routine checksums (either CHECK^XTSUMBLD or CHECK1^XTSUMBLD routines) in the patch description. The patch module includes the before and after CHECK1^XTSUMBLD values in the Routine Information section at the end of the patch document.
With changes in the National Patch Module (NPM) on FORUM, when the patch is released the checksums for the routines are moved to the ROUTINE file (#9.8) on FORUM. The checksum “before” values come from the FORUM ROUTINE file (#9.8) and are considered the GOLD standard for released checksums. The local site’s Compare local/national checksums report option [XU CHECKSUM REPORT] uses the FORUM ROUTINE file (#9.8) as its source to create reports showing any routines that do not match.
This patch also modified the KIDS BUILD file (#9.6) by adding the TRANSPORT BUILD NUMBER field (#63) used to store a build number that is incremented each time a build is made. This build number is added to the second line of each routine in the 7th “;” piece. This makes it easy to tell if a site is running the current release during testing and afterword. The leading “B” found in the checksum tells the code what checksum API to use.
[bookmark: _Toc241305720]Compare Routines on Tape to Disk Option
The Compare Routines on Tape to Disk option [XUPR-RTN-TAPE-CMP] compares routines and displays the differences. This option reads a standard Caché %RO Host File Server (HFS) file and compares the routines on the HFS file with a routine with the same name in the current account.
The corresponding direct mode utility can be used in programmer mode as follows:
>D TE^XTRCMP
[image: Note]	NOTE: While it is still called a “TAPE” compare, it is actually comparing a routine in a Host File Server (HFS) file to an installed routine.
[bookmark: _Toc241305721]Compare Two Routines Option
The Compare Two Routines option [XT-ROUTINE COMPARE] compares two routines with different names that are located in the same account and displays/prints the differences (using MailMan’s PackMan compare utilities).
The corresponding direct mode utility can be used in programmer mode as follows:
>D ^XTRCMP
[bookmark: _Toc236534893][bookmark: _Toc241305722][bookmark: _Toc458599511]Deleting Routines
[bookmark: _Toc241305723]Delete Routines Option
The Delete Routines option [XTRDEL] can be used to delete one or more routine(s). The wildcard syntax can be used to delete a set, such as ABC* to delete all those routines beginning with the letters ABC. This option is locked with the XUPROGMODE security key.
The corresponding direct mode utility can be used in programmer mode as follows:
>D ^%ZTRDEL
[bookmark: _Toc236534894][bookmark: _Toc241305724][bookmark: _Toc458599512]Load and Save Routines
The Input Routines and Output Routines options can be used to move routines from one UCI to another. These make use of operating system-specific utilities such as %RR for routine restore and %RS for routine save.
[bookmark: _Toc241305725]Input Routines Option
The Input Routines option [XUROUTINE IN] loads routines from an external device. This option is locked with the XUPROG security key.
The corresponding direct mode utility can be used in programmer mode as follows:
>D ^%RR (OS-specific)
[bookmark: _Toc241305726]Output Routines Option
The Output Routines option [XUROUTINE OUT] outputs routines to an external device, such as a host file.
The corresponding direct mode utility can be used in programmer mode as follows:
>D ^%RS (OS-specific)
[bookmark: _Toc241305727]Load/refresh checksum values into ROUTINE file Option
The Load/refresh checksum values into ROUTINE file option [XU CHECKSUM LOAD] can be used to update the ROUTINE file (#9.8) with the latest checksum values from FORUM.
[image: Note]	REF: Kernel Toolkit Application Programming Interfaces (APIs) are documented in the “Toolkit: Developer Tools” section in the Kernel Developer’s Guide. Kernel and Kernel Toolkit APIs are also available in HTML format on the VA Intranet Website.
[bookmark: _Toc139170382][bookmark: _Toc146428405][bookmark: _Toc236534895][bookmark: _Toc241305728][bookmark: _Ref241378587][bookmark: _Toc458599513]Toolkit—Verification Tools
Kernel Toolkit provides an Application Programming Interface (API) that includes developer utilities for working with routines and globals. This section describes the verification tools exported with Kernel Toolkit that are useful to system administrators and developers for reviewing Veterans Health Information Systems and Technology Architecture (VistA) software.
Verification tools can be accessed through one of three methods:
Direct Mode Utilities
Programmer Options Menu
Operations Management Menu
[bookmark: _Ref241382718][bookmark: _Toc236534898][bookmark: _Toc241305731][bookmark: _Toc458599514]Direct Mode Utilities
Several Kernel Toolkit direct mode utilities are available for developers to use at the M prompt, usually involving the DO command. They are not APIs and cannot be used in software application routines. These direct mode utilities are described below by category.
The XINDEX utility can be used to check a routine or set of routines against standards such as the 1995 ANSI M Standard syntax and VA Programming Standards and Conventions (SAC).
[image: Note]	REF: For more information on the XINDEX utility, see the “%Index of Routines Option” section in the “Toolkit—Routine Tools” section in this section.
The corresponding direct mode utility can be used in Programmer mode:
>D ^XINDEX
Many of the options on the Programmer Options menu can also be run as direct mode utilities. Some are not available as options, but only as direct mode utilities callable at the M prompt. Table 35 lists examples on how to run these utilities when working in Programmer mode.
[bookmark: _Ref152648828][bookmark: _Toc150676532][bookmark: _Toc200270058][bookmark: _Toc458600030]Table 35: Verification Tools—Direct Mode Utilities
	[bookmark: COL001_TBL028]Direct Mode Utility
	Description

	>D CHCKSUM^XTSUMBLD
	Check the checksum value of a routine at any given time.
This direct mode utility allows the developer to choose from the old CHECK^XTSUMBLD checksum routine or the new and more accurate CHECK1^XTSUMBLD checksum routine.
[image: Note] REF: For more information on the CHECK^XTSUMBLD and CHECK1^XTSUMBLD routines, see Sections 23 and 24 in the Kernel Systems Management Guide.

	>D ^nsNTEG
	Check Integrity of namespace (ns) Package. For example, D ^XTNTEG compares the Kernel Toolkit namespace (XT) checksums with expected values.

	>D ONE^nsNTEG
	Check Integrity Routine in namespace (ns) Package.

	>D ^%ZTER
	Record an Error.

	>D ^XTER
	Display Error Trap.

	>D ^XTERPUR
	Purge Error Log.

	>D ^%INDEX
	(obsolete) To run %INDEX.

	>D ^XINDEX
	To run XINDEX. XINDEX is similar to %INDEX but supports the most current M standard.

[image: Note]	NOTE: For information on the options associated with the routines associated with these verification tools direct mode utilities, see the “Verification Tools” section in the “Toolkit” section in the Kernel Systems Management Guide.
[bookmark: _Toc458599515]Verifier Tools Menu
The Verifier Tools Menu contains options that are available as tools for verification during program development. These options are located on the Verifier Tools Menu [XTV MENU], which is located on the Systems Manager Menu. These tools are useful for developers to:
Record the text of the routines indicated in the file used to maintain changes in routines.
Compare one or more current routines to previous versions.
The Verifier Tools Menu [XTV MENU] consists of the following options that are described below:
[bookmark: _Toc193181928][bookmark: _Toc241305114][bookmark: _Toc458599970]Figure 131: Verifier Tools—Menu options
SYSTEMS MANAGER MENU ...	[EVE]
 Verifier Tools Menu ... 	[XTV MENU]
 Update with current routines 	[XTVR UPDATE]
 Routine Compare - Current with Previous 	[XTVR COMPARE]

[bookmark: _Toc241305733][bookmark: _Toc458599516]Update with Current Routines Option
The Update with Current Routines option [XTVR UPDATE] records the text of the routines indicated in the file used to maintain changes in routines. Only the last version entered is kept intact; previous entries reflect only the changes in lines added or deleted to make the next version. This option records the current routine structure so that it can be compared with future versions of the routine using the Routine Compare - Current with Previous option [XTVR COMPARE].
After editing the routine, the Update with Current Routines option can again be used to store changes. Rather than storing all minor changes, the user can choose to wait and use the Update with Current Routines option only after extensive edits have been made. Lines are compared and changes, including inserted or deleted lines, are recorded. (Alteration of the routine’s second line is usually insignificant and is ignored.) The Update with Current Routines option can be used whenever the developer would like a new “snapshot” of the routine. The XTV ROUTINE CHANGES file (#8991) holds each new snapshot as a new version. This filing method does not, however, alter the actual version number of the routine itself.
[bookmark: _Toc241305734][bookmark: _Toc458599517]Routine Compare - Current with Previous Option
The Routine Compare - Current with Previous option [XTVR COMPARE] compares one or more current routines to previous versions. To use the routine compare utility, copies of the selected routines must first be stored in the XTV ROUTINE CHANGES file (#8991), stored in the ^XTV(8991, global. This is achieved by use of the Update with Current Routines option [XTVR UPDATE] on the Verifier Tools Menu. Routines can be specified one by one or as a group with the wildcard syntax (e.g., XQ*). Any initialize routines are automatically excluded. Differences between the current version and the indicated number of prior versions are noted. The user is prompted for the number of previous versions from which to begin the listing. An entire history or just a brief display of recent modifications can be obtained.
[bookmark: _Toc241305736][bookmark: _Ref241382746][bookmark: _Toc458599518]Programmer Options Menu
The Programmer Options menu [XUPROG] comprised of the following options:
[bookmark: _Toc193181929][bookmark: _Toc241305115][bookmark: _Toc458599971]Figure 132: Programmer Options—Menu options: Toolkit verification tools
SYSTEMS MANAGER MENU ...	[EVE]
 Programmer Options ...	[XUPROG]
 **> Locked with XUPROG
 KIDS Kernel Installation & Distribution System ...	[XPD MAIN]
 **> Locked with XUPROG
 PG Programmer mode	[XUPROGMODE]
 **> Locked with XUPROGMODE
 Calculate and Show Checksum Values	[XTSUMBLD-CHECK]
 Delete Unreferenced Options	[XQ UNREF’D OPTIONS]
 Error Processing ...	[XUERRS]
 General Parameter Tools ...	[XPAR MENU TOOLS]
 Global Block Count	[XU BLOCK COUNT]
 List Global	[XUPRGL]
 **> Locked with XUPROGMODE
 Routine Tools ...	[XUPR-ROUTINE-TOOLS]
 Test an option not in your menu	[XT-OPTION TEST]
 **> Locked with XUMGR

Tools found on the Programmer Options menu that can be of use for verification purposes include:
Calculate and Show Checksum Values [XTSUMBLD-CHECK]
Error Processing [XUERRS]
These options are described in the sections that follow.
[bookmark: _Toc241305737][bookmark: _Toc458599519]Calculate and Show Checksum Values Option
The Calculate and Show Checksum Values option [XTSUMBLD-CHECK] gives developers the ability to check the value of a routine at any given time. It does not regenerate NTEG routines and can safely be used anytime.
This option calls the CHCKSUM^XTSUMBLD direct mode utility to calculate and show the checksum value for one or more routines in the current account. This value is referenced in the Patch Module description for routine patches.
[image: Note]	NOTE: Kernel Toolkit patch XT*7.3*94, deployed the CHECK1^XTSUMBLD routine and the new logic Checksum: %^ZOSF(“RSUM1”). Kernel Toolkit patch XT*7.3*100 included the CHECK1^XTSUMBLD routine into the Calculate and Show Checksum Values option [XTSUMBLD-CHECK].
The CHECK1^XTSUMBLD routine is more accurate than the old integrity checking utility (CHECK^XTSUMBLD). CHECK1^XTSUMBLD. It determines the current checksums for selected routine(s), the functionality of which is shown as follows:
Any comment line with a single semi-colon is presumed to be followed by comments and only the line tag is included.
Line 2 is excluded from the count.
The total value of the routine is determined (excluding exceptions noted above) by multiplying the ASCII value of each character by its position on the line and position of the line in the routine being checked.
The corresponding direct mode utility can be used in programmer mode:
>D CHCKSUM^XTSUMBLD
[image: Note]	NOTE: The integrity checking utility CHCKSUM^XTSUMBLD supports the Compare local/national checksums report option [XU CHECKSUM REPORT], as released with Kernel patch XU*8.0*369.
[image: Note]	NOTE: The modification, CHECK1^XTSUMBLD, to the integrity checking utility CHCKSUM^XTSUMBLD fixes the problem in which the old checksum output is the same checksum value, even if some lines were swapped within a routine.
[bookmark: _Toc241305738][bookmark: _Toc458599520]Error Processing—Kernel Error Trapping and Reporting
Technical personnel who have entered programmer mode with D ^XUP, might choose to record an error encountered with D ^%ZTER. The error log can be displayed with D ^XTER, or with the corresponding option. Also, the error log can be purged with D ^XTERPUR. Errors can also be purged from within the menu system with an option that is locked with the XUPROGMODE security key.
The corresponding direct mode utilities can be used in programmer mode as follows:
Record an Error:
>D ^%ZTER
Display Error Trap:
>D ^XTER
Purge Error Log:
>D ^XTERPUR
[image: Note]	REF: For more information on Error Processing, see Section 13, “Error Processing,” in the Kernel Systems Management Guide.

[bookmark: _Ref311036740][bookmark: _Toc458599521]
XINDEX
Kernel Toolkit’s XINDEX utility (formerly known as %INDEX utility) is a static analysis tool that plays the dual role of a VistA-aware cross-referencing tool and a code checker (or recognizer). As of Kernel Toolkit patch XT*7.3*132, XINDEX creates a cross-referenced list of global references and routines invoked by selecting any of the following:
Routines—XINDEX checks the specified routines (e.g., XU*).
Builds—XINDEX checks the contents of the specified build defined in the BUILD file (#9.6). XINDEX checks all components of the build on the current system, which includes, routines, options, templates, data dictionaries, etc.
Installs—XINDEX checks the contents of the specified install defined in the INSTALL file (#9.7). XINDEX checks all components of the install that have temporarily been loaded into ^XTEMP global, which includes, routines, options, templates, data dictionaries, etc.
Packages—XINDEX checks the contents of the specified package defined in the PACKAGE file (#9.4). XINDEX checks all components of the package on the current system, which includes, routines, options, templates, data dictionaries, etc.
Use XINDEX to verify parts of a software application in the VistA environment that contain M code, including the following:
Routines
Options
Compiled Templates
Data Dictionaries (DD)
Functions
XINDEX provides greater analysis capability than other syntax analysis tools that operate at the routine level only. As a static analysis tool, however, XINDEX has a fundamental limitation of the types of errors that it is able to catch and report. XINDEX is only able to look at the written structure of M code. It cannot look at dynamic aspects, such as the run-time symbol table or flow of control when it is modified by conditional branching (e.g., through post-conditionals or argument indirection). XINDEX is also generally conservative, at times preferring to report false positives rather than ignore potential problems. When analyzing XINDEX output, you must take all of this into consideration.
VistA applications are required to follow a set of Standards and Conventions (SAC) as set by the VA’s Standards and Conventions Committee (SACC), which are defined as follows:
Standard—Requirement that must be adhered to.
Convention—Rule that should be followed.
VistA protects many of its abstractions via convention, even when those conventions are requirements. XINDEX checks that the MUMPS (M) routine code conforms to the 1995 ANSI M Standard and VA Programming Standards and Conventions (SAC). XINDEX considers all SAC prohibitions as an error. XINDEX checks SAC requirements, because conformance to the SAC is essential to the proper function of VistA.
VistA is comprised of a number of software packages (defined by namespace), which can be further divided into the following two basic groups:
Applications—VistA client applications or application modules (e.g., Pharmacy, Laboratory, Patient Care Encounter [PCE]).
Infrastructure Applications—Collection of Infrastructure packages that implement the basic programming and runtime VistA framework. For example:
Kernel/Kernel Toolkit—Provides a portable system interface, a common execution environment, and essential services such as signon and security.
MailMan—Provides VistA email functionality.
VA FileMan—Provides database functionality built on top of the M global subsystem integrated with the VistA security model.
It is important to recognize that the rules for VistA infrastructure packages (particularly Kernel and VA FileMan) are different from other VistA applications. Code used in infrastructure packages to implement a system interface must be able to use implementation-specific code. Accordingly, Kernel (and sometimes VA FileMan) has standing exemptions from many of the requirements of the SAC. Thus, XINDEX sometimes reports errors and standards violations for allowed constructs.
[image: Note]	REF: For more information on the Standards and Conventions Committee (SACC) and Standards and Conventions (SAC) documentation, see the SACC VA Intranet Website.
[bookmark: _Toc458599522]Types of XINDEX Findings
XINDEX reports its findings under the following general categories of codes (error flags):
[bookmark: _Toc458600031]Table 36: XINDEX—Types of findings (category codes or flags)
	[bookmark: COL001_TBL029]Category Code/Other
	Description

	F
	Fatal M Errors (Hard MUMPS Error)—These are unrecoverable errors that cause a program to fail if the commands are executed. It is possible, however, that these types of errors might exist in routines that run correctly. The error occurs (or may occur, depending on the underlying implementation) only when the errant commands are executed.
[image: Note] REF: For a description and sample code analysis on errors in this category, see Section 26.13.3.1, “Fatal M Errors (Hard MUMPS Error).”

	W
	Warning Violation Errors (According to VA Conventions)—These are potential problems that are not necessarily fatal errors but most likely indicate an error. They require careful implementation.
[image: Note] REF: For a description and sample code analysis on errors in this category, see Section 27.12.3.2, “Warning Violation Errors (According to VA Conventions).”

	S
	
Standards Violation Errors (According to VA Standards)—These are issues that do not pertain to the M language per se, but rather the requirements of the VA Standards and Conventions (SAC). Issues flagged as Standards Violations can still be syntactically correct M code that follows the portability guidelines, but does not follow the more stringent requirements set forth in the SAC.
[image: Note] REF: For a description and sample code analysis on errors in this category, see Section 26.13.3.3, “
Standards Violation Errors (According to VA Standards).”

	I
	Informational Errors—These issues are not necessarily errors but still require attention, because they could indicate potential problems.
[image: Note] REF: For a description and sample code analysis on errors in this category, see Section 26.13.3.4, “Informational.”

	Manual Check
	Marked Items Errors (Manual Check)—These issues only apply if a line contains $TEXT ($T). XINDEX records the location and prints it out under the “Marked Items” sub-header on the XINDEX report.
[image: Note] REF: For a description on errors in this category, see Section 26.13.3.5, “Marked Items Errors (Manual Check.”

Table 37 lists the current error conditions (messages) that the XINDEX utility flags. XINDEX retrieves and displays the messages from the XINDX1 routine.
[image: Note]	NOTE: Any updates (e.g., add, modify, or delete messages) made to the list of XINDEX messages are based on changes to the XINDEX utility via subsequent Kernel Toolkit patches.
[bookmark: _Ref311614132][bookmark: _Toc458600032]Table 37: XINDEX—List of the error conditions (messages) flagged: Grouped by category and listed alphabetically); messages are stored in XINDX1 routine
	[bookmark: COL001_TBL030]Message Displayed (click on link for more detail)

	Category: Fatal M Errors (Hard MUMPS Error)

	F - Bad Number.

	F - Bad WRITE syntax.

	F - Block structure mismatch.

	F - Call to missing label ‘label’ in this routine.

	F - Call to this label/routine (MISSING LABEL)

	F - Command missing an argument.

	F - Error in pattern code.

	F - FOR Command followed by only one space.

	F - FOR Command did not contain ‘=‘.

	F - General Syntax Error.

	F - GO or DO mismatch from block structure (M45).

	F - Invalid or wrong number of arguments to a function.

	F - Label is not valid.

	F - Missing argument to a command post-conditional.

	F - Non-standard (Undefined) ‘Z’ command.

	F - Quoted string not followed by a separator.

	F - Reference to routine ‘^routine name’. That isn’t in this UCI.

	F - UNDEFINED COMMAND (rest of line not checked).
[image: Note] NOTE: Developers must manually check these errors.

	F - Undefined Function.

	F - Undefined Special Variable.

	F - Unmatched Parenthesis.

	F - Unmatched Quotation Marks.

	F - Unrecognized argument in SET command.

	Category: Warning Violation Errors (According to VA Conventions)

	W - Blank(s) at end of line.

	W - Duplicate label, (M57) (M standard error)

	W - First line label NOT routine name.

	W - Invalid global variable name.

	W - Invalid local variable name.

	W - Line contains a CONTROL (non-graphic) character.

	W - Null line (no commands or comment).

	Category:
Standards Violation Errors (According to VA Standards)

	S - $View function used.

	S - Access to SSVN’s restricted to Kernel.

	S - Break command used.

	S - Extended reference.

	S - First line of routine violates the SAC.

	S - 2nd line of routine violates the SAC.

	S - Patch number ‘nnn’ missing from second line.

	S - ‘HALT’ command should be invoked through ‘G ^XUSCLEAN’

	S - Kill of a protected variable (variable name).

	S - Kill of an unsubscripted global.

	S - Unargumented Kill.

	S - Exclusive Kill.

	S - Exclusive or Unargumented NEW command.

	S - LABEL+OFFSET syntax

	S - Line is longer than 245 bytes.

	S - Lock missing Timeout.

	S - Lower/Mixed case Variable name used.

	S - Lowercase command(s) used in line.

	S - Non-Incremental Lock.

	S - Non-standard $Z function used.

	S - Non-standard $Z special variable used.

	S - ‘OPEN’ command should be invoked through ^%ZIS.

	S - ‘Close’ command should be invoked through ‘D ^%ZISC’.

	S - Read command doesn’t have a timeout.

	S - Routine code exceeds SACC maximum size of 15000 (nnnnn).

	S - Routine exceeds SACC maximum size of 20000 (nnnnn).

	S - Set to a ‘%’ global.

	S - Should use ‘TASKMAN’ instead of ‘JOB’ command.

	S - View command used.

	S - Violates VA programming standards.

	Category: Informational Errors

	I - QUIT Command followed by only one space.

	I - Star or pound READ used.

[bookmark: _Toc458599523]Running the XINDEX Utility
[image: Caution]	CAUTION: When running XINDEX to review an entire software application, it is best to queue the report for an off-peak time, since processing is intensive.
Use either of the following methods to call the XINDEX utility:
Direct Mode Utility (see Figure 134):
>D ^XINDEX
Option—Use the %Index of Routines option [XUINDEX] located on the on the Routine Tools menu [XUPR-ROUTINE-TOOLS] located on the Programmer Options menu [XUPROG], which is locked with the XUPROG security key.
[image: Note]	REF: For more information on the %Index of Routines option, see the “%Index of Routines Option—XINDEX” section.
[bookmark: _Toc458599972]Figure 133: XINDEX—Direct mode utilities sample user entries: Specifying a routine name only (1 of 3)
KRN>D ^XINDEX

 V. A. C R O S S R E F E R E N C E R 7.3
 [2008 VA Standards & Conventions]
 UCI: KRN CPU: KRN Jan 12, 2012@14:47:16

All Routines? No => <Enter> No

Routine: XDRMAIN
Routine: <Enter>
1 routine

Select BUILD NAME: <Enter>
Select INSTALL NAME: <Enter>
Select PACKAGE NAME: <Enter>

Print more than compiled errors and warnings? YES// <Enter>

Print summary only? NO// <Enter>

Print routines? YES// <Enter>

Or enter “S” for an indented report.

Print (R)egular,(S)tructured or (B)oth? R// <Enter>

Print errors and warnings with each routine? YES// <Enter>

Or enter YES to store the parameters.

Save parameters in ROUTINE file? NO// <Enter>

Index all called routines? NO// <Enter>
DEVICE: ;P-OTHER <Enter> Telnet Terminal Right Margin: 255// 80

The XINDEX report displays (excerpt).

 V. A. C R O S S R E F E R E N C E R 7.3
 [2008 VA Standards & Conventions]
 UCI: KRN CPU: KRN Jan 12, 2012@14:47:16
Routines: 1 Faux Routines: 0

XDRMAIN

--- CROSS REFERENCING ---

Compiled list of Errors and Warnings Jan 12, 2012@14:47:16 page 1
No errors or warnings to report

--- Routine Detail --- with REGULAR ROUTINE LISTING ---

XDRMAIN * * 80 Lines, 3431 Bytes, Checksum: B16902409
 Jan 12, 2012@14:47:16 page 2
 104 bytes in comments
XDRMAIN ;SF-IRMFO/IHS/OHPRD/JCM - MAIN DRIVER FOR DUPLICATE MERGE SOFTWARE;
 [08/13/92 09:50 AM]
 ;;7.3;TOOLKIT;**23**;r 25, 1995
 ;;
START ;
 S XDRMAINI=“MERGE” D ^XDRMAINI G:XDRQFLG END
 F XDRMI1=0:0 S XDRMPAIR=$O(@XDRM(“GL”)) Q:’XDRMPAIR!(XDRQFLG) S XDRMPD
 A=“^VA(15,”“OT”“,”_”“““_$P(XDRGL,U,2)_”“““_”,XDRMPAIR,0)” S XDRMPDA=
 $O(@XDRMPDA) D MAIN D:’$D(XDRM(“NOTALK”)) ASK
END D EOJ
 Q
 ;
MAIN ;
 S XDRMCD=$P(XDRMPAIR,U,1),XDRMCD2=$P(XDRMPAIR,U,2)
 S XDRMRG(“LCK”)=“+” D LOCK^XDRU1 K XDRMRG(“LCK”) I $D(XDRMLOCK) G MAINX
 I ‘$D(XDRM(“NOVERIFY”)) S XDRMRG=0 D ^XDRMVFY G:’XDRMRG!(XDRQFLG) MAINX
 S (XDRMRG(“FR”),XDRMAIN(“FR”))=$S($P(^VA(15,XDRMPDA,0),U,4)=2:XDRMCD2,1
 :XDRMCD)

.
.
.

[bookmark: _Ref311528489][bookmark: _Toc458599973]Figure 134: XINDEX—Direct mode utilities sample user entries: Specifying a build name (2 of 3)
>D ^XINDEX

 V. A. C R O S S R E F E R E N C E R 7.3
 [2008 VA Standards & Conventions]
 UCI: KRN CPU: KRN Jan 12, 2012@14:47:16

All Routines? No => <Enter> No

Routine: <Enter>
0 routines

If you specify a Build name here, you are not prompted for an Install or Package name.

Select BUILD NAME: XT*7.3*102 <Enter> TOOLKIT
Include the compiled template routines: N// <Enter>

Print more than compiled errors and warnings? YES// <Enter>

Print summary only? NO// <Enter>

Print routines? YES// <Enter>

Or enter “S” for an indented report.

Print (R)egular,(S)tructured or (B)oth? R// <Enter>
Print the DDs, Functions, and Options? YES// <Enter>

Print errors and warnings with each routine? YES// <Enter>

Or enter YES to store the parameters.

Save parameters in ROUTINE file? NO// <Enter>
Index all called routines? NO// <Enter>
DEVICE: ;P-OTHER <Enter> Telnet Terminal Right Margin: 255// 80

The XINDEX report displays (excerpt).

 V. A. C R O S S R E F E R E N C E R 7.3
 [2008 VA Standards & Conventions]
 UCI: KRN CPU: KRN Jan 12, 2012@14:43:02

The BUILD file Data Dictionaries are being processed.

The option and function files are being processed.

Routines are being processed.
Routines: 1 Faux Routines: 0

XTPOST

--- CROSS REFERENCING ---

Compiled list of Errors and Warnings Jan 12, 2012@14:59:51 page 1

XTPOST * * 106 Lines, 3234 Bytes, Checksum: B14328994
 ;;8.0;KERNEL;**102**;Jul 10, 1995
 XTPOST+1 S - 2nd line of routine violates the SAC.
 .S $P(^%ZRTL(3.091,0),U)=“RESPONSE TIME”
 CHECK+34 S - Set to a ‘%’ global.
 .S $P(^%ZRTL(3.091,0),U,2)=“3.091P”
 CHECK+35 S - Set to a ‘%’ global.
 .S $P(^%ZRTL(3.092,0),U)=“RT DATE_UCI,VOL”
 CHECK+38 S - Set to a ‘%’ global.
 .S $P(^%ZRTL(3.092,0),U,2)=“3.092”
 CHECK+39 S - Set to a ‘%’ global.
 .S $P(^%ZRTL(3.094,0),U)=“RT RAWDATA”
 CHECK+42 S - Set to a ‘%’ global.
 .S $P(^%ZRTL(3.094,0),U,2)=“3.094D”
 CHECK+43 S - Set to a ‘%’ global.

--- Routine Detail --- with REGULAR ROUTINE LISTING ---
.
.
.

[bookmark: _Toc458599974]Figure 135: XINDEX—Direct mode utilities sample user entries: Specifying a package name (3 of 3)
KRN>D ^XINDEX

 V. A. C R O S S R E F E R E N C E R 7.3
 [2008 VA Standards & Conventions]
 UCI: KRN CPU: KRN Jan 12, 2012@15:01:53

All Routines? No => <Enter> No

Routine: XDRMAIN
Routine: <Enter>
1 routine<Enter>

Select BUILD NAME: <Enter>
Select INSTALL NAME: <Enter>
Select PACKAGE NAME: KERNEL <Enter> XU

Include the compiled template routines: N// <Enter>

Print more than compiled errors and warnings? YES// <Enter>

Print summary only? NO// <Enter>

Print routines? YES// <Enter>

Or enter “S” for an indented report.

Print (R)egular,(S)tructured or (B)oth? R// <Enter>

Print the DDs, Functions, and Options? YES// <Enter>

Print errors and warnings with each routine? YES// <Enter>
Or enter YES to store the parameters.

Save parameters in ROUTINE file? NO// <Enter>

Index all called routines? NO// <Enter>
DEVICE: ;P-OTHER <Enter> Telnet Terminal Right Margin: 255// 80

The XINDEX report displays (excerpt).

 V. A. C R O S S R E F E R E N C E R 7.3
 [2008 VA Standards & Conventions]
 UCI: KRN CPU: KRN Jan 12, 2012@15:01:53

The package file Data Dictionaries are being processed.

The option and function files are being processed.

Routines are being processed.
Routines: 1 Faux Routines: 2

XDRMAIN

 Data Dictionaries
|func |opt

--- CROSS REFERENCING ---

Compiled list of Errors and Warnings Jan 12, 2012@15:01:53 page 1

|opt * * 974 Lines, 35949 Bytes, Checksum:
 I ‘$P(^VA(200,D0,0),U,11),$P(^(0),U,4)=“@”!($N(^(“FOF”,0))>0)
 161+4 F - Undefined Function.
 589+2 F - Reference to routine ‘^XUCSPRG’. That isn’t in this UCI.

--- Routine Detail --- with REGULAR ROUTINE LISTING ---
.
.
.

[bookmark: _Ref311537091][bookmark: _Ref311544879][bookmark: _Toc458599524]Analysis of XINDEX Error Findings by Category
[bookmark: _Ref311462391][bookmark: _Toc458599525]Fatal M Errors (Hard MUMPS Error)
[bookmark: _Ref314748509][bookmark: _Ref311616642]F - Bad Number
XINDEX can only check static numbers in code. It does not check the boundaries of the number, only that it is a legitimate number and not a string.
[bookmark: _Ref314748545]F - Bad WRITE syntax
This error is usually a WRITE argument misuse. The most common occurrence is due to a missing comma after the argument.
[bookmark: _Ref314750457]F - Block structure mismatch
These are potentially one of the most serious types of errors, and may lead to fatal runtime exceptions. However, examination of a number of routines indicates that a significant number of these errors are empty DO blocks. These are still potential logic errors, but do not cause runtime exceptions under Caché. The DO command, Section 8.2.3 of the standard, does not seem to have a provision for empty blocks, so this is an error.
The following code extract from ENGET^DGRUGMFU is an example of this type of error:
[bookmark: _Toc458599975]Figure 136: F - Block structure mismatch—Sample code error
ENGET() ;DETERMINE DIVISION TO GET SUBSCRIBERS
 ;
N I,J,X
 F I=1:1 X HLNEXT Q:HLQUIT’>0 D
 .S X(I)=HLNODE,J=0
 ..F S J=$O(HLNODE(J)) Q:’J S X(I,J)=HLNODE(J)

Because there is no DO command before the double dot syntax, that line is never executed.
[bookmark: _Ref311615847]F - Call to missing label ‘label’ in this routine
In this case, reference is made to a label inside a routine that is not (or no longer) present. There could be many reasons for this. The most likely candidate being removal of code that is no longer used.
[bookmark: _Ref311616360][bookmark: _Ref311616480]F - Call to this label/routine (MISSING LABEL)
This is the complementary situation in which code calls a label/routine that is no longer present on the system. Again, there are a number of reasons why this might occur, including typographical errors and removal of code that is no longer used.
[bookmark: _Ref314751223]	F - Command missing an argument
This is another syntax type error. Most M command arguments are optional. This error is usually associated with the WRITE argument tab character, which is the question mark (?). It must be followed by an integer or variable.
[bookmark: _Ref314751302]	F - Error in pattern code
XINDEX checks that only the seven pattern codes (i.e., ACELNPU) are used. They also can be lower case (i.e., acelnpu).
[bookmark: _Ref314751554]	F - FOR Command followed by only one space
This error is only for the argumentless FOR command. It must be followed by two spaces.
[bookmark: _Ref314751576]	F - FOR Command did not contain ‘=‘
XINDEX checks that if the FOR command has an argument, it must set a variable.
[bookmark: _Ref311615909]F - General Syntax Error
This error indicates a construct that is not valid M syntax and is otherwise unrecognized. Almost any malformed code is possible here.
[bookmark: _Ref311617026]F - GO or DO mismatch from block structure (M45)
This is another error that has to with the dot syntax used to create anonymous blocks in standard M. Typically, a GOTO that jumps from one stack level to another would generate this type of error.
[bookmark: _Toc458599976]Figure 137: F - GO or DO mismatch from block structure (M45)—Sample code error

TEST ;test routine
 F I=1:1 D
 . S X=1,Y=Z
 .I Y>0 G QUIT^TESTA
 .S Z=0

In this example, the code is trying to GO out of the DO block to another routine.
[bookmark: _Ref311616512]F - Invalid or wrong number of arguments to a function
This error involves calling functions with the wrong number of arguments, or with invalid argument syntax.
[bookmark: _Ref311616193]F - Label is not valid
M allows the arguments to commands (e.g., DO) to be specified indirectly (i.e., via the “@” syntax). What is not standard, however, is to use indirection just to specify the label in a label^routine combination.
The following code extract from EN+6^MXMLPRSE is invalid:
[bookmark: _Toc458599977]Figure 138: F - Label is not valid—Sample code error
F Q:EOD D READ,EPOS,@ST^MXMLPRS0:’EOD

[bookmark: _Ref314752038]F - Missing argument to a command post-conditional
Most M commands allow a post condition, which is designated by a colon and followed by the argument. This error occurs if the argument is missing.
[bookmark: _Ref311471668]F - Non-standard (Undefined) ‘Z’ command
XINDEX flags all uses of “Z” commands. Vendor-specific commands use the “Z” prefix. The SAC restricts the use of such commands to Kernel. You may occasionally see other packages make use of these commands, but in these cases, an exemption is required.
[bookmark: _Ref314752821]F - Quoted string not followed by a separator
XINDEX checks that anywhere a quoted string is used, it must stand alone or have a separator after it.
[bookmark: _Ref311616765]F - Reference to routine ‘^routine name’. That isn’t in this UCI
These errors flag references to routines that are not present on the system.
[bookmark: _Ref311614898]F - UNDEFINED COMMAND (rest of line not checked)
This is a syntax error. It requires a manual check of the line/routine.
[bookmark: _Ref311471630]F - Undefined Function
Checks that a function is part of the M standard.
[bookmark: _Ref311615147]F - Undefined Special Variable
This is essentially the same as the “F - Undefined Function” error. The only difference is that in M special variables are built-in functions that take no arguments.
[bookmark: _Ref311615343]F - Unmatched Parenthesis
This is a syntax error. XINDEX checks that the static code has matching parenthesis. It does have problems when indirection is used, which are evaluated during execution.
[bookmark: _Ref314753189]F - Unmatched Quotation Marks
This is a syntax error. XINDEX checks that the static code has matching quotation marks. It does have problems when indirection is used, which are evaluated during execution.
[bookmark: _Ref311615536]F - Unrecognized argument in SET command
XINDEX checks the syntax of the SET statement. It does have problems when indirection is used, which are evaluated during execution.
[bookmark: _Ref311462434]
[bookmark: _Ref357874505][bookmark: _Ref357874581][bookmark: _Toc458599526]
Warning Violation Errors (According to VA Conventions)
[bookmark: _Ref311617251]W - Blank(s) at end of line
Standard M has very specific whitespace requirements. Some text editors create extra whitespace that is caught by XINDEX.
[bookmark: _Ref314753416]W - Duplicate label, (M57)
This is an M standard error. During execution, the first occurrence of the label is executed.
[bookmark: _Ref311617284]W - First line label NOT routine name
The first line of VistA routines is required to be a label that is the same as the routine name.
[bookmark: _Ref314753539]W - Invalid global variable name
Checks that the global name is upper case and not longer than eight characters.
[bookmark: _Ref311617100]W - Invalid local variable name
XINDEX checks that the local variable name is upper case and not longer than sixteen characters.
[bookmark: _Ref311617310][bookmark: _Ref311617375]W - Line contains a CONTROL (non-graphic) character
The only non-graphic characters permitted in VistA routines are whitespace.
[bookmark: _Ref311525823]W - Null line (no commands or comment)
Every line in an M routine must contain at least one character. The most common single character is the semi-colon (“;”), which denotes a comment.

[bookmark: _Ref311465039][bookmark: _Ref311465043][bookmark: _Ref311465044][bookmark: _Toc458599527]
Standards Violation Errors (According to VA Standards)
[bookmark: _Ref311474162]S - $View function used
The $VIEW function directly examines memory. The use of $VIEW is restricted to Kernel and VA FileMan.
[bookmark: _Ref311619887]S - Access to SSVN’s restricted to Kernel
Structured System Variable Names (SSVNs) are a mechanism used to provide programmatic information to certain system information and are covered in Section 7.1.3 of the M language standard. The use of SSVNs is restricted to Kernel.
Common SSVNs include the following:
^$ROUTINE
 ^$JOB
^$LOCK
^$GLOBAL
[bookmark: _Ref311623078]S - Break command used
The BREAK command is prohibited except for Kernel.
If applications ever need to use BREAK, they should use ^%ZOSF(“BRK”) and ^%ZOSF(“NBRK”) instead.
[bookmark: _Ref311623216]S - Extended reference
In M, use extended references to refer to routines or globals outside the current environment (called a namespace in Caché). The use of extended references is restricted to Kernel.
[bookmark: _Ref311623248]S - First line of routine violates the SAC
Section 2.2.1 of the SAC specifies the format of the first line of a routine as follows:
2.2.1 The first line of a routine must be in the following format: routine name<ls>; site/programmer<space>-<space>brief description [optional space];date [time is optional].
ZZAA12 ;DALOI/XXX - Example Routine;2/13/07
[image: Note]	NOTE: M editors frequently modify the first line of a routine.
[bookmark: _Ref311623032][bookmark: _Ref311623355]S - 2nd line of routine violates the SAC
In VistA, the second line of routines records the following information:
Package/Application version number
Package/Application name
Patches ID numbers (if any applied)
Original routine creation date & time
Build number
Section 2.2.2 of the SAC specifies the second line format as follows:
2.2.2 The second line of a routine must be in the following format: [LABEL-optional]<ls>;;version number; package name; **pm,...pn**; version date;Build n where:
;;1.0;PACKAGE;**pm,…pn**;Feb 1, 2007;Build 1
[bookmark: _Ref315099520]S - Patch number ‘nnn’ missing from second line
The list of patch numbers must fall between the set of asterisks (“**”) and be separated by commas as shown in Section 2.2.2 of the SAC (see Section 26.13.3.3.6).
[bookmark: _Ref314146592]S - ‘HALT’ command should be invoked through ‘G ^XUSCLEAN’
The HALT command causes a program to exit; this is not a common requirement in VistA. If for some reason a routine needs to halt, you must first perform certain housekeeping tasks. Kernel provides an API to cleanly halt a program. Application programs cannot use the HALT command.
Anomaly
This reported error message is out of date; applications should use H^XUS (see Section 2.4.3 of the SAC).
[bookmark: _Ref311623424]S - Kill of a protected variable (variable name)
Kernel makes use of certain local variables to maintain a standard environment for processes. Applications cannot KILL the following variables:
DT
DTIME
DUZ
IOST
IOM
U
[bookmark: _Ref315099621][bookmark: _Ref311623190][bookmark: _Ref311623479]S - Kill of an unsubscripted global
The SAC specifies that unsubscripted globals shall be killed:
2.3.2.3 The KILLing of unsubscripted globals is prohibited and should be protected. (Special instruction to the site is required to enable the killing of an unsubscripted global. Application developers must document when calls to EN^DIU2 are made to delete files stored in unsubscripted globals).
[bookmark: _Ref315099836]S - Unargumented Kill
Kernel maintains a set of local variables that cannot be SET or KILLed. The unargumented KILL is prohibited except for Kernel.
[bookmark: _Ref311623154]S - Exclusive Kill
The use of the exclusive KILL is prohibited except for Kernel.
[bookmark: _Ref315100281]S - Exclusive or Unargumented NEW command
The exclusive NEW command is the same as the exclusive KILL and is restricted except for Kernel.
[bookmark: _Ref314748387]S - LABEL+OFFSET syntax
The only situation in which application routines are allowed to use the LABEL+OFFSET syntax to refer to lines of code is when using $TEXT to retrieve data lines. For example, it cannot be used in conjunction with a DO or GOTO command.
[bookmark: _Ref311623507]S - Line is longer than 245 bytes
Lines of code cannot be longer than 245 bytes.
[bookmark: _Ref311623545]S - Lock missing Timeout
In M, a LOCK command may include a timeout. If the specified timeout period expires before obtaining the lock, the LOCK command fails. In VistA, application programs are required to specify a timeout when using this command. If for some reason it is necessary to use a LOCK with no timeout (e.g., to manage collaborating processes), an exemption is required.
[image: Note]	NOTE: Kernel can use locks without a timeout. Kernel can also use non-incremental and unargumented locks.
[bookmark: _Ref311623587]S - Lower/Mixed case Variable name used
The rules regarding variable case have been relaxed somewhat in the most recent revision of the SAC. The relevant sections are:
2.2.5 The line body must contain at least 1 printable character, must not exceed 245 characters in length, and must contain only the ASCII characters values 32-126. Line labels, global variable names, system variables, SSVNs, etc. must be uppercase.

2.3.1.1 Local variable names may not exceed sixteen characters. Namespaced variables may not contain lowercase characters. Variables local to a routine, subroutine or DoDot may be any case. Any variable containing lowercase characters must be NEWed at the beginning of the routine, subroutine or DoDot.
[bookmark: _Ref315100348]S - Lowercase command(s) used in line
All M commands must be upper case. They can be spelled out or abbreviated to the first character.
[bookmark: _Ref311623673]S - Non-Incremental Lock
M allows locks to be one of the following types:
Incremental—Allows a process to maintain multiple locks on the same resource and release them one at a time.
Non-Incremental—Either a process obtains the lock or the command fails.
Application programs are required to use the incremental form of the LOCK command.
[image: Note]	NOTE: This restriction does not apply to Kernel.
[bookmark: _Ref315100951]S - Non-standard $Z function used
M implementations may provide special functions with names beginning with $Z. These are platform dependent. Application programs cannot use them.
[image: Note]	NOTE: This restriction does not apply to Kernel.
[bookmark: _Ref311623745]S - Non-standard $Z special variable used
M implementations may provide special variables with names beginning with $Z. These are platform dependent. Application programs cannot use them.
[image: Note]	NOTE: This restriction does not apply to Kernel.
[bookmark: _Ref311623790]S - ‘OPEN’ command should be invoked through ^%ZIS
Applications cannot directly use the OPEN and CLOSE commands. Instead, they must use the Kernel Device Handler.
[image: Note]	NOTE: This restriction does not apply to Kernel, MailMan, and VA FileMan. See the noted exemptions in Section 2.4.8.1 of the SAC.
Anomaly
This error is a bit misleading, because there are now several APIs other than ^%ZIS that can be used. This includes:
^%ZISH
 ^%ZISUTL
^%ZISTCP
Regardless, applications must use one of the ^%ZIS* APIs and cannot use OPEN directly.
[image: Note]	REF: For more details of the CLOSE command, see the “S - ‘Close’ command should be invoked through ‘D ^%ZISC’” section.
[bookmark: _Ref311473457]S - ‘Close’ command should be invoked through ‘D ^%ZISC’
Kernel’s Device Handler encapsulates certain I/O-related commands (e.g., OPEN and CLOSE) and provides a common device abstraction used by VistA applications. Applications are required to use the Device Handler.
At one time, devices were always opened using D ^%ZIS and closed using D ^%ZISC, but that is no longer true. Kernel provides some additional APIs:
 ^%ZISH for working with host files (that is, operating system files).
^%ZISUTL to make working with multiple devices easier.
^%ZISTCP for TCP connections.
If a device is opened using OPEN^%ZISUTL, it must be closed with CLOSE^%ZISUTL. Do not close the device through the CLOSE command.
[bookmark: _Ref311624898]S - Read command doesn’t have a timeout
Application programs must provide a timeout (usually the variable DTIME) when using the READ command. In fact, it is good practice for applications to not use READ at all, but use the VA FileMan ^%DIR API (commonly known as the Reader); though, this is not a requirement. It is, however, a requirement to use a timeout.
In addition, if a timeout exceeds 300 seconds, you must document that fact in the package technical manual.
If for some reason this is inappropriate, an exemption is required.
[bookmark: _Ref311624951]S - Routine code exceeds SACC maximum size of 15000 (nnnnn)
The maximum routine size for M code and “;;” comments (comments beginning with double semi-colons are considered code) is set to 15K characters in a routine.
[image: Note]	NOTE: An additional 5K characters in a routine is available for regular comments (i.e., comments beginning with a single semi-colon).
[bookmark: _Ref311625604]S - Routine exceeds SACC maximum size of 20000 (nnnnn)
The maximum routine size as determined by ^%ZOSF(“SIZE”) is set to 20K for all characters in a routine.
[bookmark: _Ref311625873]S - Set to a ‘%’ global
Application programs cannot modify globals with names beginning with “%”.
[image: Note]	NOTE: This restriction does not apply to Kernel.
[bookmark: _Ref311625909]S - Should use ‘TASKMAN’ instead of ‘JOB’ command
This is a requirement. Application programs cannot start background processes with the JOB command, but must use one of the APIs provided by TaskMan.
[image: Note]	NOTE: This restriction does not apply to Kernel.
[bookmark: _Ref311625978]S - View command used
The VIEW command modifies memory or disk buffers. Use of this command is restricted to Kernel and VA FileMan.
[image: Note]	REF: For more details about VIEW and $VIEW, see the “S - $View function used” section.
[bookmark: _Ref311626009]S - Violates VA programming standards
This is something of a catchall category and requires manual review for violations of VA programming standards.
[bookmark: _Ref311465040][bookmark: _Ref311465041][bookmark: _Ref311465042][bookmark: _Ref315350660][bookmark: _Toc458599528]Informational Errors
[bookmark: _Ref311619110]I - QUIT Command followed by only one space
This is another whitespace issue. In standard M, a routine is terminated by a single QUIT command and a function returns a value with a QUIT followed by a single space and then an expression that evaluates to the value to be returned. When you encounter a QUIT followed by a space, it is most likely extra whitespace at the end of a line.
[bookmark: _Ref311619142]I - Star or pound READ used
In M, READ is normally a line-oriented command. However, there are two syntactic variations on the READ command where its use is inappropriate:
[bookmark: _Toc458599978]Figure 139: API - Star our pound READ used—Syntactic variation (1 of 2)
READ *X

Reads a single character into X.
[bookmark: _Toc458599979]Figure 140: API - Star our pound READ used—Syntactic variation (2 of 2)
READ X#100

Reads 100 contiguous characters (bytes on most M systems) into X. Use of so-called star and pound READs was once disallowed, but is now permitted so long as applications follow other relevant standards.
[bookmark: _Ref311554491][bookmark: _Ref311554811][bookmark: _Ref315350548][bookmark: _Toc458599529]Marked Items Errors (Manual Check)
You must manually check flagged references under Marked Items.
Currently, Marked Items only apply if a line contains $TEXT ($T). XINDEX records the location of the $T code and prints it out under the “Marked Items” sub-header on the XINDEX report, since XINDEX does not check the references of a $T.
M uses the $TEXT function to retrieve lines from a routine, and routines sometimes incorporate data items that are retrieved in this fashion. Section 2.2.4 of the SAC describes the required format for lines referenced by $TEXT, which states (in part):
2.2.4.1 LABEL+OFFSET references are not used except for $TEXT references.

2.2.4.2 Lines referenced by $TEXT for use other than to check for the existence of a routine or a line label in that routine must be in the following format: [LABEL-optional]<ls>;;text or M code.
In standard M, a semicolon (“;”) introduces comments. A double semicolon (“;;”) indicates that the comment should be preserved even if the routine is compiled. The LABEL+OFFSET syntax is required to prevent errors that could be introduced if lines are inserted ahead of the label. According to the SAC, if code uses $T, the reference must start with a double semicolon (“;;”).

Toolkit: Developer Tools

[bookmark: _Ref303843090][bookmark: _Toc458599530]Unwinder: Developer Tools
[bookmark: _Toc458599531]Application Programming Interface (API)
Several APIs are available for developers to work with Kernel Unwinder. These APIs are described below.
[bookmark: _Ref59509887][bookmark: _Toc458599532]EN^XQOR(): Navigating Protocols
Reference Type:	Supported
Category:	Unwinder
ICR #:	10101
Description:	This API is the main routine for navigating protocols. The routine processes the initial protocol and the subordinate protocols. This processing of subordinate protocols happens according to the type of protocol and the navigation variables that get set along the way.
Format:	EN^XQOR(x)
Input Parameters:	x:	(required) Identifies the initial protocol that EN^XQOR should process. The “x” input parameter should be in variable pointer format. For example:
x=“1234;ORD(101,”
This would cause the processing to start with the protocol that has an internal entry number (IEN) of 1234.
An alternative to using variable pointer format is to set x equal to the name or number of the protocol and DIC equal to the number or global reference of the file you are working in (generally the PROTOCOL file [#101]).
Output:	none.

[bookmark: _Toc458599533]EN1^XQOR(): Navigating Protocols
Reference Type:	Supported
Category:	Unwinder
ICR #:	10101
Description:	This API is identical to the EN^XQOR(): Navigating Protocols API, except that the entry and exit actions of the initial protocol are not executed. This API provides backwards compatibility with the way Kernel 6 processed protocols that were defined in the OPTION file (#19).
Format:	EN1^XQOR(x)
Input Parameters:	x:	(required) Identifies the initial protocol that EN^XQOR should process. The “x” input parameter should be in variable pointer format. For example:
x=“1234;ORD(101,”
This would cause the processing to start with the protocol that has an internal entry number (IEN) of 1234.
An alternative to using variable pointer format is to set x equal to the name or number of the protocol and DIC equal to the number or global reference of the file you are working in (generally the PROTOCOL file [#101]).
Output:	none.

[bookmark: _Toc458599534]MSG^XQOR(): Enable HL7 Messaging
Reference Type:	Supported
Category:	Unwinder
ICR #:	10101
Description:	This API enables Health Level Seven (HL7) messaging through the XQOR Unwinder.
Format:	MSG^XQOR(protocol,.msgtext)
Input Parameters:	protocol:	(required) The name of the protocol with which the HL7 message are associated.
	.msgtext:	(required) The array containing the HL7 message.
Output:	none.

[bookmark: _Toc458599535]EN^XQORM(): Menu Item Display and Selection
Reference Type:	Supported
Category:	Unwinder
ICR #:	10140
Description:	This API handles the display of and selection from a menu; this routine processes a single menu only. This is the call that the EN^XQOR(): Navigating Protocols API uses to obtain menu selections. The caller is responsible to handle any selections from the menu that are returned in the y array. If you want navigation to the selected items handled for you, use the EN^XQOR(): Navigating Protocols API. The menus handled by this routine are the multiple selection, multiple column menus that are typical in Order Entry/Results Reporting (OE/RR).
Format:	EN^XQORM(xqorm,xqorm(0))
Input Parameters:	xqorm:	(required) A variable pointer to the menu that should be displayed (e.g., XQORM=“1234;ORD(101,”).
	xqorm(0):	(required) A string of flags that control the display and prompting of the menu:
Numeric—Maximum number of selections allowed.
A—Prompt for a selection from the menu.
D—Display the menu.
Output Parameters:	y():	This array contains the items that the user selected from the menu.

[bookmark: _Toc458599536]XREF^XQORM(): Force Menu Recompile
Reference Type:	Supported
Category:	Unwinder
ICR #:	10140
Description:	This API forces a menu to recompile. Menus are compiled into the XUTL global. This should happen automatically. However, you can use this API to force a menu to recompile.
Format:	XREF^XQORM(xqorm)
Input Parameters:	xqorm:	(required) Variable pointer to the protocol that should be recompiled.
Output:	returns:	Returns recompiled menu.

[bookmark: _Toc458599537]DISP^XQORM1(): Display Menu Selections From Help Code
Reference Type:	Supported
Category:	Unwinder
ICR #:	10102
Description:	This API displays menu selections from help code, if you have replaced the standard help by setting XQORM(“??”). This API should only be called from within the code used by XQORM(“??”).
Format:	DISP^XQORM1(x)
Input Parameters:	x:	(required) Must be “?”.
Output:	returns:	Returns menu selections.

Unwinder: Developer Tools

[bookmark: _Ref303843102][bookmark: _Toc458599538]User: Developer Tools
[bookmark: _Ref351978478][bookmark: _Toc458599539]Application Programming Interface (API)
Several APIs are available for developers to work with the user. These APIs are described below.
[bookmark: _Toc458599540]$$CODE2TXT^XUA4A72(): Get HCFA Text
Reference Type:	Supported
Category:	User
ICR #:	1625
Description:	This extrinsic function returns the three parts of the Health Care Financing Administration (HCFA) text from the PERSON CLASS file (#8932.1) based on passing in the Internal Entry Number (IEN) or the VA’s Vcode.
Format:	$$CODE2RXT^XUA4A72(ien_or_vcode)
Input Parameters:	ien_or_vcode:	(required) Pass in either the Internal Entry Number (IEN) or the VA Vcode for the text that should be returned.
Output:	returns:	Returns HCFA text.
[bookmark: _Ref378748654]
[bookmark: _Ref455470895][bookmark: _Toc458599541]$$GET^XUA4A72(): Get Specialty and Subspecialty for a User
Reference Type:	Supported
Category:	User
ICR #:	1625
Description:	This extrinsic function returns the “IEN^Profession^Specialty^Sub-specialty^Effect date^Expired date^VA code” for the person identified by the DUZ in effect on the date passed in, in internal VA FileMan format (TODAY if no date passed in).
[image: Note]	NOTE: This API was exported with Kernel patch XU*8.0*27.
It returns:
-1—If DUZ does not point to a valid user or user has never had a Person Class assigned.
-2—If no active Person Class on that date.
Format:	$$GET^XUA4A72(duz[,date])
Input Parameters:	duz:	(required) Internal Entry Number (IEN) for the person being checked in the NEW PERSON file (#200).
	date:	(optional) Date in internal VA FileMan format, to indicate effective date for determination.
Output:	returns:	Returns:
-1—If DUZ does not point to a valid user or user has never had a Person Class assigned.
-2—If no active Person Class on that date.

[bookmark: _Ref378748668][bookmark: _Toc458599542]$$IEN2CODE^XUA4A72(): Get VA Code
Reference Type:	Supported
Category:	User
ICR #:	1625
Description:	This extrinsic function returns the VA CODE from the PERSON CLASS file (#8932.1) that corresponds to the Internal Entry Number (IEN) passed in. If the IEN passed in does not match a valid entry in the PERSON CLASS file (#8932.1), an empty string is returned.
[image: Note] NOTE: This API was exported with Kernel patch XU*8.0*27.

Format:	$$IEN2CODE^XUA4A72(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) in the PERSON CLASS file (#8932.1).
Output:	returns:	Returns the VA CODE.

[bookmark: _Toc458599543]$$DTIME^XUP(): Reset DTIME for USER
Reference Type:	Supported
Category:	User
ICR #:	4409
Description:	This extrinsic function resets the DTIME variable for the user identified by the first parameter “DUZ” of this function. This extrinsic function accepts two parameters:
IEN or DUZ of the user in the NEW PERSON file (#200).
IEN of the device in the DEVICE file (#3.5).
The return value should be assigned to the variable DTIME as shown in the examples. This DTIME variable is used on all timed READS where interactive responses are required for a given user.
Format:	$$DTIME^XUP([duz][,ios])
Input Parameters:	duz:	(optional) The Internal Entry Number (IEN) or DUZ of the user in the NEW PERSON file (#200).
	ios:	(optional) The IEN of the device in the DEVICE file (#3.5). This IEN should be the same value of IOS if present, and should reflect the current sign-on device of the user.
Output:	returns:	The return value is based on the first available data found in the following fields/files (listed in search order):
1. TIMED READ (# OF SECONDS) field (#200.1) of the NEW PERSON file (#200).
2. TIMED READ (# OF SECONDS) field (#51.1) of the DEVICE file (#3.5).
3. DEFAULT TIMED READ (SECONDS) field (#210) of the KERNEL SYSTEM PARAMETERS file (#8989.3).
4. (default) If no data is available in any of the three fields above, then the return value defaults to 300 seconds.

[bookmark: _Toc458599544]Examples
Example 1
Sending DUZ only, returns the value in Field #200.1, TIMED READ (# OF SECONDS), of the NEW PERSON file (#200):
>S DTIME=$$DTIME^XUP(DUZ)

>W DTIME
1800

Example 2
Sending DUZ and IOS, returns the value in Field #200.1, TIMED READ (# OF SECONDS), of the NEW PERSON file (#200):
>S DTIME=$$DTIME^XUP(DUZ,IOS)

>W DTIME
1800

Example 3
Sending IOS only, returns the value in Field #51.1, TIMED READ (# OF SECONDS), of the DEVICE file (#3.5):
>S DTIME=$$DTIME^XUP(,IOS)

>W DTIME
500

Example 4
Not Sending DUZ or IOS, returns the value in Field #210, DEFAULT TIMED READ (SECONDS), of the KERNEL SYSTEM PARAMETERS file (#8989.3):
>S DTIME=$$DTIME^XUP(,)

>W DTIME
400
Or:
>S DTIME=$$DTIME^XUP()

>W DTIME
400

Example 5
Not Sending DUZ or IOS and no value is in Field #210, DEFAULT TIMED READ (SECONDS), of the KERNEL SYSTEM PARAMETERS file (#8989.3):
>S DTIME=$$DTIME^XUP()

>W DTIME
300

[bookmark: _Toc458599545]$$ACTIVE^XUSER(): Status Indicator
Reference Type:	Supported
Category:	User
ICR #:	2343
Description:	This extrinsic function returns the active status indicator and latest signon information of a user in the NEW PERSON file (#200).
Format:	$$ACTIVE^XUSER(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the user to be checked in the NEW PERSON file (#200).
Output:	returns:	Returns any of the following codes:
“”—Null, no user record found.
0—User cannot sign on.
0^DISUSER—User cannot sign on because of DISUSER flag.
0^TERMINATED^FMDATE—User terminated on date indicated.
1^NEW—A new user, can sign on.
1^ACTIVE^FMDATE—An active user, last signon date.

[bookmark: _Toc458599546]Examples
Example 1
This is an example of an Active User in the NEW PERSON file (#200):
>S X=$$ACTIVE^XUSER(1529)

>WRITE X
1^ACTIVE^3030321.093756

Example 2
This is an example of a Terminated User in the NEW PERSON file (#200):
>S X=$$ACTIVE^XUSER(957)

>WRITE X
0^TERMINATED^2980504

Example 3
This is an example of a User with no record in the NEW PERSON file (#200), returns a null string:
>S X=$$ACTIVE^XUSER(999999999)

>W X

>

Example 4
This is an example of a User in the NEW PERSON file (#200) with the DISUSER flag set:
>S X=$$ACTIVE^XUSER(111)

>W X
0^DISUSER

[bookmark: _Ref351380184][bookmark: _Ref351727810][bookmark: _Toc458599547]$$DEA^XUSER()—Get User’s DEA Number
Reference Type:	Supported
Category:	User: DEA ePCS Utility
ICR #:	2343
Description:	This extrinsic function returns a user’s DEA number, if it exists in the DEA# field (#53.2) in the NEW PERSON file (#200). If the DEA# field value is null, the value returned depends on the optional flag input parameter.
[image: Note]	NOTE: Fee Basis and C&A providers only return DEA# or null.
[image: Note]	NOTE: This API was originally requested as part of the Public Key Infrastructure (PKI) Project. This API was updated with Kernel patch XU*8.0*580, which was created in support of the Drug Enforcement Agency (DEA) e-Prescribing of Controlled Substances (ePCS) Utility. This utility uses Public Key Infrastructure (PKI) and meets the requirements proposed by the DEA Interim Final Rule (IFR) for Electronic Prescriptions for Controlled Substances effective as of June 1, 2010.
Format:	$$DEA^XUSER([flag],ien)
Input Parameters:	flag:	(optional) This flag controls what is returned when the user does not have a value in the DEA# field (#53.2) of the NEW PERSON file (#200).
FLAG is null or “0”—This routine checks to see if the user has values in the VA# field (#53.3) of the NEW PERSON file (#200) and the (new) FACILITY DEA NUMBER field (#52) of the INSTITUTION file (#4). If values are found in both of those fields, this routine returns the following:
FACILITY DEA NUMBER field (#52)_”-”_VA# field(#53.3)
FLAG is “1”—This routine checks to see if the user has a value in the VA# field (#53.3) of the NEW PERSON file (#200). If a value is found in that field, this routine returns that field value. Otherwise, this routine returns an empty string.
	ien:	This is the NEW PERSON file (#200) IEN for the entry to be checked.
Output:	returns:	Returns the DEA#: DEA# field (#53.2) value or the value returned based on the (optional) flag input parameter.

[bookmark: _Toc458599548]Examples
Example 1
The following are the data values for this example:
DEA# (#53.2) field = “AB1234567”.
FACILITY DEA NUMBER field (#52) = “VA7654321”.
VA# field (#53.3) = “789”.
If the FLAG input parameter is NULL or “0”, this API would return “AB1234567”.
If the FLAG input parameter is “1”, this API would return “AB1234567”.
Example 2
The following are the data values for this example:
DEA# field (#53.2) = NULL.
FACILITY DEA NUMBER field (#52) = “VA7654321”.
VA# field (#53.3) = “789”.
If the FLAG input parameter is NULL or “0”, this API would return “VA7654321-789”.
If the FLAG input parameter is “1”, this API would return “789”.
Example 3
The following are the data values for this example:
DEA# (#53.2) field = NULL.
FACILITY DEA NUMBER field (#52) = “VA7654321”.
VA# field (#53.3) = NULL.
If the FLAG input parameter is NULL or “0”, this API would return “” (an empty string).
If the FLAG input parameter is “1”, this API would return “” (an empty string).
In both cases, it returns an empty string.
Example 4
The following are the data values for this example:
DEA# (#53.2) field = NULL.
FACILITY DEA NUMBER field (#52) = “VA7654321”.
VA# field (#53.3) = “789”.
PROVIDER TYPE field (#53.6) = “FEE BASIS” or “C&A”.
If the FLAG input parameter is NULL or “0”, this API would return “” (an empty string).
If the FLAG input parameter is “1”, this API would return “” (an empty string).
In both cases, it returns an empty string.
[bookmark: _Ref351380197][bookmark: _Ref351730026][bookmark: _Toc458599549]$$DETOX^XUSER()—Get Detox/Maintenance ID Number
Reference Type:	Supported
Category:	User: DEA ePCS Utility
ICR #:	2343
Description:	This extrinsic function obtains the value stored in the DETOX/MAINTENANCE ID NUMBER field (#53.11) in the NEW PERSON file (#200). It returns one of the following:
User’s DETOX/MAINTENANCE ID number—If it exists in the DETOX/MAINTENANCE ID NUMBER field (#53.11) of the NEW PERSON file (#200).
Null—If DETOX/MAINTENANCE ID number is null or the DEA EXPERATION DATE field (#747.44) in the NEW PERSON file (#200) is unpopulated.
DEA EXPIRATION DATE (#747.44)—This date is returned when the DETOX/MAINTENANCE ID number is valid but the DEA EXPIRATION DATE has expired.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*580, which was created in support of the Drug Enforcement Agency (DEA) e-Prescribing of Controlled Substances (ePCS) Utility. This utility uses Public Key Infrastructure (PKI) and meets the requirements proposed by the DEA Interim Final Rule (IFR) for Electronic Prescriptions for Controlled Substances effective as of June 1, 2010.
Format:	$ $DETOX^XUSER(ien)
Input Parameters:	ien:	(required) The IEN of the user in NEW PERSON file (#200).
Output:	returns:	Returns: one of the following:
User’s DETOX/MAINTENANCE ID number—If valid.
Null—DETOX/MAINTENANCE ID number is null or the DEA EXPERATION DATE field (#747.44) in the NEW PERSON file (#200) is unpopulated.
DEA EXPIRATION DATE (#747.44)— When the DETOX/MAINTENANCE ID number is valid but the DEA EXPIRATION DATE has expired.

[bookmark: _Toc458599550]DIV4^XUSE R(): Get User Divisions
Reference Type:	Controlled Subscription
Category:	User
ICR #:	2533
Description:	This API returns all divisions for a user. It returns:
1—If the user has a Division entry in the NEW PERSON file (#200). It indicates that the array of pointers to the Institution file has been defined.
0—The array of pointers to the INSTITUTION file (#4) has not been defined.
Format:	DIV4^XUSER(.array[,duz])
Input Parameters:	.array:	(required) This parameter is a local variable (i.e., array name) passed by reference.
	duz:	(optional) The Internal Entry Number (IEN) of the user in the NEW PERSON file (#200). If DUZ is not passed as a parameter, the function defaults to the value of DUZ in the application’s partition.
Output Parameters:	.array:	Returns:
1—If the user has a Division entry in the NEW PERSON file (#200). It indicates that the array of pointers to the Institution file has been defined.

The array includes all IENs for the INSTITUTION file (#4) that have been assigned to the user.

The array is defined and left in the application’s partition, if the user indicated by the value of the DUZ input parameter has divisions defined in the respective NEW PERSON file (#200) entry. The format is:
ARRAY([^DIC(4 IEN])
0—The array of pointers to the INSTITUTION file (#4) has not been defined.

[bookmark: _Toc458599551]Example
>S X=$$DIV4^XUSER(.ZZ,duz)

[bookmark: _Ref393962538][bookmark: _Toc458599552]$$LOOKUP^XUSER(): New Person File Lookup
Reference Type:	Supported
Category:	User
ICR #:	2343
Description:	This extrinsic function does a user lookup on the NEW PERSON file (#200) screening out users that are terminated. You are first asked to enter a name of a user in the NEW PERSON file (#200). By default, the function then asks if the correct user name was selected. For example:
Select NEW PERSON NAME: XUUSER,THREE
Is XUUSER,THREE the one you want? YES//
If the optional input parameter is set to “Q” then the second, confirmation prompt is suppressed. The return is in the same format as a call to DIC (i.e., IEN^NAME). Adding new entries is not allowed.
Format:	$$LOOKUP^XUSER([“”])
Input Parameters:	“”:	(optional) This optional input parameter does the following:
Null (default)—Do not suppress the NEW PERSON file (#200) name confirmation prompt for each entry selected.
A—Screen out terminated users.
Q—Suppress the NEW PERSON file (#200) name confirmation prompt for each entry selected.
AQ—Screen out terminated users and suppress the NEW PERSON file (#200) name confirmation prompt for each entry selected.
Output:	returns:	Returns the Internal Entry Number (IEN) and NAME of the user in the NEW PERSON file (#200) entered after the “Select NEW PERSON NAME:” prompt (IEN^NAME).

[bookmark: _Toc458599553]Examples
Example 1
This is an example of a lookup of an active user when not passing in the optional “Q” parameter:
[bookmark: _Toc200270060][bookmark: _Toc458599980]Figure 141: $$LOOKUP^XUSER API—Example 1: Showing confirmation prompt
>S LRDOC=$$LOOKUP^XUSER(“”)

Select NEW PERSON NAME: ?
 Answer with NEW PERSON NAME, or INITIAL, or SSN, or VERIFY CODE, or
 NICK NAME, or SERVICE/SECTION, or DEA#, or ALIAS
 Do you want the entire 1601-Entry NEW PERSON List? N <Enter> (No)
Select NEW PERSON NAME: XUUSER,TWO E <Enter> TX COMPUTER SPECIALIST
Is XUUSER,TWO E the one you want? YES// <Enter>

>W LRDOC
1529^XUUSER,TWO E

Example 2
This is an example of a lookup of an active user when passing in the optional “Q” parameter:
[bookmark: _Toc200270061][bookmark: _Toc458599981]Figure 142: $$LOOKUP^XUSER API—Example 2: Suppressing confirmation prompt
>S LRDOC=$$LOOKUP^XUSER(“Q”)

Select NEW PERSON NAME: XUUSER,TWO E <Enter> TX COMPUTER SPECIALIST

>W LRDOC
1529^XUUSER,TWO E

Example 3
This is an example of a lookup of a terminated user when passing in the optional “A” parameter:
[bookmark: _Toc200270062][bookmark: _Toc458599982]Figure 143: $$LOOKUP^XUSER API—Example 3: Terminated user
>S LRDOC=$$LOOKUP^XUSER(“A”)

Select NEW PERSON NAME: XUUSER,EIGHT <Enter> EX
 This user was terminated on May 04, 1998
Select NEW PERSON NAME:

[bookmark: _Ref393962593][bookmark: _Toc458599554]$$NAME^XUSER(): Get Name of User
Reference Type:	Supported
Category:	User
ICR #:	2343
Description:	This extrinsic function returns the full name of the specified user in a mixed case displayable format. The user’s given name (i.e., First Last) is returned unless a second parameter of “F” is passed in to get the Family name (i.e., Last,First).
Format:	$$NAME^XUSER(ien[,format])
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the provider to be checked in the NEW PERSON file (#200).
	format:	(optional) This parameter indicates if the user’s name should be returned formatted by Family or Given name, respectively. Possible values are:
F—Family (e.g., “Xuuser,Two”).
G (default)—Given (e.g., “Two Xuuser”).
Output:	returns:	Returns user’s family or given name.

[bookmark: _Toc458599555]Examples
Example 1
Retrieving the user name in Given format:
>S X=$$NAME^XUSER(1529)

>W X
Two E Xuuser

Example 2
Retrieving the user name in Family format:
>S X=$$NAME^XUSER(1529,“F”)

>W X
Xuuser,Two E.

[bookmark: _Toc458599556]$$PROVIDER^XUSER(): Providers in New Person File
Reference Type:	Supported
Category:	User
ICR #:	2343
Description:	This extrinsic function was requested to be added by the Computerized Patient Record System (CPRS) Development Team. It indicates any provider in the NEW PERSON file (#200). The definition of a provider is any entry in the NEW PERSON file (#200) that does not have a termination date. Additional parameters may be added in the future in order to perform other tests/checks.
Format:	$$PROVIDER^XUSER(ien)
Input Parameters:	ien:	(required) Internal Entry Number (IEN) of the provider to be checked in the NEW PERSON file (#200).
Output:	returns:	Returns any of the following codes:
1—Provider has a record and no termination date.
0^TERMINATED^FMDATE—Provider terminated on date indicated.
“”—Null, no provider record found.

[bookmark: _Toc458599557]Examples
Example 1
This is an example of an Active Provider in the NEW PERSON file (#200):
>S X=$$PROVIDER^XUSER(1529)

>WRITE X
1

Example 2
This is an example of a Terminated Provider in the NEW PERSON file (#200):
>S X=$$PROVIDER^XUSER(957)

>W X
0^TERMINATED^2980504

Example 3
This is an example of a Provider with no record in the NEW PERSON file (#200), returns a null string:
>S X=$$PROVIDER^XUSER(000999999)

>W X

>

[bookmark: _Ref351380208][bookmark: _Ref351730038][bookmark: _Toc458599558]$$SDEA^XUSER()—Check for Prescribing Privileges
Reference Type:	Supported
Category:	User: DEA ePCS Utility
ICR #:	2343
Description:	This extrinsic function uses the following “Privileges Algorithm” to check for prescribing privileges:
Blank = never answered (Allow all schedules but system to send the following electronic message: “DEA credentials have not been populated, call TBD responsible person.”)
Any or all fields are answered = provide explicit set of permissions (that have been identified).
If it is answered that Prescriber has No privileges for all schedules = remove DEA number or VA number from the NEW PERSON file (# 200).
If Prescriber has been issued a DEA number, you have privileges.
If the Prescriber has been issued a VA number, this is a presumption of privileges.
[image: Note] NOTE: Not all of these checks apply to documentation of non-VA medication.
[image: Note] REF: This API calls the $$DEA^XUSER()—Get User’s DEA Number API.
[image: Note] NOTE: This API was released with Kernel patch XU*8.0*580, which was created in support of the Drug Enforcement Agency (DEA) e-Prescribing of Controlled Substances (ePCS) Utility. This utility uses Public Key Infrastructure (PKI) and meets the requirements proposed by the DEA Interim Final Rule (IFR) for Electronic Prescriptions for Controlled Substances effective as of June 1, 2010.
Format:	$$SDEA^XUSER([fg,]ien,psdea)

Input Parameters:	fg:	(optional) This flag is used for $$DEA call, see the flag input parameter in the $$DEA^XUSER()—Get User’s DEA Number API.
	ien:	(required) This is the NEW PERSON file (#200) IEN for the entry to be checked.
	psdea:	(required) This parameter is DEA schedule. DEA schedule is a 2-6 position field. It comes from the DRUG file (#50) in Pharmacy. This API uses this field to verify the provider is allowed to write orders for specific controlled substances. For example, if the schedule is 2A, this indicates a controlled substance, schedule 2.
Chart for all values:
MANUFACTURED IN PHARMACY
SCHEDULE 1 ITEM
SCHEDULE 2 ITEM
SCHEDULE 3 ITEM
SCHEDULE 4 ITEM
SCHEDULE 5 ITEM
LEGEND ITEM:
9—OVER-THE-COUNTER
L—DEPRESSANTS AND STIMULANTS
A—NARCOTICS AND ALCOHOLS
P—DATED DRUGS
I—INVESTIGATIONAL DRUGS
M—BULK COMPOUND ITEMS
C—CONTROLLED SUBSTANCES - NON NARCOTIC
R—RESTRICTED ITEMS
S—SUPPLY ITEMS
B—ALLOW REFILL (SCH. 3, 4, 5 ONLY)
W—NOT RENEWABLE
F—NON REFILLABLE
E—ELECTRONICALLY BILLABLE
N—NUTRITIONAL SUPPLEMENT
U—SENSITIVE DRUG
Output:	returns:	Returns: DEA# or Facility DEA_”-”_user VA# similar to the $$DEA call.
1—DEA# is null from the $$DEA call.
2—When all schedules equals “0”.
4^expiration date—DEA# expiration date has expired. It checks if the DEA# and expiration date are not null. The expiration date is returned in external format.
[bookmark: _Ref351380219][bookmark: _Ref351730068]
[bookmark: _Toc458599559]$$VDEA^XUSER()—Check if User Can Sign Controlled Substance Orders
Reference Type:	Supported
Category:	User: DEA ePCS Utility
ICR #:	2343
Description:	This extrinsic function determines if a user in the NEW PERSON file (#200) is able to sign orders for controlled substances.
[image: Note]	NOTE: This API was released with Kernel patch XU*8.0*580, which was created in support of the Drug Enforcement Agency (DEA) e-Prescribing of Controlled Substances (ePCS) Utility. This utility uses Public Key Infrastructure (PKI) and meets the requirements proposed by the DEA Interim Final Rule (IFR) for Electronic Prescriptions for Controlled Substances effective as of June 1, 2010.
Format:	$VDEA^XUSER(.return,ien)
Input Parameters:	.return:	(required) This is a reference to an array where the reasons why the user cannot sign orders for controlled substances and which DEA schedules the user can prescribe is returned. For example:
RETURN(“Is permitted to prescribe all schedules.)=“”
	ien:	(required) This is the IEN of the user in the NEW PERSON file (#200).
Output Parameters:	.return:	This array contains the reasons why the user cannot sign orders for controlled substances and which DEA schedules the user can prescribe. For example:
RETURN(“Is not permitted to prescribe any schedules.”)=“”
Output:	returns:	Returns:
1—If the user is able to sign orders for controlled substances.
0—If the user is not able to sign orders for controlled substances.

[bookmark: _Toc458599560]$$KCHK^XUSRB(): Check If User Holds Security Key
Reference Type:	Controlled Subscription
Category:	User
ICR #:	2120
Description:	This extrinsic function checks to see if a user holds a given security key.
Format:	$$KCHK^XUSRB(key[,ien])
Input Parameters:	key:	(required) The name of the security key to be checked.
	ien:	(optional) Internal Entry Number (IEN). It defaults to DUZ.
Output:	returns:	Returns:
1—User holds security key.
0—User does not hold security key.

[bookmark: _Toc458599561]Examples
Example 1
The following example illustrates the results when a user holds a security key input:
>S X=$$KCHK^XUSRB(“XUPROGMODE”)

>W X
1

Example 2
The following example illustrates the results when a user does not hold the security key input:
>S X=$$KCHK^XUSRB(“XUMGR”)

>W X
0

Example 3
The following example illustrates the results when checking if another user holds a security key input by including their IEN:
>S X=$$KCHK^XUSRB(“XUPROGMODE”,30)

>W X
1

[bookmark: _Toc458599562]DIVGET^XUSRB2(): Get Divisions for Current User
Reference Type:	Controlled Subscription
Category:	User
ICR #:	4055
Description:	This API retrieves the list of divisions for the current user.

(This was developed as a Broker Remote Procedure Call [RPC] and all RPCs have as the first parameter the return/output parameter.)
Format:	DIVGET^XUSRB2(ret,ien)
Input Parameters:	ret:	(required) Name of the subscripted return array. In every API that is used as an RPC, the first parameter is the return array.
	ien:	(required) The DUZ or user name of the user for whom you are getting the division list.
Output Parameters:	ret():	Returns a subscripted output array. If + of the value at the first level 0 subscript of the return value is false, then the user does not have any divisions from which to select.
Otherwise, for each division that a user has, a node is present in the return value, at the first subscript level, starting at zero (0) and incrementing from there. The value of the node is three pieces:
ien^division name^station #

[bookmark: _Toc458599563]DIVSET^XUSRB2(): Set Division for Current User
Reference Type:	Controlled Subscription
Category:	User
ICR #:	4055
Description:	This API sets the division for the current user.

(This was developed as a Broker RPC and all RPCs have as the first parameter the return/output parameter.)
Format:	DIVSET^XUSRB2(ret,div)
Input Parameters:	ret:	(required) Name of the subscripted return array. In every API that is used as an RPC, the first parameter is the return array.
	div:	(required) This is the division to select. If passed with a leading ` an Internal Entry Number (IEN) is being passed and is processed as such.
Output:	ret():	Returns a Boolean value in the subscripted output array:
True (non-zero)—Division selection is considered successful.
False (zero)—Division selection failed.

[bookmark: _Toc458599564]USERINFO^XUSRB2(): Get Demographics for Current User
Reference Type:	Controlled Subscription
Category:	User
ICR #:	4055
Description:	This API retrieves various user demographic information for the current user.

(This was developed as a Broker/VistALink RPC and all RPCs have as the first parameter the return/output parameter.)
Format:	USERINFO^XUSRB2(ret)
Input Parameters:	ret:	(required) Name of the subscripted return array. In every API that is used as an RPC, the first parameter is the return array.
Output:	ret():	Returns a subscripted output array:
RET(1)—User’s name from the .01 field of the NEW PERSON file (#200).
RET(2)—Concatenated user name from the NAME COMPONENTS file (#20).
RE(3)—Logged on division:
ien^name^number
RET(4)—User’s title from the NEW PERSON file (#200).
RET(5)—User’s service section from NEW PERSON file (#200, external format).
RET(6)—User’s language from the NEW PERSON file (#200).
RET(7)—User’s timeout.

User: Developer Tools

[bookmark: _Ref241378675][bookmark: _Ref241378762][bookmark: _Toc458599565]XGF Function Library: Developer Tools
[bookmark: _Toc458599566]Overview
The XGF Function Library supports developers designing text-based applications. The functions in this library support cursor positioning, overlapping text windows, video attribute control, and keyboard escape processing, all in a text-mode environment.
If you intend to make simple interface enhancements for an existing text-mode application, then you may find the XGF Function Library useful. The XGF Function Library provides the following functionality:
Text-mode overlapping windows.
Text-mode cursor positioning by screen coordinate.
Text-mode video attribute control (bold, blink, etc.).
Keyboard reader using M escape processing (thereby making use of keystrokes like <UP-ARROW> (“↑”), <DOWN-ARROW> (“↓”), <PREV> (“←”), <NEXT> (“→”), etc.).
The XGF Function Library may not be appropriate if you need:
A full graphical user interface (GUI) front end for your application.
Support for non-ANSI VT-compatible display devices.
To use the XGF Function Library, your system must use an M implementation that complies with the 1995 ANSI M standard. At a minimum, the M implementation must support the following features to use the XGF Function Library:
[bookmark: _Toc193181937][bookmark: _Toc241305170][bookmark: _Toc458600033]Table 38: XGF Function Library—Minimum M implementation features required
	[bookmark: COL001_TBL031]Feature
	Example

	SET into $EXTRACT
	S X=“this is a string”,$E(X,1,4)=“that”

	Reverse $ORDER
	S X=$O(^TMP(“”),-1)

	Two argument $GET
	K Y S X=$G(Y,“DEFAULT”)

	Skipping parameters
	D TAG^ROUTINE(,P2,,P4)

	$NAME
	W $NA(^TMP($J))

	SET $X and $Y
	S $X=10

This XGF Function Library supports terminals that are ANSI-compatible and at least VT100-compatible. As a result, this software does not support QUME QVT102/QVT102A terminals.
[image: Note]	REF: The XGF Function Library Application Programming Interfaces (APIs) are documented in the “XGF Function Library: Developer Tools” section in the Kernel Developer’s Guide. Kernel and Kernel Toolkit APIs are also available in HTML format on the VA Intranet Website.
[bookmark: _Toc458599567]Direct Mode Utilities
Several XGF Function Library direct mode utilities are available for developers to use at the M prompt. They are not APIs and cannot be used in software application routines. These direct mode utilities are described below.
[bookmark: _Toc458599568]^XGFDEMO: Demo Program
To run an interactive demonstration showing the capabilities provided by the XGF Function Library, you can run the XGF demo program. From the programmer prompt, type the following:
>D ^XGFDEMO
[bookmark: _Toc200270063][bookmark: _Toc458600034]Table 39: XGF Function Library—Demo functional division
	[bookmark: COL001_TBL032]Demo Function
	Associated Direct Mode Utility

	Cursor/Text Output
	IOXY^XGF, SAY^XGF, SAYU^XGF

	Video Attributes
	CHGA^XGF, SETA^XGF

	Text Windows
	CLEAR^XGF, FRAME^XGF, RESTORE^XGF, SAVE^XGF, WIN^XGF

	Keyboard Reader
	$$READ^XGF

	Setup/Cleanup
	CLEAN^XGF, INITKB^XGF, PREP^XGF, RESETKB^XGF

[bookmark: _Toc458599569]
Application Programming Interface (API)
Several APIs are available for developers to work with the XGF Function Library. These APIs are described below.
[bookmark: _Ref36529173][bookmark: _Ref36529610][bookmark: _Ref36529674][bookmark: _Ref36529773][bookmark: _Ref66582167][bookmark: _Ref66582185][bookmark: _Ref66582314][bookmark: _Toc458599570]CHGA^XGF(): Screen Change Attributes
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API changes individual video attributes for subsequent screen WRITEs.
Use this API to change individual video attributes for subsequent output. This API is different from SETA^XGF in that individual video attributes can be set without affecting all video attributes at once.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling CHGA^XGF.
The attribute codes are not case sensitive. You can append them if you want to set more than one attribute. If you include more than one attribute, their order is not important.
B0 and B1 turn off and on the blink attribute.
I0 and I1 turn off and on the intensity attribute.
R0 and R1 turn off and on the reverse attribute.
U0 and U1 turn off and on the underline attribute.
E1 turns off all attributes.
G0 and G1 turn off and on recognition of an alternate graphics character set, so that you can use special graphic characters, in particular those set up by Kernel’s GSET^%ZISS API. To use graphics characters, be sure you turn on graphics first (with G1) and turn graphics off afterwards (with G0).
The change in attribute remains in effect until another CHGA^XGF, PREP^XGF(): Screen/Keyboard Setup, or SETA^XGF(): Screen Video Attributes API call is made. If you want only a temporary change in attribute, SAY^XGF may be a better function to use.
Format:	CHGA^XGF(atr_codes)
Input Parameters:	atr_codes:	(required) Codes are as follows:
B1—Blink on.
B0—Blink off.
E1—Turn all off.
G1—Graphics on.
G0—Graphics off.
I1—Intensity high.
I0—Intensity normal.
R1—Reverse video on.
R0—Reverse video off.
U1—Underline on.
U0—Underline off.
Output Parameters:	xgcuratr:	This variable always holds the current screen attribute coded as a single character, and is updated when you call CHGA^XGF.
	$x,$y:	Left unchanged.
[image: Note]	REF: See also: SETA^XGF(): Screen Video Attributes API.
[bookmark: _Toc458599571]Examples
Example 1
To clear the screen in blinking, reverse video and high intensity, do the following:
>D CHGA^XGF(“R1B1I1”),CLEAR^XGF(0,0,23,79)

Example 2
To print Hello World, do the following:
>D CHGA^XGF(“I1”),SAY^XGF(,,“Hello “)
>D CHGA^XGF(“U1”),SAY^XGF(,,“World”)

Example 3
To draw the bottom of a small box, do the following:
>D CHGA^XGF(“G1”)
>D SAY^XGF(,,IOBLC_IOHL_IOHL_IOBRC)
>D CHGA^XGF(“G0”)

[bookmark: _Ref36528881][bookmark: _Ref36529313][bookmark: _Ref36529694][bookmark: _Ref66522567][bookmark: _Ref66523165][bookmark: _Ref66523360][bookmark: _Ref66582198][bookmark: _Toc458599572]CLEAN^XGF: Screen/Keyboard Exit and Cleanup
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API exits the XGF screen and keyboard environments. It removes XGF screen and keyboard variables and tables, turns all video attributes off, turns echo on, turns the cursor on, and sets the keypad to numeric mode.
[bookmark: _Toc97637531][bookmark: _Toc97637532]In addition, CLEAN^XGF does everything that the RESETKB^XGF: Exit XGF Keyboard API does to exit the XGF keyboard environment, including turning terminators and escape processing off. Subsequent READs are processed normally. If you call CLEAN^XGF, a separate call to the RESETKB^XGF: Exit XGF Keyboard API is not necessary.
Format:	CLEAN^XGF
Input Parameters:	none.
Output:	none.
[image: Note]	REF: See also: PREP^XGF(): Screen/Keyboard Setup API.
[bookmark: _Ref36528995][bookmark: _Ref36529054][bookmark: _Ref36529821][bookmark: _Ref66524101][bookmark: _Ref66524900][bookmark: _Ref66582975][bookmark: _Toc458599573]CLEAR^XGF(): Screen Clear Region
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API clears a rectangular region of the screen. It is useful to clear a portion of the screen.
The CLEAR function works by printing spaces using the current screen attribute in the specified region. If the screen attribute is changed and then the CLEAR function is used, the rectangular region is cleared in the new attribute.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling CLEAR^XGF.
Acceptable values for the top and bottom parameters range from 0 to IOSL-1. Acceptable values for the left and right parameters range from 0 to IOM-1.
Format:	CLEAR^XGF(top,left,bottom,right)
Input Parameters:	top:	(required) Top screen coordinate for box.
	left:	(required) Left screen coordinate for box.
	bottom:	(required) Bottom screen coordinate for box.
	right:	(required) Right screen coordinate for box.
Output Parameters:	$x and $y:	Set to the right and bottom specified as parameters.
[image: Note]	REF: See also: RESTORE^XGF(): Screen Restore, SAVE^XGF(): Screen Save, and WIN^XGF(): Screen Text Window APIs.
[bookmark: _Toc458599574]Examples
Example 1
For example, to clear the entire screen, do the following:
>D CLEAR^XGF(0,0,23,79)

Example 2
To clear a rectangular region in the center of the screen, do the following:
>D CLEAR^XGF(5,20,15,60)

[bookmark: _Ref36529837][bookmark: _Ref66582989][bookmark: _Toc458599575]FRAME^XGF(): Screen Frame
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API draws a box frame on the screen. It displays boxes on the screen.
The FRAME function does not clear or otherwise change the region that it encompasses. If you need to open an empty framed window you should use the WIN^XGF(): Screen Text Window API instead.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling FRAME^XGF.
Acceptable values for the top and bottom parameters range from 0 to IOSL-1. Acceptable values for the left and right parameters range from 0 to IOM-1.
Format:	FRAME^XGF(top,left,bottom,right)
Input Parameters:	top:	(required) Top screen coordinate for box.
	left:	(required) Left screen coordinate for box.
	bottom:	(required) Bottom screen coordinate for box.
	right:	(required) Right screen coordinate for box.
Output Parameters:	$x and $y:	Set to the right and bottom specified as parameters.
[image: Note]	REF: See also: RESTORE^XGF(): Screen Restore and WIN^XGF(): Screen Text Window APIs.
[bookmark: _Toc458599576]Example
For example, to draw a box in the center of the screen, do the following:
>D FRAME^XGF(5,20,15,60)
[bookmark: _Ref36528814][bookmark: _Ref36529262][bookmark: _Ref66522492][bookmark: _Ref66522542][bookmark: _Ref66523243]
[bookmark: _Toc458599577]INITKB^XGF(): Keyboard Setup Only
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API sets up the XGF keyboard environment only. You should call INITKB^XGF once, before you start making calls to the $$READ^XGF function. This API turns on escape processing and any terminators that are passed.
Use this API only if you are using XGF’s Keyboard Reader independently from XGF’s screen functions. Otherwise, a call to the PREP^XGF(): Screen/Keyboard Setup API does everything to set up keyboard processing that INITKB^XGF does, and a separate call to INITKB^XGF is not necessary.
Unlike the PREP^XGF(): Screen/Keyboard Setup API, INITKB^XGF does not set the keypad to application mode.
INITKB does not call %ZISS. Thus, documented Kernel variables such as IOKPAM and IOKPNM are not available for use without a separate call to the ENS^%ZISS: Set Up Screen-handling Variables API.
Format:	INITKB^XGF([term_str])
Input Parameters:	term_str:	(optional) String of characters that should terminate the READ.
This parameter can be one of two forms:
A single asterisk (“*”) character turns on all terminators.
The string of terminating characters, such as $C(9,13,127).
If this parameter is not passed, or if it is an empty string, the terminators are not turned on.
Output:	none.
[bookmark: _Toc97637536][bookmark: _Ref36529190][bookmark: _Ref36529627][bookmark: _Ref66526246][bookmark: _Ref66581746][image: Note]	REF: See also: RESETKB^XGF: Exit XGF Keyboard API.
[bookmark: _Toc458599578]IOXY^XGF(): Screen Cursor Placement
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API positions the cursor on the screen at a screen coordinate. This API is similar to Kernel’s X IOXY function. The row parameter must be between 0 and IOSL-1; the column parameter must be between 0 and IOM- 1.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling IOXY^XGF.
You can specify row and column parameters relative to the current $x and $y by specifying “+” or “-” to increment or decrement $x or $y by 1. You can increment or decrement by more than one if you add a number as well, such as “-5” or “+10”.
[image: Note]	NOTE: You must use quotes to pass a “+” or “-”. Otherwise, to specify exact locations for row and column, pass numbers.
Format:	IOXY^XGF(row,col)
Input Parameters:	row:	(required) Row position to which the cursor is moved.
	col:	(required) Column position to which the cursor is moved.
Output Parameters:	$x and $y:	Set to the row and column specified as parameters.
[image: Note]	REF: See also: SAY^XGF(): Screen String and SAYU^XGF(): Screen String with Attributes APIs.
[bookmark: _Toc458599579]Example
For example, to position the cursor at row 12, column 39, do the following:
>D IOXY^XGF(12,39)

[bookmark: _Ref36528210][bookmark: _Ref36528438][bookmark: _Ref36528529][bookmark: _Ref36528607][bookmark: _Ref36528756][bookmark: _Ref36528976][bookmark: _Ref36529026][bookmark: _Ref36529130][bookmark: _Ref36529518][bookmark: _Ref36529725][bookmark: _Ref36529796][bookmark: _Ref66509898][bookmark: _Ref66510634][bookmark: PREP_XGF][bookmark: _Ref66511069][bookmark: _Ref66512088][bookmark: _Ref66520732][bookmark: _Ref66521238][bookmark: _Ref66521255][bookmark: _Ref66521947][bookmark: _Ref66524081][bookmark: _Ref66524629][bookmark: _Ref66526164][bookmark: _Ref66581346][bookmark: _Ref66581989][bookmark: _Ref66582293][bookmark: _Ref66582875][bookmark: _Toc458599580]PREP^XGF(): Screen/Keyboard Setup
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API sets up the XGF screen and keyboard environments.
Before using any XGF screen functions, you must call the PREP^XGF API. PREP^XGF sets up screen control variables and tables. It also turns off all video attributes, turns echo off, turns the cursor off, sets the keypad to application mode, and clears the screen.
In addition, PREP^XGF does everything that the INITKB^XGF(): Keyboard Setup Only API does to set up the XGF keyboard environment, including turning escape processing and terminators on. If you call PREP^XGF, a call to the INITKB^XGF(): Keyboard Setup Only API would be redundant.
Format:	PREP^XGF(xgcuratr)
Input Parameters:	none.
Output Parameters:	xgcuratr:	One-character parameter containing the state of the current video attribute.
Also, the GSET^%ZISS: Set Up Graphic Variables API is called, so all output variables for screen graphics from GSET^%ZISS are defined.
[image: Note]	REF: See also: CLEAN^XGF: Screen/Keyboard Exit and Cleanup API.
[bookmark: _Ref36528592][bookmark: _Ref36528860][bookmark: _Ref37752959][bookmark: _Ref37752995][bookmark: _Ref37755421][bookmark: _Ref37755450][bookmark: _Ref36528370][bookmark: _Ref36529388][bookmark: _Ref66511916][bookmark: _Ref66511934][bookmark: _Ref66521304][bookmark: _Ref66523189][bookmark: _Toc458599581]$$READ^XGF(): Read Using Escape Processing
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This extrinsic function provides a way to perform READs using escape processing. READs, when escape processing is turned on, are terminated by: <UP-ARROW> (“↑”), <DOWN-ARROW> (“↓”), <PREV> (“←”), <NEXT> (“→”), <TAB>, and other special keystrokes.
$$READ^XGF is a low-level reader compared to the VA FileMan reader. In some respects it is as simple as using the M READ command. This READ function incorporates escape processing, which puts the burden on the operating system to READ the arrow, function, and all other keys.
A call to INITKB^XGF or PREP^XGF must be made at some point prior to calling $$READ^XGF.
If the number of characters you request with the first parameter is not entered, the READ does not terminate until some terminating character is pressed (or the timeout period is reached).
If you do not pass the timeout parameter, DTIME is used for the timeout period. If the READ times out, caret (“^”) is returned and DTOUT is left defined.
The list of mnemonics for keys that can terminate READs is:
[bookmark: _Toc200270064][bookmark: _Toc458600035]Table 40: XGF Function Library—Mnemonics for keys that terminate READs
	[bookmark: COL001_TBL033]Key Type
	Mnemonic

	Control
	^A, ^B, ^C, ^D, ^E, ^F, ^G, ^H, ^J, ^K, ^L, ^N, ^O, ^P, ^Q, ^R, ^S, ^T, ^U, ^V, ^W, ^X, ^Y, ^Z, ^\, ^], ^6, ^_

	Cursor
	UP, DOWN, RIGHT, LEFT, PREV, NEXT

	Editing
	FIND, INSERT, REMOVE, SELECT

	Function
	F6 to F14, HELP, DO, F17 to F20

	Keyboard
	TAB, CR

	Keypad
	KP0 to KP9, KP-, KP+, KP., KPENTER

	PF
	PF1, PF2, PF3, PF4

Format:	$$READ^XGF([no_of_char][,timeout])
Input Parameters:	no_of_char:	(optional) Maximum number of characters to READ.
	timeout:	(optional) Maximum duration of READ, in seconds.
Output Variables:	XGRT:	Set to the mnemonic of the key that terminated the READ.
[image: Note]	REF: For a list of possible values, see the list below or the table in routine XGKB.
	DTOUT:	If defined, signifies that the READ timed out.
Output:	returns:	Returns the string READ from the user.

[bookmark: _Toc458599582]Examples
Example 1
To READ a name (with a maximum length of 30) from input and display that name on the screen, do the following:
[bookmark: _Toc200270065][bookmark: _Toc458599983]Figure 144: SAY^XGF API—Example 1: READ a name
D INITKB^XGF(“*”)
W “Name: ” S NM=$$READ^XGF(30)
D SAY^XGF(10,20,“Hello ” NM)

Example 2
To accept only <Up-Arrow> (“↑”) or <Down-Arrow> (“↓”) keys to exit a routine, do the following:
[bookmark: _Toc200270066][bookmark: _Toc458599984]Figure 145: $$READ^XGF API—Example 2: Accept only Up-Arrow (“↑”) and Down-Arrow (“↓”) keys
;Only accept UP or DOWN arrow keys
F S %=$$READ^XGF(1) Q:XGRT=“UP”!(XGRT=“DOWN”)

[image: Note]	NOTE: When you set up the XGF keyboard environment using INITKB^XGF rather than PREP^XGF, the keypad is not automatically set to application mode. For READs to be terminated by the keypad keys (<KP0> to <KP9>, <KPENTER>, <KP+>, <KP->, and <KP.>), the keypad must be in application mode. You can put the keypad in application mode by using an M WRITE statement (W IOKPAM to set application mode, IOKPNM to set numeric mode). Take care to preserve the value of $X when using a direct M WRITE, so that relative positioning in XGF cursor/text output calls is not thrown off:

X=$X W IOKPAM S $X=X
[bookmark: _Ref97637756][bookmark: _Ref97637791][bookmark: _Ref97637922][bookmark: _Toc458599583]RESETKB^XGF: Exit XGF Keyboard
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API exits the XGF keyboard environment. You should use the RESETKB^XGF call once you finish making calls to the $$READ^XGF(): Read Using Escape Processing function. The RESETKB^XGF API turns terminators and escape processing off and removes any XGF keyboard environment variables. Subsequent READs are processed normally.
Use this API only if you are using XGF’s Keyboard Reader independently from XGF’s screen functions. Otherwise, a call to the CLEAN^XGF: Screen/Keyboard Exit and Cleanup API does everything to clean up keyboard processing that the RESETKB^XGF API does, and a separate call to the RESETKB^XGF API is not necessary.
Unlike the CLEAN^XGF: Screen/Keyboard Exit and Cleanup API, the RESETKB^XGF API does not set the keypad to numeric mode.
Format:	RESETKB^XGF
Input Parameters:	none.
Output:	none.
[image: Note]	REF: See also: INITKB^XGF(): Keyboard Setup Only API.
[bookmark: _Ref36529081][bookmark: _Ref36529417][bookmark: _Ref36529458][bookmark: _Ref36529851][bookmark: _Ref66520427][bookmark: _Ref66520753][bookmark: _Ref66524912][bookmark: _Ref66582928][bookmark: _Ref66583007][bookmark: _Toc458599584]RESTORE^XGF(): Screen Restore
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API restores a previously saved screen region. You can save screen regions using the WIN^XGF(): Screen Text Window and SAVE^XGF(): Screen Save APIs. RESTORE^XGF restores the saved screen region in the same screen position as the screen region was saved from.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling RESTORE^XGF.
Specify the array node under which to save the overlaid screen region in closed root and fully resolved form (i.e., closed right parenthesis and with variable references such as $J fully resolved). Using M $NAME function is a quick way to pass fully resolved node specifications.
Format:	RESTORE^XGF(save_root)
Input Parameters:	save_root:	(required) Global/local array node, closed root form.
Output Parameters:	$x and $y:	Set to the bottom right coordinate of the restored window.
[image: Note]	REF: See also: CLEAR^XGF(): Screen Clear Region, SAVE^XGF(): Screen Save, and WIN^XGF(): Screen Text Window APIs.
[bookmark: _Toc458599585]Example
To restore the screen contents saved to the local array SELECT to their original position, do the following:
>D RESTORE^XGF(“SELECT”)

[bookmark: _Ref36528939][bookmark: _Ref36529473][bookmark: _Ref36529866][bookmark: _Ref66520443][bookmark: _Ref66524118][bookmark: _Ref66524206][bookmark: _Ref66583024][bookmark: _Toc458599586]SAVE^XGF(): Screen Save
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API saves a screen region. In order to save and restore screen regions, you must do all screen output using calls in the XGF Function Library output. If you instead use the M WRITE command for output, the screen contents cannot be saved and restored. Also, a call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling SAVE^XGF.
Specify the array node under which to save the overlaid screen region in closed root and fully resolved form (i.e., closed right parenthesis and with variable references such as $J fully resolved). Using M $NAME function is a quick way to pass fully resolved node specifications.
Format:	SAVE^XGF(top,left,bottom,right,save_root)
Input Parameters:	top:	(required) Top screen coordinate for box.
	left:	(required) Left screen coordinate for box.
	bottom:	(required) Bottom screen coordinate for box.
	right:	(required) Right screen coordinate for box.
	save_root:	(required) Global/local array node, closed root form.
Output Parameters:	$x and $y:	Left unchanged.
[image: Note]	REF: See also: CLEAR^XGF(): Screen Clear Region, RESTORE^XGF(): Screen Restore, and WIN^XGF(): Screen Text Window APIs.
[bookmark: _Toc458599587]Example
For example, to save the screen contents between rows 5 and 15 and columns 20 and 60 in the SELECT local array, do the following:
>D SAVE^XGF(5,20,15,60,“SELECT”)

[bookmark: _Ref36528323][bookmark: _Ref36529341][bookmark: _Ref36529643][bookmark: _Ref66521965][bookmark: _Ref66581766][bookmark: _Ref66582245][bookmark: _Toc458599588]SAY^XGF(): Screen String
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API outputs a string to the screen (with optional positioning and attribute control).
Use this API rather than the M WRITE command to output strings to the screen. The row and column parameters specify where to print the string. If omitted, the current row and column positions are used. If specified, the row must be between 0 and IOSL-1, and the column must be between 0 and IOM-1.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling SAY^XGF.
You can specify row and column parameters relative to the current $x and $y by specifying “+” or “-” to increment or decrement $x or $y by 1. You can increment or decrement by more than 1 if you add a number as well (e.g., ”-5” or “+10”).
[image: Note]	NOTE: You must use quotes to pass a “+” or “-”; otherwise, to specify exact locations for row and column, pass numbers.
Without the fourth argument for video attribute, SAY^XGF displays the string using the current video attribute. With the fourth argument, SAY^XGF displays the string using the attributes you specify. SAY^XGF changes the video attribute only for the output of the string; upon termination of the function, it restores video attributes to their state prior to the function call.
[image: Note]	REF: For a discussion of valid video attribute codes for the video attribute parameter, see the SETA^XGF(): Screen Video Attributes API.
Format:	SAY^XGF([row][,col,]str[,atr])
Input Parameters:	row:	(optional) Row position to start WRITE.
	col:	(optional) Column position to start WRITE.
	str:	(required) String to WRITE.
	atr:	(optional) Video attribute with which to WRITE string.
[image: Note]	REF: For description of atr codes, see the $$READ^XGF(): Read Using Escape Processing API.
Output Parameters:	$x and $y:	Set to position of the last character output.
[image: Note]	REF: See also: IOXY^XGF(): Screen Cursor Placement and SAYU^XGF(): Screen String with Attributes APIs.
[bookmark: _Toc458599589]Examples
Example 1
For example, to print “Hello, World” in the center of the screen, in the current video attribute, do the following:
>D SAY^XGF(11,35,“Hello World”)

Example 2
To print “ERROR!” at (row,col) position ($X+1,$Y+5), in reverse and bold video attributes, do the following:
>D SAY^XGF(“+”,“+5”,“ERROR!”,“R1B1”)

Example 3
To print “...” at the current cursor position, in the current video attribute, do the following:
>D SAY^XGF(,,“...”)

[bookmark: _Ref36529207][bookmark: _Ref36529358][bookmark: _Ref66521992][bookmark: _Ref66526258][bookmark: _Toc458599590]SAYU^XGF(): Screen String with Attributes
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API outputs a string to the screen (with optional position and attribute control), including the ability to underline an individual character.
This API is similar to SAY^XGF. The difference is that the first ampersand (“&”) character has a special meaning in the output string; it acts as a flag to indicate that the next character should be underlined. You are only allowed one underlined character per call. Typically you would use SAYU^XGF when writing a menu option’s text, in order to underline that option’s speed key.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling SAYU^XGF.
You can specify row and column parameters relative to the current $x and $y by specifying “+” or “-” to increment or decrement $x or $y by 1. You can increment or decrement by more than 1 if you add a number as well (e.g., ”-5” or “+10”).
[image: Note]	NOTE: You must use quotes to pass a “+” or “-”. Otherwise, to specify exact locations for row and column, pass numbers.
If the first ampersand is followed by another ampersand, this initial “&&” is interpreted and displayed as one ampersand character, “&”, and you still have the opportunity to use a single ampersand as an underlining flag.
Format:	SAYU^XGF([row][,col,]str[,atr])
Input Parameters:	row:	(optional) Row position to start WRITE.
	col:	(optional) Column position to start WRITE.
	str:	(required) String to WRITE (“&” underlines next character).
	atr:	(optional) Video attribute with which to WRITE a string.
[image: Note] REF: For a description of atr codes, see the $$READ^XGF(): Read Using Escape Processing API.
Output Parameters:	$x,$y:	Set to the position of the last character output.
[image: Note]	REF: See also: IOXY^XGF(): Screen Cursor Placement and SAY^XGF(): Screen String APIs.
[bookmark: _Toc458599591]Example
For example, to print Save at row 5, column 10, do the following:
>D SAYU^XGF(5,10,“&Save”)

[bookmark: _Ref36528179][bookmark: _Ref36529544][bookmark: SET_XGF][bookmark: _Ref66511095][bookmark: _Ref66511590][bookmark: _Ref66526215][bookmark: _Toc458599592]SETA^XGF(): Screen Video Attributes
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API sets all video attribute simultaneously, for subsequent screen output. This API is different from the $$READ^XGF(): Read Using Escape Processing API in that it takes a different form of the attribute argument, and, unlike the CHGA^XGF(): Screen Change Attributes API, it sets all attributes. The change in attribute remains in effect until you make another CHGA^XGF(): Screen Change Attributes, CLEAN^XGF: Screen/Keyboard Exit and Cleanup, or SETA^XGF API call. If you want only a temporary change in attribute, the SAY^XGF(): Screen String API might be a better function to use.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling the SETA^XGF API.
The value of the attribute parameter uses one bit for the value of each video attribute. The format of the bits is not documented. The current setting of all video attributes is accessible via the xgcuratr parameter, however. Rather than trying to use the SETA^XGF API to control an individual video attribute’s setting, you should use it mainly to restore the screen attributes based on a previously saved value of xgcuratr.
Format:	SETA^XGF(atr_code)
Input Parameters:	atr_code:	(required) Single character containing the states of all video attributes as the bit values. This argument itself should be derived from a previous call to the PREP^XGF(): Screen/Keyboard Setup, CHGA^XGF(): Screen Change Attributes, or SETA^XGF APIs.
Output Parameters:	xgcuratr:	This parameter always holds the current screen attribute coded as a single character, and is updated when you call SETA^XGF.
	$x and $y:	Left unchanged.
[image: Note]	REF: See also: $$READ^XGF(): Read Using Escape Processing API.
[bookmark: _Toc458599593]Example
To save the initial screen attribute settings to variable SAVEATR, do a function called SOME^THING, and then reset all the video attributes to their initial state, do the following:
>D PREP^XGF S SAVEATR=XGCURATR
>D SOME^THING
>D SETA^XGF(SAVEATR)

[bookmark: _Ref36528550][bookmark: _Ref36528924][bookmark: _Ref36529098][bookmark: _Ref36529431][bookmark: _Ref36529489][bookmark: _Ref66520464][bookmark: _Ref66520777][bookmark: _Ref66520829][bookmark: _Ref66524140][bookmark: _Ref66524182][bookmark: _Ref66524925][bookmark: _Toc458599594]WIN^XGF(): Screen Text Window
Reference Type:	Supported
Category:	XGF Function Library
ICR #:	3173
Description:	This API opens a text window on the screen and optionally remember what it overlays. If the save root parameter is not passed, you cannot restore the screen behind the window.
In order to save the screen region that the window overlays it is absolutely necessary that screen output is done using only the functions in the XGF Function library. If you use the M WRITE command for output, the screen contents cannot be saved.
A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some point prior to calling WIN^XGF.
Specify the array node under which to save the overlaid screen region in closed root and fully resolved form (i.e., closed right parenthesis and with variable references such as $J fully resolved). Using the M $NAME function is a quick way to pass fully resolved node specifications.
To restore screens you save with the WIN^XGF function, use the RESTORE^XGF(): Screen Restore API.
Format:	WIN^XGF(top,left,bottom,right[,save_root])
Input Parameters:	top:	(required) Top screen coordinate for box.
	left:	(required) Left screen coordinate for box.
	bottom:	(required) Bottom screen coordinate for box.
	right:	(required) Right screen coordinate for box.
	save_root:	(optional) Global/local array node, closed root form.
Output Parameters:	save_root:	If you specify a node as a fifth parameter for save_root, WIN^XGF saves the screen region you overlay in an array at that node.
	$x and $y:	Set to the right and bottom coordinates you specify as parameters.
[image: Note]	REF: See also: CLEAR^XGF(): Screen Clear Region, FRAME^XGF(): Screen Frame, RESTORE^XGF(): Screen Restore, and SAVE^XGF(): Screen Save APIs.
[bookmark: _Toc458599595]Examples
Example 1
To draw an empty box in the center of the screen (and save the underlying screen region under array SELECT), do the following:
>D WIN^XGF(5,20,15,60,“SELECT”)

Example 2
To save the same window to a global array (to illustrate the use of $NAME to specify a fully resolved root), do the following:
>D WIN^XGF(5,20,15,60,$NA(^TMP($J)))

XGF Function Library: Developer Tools

[bookmark: _Hlt412427082][bookmark: _Ref303843127][bookmark: _Toc458599596]XLF Function Library: Developer Tools
[bookmark: _Toc458599597]Overview
Several APIs are available for developers to work with the XLF Function Library. These APIs are described below.
The XLF Function Library provides the following functions:
CRC Functions—XLFCRC.
Date Functions—XLFDT.
Hyperbolic Trigonometric Functions—XLFHYPER.
IP Address Functions—XLFIPV.
Mathematical Functions—XLFMTH.
Measurement Functions—XLFMSMT.
String Functions—XLFSTR.
Utility Functions—XLFUTL.
[bookmark: _Ref410203269][bookmark: _Toc458599598]Application Programming Interface (API)

[bookmark: _Ref351374951][bookmark: _Toc458599599]CRC Functions—XLFCRC
These functions are provided to help process strings.
[bookmark: _Toc458599600]$$CRC16^XLFCRC(): Cyclic Redundancy Code 16
Reference Type:	Supported
Category:	CRC Functions
ICR #:	3156
Description:	This extrinsic function computes a Cyclic Redundancy Code (CRC) of the 8-bit character string, using X^16 + X^15 + X^2 + 1 as the polynomial. The optional parameter “seed” can supply an initial value, which allows for running CRC calculations on multiple strings. If the parameter “seed” is not specified, a default value of zero (0) is assumed. The value of “seed” is limited to 0 <= seed <= 2^16. The function value is between 0 and 2^16.
Format:	$$CRC16^XLFCRC(string[,seed])
Input Parameters:	string:	(required) String upon which to compute the CRC16.
	seed:	(optional) Seed value. Needed to compute the CRC16 over multiple strings.
Output:	returns:	Returns the Cyclic Redundancy Code (CRC) 16 value.

[bookmark: _Toc458599601]Examples
Example 1
SET CRC=$$CRC16^XLFCRC(string)
A checksum can also be calculated over multiple strings.
[bookmark: _Toc458599985]Figure 146: $$CRC16^XLFCRC API—Example 1: Calculating a checksum over multiple strings (1 of 2)
SET (I,C)=0
FOR SET I=$ORDER(X(I)) QUIT:’I DO
. SET C=$$CRC16^XLFCRC(X(I),C)

Or:

[bookmark: _Toc458599986]Figure 147: $$CRC16^XLFCRC API—Example 1: Calculating a checksum over multiple strings (2 of 2)
SET I=0,C=4294967295
FOR SET I=$ORDER(X(I)) QUIT:’I DO
. SET C=$$CRC16^XLFCRC(X(I),C)

As long as the save method is used all the time.
Example 2
[bookmark: _Toc458599987]Figure 148: $$CRC16^XLFCRC API—Example 2
CRC162 ;Test call CRC16^XLFCRC multiple times
S TEXT=“Now is the time for all good children”,TEXT2=“to come to the aid of their country.”
S CRC=0,CRC=$$CRC16^XLFCRC(TEXT,CRC)
If 23166=$$CRC16^XLFCRC(TEXT2,CRC) WRITE !,“CRC16 OK”
Q

[image: Note]	NOTE: These have been approved for inclusion in a future ANSI M language standard as part of the library.
[bookmark: _Toc458599602]$$CRC32^XLFCRC(): Cyclic Redundancy Code 32
Reference Type:	Supported
Category:	CRC Functions
ICR #:	3156
Description:	This extrinsic function computes a Cyclic Redundancy Code (CRC) of the 8-bit character string, using X^32 + X^26 + X^23 + X^22 + X^16 + X^12 + X^11 + X^10 + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1 as the polynomial. The optional parameter “seed” can supply an initial value, which allows for running CRC calculations on multiple strings. If the parameter “seed” is not specified, a default value of 4,294,967,295 (2^32-1) is assumed. The value of “seed” is limited to 0 <= seed <= 2^32. The function value is between 0 and 2^32.
Format:	$$CRC32^XLFCRC(string[,seed])
Input Parameters:	string:	(required) String upon which to compute the CRC32.
	seed:	(optional) Seed value. Needed to compute the CRC32 over multiple strings.
Output:	returns:	Returns the Cyclic Redundancy Code (CRC) 32 value.

[bookmark: _Toc458599603]Examples
Example 1
SET CRC=$$CRC32^XLFCRC(string)

A checksum can also be calculated over multiple strings.
[bookmark: _Toc458599988]Figure 149: $$CRC32^XLFCRC API—Example 1: Calculating a checksum over multiple strings (1 of 2)
SET (I,C)=0
FOR SET I=$ORDER(X(I)) QUIT:’I DO
. SET C=$$CRC32^XLFCRC(X(I),C)

Or:
[bookmark: _Toc458599989]Figure 150: $$CRC32^XLFCRC API—Example 1: Calculating a checksum over multiple strings (2 of 2)
SET I=0,C=4294967295
FOR SET I=$ORDER(X(I)) QUIT:’I DO
. SET C=$$CRC32^XLFCRC(X(I),C)

As long as the save method is used all the time.
Example 2
[bookmark: _Toc458599990]Figure 151: $$CRC32^XLFCRC API—Example 2
CRC322 ;Test call CRC32^XLFCRC multiple times
S TEXT=“Now is the time for all good children”,TEXT2=“to come to the aid of their country.”
S CRC=0,CRC=$$CRC32^XLFCRC(TEXT,CRC)
If 715820230=$$CRC32^XLFCRC(TEXT2,CRC) WRITE !,“CRC32 OK”
Q

[image: Note]	NOTE: These have been approved for inclusion in a future ANSI M language standard as part of the library.
[bookmark: _Ref303843141][bookmark: _Toc458599604]Date Functions—XLFDT
[bookmark: _Toc458599605]$$%H^XLFDT(): Convert Seconds to $H
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function converts the number of seconds input to a $H formatted date. It converts the output of the $$SEC^XLFDT(): Convert $H/VA FileMan date to Seconds API back to a $H value.
Format:	$$%H^XLFD(seconds)
Input Parameters:	seconds:	(required) Input seconds.
Output:	returns:	Returns seconds in $H date format.

[bookmark: _Toc458599606]Example
>S X=$$%H^XLFDT(5108536020)

>W X
59126,49620

[bookmark: _Toc458599607]$$DOW^XLFDT(): Day of Week
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the corresponding day of the week from a date in VA FileMan format.
Format:	$$DOW^XLFD(x[,y])
Input Parameters:	x:	(required) VA FileMan date.
	y:	(optional) 1 to return a day-of-week number.
Output:	returns:	Returns the day of the week.

[bookmark: _Toc458599608]Examples
Example 1
>S X=$$DOW^XLFDT(2901231.111523)

>W X
Monday

Example 2
>S X=$$DOW^XLFDT(2901231.111523,1)

>W X
1

[bookmark: _Toc458599609]$$DT^XLFDT: Current Date (VA FileMan Date Format)
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the current date in VA FileMan format.
Format:	$$DT^XLFDT
Input Parameters:	none.
Output:	returns:	Returns the current date in VA FileMan format.

[bookmark: _Toc458599610]Example
>S X=$$DT^XLFDT

>W X
3040126

[bookmark: _Toc458599611]$$FMADD^XLFDT(): VA FileMan Date Add
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the result of adding days, hours, minutes, and seconds to a date in VA FileMan format.
Format:	$$FMADD^XLFDT(x,d,h,m,s)
Input Parameters:	x:	(required) VA FileMan date (in quotes).
	d:	(required) Days.
	h:	(required) Hours.
	m:	(required) Minutes.
	s:	(required) Seconds.
Output:	returns:	Returns the updated date and time in VA FileMan format.

[bookmark: _Toc458599612]Example
>S X=$$FMADD^XLFDT(2901231.01,2,2,20,15)

>W X
2910102.032015

[bookmark: _Ref37138741][bookmark: _Toc458599613]$$FMDIFF^XLFDT(): VA FileMan Date Difference
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the difference between two VA FileMan format dates.
Format:	$$FMDIFF^XLFDT(x1,x2[,x3])
Input Parameters:	x1:	(required) VA FileMan date.
	x2:	(required) VA FileMan date, to subtract from the x1 date.
	x3:	(optional) If null (‘$D(x3), return the difference in days. Otherwise:
If x3 = 1, return the difference in days.
If x3 = 2, return the difference in seconds.
If x3 = 3, return the difference in days hours:minutes:seconds format (DD HH:MM:SS).
Output:	returns:	Returns the date and/or time difference.

[bookmark: _Toc458599614]Examples
Example 1
The following example returns the difference between two dates/times in days (x3 = null or 1). In this example, the first date is 2 days less than the second date:
>S X=$$FMDIFF^XLFDT(2901229,2901231.111523)

>W X
-2

>S X=$$FMDIFF^XLFDT(2901229,2901231.111523,1)

>W X
-2

Example 2
The following example returns the difference between two dates/times in seconds (x3 = 2). In this example, the first date is 150,079 seconds greater than the second date:
>S X=$$FMDIFF^XLFDT(2901231.111523,2901229.173404,2)

>W X
150079

Example 3
The following example returns the difference between two dates/times in DD HH:MM:SS (x3 = 3). In this example, the first date is 1 day, 1 hour, 24 minutes, and 2 seconds greater than the second date:
>S X=$$FMDIFF^XLFDT(2901231.024703,2901230.012301,3)

>W X
1 1:24:2

[bookmark: _Ref37138689][bookmark: _Ref121209845][bookmark: _Toc458599615]$$FMTE^XLFDT(): Convert VA FileMan Date to External Format
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function converts a VA FileMan formatted input date to an external formatted date.
Format:	$$FMTE^XLFDT(x[,y])
Input Parameters:	x:	(required) VA FileMan date.
	y:	(optional) Affects output as follows:
If null, ‘$D(y), return the written-out format.
If ‘$D(y) then return standard VA FileMan format.
If +y = 1 then return standard VA FileMan format.
If +y = 2 then return MM/DD/YY@HH:MM:SS format.
If +y = 3 then return DD/MM/YY@HH:MM:SS format.
If +y = 4 then return YY/MM/DD@HH:MM:SS format.
If +y = 5 then return MM/DD/YYYY@HH:MM:SS format.
If +y = 6 then return DD/MM/YYYY@HH:MM:SS format.
If +y = 7 then return YYYY/MM/DD@HH:MM:SS format.
If y contains a “D” then date only.
If y contains an “F” then output date with leading spaces.
If y contains an “M” then only output “HH:MM”.
If y contains a “P” then output “HH:MM:SS am/pm”.
If y contains an “S” then force seconds in the output.
If y contains a “Z” then output date with leading zeroes.
Output:	returns:	Returns the external formatted date.

[bookmark: _Toc458599616]Examples
Example 1
Return the date in the following format: Standard VA FileMan date format.
>S X=$$FMTE^XLFDT(2940629.105744,1)

>W X
Jun 29, 1994@10:57:44

Example 2
Return the date in the following format: Standard VA FileMan date format and include am/pm.
>S X=$$FMTE^XLFDT(2940629.1057,“1P”)

>W X
Jun 29, 1994 10:57 am

Example 3
Return the date in the following format: MM/DD/YY@HH:MM:SS.
>S X=$$FMTE^XLFDT(2940629.105744,2)

>W X
6/29/94@10:57:44

Example 4
Return the date in the following format: MM/DD/YY@HH:MM.
>S X=$$FMTE^XLFDT(2940629.105744,“2M”)

>W X
6/29/94@10:57

Example 5
Return the date in the following format: MM/DD/YY@HH:MM:SS and include am/pm.
>S X=$$FMTE^XLFDT(2940629.105744,“2P”)

>W X
6/29/94 10:57:44 am

Example 6
Return the date in the following format: MM/DD/YY@HH:MM:SS, forcing seconds to display when no seconds were included in the input parameter.
>S X=$$FMTE^XLFDT(2940629.1057,“2S”)

>W X
6/29/94@10:57:00

Example 7
Return the date in the following format: MM/DD/YY@HH:MM:SS, forcing seconds to display when no seconds were included in the input parameter, and include leading spaces.
>S X=$$FMTE^XLFDT(2940629.1057,“2SF”)

>W X
 6/29/94@10:57:00

Example 8
Return the date in the following format: DD/MM/YY@HH:MM:SS and include leading spaces.
>S X=$$FMTE^XLFDT(2940629.105744,“3F”)

>W X
29/ 6/94@10:57:44

Example 9
Return the date in the following format: YY/MM/DD, ignore the time values entered and only display the date.
>S X=$$FMTE^XLFDT(2940629.1057,“4D”)

>W X
94/6/29

Example 10
To output a really short date/time try the following, convert space to zero and remove slash, as shown below:
>S X=$TR($$FMTE^XLFDT(2940629.1057,“4F”),“ /”,“0”)

>W X
940629@10:57

Example 11
Return the date in the following format: MM/DD/YYYY@HH:MM:SS.
>S X=$$FMTE^XLFDT(3000229.110520,5)

>W X
2/29/2000@11:05:20

Example 12
Return the date in the following format: MM/DD/YYYY@HH:MM:SS and include leading spaces.
>S X=$$FMTE^XLFDT(3000229.110520,“5F”)

>W X
 2/29/2000@11:05:20

Example 13
Return the date in the following format: MM/DD/YYYY@HH:MM:SS, forcing seconds.
>S X=$$FMTE^XLFDT(3000229.1105,“5S”)

>W X
2/29/2000@11:05:00

Example 14
Return the date in the following format: MM/DD/YYYY HH:MM:SS, include leading zeroes, and include am/pm.
>S X=$$FMTE^XLFDT(3000229.110520,“5ZP”)

>W X
02/29/2000 11:05:20 am

Example 15
Return the date in the following format: DD/MM/YYYY@HH:MM:SS, with leading spaces.
>S X=$$FMTE^XLFDT(3000229.110520,“6F”)

>W X
29/ 2/2000@11:05:20

Example 16
Return the date in the following format: DD/MM/YYYY@HH:MM:SS, with leading zeroes.
>S X=$$FMTE^XLFDT(3000229.1105,“6Z”)

>W X
29/02/2000@11:05

Example 17
Return the date in the following format: YYYY/MM/DD@HH:MM:SS.
>S X=$$FMTE^XLFDT(3000301.1105,7)

>W X
2000/3/1@11:05

Example 18
Return the date in the following format: YYYY/MM/DD, ignore the time values entered and only display the date.
>S X=$$FMTE^XLFDT(3000301.1105,“7D”)

>W X
2000/3/1

[bookmark: _Ref38771146][bookmark: _Toc458599617]$$FMTH^XLFDT(): Convert VA FileMan Date to $H
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function converts a VA FileMan formatted input date to a $H formatted date.
Format:	$$FMTH^XLFDT(x[,y])
Input Parameters:	x:	(required) VA FileMan date.
	y:	(optional) 1 to return the date portion only (no seconds).
Output:	returns:	Returns the converted date in $H format.

[bookmark: _Toc458599618]Examples
Example 1
>S X=$$FMTH^XLFDT(2901231.111523)

>W X
54786,40523

Example 2
>S X=$$FMTH^XLFDT(2901231.111523,1)

>W X
54786

[bookmark: _Toc458599619]$$FMTHL7^XLFDT(): Convert VA FileMan Date to HL7 Date
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function converts a VA FileMan formatted input date/time into an HL7 formatted date, including the time offset.
Format:	$$FMTHL7^XLFDT(fm_date_time)
Input Parameters:	fm_date_time:	(required) VA FileMan date.
Output:	returns:	Returns the converted date in HL7 format.

[bookmark: _Toc458599620]Example
>S X=$$FMTHL7^XLFDT(3001127.1525)

>W X
200011271525-0800

[bookmark: _Toc458599621]$$HADD^XLFDT(): $H Add
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the result of adding days, hours, minutes, and seconds to a date in $H format.
Format:	$$HADD^XLFDT(x,d,h,m,s)
Input Parameters:	x:	(required) $H date (in quotes).
	d:	(required) Days.
	h:	(required) Hours.
	m:	(required) Minutes.
	s:	(required) Seconds.
Output:	returns:	Returns the resultant date in $H format.

[bookmark: _Toc458599622]Example
>S X=$$HADD^XLFDT(“54786,3600”,2,2,20,15)

>W X
54788,12015

[bookmark: _Toc458599623]$$HDIFF^XLFDT(): $H Difference
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the difference between two $H formatted dates.
Format:	$$HDIFF^XLFDT(x1,x2[,x3])
Input Parameters:	x1:	(required) $H date (in quotes).
	x2:	(required) $H date (in quotes) to subtract from the x1 date.
	x3:	(optional) If null (‘$D(x3), return the difference in days. Otherwise:
If x3 = 1, return the difference in days.
If x3 = 2, return the difference in seconds.
If x3 = 3, return the difference in days hours:minutes:seconds format (DD HH:MM:SS).
Output:	returns:	Returns the $H difference.

[bookmark: _Toc458599624]Examples
Example 1
Return the &H difference in days.
>S X=$$HDIFF^XLFDT(“54789,40523”,“54786,25983”,1)

>W X
3

Example 2
Return the &H difference in seconds.
>S X=$$HDIFF^XLFDT(“54789,40523”,“54786,25983”,2)

>W X
273740

Example 3
Return the &H difference in days hours:minutes:seconds format (DD HH:MM:SS).
>S X=$$HDIFF^XLFDT(“54789,40523”,“54786,25983”,3)

>W X
3 4:02:20

[bookmark: _Toc458599625]$$HL7TFM^XLFDT(): Convert HL7 Date to VA FileMan Date
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function converts an HL7 formatted input date/time into a VA FileMan formatted date/time.
Format:	$$HL7TFM^XLFDT(hl7_date_time[,local_uct][,time_flag])
Input Parameters:	hl7_date_time:	(required) HL7 formatted date and time.
	local_uct:	(optional) This parameter controls if any time offset is applied to the time. If a time offset is included, then time offset can be applied to give Local time or Coordinated Universal Time (UTC, a.k.a. GMT, or Greenwich Mean Time) time offset from the MAILMAN TIME ZONE file (#4.4). The default is to return Local time. Valid values are:
L (default)—Local time.
U—UTC time.
	time_flag:	(optional) This parameter is set to 1 if the value in the hl7_date_time input parameter is just a time value. The default assumes that the hl7_date_time input parameter is a date and time value.
Output:	returns:	Returns the converted date in VA FileMan format.

[bookmark: _Toc458599626]Examples
Example 1
To get date with no offset:
>S X=$$HL7TFM^XLFDT(“200011271525-0700”)

>W X
3001127.1525

Example 2
To get UTC time offset:
>S X=$$HL7TFM^XLFDT(“200011271525-0700”,“U”)

>W X
3001127.2225

Example 3
To get Local time in PST offset:
>S X=$$HL7TFM^XLFDT(“200011271525-0700”,“L”)

>W X
3001127.1425

Example 4
To get Local time when only providing a time (no date) as the input parameter:
>S X=$$HL7TFM^XLFDT(“1525-0700”,“L”,1)

>W X
.1525

[bookmark: _Toc458599627]$$HTE^XLFDT(): Convert $H to External Format
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function converts a $H formatted input date to an external formatted date.
Format:	$$HTE^XLFDT(x[,y])
Input Parameters:	x:	(required) $H date (in quotes).
	y:	(optional) Affects output as follows:
If null (‘$D(y)) return the written-out format.
If ‘$D(y) then return standard VA FileMan format.
If +y = 1 then return standard VA FileMan format.
If +y = 2 then return MM/DD/YY@HH:MM:SS format.
If +y = 3 then return DD/MM/YY@HH:MM:SS format.
If +y = 4 then return YY/MM/DD@HH:MM:SS format.
If +y = 5 then return MM/DD/YYYY@HH:MM:SS format.
If +y = 6 then return DD/MM/YYYY@HH:MM:SS format.
If +y = 7 then return YYYY/MM/DD@HH:MM:SS format.
If y contains a “D” then date only.
If y contains an “F” then output date with leading blanks.
If y contains an “M” then output “HH:MM” only.
If y contains a “P” then output “HH:MM:SS am/pm”.
If y contains an “S” then force seconds in the output.
If y contains a “Z” then output date with leading zeroes.
Output:	returns:	Returns the external format of a $H date.

[bookmark: _Toc458599628]Examples
Example 1
Return the date in the following format: Standard external format.
>S X=$$HTE^XLFDT(“54786,40523”)

>W X
Dec 31, 1990@11:15:23

Example 2
Return the date in the following format: MM/DD/YY@HH:MM:SS.
>S X=$$HTE^XLFDT(“54786,40523”,2)

>W X
12/31/90@11:15:23

Example 3
Return the date in the following format: MM/DD/YY@HH:MM:SS, omitting the seconds.
>S X=$$HTE^XLFDT(“57386,33723”,“2M”)

>W X
2/12/98@09:22

Example 4
Return the date in the following format: MM/DD/YYYY@HH:MM:SS.
>S X=$$HTE^XLFDT(“57351,27199”,5)

>W X
1/8/1998@07:33:19

Example 5
Return the date in the following format: DD/MM/YYYY@HH:MM:SS.
>S X=$$HTE^XLFDT(“57351,27199”,6)

>W X
8/1/1998@07:33:19

Example 6
Return the date in the following format: YYYY/MM/DD@HH:MM:SS.
>S X=$$HTE^XLFDT(“57351,27199”,7)

>W X
1998/1/8@07:33:19

[bookmark: _Ref121209844][bookmark: _Toc458599629]$$HTFM^XLFDT(): Convert $H to VA FileMan Date Format
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function converts a $H formatted input date to a VA FileMan formatted date.
Format:	$$HTFM^XLFDT(x[,y])
Input Parameters:	x:	(required) $H date (in quotes).
	y:	(optional) 1 to return the date portion only (no seconds).
Output:	returns:	Returns the converted $H date in VA FileMan format.

[bookmark: _Toc458599630]Examples
Example 1
>S X=$$HTFM^XLFDT(“54786,40523”)

>W X
2901231.111523

Example 2
>S X=$$HTFM^XLFDT(“54786,40523”,1)

>W X
2901231

[bookmark: _Toc458599631]$$NOW^XLFDT: Current Date and Time (VA FileMan Format)
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the current date and time in VA FileMan format.
Format:	$$NOW^XLFDT
Input Parameters:	none.
Output:	returns:	Returns the current date and time in VA FileMan format.

[bookmark: _Toc458599632]Example
>S X=$$NOW^XLFDT

>W X
3040126.103044

[bookmark: _Ref62954804][bookmark: _Toc458599633]$$SCH^XLFDT(): Next Scheduled Runtime
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the next run-time based on Schedule code.
Format:	$$SCH^XLFDT(schedule_string,base_date[,force_future_flag])
Input Parameters:	schedule_string:	(required) Interval to add to base_date, as follows:
nS—Add n seconds to base_date.
nH—Add n hours to base_date.
nD—Add n days to base_date.
nM—Add n months to base_date.
$H;$H;$H—List of $H dates.
nM(list)—Complex month increment. For example: 1M(15,L), which means schedule it to run every month (1M) on the 15 and last day of the month (15,L).
dd[@time]—Day of month (e.g., 12).
nDay[@time]—day of week in month (e.g., 1M, first Monday); (see “Day Code“ list that follows).
Day.
L—Last day of month.
LDay—Last specific day in month (e.g., LM [last Monday],LT [last Tuesday],LW [last Wednesday]...).
Day[@time]—Day of week (see “Day Code “ list that follows).
Day.
D—Every weekday.
E—Every weekend day (Saturday, Sunday).
[bookmark: day_code]Day Code (used in schedule codes above):
M—Monday
T—Tuesday
W—Wednesday
R—Thursday
F—Friday
S—Saturday
U—Sunday
	base_date:	(required) VA FileMan date to which the interval is added.
	force_future_flag:	(optional) If passed with a value of:
1—Forces returned date to be in future, by repeatedly adding interval to base_date until a future date is produced.
Otherwise—Interval is added once.
Output:	returns:	Returns the next run-time.

[bookmark: _Toc458599634]Examples
Example 1
To schedule something to run every month on the 15th of the month at 2:00 p.m. and on the last day of every month at 6:00 p.m., you would enter the following:
Middle of the Month:
>S X=$$SCH^XLFDT(“1M(15@2PM,L@6PM)”,2931003)

>W X
2931015.14
End of the Month:
>S X=$$SCH^XLFDT(“1M(15@2PM,L@6PM)”,X)

>W X
2931031.18
Example 2
To schedule something to run every month on the 15th of the month at 11:00 p.m. and on the last day of every month at 8:00 p.m., you would enter the following:
Middle of the Month:
>S X=$$SCH^XLFDT(“1M(15@11PM,L@8PM)”,2931028)

>W X
2931031.2
End of the Month:
>S X=$$SCH^XLFDT(“1M(15@11PM,L@8PM)”,X)

>W X
2931115.23

Example 3
To schedule something to run every 3 months on the last day of the month at 6:00 p.m., you would enter the following:
Middle of the Month:
>S X=$$SCH^XLFDT(“3M(L@6PM)”,2930927)

>W X
2930930.18
End of the Month:
>S X=$$SCH^XLFDT(“3M(L@6PM)”,X)

>W X
2931231.18

Example 4
The API can return a date that is closer to the date the API is run if the user does not use the force_future_flag parameter and the base_date parameter is set to a date in the past. In this example, the base_date parameter is set to a date in the past, 11/17/2014 at 8:00, and the interval is set to find the date 2 months out on the second Monday of the month. The date that is returned is the date that the API was run, 1/12/15, which happens to be the second Monday of the month and two months out from the base_date.
>S X=$$SCH^XLFDT(“2M(2M@0800)”,3141117.0800)

>W X
3150112.08

If using the force_future_flag parameter to the API, using the same interval as above, the API forces the return date to be a date in the future from the date the API is run.
>S X=$$SCH^XLFDT(“2M(2M@0800)”,3141117.0800,1)

>W X
3150309.08

[image: Note]	NOTE: The base_date must be passed correctly. The base_date parameter is compared to the schedule_string parameter in the interval to return the correct output.
[bookmark: _Ref57103244][bookmark: _Toc458599635]$$SEC^XLFDT(): Convert $H/VA FileMan date to Seconds
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function converts a $H or VA FileMan formatted input date to the number of seconds. The input date can be entered as either a VA FileMan date or a $H date. If entered as a VA FileMan date, the date is first converted to $H via the $$FMTH^XLFDT(): Convert VA FileMan Date to $H API.
Format:	$$SEC^XLFDT(x)
Input Parameters:	x:	(required) VA FileMan or $H date.
Output:	returns:	Returns the $H date in seconds.

[bookmark: _Toc458599636]Examples
Example 1
Inputting a VA FileMan date/time:
>S X=$$SEC^XLFDT(3021118.1347)

>W X
5108536020

Example 2
Inputting a $H date:
>S X=$$SEC^XLFDT($H)

>W X
5146022146

[bookmark: _Toc458599637]$$TZ^XLFDT: Time Zone Offset (GMT)
Reference Type:	Supported
Category:	Date Functions
ICR #:	10103
Description:	This extrinsic function returns the Time Zone offset from Greenwich mean time (GMT) based on a pointer from the TIME ZONE field (#1) in the MAILMAN SITE PARAMETERS file (#4.3) to the MAILMAN TIME ZONE file (#4.4).
The accuracy of this value is dependent on system administrators updating the TIME ZONE field (#1) in the MAILMAN SITE PARAMETERS file (#4.3) to accurately point to the site’s correct time zone, including whether it is standard time (ST) or daylight savings time (DST).
Format:	$$TZ^XLFDT
Input Parameters:	none.
Output:	returns:	Returns the Time Zone offset from GMT.

[bookmark: _Toc458599638]Example
For Pacific Daylight Savings Time (PDT), the offset from GMT is:
>S X = $$TZ^XLFDT

>W X
-0700

[bookmark: _Toc458599639]$$WITHIN^XLFDT(): Checks Dates/Times within Schedule
Reference Type:	Supported
Category:	Date Functions
ICR #:	
Description:	This extrinsic function returns whether or not a date/time is within a specified schedule string.
Format:	$$WITHIN^XLFDT(schedule_string,base_date)
Input Parameters:	schedule_string:	(required) Interval to add to base_date.
[image: Note]	REF: For alternate values, see the $$SCH^XLFDT(): Next Scheduled Runtime API.
	base_date:	(required) VA FileMan date checked to determine if it is within the input schedule string.
Output:	returns:	Returns whether or not a date/time is within a specified schedule string.

[bookmark: _Ref303843167][bookmark: _Toc458599640]Hyperbolic Trigonometric Functions—XLFHYPER
The following hyperbolic trigonometric functions provide an additional set of mathematical operations beyond the math functions in XLFMTH.
[image: Note]	NOTE: The optional second parameter in brackets [] denotes the precision for the function. Precision means the detail of the result, in terms of number of digits.
[bookmark: _Toc458599641]$$ACOSH^XLFHYPER(): Hyperbolic Arc-cosine
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic arc cosine, with radians output.
Format:	$$ACOSH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic arc cosine.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic arc cosine.

[bookmark: _Toc458599642]Example
>S X=$$ACOSH^XLFHYPER(3,12)

>W X
1.762747174

[bookmark: _Toc458599643]$$ACOTH^XLFHYPER(): Hyperbolic Arc-cotangent
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic arc cotangent, with radians output.
Format:	$$ACOTH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic arc cotangent.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic arc cotangent.

[bookmark: _Toc458599644]Example
>S X=$$ACOTH^XLFHYPER(3,12)

>W X
.34657359025

[bookmark: _Toc458599645]$$ACSCH^XLFHYPER(): Hyperbolic Arc-cosecant
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic arc cosecant, with radians output.
Format:	$$ACSCH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic arc cosecant.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic arc cosecant.

[bookmark: _Toc458599646]Example
>S X=$$ACSCH^XLFHYPER(3,12)

>W X
.3274501502

[bookmark: _Toc458599647]$$ASECH^XLFHYPER(): Hyperbolic Arc-secant
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic arc secant, with radians output.
Format:	$$ASECH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic arc secant.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic arc secant.

[bookmark: _Toc458599648]Example
>S X=$$ASECH^XLFHYPER(.3,12)

>W X
1.8738202425

[bookmark: _Toc458599649]$$ASINH^XLFHYPER(): Hyperbolic Arc-sine
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic arc sine, with radians output.
Format:	$$SINH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic arc sine.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic arc sine.

[bookmark: _Toc458599650]Example
>S X=$$SINH^XLFHYPER(3,12)

>W X
10.0178749273

[bookmark: _Toc458599651]$$ATANH^XLFHYPER(): Hyperbolic Arc-tangent
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic arc tangent, with radians output.
Format:	$$ATANH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic arc tangent.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic arc tangent.

[bookmark: _Toc458599652]Example
>S X=$$ATANH^XLFHYPER(.3,12)

>W X
.3095196042

[bookmark: _Toc458599653]$$COSH ^XLFHYPER(): Hyperbolic Cosine
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic arc cosine, with radians output.
Format:	$$COSH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic cosine.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic cosine.

[bookmark: _Toc458599654]Example
>S X=$$COSH^XLFHYPER(3,12)

>W X
10.0676619957

[bookmark: _Toc458599655]$$COTH^XLFHYPER(): Hyperbolic Cotangent
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic cotangent, with radians output.
Format:	$$COTH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic cotangent.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic cotangent.

[bookmark: _Toc458599656]Example
>S X=$$COTH^XLFHYPER(3,12)

>W X
1.00496982332

[bookmark: _Toc458599657]$$CSCH^XLFHYPER(): Hyperbolic Cosecant
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic cosecant, with radians output.
Format:	$$CSCH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic cosecant.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic cosecant.

[bookmark: _Toc458599658]Example
>S X=$$CSCH^XLFHYPER(3,12)

>W X
.09982156967

[bookmark: _Toc458599659]$$SECH^XLFHYPER(): Hyperbolic Secant
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic secant, with radians output.
Format:	$$SECH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic secant.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic secant.

[bookmark: _Toc458599660]Example
>S X=$$SECH^XLFHYPER(3,12)

>W X
.09932792742

[bookmark: _Toc458599661]$$SINH^XLFHYPER(): Hyperbolic Sine
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic sine, with radians output.
Format:	$$SINH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic sine.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic sine.

[bookmark: _Toc458599662]Examples
Example 1
>S X=$$SINH^XLFHYPER(.707)

>W X
.767388542

Example 2
>S X=$$SINH^XLFHYPER(.3,12)

>W X
.30452029345

[bookmark: _Toc458599663]$$TANH^XLFHYPER(): Hyperbolic Tangent
Reference Type:	Supported
Category:	Hyperbolic Trigonometric Functions
ICR #:	10144
Description:	This extrinsic function returns the hyperbolic tangent of x (tan x = sin x/cos x), with radians output.
Format:	$$TANH^XLFHYPER(x[,n])
Input Parameters:	x:	(required) Number for which you want the hyperbolic tangent.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the hyperbolic tangent.

[bookmark: _Toc458599664]Example
>S X=$$TANH^XLFHYPER(3,12)

>W X
.99505475368

[bookmark: _Ref303843184][bookmark: _Ref410207818][bookmark: _Ref410207836][bookmark: _Toc458599665]Mathematical Functions—XLFMTH
These calls are provided as an enhancement to what is offered in standard M. In addition, extended math functions provide mathematical operations with adjustable and higher precision. Additional trigonometric functions are available. Angles can be specified either in decimal format or in degrees:minutes:seconds.
[image: Note]	NOTE: Each optional parameter in brackets [] denotes the maximum and default precision for the function. Precision means the detail of the result, in terms of number of digits.
[bookmark: _Toc458599666]$$ABS^XLFMTH(): Absolute Value
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the absolute value of the number in x.
Format:	$$ABS^XLFMTH(x)
Input Parameters:	x:	(required) Number for which you want the absolute value.
Output:	returns:	Returns the absolute value of a number.

[bookmark: _Toc458599667]Example
>S X=$$ABS^XLFMTH(-42.45)

>W X
42.45

[bookmark: _Toc458599668]$$ACOS^XLFMTH(): Arc-cosine (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc cosine, with radians output.
Format:	$$ACOS^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc cosine in radians.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc cosine of a number output in radians.

[bookmark: _Toc458599669]Example
>S X=$$ACOS^XLFMTH(.5)

>W X
1.047197551

[bookmark: _Toc458599670]$$ACOSDEG^XLFMTH(): Arc-cosine (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc cosine, with degrees output.
Format:	$$ACOSDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc cosine in degrees.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc cosine of a number output in degrees.

[bookmark: _Toc458599671]Example
>S X=$$ACOSDEG^XLFMTH(.5)

>W X
60

[bookmark: _Toc458599672]$$ACOT^XLFMTH(): Arc-cotangent (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc cotangent, with radians output.
Format:	$$ACOT^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc cotangent in radians.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc cotangent of a number output in radians.

[bookmark: _Toc458599673]Example
>S X=$$ACOT^XLFMTH(.5)

>W X
1.107148718

[bookmark: _Toc458599674]$$ACOTDEG^XLFMTH(): Arc-cotangent (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc cotangent, with degrees output.
Format:	$$ACOTDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc cotangent in degrees.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc cotangent of a number output in degrees.

[bookmark: _Toc458599675]Example
>S X=$$ACOTDEG^XLFMTH(.5)

>W X
63.43494882

[bookmark: _Toc458599676]$$ACSC^XLFMTH(): Arc-cosecant (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc cosecant, with radians output.
Format:	$$ACSC^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc cosecant in radians.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc cosecant of a number output in radians.

[bookmark: _Toc458599677]Example
>S X=$$ACSC^XLFMTH(1.5)

>W X
.729727656

[bookmark: _Toc458599678]$$ACSCDEG^XLFMTH(): Arc-cosecant (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc cosecant, with degrees output.
Format:	$$ACSCDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc cosecant in degrees.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc cosecant of a number output in degrees.

[bookmark: _Toc458599679]Example
>S X=$$ACSCDEG^XLFMTH(1.5)

>W X
41.8103149

[bookmark: _Toc458599680]$$ASEC^XLFMTH(): Arc-secant (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc secant, with radians output.
Format:	$$ASEC^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc secant in radians.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc secant of a number output in radians.

[bookmark: _Toc458599681]Example
>S X=$$ASEC^XLFMTH(1.5)

>W X
.841068671

[bookmark: _Toc458599682]$$ASECDEG^XLFMTH(): Arc-secant (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc secant, with degrees output.
Format:	$$ASECDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc secant in degrees.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc secant of a number output in degrees.

[bookmark: _Toc458599683]Example
>S X=$$ASECDEG^XLFMTH(1.5)

>W X
48.1896851

[bookmark: _Toc458599684]$$ASIN^XLFMTH(): Arc-sine (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc sine, with radians output.
Format:	$$ASIN^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc sine in radians.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc sine of a number output in radians.

[bookmark: _Toc458599685]Example
>S X=$$ASIN^XLFMTH(.5)

>W X
.523598776

[bookmark: _Toc458599686]$$ASINDEG^XLFMTH(): Arc-sine (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc sine, with degrees output.
Format:	$$ASINDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc sine in degrees.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc sine of a number output in degrees.

[bookmark: _Toc458599687]Example
>S X=$$ASINDEG^XLFMTH(.5)

>W X
30

[bookmark: _Toc458599688]$$ATAN^XLFMTH(): Arc-tangent (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc tangent, with radians output.
Format:	$$ATAN^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc tangent in radians.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc tangent of a number output in radians.

[bookmark: _Toc458599689]Example
>S X=$$ATAN^XLFMTH(.5)

>W X
.463647609

[bookmark: _Toc458599690]$$ATANDEG^XLFMTH(): Arc-tangent (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the arc tangent, with degrees output.
Format:	$$ATANDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the arc tangent in degrees.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the arc tangent of a number output in degrees.

[bookmark: _Toc458599691]Example
>S X=$$ATANDEG^XLFMTH(.5)

>W X
26.56505118

[bookmark: _Toc458599692]$$COS^XLFMTH(): Cosine (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the cosine, with radians input.
Format:	$$COS^XLFMTH(x[,n])
Input Parameters:	x:	(required) Radians input number for which you want the cosine.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the cosine of radians input number.

[bookmark: _Toc458599693]Example
>S X=$$COS^XLFMTH(1.5)

>W X
.070737202

[bookmark: _Toc458599694]$$COSDEG^XLFMTH(): Cosine (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the cosine, with degrees input.
Format:	$$COSDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Degrees input number for which you want the cosine.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the cosine of degrees input number.

[bookmark: _Toc458599695]Example
>S X=$$COSDEG^XLFMTH(45)

>W X
.707106781

[bookmark: _Toc458599696]$$COT^XLFMTH(): Cotangent (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the cotangent, with radians input.
Format:	$$COT^XLFMTH(x[,n])
Input Parameters:	x:	(required) Radians input number for which you want the cotangent.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the cotangent of radians input number.

[bookmark: _Toc458599697]Example
>S X=$$COT^XLFMTH(1.5)

>W X
.070914844

[bookmark: _Toc458599698]$$COTDEG^XLFMTH(): Cotangent (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the cotangent, with degrees input.
Format:	$$COTDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Degrees input number for which you want the cotangent.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the cotangent of degrees input number.

[bookmark: _Toc458599699]Example
>S X=$$COTDEG^XLFMTH(45)

>W X
1

[bookmark: _Toc458599700]$$CSC^XLFMTH(): Cosecant (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the cosecant, with radians input.
Format:	$$CSC^XLFMTH(x[,n])
Input Parameters:	x:	(required) Radians input number for which you want the cosecant.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the cosecant of radians input number.

[bookmark: _Toc458599701]Example
>S X=$$CSC^XLFMTH(1.5)

>W X
1.002511304

[bookmark: _Toc458599702]$$CSCDEG^XLFMTH(): Cosecant (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the cosecant, with degrees input.
Format:	$$CSCDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Degrees input number for which you want the cosecant.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the cosecant of degrees input number.

[bookmark: _Toc458599703]Example
>S X=$$CSCDEG^XLFMTH(45)

>W X
1.414213562

[bookmark: _Toc458599704]$$DECDMS^XLFMTH(): Convert Decimals to Degrees:Minutes:Seconds
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function converts a number from decimal to degrees:minutes:seconds.
Format:	$$DECDMS^XLFMTH(x[,n])
Input Parameters:	x:	(required) Decimal number to be converted to degree:minutes:second.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the converted decimal input number to degrees:minutes:seconds.

[bookmark: _Toc458599705]Example
>S X=$$DECDMS^XLFMTH(30.7)

>W X
30:42:0

[bookmark: _Toc458599706]$$DMSDEC^XLFMTH(): Convert Degrees:Minutes:Seconds to Decimal
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function converts a number from degrees:minutes:seconds to a decimal.
Format:	$$DMSDEC^XLFMTH(x[,n])
Input Parameters:	x:	(required) Degrees:minutes:seconds input number to be converted to decimal.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the converted degrees:minutes:seconds input number to decimal.

[bookmark: _Toc458599707]Example
>S X=$$DMSDEC^XLFMTH(“30:42:0”)

>W X
30.7

[bookmark: _Toc458599708]$$DTR^XLFMTH(): Convert Degrees to Radians
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function converts degrees to radians.
Format:	$$DTR^XLFMTH(x[,n])
Input Parameters:	x:	(required) Degrees input number to be converted to radians.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the converted degrees input number to radians.

[bookmark: _Toc458599709]Example
>S X=$$DTR^XLFMTH(45)

>W X
.7853981634

[bookmark: _Toc458599710]$$E^XLFMTH(): e—Natural Logarithm
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns e (natural logarithm).
Format:	$$E^XLFMTH([n])
Input Parameters:	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns e, natural logarithm.

[bookmark: _Toc458599711]Example
>S X=$$E^XLFMTH(12)

>W X
2.71828182846

[bookmark: _Toc458599712]$$EXP^XLFMTH(): e—Natural Logarithm to the Nth Power
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns e (natural logarithm) to the x power (exponent).
Format:	$$EXP^XLFMTH(x[,n])
Input Parameters:	x:	(required) The power to which you want e raised.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the value of e to the specified power.

[bookmark: _Toc458599713]Example
>S X=$$EXP^XLFMTH(1.532)

>W X
4.6274224185

[bookmark: _Toc458599714]$$LN^XLFMTH(): Natural Log (Base e)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the natural log of x (Base e).
Format:	$$LN^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the natural log.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the natural log of a number.

[bookmark: _Toc458599715]Example
>S X=$$LN^XLFMTH(4.627426)

>W X
1.532000774

[bookmark: _Toc458599716]$$LOG^XLFMTH(): Logarithm (Base 10)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the logarithm (Base 10) of x.
Format:	$$LOG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the logarithm.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the logarithm (Base 10) of input number.

[bookmark: _Toc458599717]Example
>S X=$$LOG^XLFMTH(3.1415)

>W X
.4971370641

[bookmark: _Toc458599718]$$MAX^XLFMTH(): Maximum of Two Numbers
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the maximum value by comparing the number in x with the number in y.
Format:	$$MAX^XLFMTH(x,y)
Input Parameters:	x:	(required) First number to compare with second number in y to determine which is higher in value.
	y:	(required) Second number to compare with first number in x to determine which is higher in value.
Output:	returns:	Returns the highest number.

[bookmark: _Toc458599719]Example
>S X=$$MAX^XLFMTH(53,24)

>W X
53

[bookmark: _Toc458599720]$$MIN^XLFMTH(): Minimum of Two Numbers
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the minimum value by comparing the number in x with the number in y.
Format:	$$MIN^XLFMTH(x,y)
Input Parameters:	x:	(required) First number to compare with second number in y to determine which is lower in value.
	y:	(required) Second number to compare with first number in x to determine which is lower in value.
Output:	returns:	Returns the lowest number.

[bookmark: _Toc458599721]Example
>S X=$$MIN^XLFMTH(53,24)

>W X
24

[bookmark: _Toc458599722]$$PI^XLFMTH(): PI
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns pi.
Format:	$$PI^XLFMTH([n])
Input Parameters:	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns pi.

[bookmark: _Toc458599723]Example
>S X=$$PI^XLFMTH(12)

>W X
3.14159265359

[bookmark: _Toc458599724]$$PWR^XLFMTH(): X to the Y Power
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns x to the y power. This function makes use of LN and EXP.
Format:	$$PWR^XLFMTH(x,y[,n])
Input Parameters:	x:	(required) Number for which you want the exponent value.
	y:	(required) The exponent to which the input number (x) should be raised.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the exponent value.

[bookmark: _Toc458599725]Example
>S X=$$PWR^XLFMTH(3.2,1.5)

>W X
5.7243340224

[bookmark: _Toc458599726]$$RTD^XLFMTH(): Convert Radians to Degrees
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function converts radians to degrees.
Format:	$$RTD^XLFMTH(x[,n])
Input Parameters:	x:	(required) Radians input number to be converted to degrees.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the converted radians input number to degrees.

[bookmark: _Toc458599727]Example
>S X=$$RTD^XLFMTH(1.5,12)

>W X
85.9436692696

[bookmark: _Toc458599728]$$SD^XLFMTH(): Standard Deviation
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the standard deviation. Standard deviation is defined as:
“A measure of variability equal to the square root of the arithmetic average of the squares of the deviations from the mean in a frequency distribution.”[footnoteRef:1] [1: Definition as taken from: Webster’s New World College Dictionary, Fourth Edition; Michael Agnes, Editor in Chief; David B. Guralink, Editor in Chief Emeritus; Copyright 2001, 2000, 1999 by IDG Books Worldwide, Inc.; ISBN 0-02-863118-8.]

Format:	$$SD^XLFMTH(%s1,%s2,%n)
Input Parameters:	%s1:	(required) Sum.
	%s2:	(required) Sum of squares.
	%n:	(required) Count.
Output:	returns:	Returns the standard deviation.

[bookmark: _Toc458599729]Example
>S X=$$SD^XLFMTH(5,25,2)

>W X
3.53553390593

[bookmark: _Toc458599730]$$SEC^XLFMTH(): Secant (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the secant of a number, with radians input.
Format:	$$SEC^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number in radians for which you want the secant.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the secant of radians input number.

[bookmark: _Toc458599731]Example
>S X=$$SEC^XLFMTH(1.5)

>W X
14.1368329

[bookmark: _Toc458599732]$$SECDEG^XLFMTH(): Secant (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the secant of a number, with degrees input.
Format:	$$SECDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number in degrees for which you want the secant.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the secant of degrees input number.

[bookmark: _Toc458599733]Example
>S X=$$SECDEG^XLFMTH(45)

>W X
1.414213562

[bookmark: _Toc458599734]$$SIN^XLFMTH(): Sine (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the sine of a number, with radians input.
Format:	$$SIN^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number in radians for which you want the sine.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the sine of radians input number.

[bookmark: _Toc458599735]Example
>S X=$$SIN^XLFMTH(.7853982)

>W X
.707106807

[bookmark: _Toc458599736]$$SINDEG^XLFMTH(): Sine (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the sine of a number, with degrees input.
Format:	$$SINDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number in degrees for which you want the sine.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the sine of degrees input number.

[bookmark: _Toc458599737]Example
>S X=$$SINDEG^XLFMTH(45)

>W X
.707106781

[bookmark: _Toc458599738]$$SQRT^XLFMTH(): Square Root
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the square root of a number.
Format:	$$SQRT^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number for which you want the square root.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the square root of input number.

[bookmark: _Toc458599739]Example
>S X=$$SQRT^XLFMTH(153)

>W X
12.3693168769

[bookmark: _Toc458599740]$$TAN^XLFMTH(): Tangent (Radians)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the tangent of a number (tan x = sin x/cos x), with radians input.
Format:	$$TAN^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number in radians for which you want the tangent.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the tangent of radians input number.

[bookmark: _Toc458599741]Example
>S X=$$TAN^XLFMTH(.7853982)

>W X
1.000000073

[bookmark: _Toc458599742]$$TANDEG^XLFMTH(): Tangent (Degrees)
Reference Type:	Supported
Category:	Math Functions
ICR #:	10105
Description:	This extrinsic function returns the tangent of a number, with degrees input.
Format:	$$TANDEG^XLFMTH(x[,n])
Input Parameters:	x:	(required) Number in degrees for which you want the tangent.
	n:	(optional) The precision for the function. Precision means the detail of the result, in terms of number of digits.
Output:	returns:	Returns the tangent of degrees input number.

[bookmark: _Toc458599743]Example
>S X=$$TANDEG^XLFMTH(45)

>W X
1

[bookmark: _Ref303843204][bookmark: _Toc458599744]Measurement Functions—XLFMSMT
This routine contains APIs to allow conversion between U.S. (English) and Metric units.
[bookmark: _Toc458599745]$$BSA^XLFMSMT(): Body Surface Area Measurement
Reference Type:	Supported
Category:	Measurement Functions
ICR #:	3175 & 10143
Description:	This extrinsic function returns the body surface area.
Format:	$$BSA^XLFMSMT(ht,wt)
Input Parameters:	ht:	(required) Height in centimeters.
	wt:	(required) Weight in kilograms.
Output:	returns:	Returns the body surface area measurement.

[bookmark: _Toc458599746]Examples
Example 1
>S X=$$BSA^XLFMSMT(175,86)

>W X
2.02

Example 2
>S X=$$BSA^XLFMSMT($$LENGTH^XLFMSMT(69,“IN”,“CM”),$$WEIGHT^XLFMSMT(180,“LB”,“KG”))

>W X
1.98

[bookmark: _Toc458599747]$$LENGTH^XLFMSMT(): Convert Length Measurement
Reference Type:	Supported
Category:	Measurement Functions
ICR #:	3175 & 10143
Description:	This extrinsic function converts U.S. length to Metric length and vice versa. It returns the equivalent value with units.
Format:	$$LENGTH^XLFMSMT(value,from,to)
Input Parameters:	value:	(required) A positive numeric value.
	from:	(required) Unit of measure of the value input parameter (see Table 41).
	to:	(required) Unit of measure to which the value input parameter is converted (see Table 41).
Valid units in either uppercase or lowercase are:
[bookmark: _Ref200268660][bookmark: _Toc200270067][bookmark: _Toc458600036][bookmark: _Ref454888538]Table 41: $$LENGTH^XLFMSMT API—Valid units
	[bookmark: COL001_TBL034]Metric
	US

	km—kilometers
	mi—miles

	m—meters
	yd—yards

	cm—centimeters
	ft—feet

	mm—millimeters
	in—inches

Output:	returns:	Returns the length measurement.

[bookmark: _Toc458599748]Examples
Example 1
Converting U.S. length to Metric length:
>S X=$$LENGTH^XLFMSMT(12,“IN”,“CM”)

>W X
30.48 CM

Example 2
Converting Metric length to U.S. length:
>S X=$$LENGTH^XLFMSMT(30.48,“cm”,“in”)

>W X
12 IN

[bookmark: _Toc458599749]$$TEMP^XLFMSMT(): Convert Temperature Measurement
Reference Type:	Supported
Category:	Measurement Functions
ICR #:	3175 & 10143
Description:	This extrinsic function converts U.S. temperature to Metric temperature and vice versa. It returns the equivalent value with units.
Format:	$$TEMP^XLFMSMT(value,from,to)
Input Parameters:	value:	(required) A positive numeric value.
	from:	(required) Unit of measure of the value input parameter (see Table 42).
	to:	(required) Unit of measure to which the value input parameter is converted (see Table 42).
Valid units in either uppercase or lowercase are:
[bookmark: _Ref200268653][bookmark: _Toc200270068][bookmark: _Toc458600037]Table 42: $$TEMP^XLFMSMT API—Valid units
	[bookmark: COL001_TBL035]Metric
	US

	C—Celsius
	F—Fahrenheit

Output:	returns:	Returns the temperature measurement.

[bookmark: _Toc458599750]Examples
Example 1
Converting Fahrenheit to Celsius:
>S X=$$TEMP^XLFMSMT(72,“F”,“C”)

>W X
22.222 C

Example 2
Converting Celsius to Fahrenheit:
>S X=$$TEMP^XLFMSMT(0,“c”,“f”)

>W X
32 F

[bookmark: _Toc458599751]$$VOLUME^XLFMSMT(): Convert Volume Measurement
Reference Type:	Supported
Category:	Measurement Functions
ICR #:	3175 & 10143
Description:	This extrinsic function converts U.S. volume to Metric volume and vice versa. Converts milliliters to cubic inches or quarts or ounces. It returns the equivalent value with units.
Format:	$$VOLUME^XLFMSMT(value,from,to)
Input Parameters:	value:	(required) A positive numeric value.
	from:	(required) Unit of measure of the value input parameter (see Table 43).
	to:	(required) Unit of measure to which the value input parameter is converted (see Table 43).
Valid units in either uppercase or lowercase are:
[bookmark: _Ref200270071][bookmark: _Toc200270069][bookmark: _Toc458600038]Table 43: $$VOLUME^XLFMSMT API—Valid units
	[bookmark: COL001_TBL036]Metric
	US

	kl— kiloliter
	cf—cubic feet

	hl—hectoliter
	ci—cubic inch

	dal—dekaliter
	gal—gallon

	l—liters
	qt—quart

	dl—deciliter
	pt—pint

	cl—centiliter
	c—cup

	ml—milliliter
	oz— ounce

Output:	returns:	Returns the volume measurement.

[bookmark: _Toc458599752]Examples
Example 1
Converting U.S. volume to Metric volume:
>S X=$$VOLUME^XLFMSMT(12,“CF”,“ML”)

>W X
339800.832 ML

Example 2
Converting Metric volume to U.S. volume:
>S X=$$VOLUME^XLFMSMT(339800.832,“ml”,“cf”)

>W X
11.998 CF

[bookmark: _Toc458599753]$$WEIGHT^XLFMSMT(): Convert Weight Measurement
Reference Type:	Supported
Category:	Measurement Functions
ICR #:	3175 & 10143
Description:	This extrinsic function converts U.S. weights to proximate Metric weights and vice versa. It returns the equivalent value with units.
Format:	$$WEIGHT^XLFMSMT(value,from,to)
Input Parameters:	value:	(required) A positive numeric value.
	from:	(required) Unit of measure of the value input parameter (see Table 44).
	to:	(required) Unit of measure to which the value input parameter is converted (see Table 44).
Valid units in either uppercase or lowercase are:
[bookmark: _Ref200269373][bookmark: _Toc200270070][bookmark: _Toc458600039]Table 44: $$WEIGHT^XLFMSMT API—Valid units
	[bookmark: COL001_TBL037]Metric
	US

	t—metric tons
	tn— tons

	kg—kilograms
	lb—pounds

	g—grams
	oz—ounces

	mg—milligram
	gr—grain

Output:	returns:	Returns the weight measurement.

[bookmark: _Toc458599754]Examples
Example 1
Converting U.S. weight to Metric weight:
>S X=$$WEIGHT^XLFMSMT(12,“LB”,“G”)

>W X
5448 G

Example 2
Converting Metric weight to U.S. weight:
>S X=$$WEIGHT^XLFMSMT(5448,“g”,“lb”)

>W X
12.011 LB

[bookmark: _Ref303843217][bookmark: _Toc458599755]String Functions—XLFSTR
These functions are provided to help process strings.
[bookmark: _Ref180990678][bookmark: _Toc458599756]$$CJ^XLFSTR(): Center Justify String
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function returns a center justified character string.
Format:	$$CJ^XLFSTR(s,i[,p])
Input Parameters:	s:	(required) Character string.
	i:	(required) Field size. If this second parameter contains a trailing “T”, this extrinsic function returns the output truncated to the field size specified.
	p:	(optional) Pad character.
Output:	returns:	Returns the Center justified string.

[bookmark: _Toc458599757]Examples
Example 1
>W “[“,$$CJ^XLFSTR(“SUE”,10),“]”
[SUE]

Example 2
>W “[“,$$CJ^XLFSTR(“SUE”,10,“-”),“]”
[---SUE----]

Example 3
>W $$CJ^XLFSTR(“123456789”,5)
123456789

Example 4
>W $$CJ^XLFSTR(123456789,“5T”)
12345

[bookmark: _Toc458599758]$$INVERT^XLFSTR(): Invert String
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function returns an inverted string. It inverts the order of the characters in a string.
Format:	$$INVERT^XLFSTR(x)
Input Parameters:	x:	(required) Character string.
Output:	returns:	Returns the inverted string.

[bookmark: _Toc458599759]Example
>S X=$$INVERT^XLFSTR(“ABC”)

>W X
CBA

[bookmark: _Ref180990699][bookmark: _Toc458599760]$$LJ^XLFSTR(): Left Justify String
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function returns a left justified character string.
Format:	$$LJ^XLFSTR(s,i[,p])
Input Parameters:	s:	(required) Character string.
	i:	(required) Field size. If this second parameter contains a trailing “T”, this extrinsic function returns the output truncated to the field size specified.
	p:	(optional) Pad character.
Output:	returns:	Returns the left justified string.

[bookmark: _Toc458599761]Examples
Example 1
>W “[“,$$LJ^XLFSTR(“TOM”,10),“]”
[TOM]

Example 2
>W “[“,$$LJ^XLFSTR(“TOM”,10,“-”),“]”
[TOM-------]

Example 3
>W $$LJ^XLFSTR(“123456789”,5)
123456789

Example 4
>W $$LJ^XLFSTR(123456789,“5T”)
12345

[bookmark: _Toc458599762]$$LOW^XLFSTR(): Convert String to Lowercase
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function returns an input string converted to all lowercase.
Format:	$$LOW^XLFSTR(x)
Input Parameters:	x:	(required) Character string.
Output:	returns:	Returns the input string converted to all lowercase.

[bookmark: _Toc458599763]Example
>S X=$$LOW^XLFSTR(“JUSTICE”)

>W X
justice

[bookmark: _Toc458599764]$$REPEAT^XLFSTR(): Repeat String
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function returns a string that repeats the value of x for y number of times.
Format:	$$REPEAT^XLFSTR(x[,y])
Input Parameters:	x:	(required) Character string to be repeated.
	y:	(optional) Number of times to repeat the string in x.
Output:	returns:	Returns the repeated string.

[bookmark: _Toc458599765]Examples
Example 1
>S X=$$REPEAT^XLFSTR(“-”,10)

>W X

Example 2
>S X=$$REPEAT^XLFSTR(“blue water “,5)

>W X
blue water blue water blue water blue water blue water

[bookmark: _Toc458599766]$$REPLACE^XLFSTR(): Replace Strings
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function uses a multi-character $Translate to return a string with the specified string replaced.
Format:	$$REPLACE^XLFSTR(in,.spec)
Input Parameters:	in:	(required) Input string.
	.spec:	(required) An array passed by reference.
Output:	returns:	Returns the replaced string.

[bookmark: _Toc458599767]Examples
Example 1
>SET spec(“aa”)=“a”,spec(“pqr”)=“alabama”
>S X=$$REPLACE^XLFSTR(“aaaaaaqraaaaaaa”,.spec)

>W X
aaaaalabamaaaaa

Example 2
>SET spec(“F”)=“VA File”,spec(“M”)=“Man”
>S X=$$REPLACE^XLFSTR(“FM”,.spec)

>W X
VA FileMan

[bookmark: _Ref180990746][bookmark: _Toc458599768]$$RJ^XLFSTR(): Right Justify String
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function returns a right justified character string.
Format:	$$RJ^XLFSTR(s,i[,p])
Input Parameters:	s:	(required) Character string.
	i:	(required) Field size. If this second parameter contains a trailing “T”, this extrinsic function returns the output truncated to the field size specified.
	p:	(optional) Pad character.
Output:	returns:	Returns the right justified string.

[bookmark: _Toc458599769]Examples
Example 1
>W “[“,$$RJ^XLFSTR(“TOM”,10),“]”
[TOM]

Example 2
>W “[“,$$RJ^XLFSTR(“TOM”,10,“-”),“]”
[-------TOM]

Example 3
>W $$RJ^XLFSTR(“123456789”,5)
123456789

Example 4
>W $$RJ^XLFSTR(123456789,“5T”)
12345

[bookmark: _Toc458599770]$$SENTENCE^XLFSTR(): Convert String to Sentence Case
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	Released with Kernel patch XU*8.0*400, this extrinsic function returns an input string converted to Sentence case. The initial character of each sentence in the input string is capitalized and the remaining characters in that sentence are returned as all lowercase. The first character of the string begins a sentence. Subsequent sentences are identified as beginning after a period (.), exclamation point (!), or question mark (?).
Format:	$$SENTENCE^XLFSTR(x)
Input Parameters:	x:	(required) Character string.
Output:	returns:	Returns the string converted to Sentence case format.

[bookmark: _Toc458599771]Example
>S X=$$SENTENCE^XLFSTR(“HELLO WORLD!!! THIS IS A CAPITALIZED SENTENCE. this is not.”)

>W X
Hello world!!! This is a capitalized sentence. This is not.

[bookmark: _Toc458599772]$$STRIP^XLFSTR(): Strip a String
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function returns a string stripped of all instances of a specified character.
Format:	$$STRIP^XLFSTR(x,y)
Input Parameters:	x:	(required) Character string.
	y:	(required) The character to strip out of the string.
Output:	returns:	Returns the string stripped of specified character.

[bookmark: _Toc458599773]Examples
Example 1
>S X=$$STRIP^XLFSTR(“hello”,“e”)

>W X
hllo

Example 2
>S X=$$STRIP^XLFSTR(“Mississippi”,“i”)

>W X
Msssspp

[bookmark: _Toc458599774]$$TITLE^XLFSTR(): Convert String to Title Case
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	Released with Kernel patch XU*8.0*400, this extrinsic function returns an input string converted to Title case. The initial letter of the first block of characters (i.e., word) in the input string is capitalized and the remaining characters of that first word are returned as all lowercase. Also, the initial letter of any subsequent word in the input string is capitalized and the remaining characters in that word are returned as all lowercase. A word is identified when it is preceded by at least one space, except for the first word in the string.
Format:	$$TITLE^XLFSTR(x)
Input Parameters:	x:	(required) Character string.
Output:	returns:	Returns the string converted to Title case format.

[bookmark: _Toc458599775]Example
>S X=$$TITLE^XLFSTR(“HELLO WORLD!!! THIS IS A title-form SENTENCE. so is this.”)

>W X
Hello World!!! This Is A Title-form Sentence. So Is This.

[bookmark: _Toc458599776]$$TRIM^XLFSTR(): Trim String
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function trims spaces or other specified characters from the left, right, or both ends of an input string.
Format:	$$TRIM^XLFSTR(s[,f][,c])
Input Parameters:	s:	(required) Character string.
	f:	(optional) This flag can have the following value:
“LR” (default)—Trim characters from both ends of the string.
“L”—Trim characters from the left/beginning of the string.
“R”—Trim characters from the right/end of the string.
	c:	(optional) Set this parameter to the character to trim from the input string. This parameter defaults to a space.
Output:	returns:	Returns the trimmed string.

[bookmark: _Toc458599777]Examples
Example 1
In this example, we are trimming the spaces from both the left and right end of the string (the brackets are added to more clearly display the trimmed string):
>S X=“[“_$$TRIM^XLFSTR(“ A B C “)_”]”

>W X
[A B C]

The second input parameter defaults to “LR” and the third input parameter defaults to spaces.
Example 2
In this example, we are trimming the slashes from both the left and right end of the string (the brackets are added to more clearly display the trimmed string):
>S X=“[“_$$TRIM^XLFSTR(“//A B C//”,,“/”)_“]”

>W X
[A B C]

The second input parameter defaults to “LR.”
Example 3
In this example, we are trimming the slashes from the left end of the string (the brackets are added to more clearly display the trimmed string):
>S X=“[“_$$TRIM^XLFSTR(“//A B C//”,“L”,“/”)_“]”

>W X
[A B C//]

Example 4
In this example, we are trimming the slashes from the right end of the string (the brackets are added to more clearly display the trimmed string):
>S X=“[”_$$TRIM^XLFSTR(“//A B C//”,“r”,“/”)_“]”

>W X
[//A B C]

[bookmark: _Toc458599778]$$UP^XLFSTR(): Convert String to Uppercase
Reference Type:	Supported
Category:	String Functions
ICR #:	10104
Description:	This extrinsic function returns an input string converted to all uppercase.
Format:	$$UP^XLFSTR(x)
Input Parameters:	x:	(required) Character string.
Output:	returns:	Returns the string converted to all uppercase.

[bookmark: _Toc458599779]Example
>S X=$$UP^XLFSTR(“freedom”)

>W X
FREEDOM

[bookmark: _Ref303843230][bookmark: _Toc458599780]Utility Functions—XLFUTL
These functions are provided to help with a variety of tasks.
[bookmark: _Toc458599781]$$BASE^XLFUTL(): Convert Between Two Bases
Reference Type:	Supported
Category:	Utility Functions
ICR #:	2622
Description:	This extrinsic function converts a number from one base to another. The base must be between 2 and 16, both from and to parameters.
Format:	$$B ASE^XLFUTL(n,from,to)
Input Parameters:	n:	(required) Number to convert.
	from:	(required) Base of number being converted.
	to:	(required) Base to which the number is to be converted.
Output:	returns:	Returns the converted number from one base to another.

[bookmark: _Toc458599782]Examples
Example 1
>S X=$$BASE^XLFUTL(1111,2,16)

>W X
F

Example 2
>S X=$$BASE^XLFUTL(15,10,16)

>W X
F

Example 3
>S X=$$BASE^XLFUTL(“FF”,16,10)

>W X
255

[bookmark: _Ref36974618][bookmark: _Ref62972734][bookmark: _Toc458599783]$$CCD^XLFUTL(): Append Check Digit
Reference Type:	Supported
Category:	Utility Functions
ICR #:	2622
Description:	This extrinsic function returns a number appended with a computed check digit. To check if the original number corresponds with the appended check digit, use the $$VCD^XLFUTL(): Verify Integrity API.
Format:	$$CCD^XLFUTL(x)
Input Parameters:	x:	(required) Integer for which the check digit is computed.
[image: Note]	REF: See “The Taylor Report” in Computerworld magazine, 1975, for the algorithm.
Output:	returns:	Returns the number with appended check digit.

[bookmark: _Toc458599784]Examples
Example 1
>S X=$$CCD^XLFUTL(99889)

>W X
998898

Example 2
>S X=$$CCD^XLFUTL(7654321)

>W X
76543214

[bookmark: _Toc458599785]$$CNV^XLFUTL(): Convert Base 10 to Another Base
Reference Type:	Supported
Category:	Utility Functions
ICR #:	2622
Description:	This extrinsic function converts a number from Base 10 to another base, which must be between 2 and 16.
Format:	$$CNV^XLFUTL(n,base)
Input Parameters:	n:	(required) Base 10 number to convert.
	base:	(required) The base to which the number is to be converted.
Output:	returns:	Returns the converted number to specified base.

[bookmark: _Toc458599786]Examples
Example 1
>S X=$$CNV^XLFUTL(15,2)

>W X
1111

Example 2
>S X=$$CNV^XLFUTL(255,2)

>W X
11111111

Example 3
>S X=$$CNV^XLFUTL(255,8)

>W X
377

[bookmark: _Toc458599787]$$DEC^XLFUTL(): Convert Another Base to Base 10
Reference Type:	Supported
Category:	Utility Functions
ICR #:	2622
Description:	This extrinsic function converts a number from a specified base, which must be between 2 and 16, to Base 10.
Format:	$$DEC^XLFUTL(n,base)
Input Parameters:	n:	(required) Number to convert.
	base:	(required) Base of number being converted.
Output:	returns:	Returns the converted number in Base 10.

[bookmark: _Toc458599788]Example
>S X=$$DEC^XLFUTL(“FF”,16)

>W X
255

[bookmark: _Ref36974652][bookmark: _Ref62972145][bookmark: _Toc458599789]$$VCD^XLFUTL(): Verify Integrity
Reference Type:	Supported
Category:	Utility Functions
ICR #:	2622
Description:	This extrinsic function verifies the integrity of a number with an appended check digit. The check digit must be appended by the $$CCD^XLFUTL(): Append Check Digit API.
Format:	$$VCD^XLFUTL(number)
Input Parameters:	number:	(required) Number to verify, including appended check digit.
Output:	returns:	Returns:
1—Number corresponds to check digit.
0—Number does not correspond to check digit.

[bookmark: _Toc458599790]Examples
Example 1
>S X=$$VCD^XLFUTL(76543214)

>W X
1

Example 2
Transposing “32” to “23”:
>S X=$$VCD^XLFUTL(76542314)

>W X
0

XLF Function Library: Developer Tools

[bookmark: _Toc401659396][bookmark: _Ref410207738][bookmark: _Ref410207833][bookmark: _Ref303843239][bookmark: _Toc458599791]IP Address Functions—XLFIPV
These calls are provided to standardize the storage and processing of Internet Protocol (IP) addresses. Storing addresses in a standardized format simplifies VA FileMan search and sort functions. It also simplifies the processing of addresses in M routines. When VistA is used in an IPv4/IPv6 dual-stack environment, some performance degradation can occur due to the need to try multiple IP address combinations when making network connections. Therefore, it is important to simplify and standardize this process whenever possible.
[bookmark: _Toc401659400][bookmark: _Ref410206989][bookmark: _Toc401659397][bookmark: _Ref410206986][bookmark: _Toc458599792]$$CONVERT^XLFIPV():Convert any IP Address to Standardized IP Address Format
Reference Type:	Supported
Category:	IP Address Functions
ICR #:	5844
Description:	This extrinsic function converts an Internet Protocol (IP) address (either IPv4 or IPv6) into an IP address in a standardized format, depending upon the system settings:
IPv4—$$FORCEIP4^XLFIPV(): Convert any IP Address to IPv4 API.
IPv6—$$FORCEIP6^XLFIPV(): Convert any IP Address to IPv6 API.
Format:	$$CONVERT^XLFIPV(ip)
Input Parameters:	ip:	(required) IPv4 or IPv6 address (string; in quotes) to be converted.
Output:	returns:	Returns:
An IPv4 address if IPv6 is disabled on the system.
An IPv6 address if IPv6 is enabled on the system.
An IPv4 or IPv6 null address if the input cannot be converted.

[bookmark: _Toc458599793]Examples
Example 1 (IPv6 Enabled)
>S X=$$CONVERT^XLFIPV(“10.126.3.1”)

>W X
0000:0000:0000:0000:0000:FFFF:0A7E:0301

Example 2 (IPv6 Disabled)
>S X=$$CONVERT^XLFIPV(“10.126.3.1”)

>W X
10.126.3.1

Example 3 (IPv6 Enabled)
>S X=$$CONVERT^XLFIPV(“2001:db8::8a2e:370:7334”)

>W X
2001:0DB8:0000:0000:0000:8A2E:0370:7334

Example 4 (IPv6 Disabled)
>S X=$$CONVERT^XLFIPV(“2001:db8::8a2e:370:7334”)

>W X
0.0.0.0

[bookmark: _Toc401659398][bookmark: _Ref410204485][bookmark: _Ref410206987][bookmark: _Toc458599794]$$FORCEIP4^XLFIPV(): Convert any IP Address to IPv4
Reference Type:	Supported
Category:	IP Address Functions
ICR #:	5844
Description:	This extrinsic function converts an IP address (either IPv4 or IPv6) into an IPv4 address in a standardized format consisting of four decimal numbers, each in the range 0 to 255. For example:
001.99.001.9
Format:	$$FORCEIP4^XLFIPV(ip)
Input Parameters:	ip:	(required) IPv4 or IPv6 address (string; in quotes) to be converted.
Output:	returns:	Returns:
An IPv4 address in “nnn.nnn.nnn.nnn” notation if the input address is valid and has an IPv4 equivalent.
The null address “0.0.0.0” if the input address is invalid.
The null address “0.0.0.0” if an IPv6 address is input that does not have an IPv4 equivalent.

[bookmark: _Toc458599795]Examples
Example 1
>S X=$$FORCEIP4^XLFIPV(“10.126.3.1”)

>W X
10.126.3.1

Example 2
>S X=$$FORCEIP4^XLFIPV(“10.999.3.1”)

>W X
0.0.0.0

Example 3
>S X=$$FORCEIP4^XLFIPV(“2001:db8::8a2e:370:7334”)

>W X
0.0.0.0

Example 4
>S X=$$FORCEIP4^XLFIPV(“::ffff:10.126.3.1”)

>W X
10.126.3.1

Example 5
>S X=$$FORCEIP4^XLFIPV(“::ffff:c000:2eb”)

>W X
192.0.2.235

[bookmark: _Toc401659399][bookmark: _Ref410204498][bookmark: _Ref410206988][bookmark: _Toc458599796]$$FORCEIP6^XLFIPV(): Convert any IP Address to IPv6
Reference Type:	Supported
Category:	IP Address Functions
ICR #:	5844
Description:	This extrinsic function converts an IP address (either IPv4 or IPv6) into an IPv6 address in a standardized format consisting of eight groups of hexadecimal numbers separated by colons. For example:
2001:0DB8:85A3:0042:0000:8A2E:0370:7334
Format:	$$FORCEIP6^XLFIPV(ip)
Input Parameters:	ip:	(required) IPv4 or IPv6 address (string; in quotes) to be converted.
Output:	returns:	Returns:
An IPv6 address in “hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh” notation if the input address is valid and has an IPv6 equivalent.
The null address “0000:0000:0000:0000:0000:0000:0000:0000” if the input address is invalid.

[bookmark: _Toc458599797]Examples
Example 1
>S X=$$FORCEIP6^XLFIPV(“10.126.3.1”)

>W X
0000:0000:0000:0000:0000:FFFF:0A7E:0301

Example 2
>S X=$$FORCEIP6^XLFIPV(“10.999.3.1”)

>W X
0000:0000:0000:0000:0000:0000:0000:0000

Example 3
>S X=$$FORCEIP6^XLFIPV(“2001:db8::8a2e:370:7334”)

>W X
2001:0DB8:0000:0000:0000:8A2E:0370:7334
Example 4
>S X=$$FORCEIP6^XLFIPV(“::ffff:10.126.3.1”)

>W X
0000:0000:0000:0000:0000:FFFF:0A7E:0301

Example 5
>S X=$$FORCEIP6^XLFIPV(“127.0.0.1”)

>W X
0000:0000:0000:0000:0000:0000:0000:0001

[bookmark: _Ref421004678][bookmark: _Toc401659401][bookmark: _Ref410206990][bookmark: _Toc458599798]$$VALIDATE^XLFIPV(): Validate IP Address Format
Reference Type:	Supported
Category:	IP Address Functions
ICR #:	5844
Description:	This extrinsic function validates the format of an IP address (either IPv4 or IPv6).
Format:	$$VALIDATE^XLFIPV(ip)
Input Parameters:	ip:	(required) IPv4 or IPv6 address (string) to be validated.
Output:	returns:	Returns:
1—If the IP address is in a valid format.
0—If the format is invalid or null input.

[bookmark: _Toc458599799]Examples
Example 1
>S X=$$VALIDATE^XLFIPV(10.126.3.1)

>W X
1

Example 2
>S X=$$VALIDATE^XLFIPV(10.999.3.1)

>W X
0

Example 3
>S X=$$VALIDATE^XLFIPV(2001:db8::8a2e:370:7334)

>W X
1

Example 4
>S X=$$VALIDATE^XLFIPV(2001:db8::8g2h:370:7334)

>W X
0

[bookmark: _Ref421004601][bookmark: _Toc458599800]$$VERSION^XLFIPV: Show System Settings for IPv6
Reference Type:	Supported
Category:	IP Address Functions
ICR #:	5844
Description:	This extrinsic function determines the system settings for IPv6.
Format:	$$VERSION^XLFIPV
Input Parameters:	none.
Output:	returns:	Returns:
1—If IPv6 is enabled.
0—If IPv6 is disabled.

[bookmark: _Toc458599801]Examples
Example 1 (IPv6 Enabled)
>S X=$$VERSION^XLFIPV

>W X
1

Example 2 (IPv6 Disabled)
>S X=$$VERSION^XLFIPV

>W X
0

XML: Developer Tools

[bookmark: _Ref421016403]
[bookmark: _Ref423511112][bookmark: _Ref423511122][bookmark: _Toc458599802]XML Parser (VistA): Developer Tools
[bookmark: _Toc458599803]Overview
The VistA Extensible Markup Language (XML) Parser is a full-featured, validating XML parser written in the M programming language and designed to interface with the VistA suite of M-based applications. It is not a standalone product. Rather, it acts as a server application that can provide XML parsing capabilities to any client application that subscribes to the application programmer interface (API) specification detailed in this document.
The VistA XML Parser employs two very different API implementations:
Event-driven Interface
World Wide Web Consortium Document Object Model Specification
The choice of which API to employ is in part dependent on the needs of the application developer. The event-driven interface requires the client application to process the document in a strictly top-down manner. In contrast, the in-memory model provides the ability to move freely throughout the document and has the added advantage of ensuring that the document is well formed and valid before any information is returned to the client application.
The VistA XML Parser employs an Entity Catalog to allow storage of external entities such as document type definitions. The Entity Catalog is a VA FileMan-compatible database and can be manipulated using the usual VA FileMan tools.
[bookmark: _Ref453852346][bookmark: _Toc458599804]Event-driven Interface
The event-driven interface is modeled after the widely used Simple API for XML (SAX) interface specification. In this implementation, a client application provides a special handler for each parsing event of interest. When the client invokes the parser, it conveys not only the document to be parsed, but also the entry points for each of its event handlers. As the parser progresses through the document, it invokes the client’s handlers for each parsing event for which a handler has been registered.
[bookmark: _Ref453852408][bookmark: _Toc458599805]World Wide Web Consortium Document Object Model Specification
This API implementation is based on the World Wide Web Consortium (W3Cs) Document Object Model (DOM) specification. This API, which is actually built on top of the event-driven interface, first constructs an in-memory model of the fully parsed and validated document. It then provides methods to navigate through and extract information from the parsed document.
This API is actually layered on top of the event-driven API. In other words, it is actually a client of the event-driven API that in turn acts as a server to another client application.
The document image is represented internally as a tree with each node in the tree representing an element instance. Attributes (names and values), non-markup text, and comment text may be associated with any given node. For example, in Figure 152 the XML document on the left is represented by the tree structure on the right.
[bookmark: _Ref453856331][bookmark: _Toc458599991]Figure 152: XML Document (left)—Tree structure Diagram (right)
[image:]

[bookmark: _Toc483281082][bookmark: _Toc46896819][bookmark: _Toc46896801][bookmark: _Toc458599806]Entity Catalog
The XML ENTITY CATALOG file (#950) is used to store external entities and their associated public identifiers. When the XML parser encounters an external entity reference with a public identifier, it first looks for that public identifier in the entity catalog. If it finds the entity, it retrieves its value. Otherwise, it attempts to retrieve the entity value using the system identifier. The problem with using system identifiers is that they often identify resources that may have been relocated since the document was authored. (This is analogous to the problem with broken links in HTML documents.) Using public identifiers and an entity catalog allows one to build a collection of commonly used and readily accessible external entities (e.g., external document type definitions).
The XML ENTITY CATALOG file (#950) is a VA FileMan-compatible file that is very simple in structure as shown in Table 45.
[bookmark: _Ref453857073][bookmark: _Toc458600040]Table 45: XML ENTITY CATALOG file (#950)—Stores external entities and assoc public identifiers
	[bookmark: _Toc459624388]Field #
	Field Name
	Datatype
	Description

	.01
	ID
	Free text
(1-250)
	The public identifier associated with this entity.

	1
	VALUE
	Word Processing
	The text associated with the entity.

[bookmark: _Toc458599807]Term Definitions and XML Parser Concept
To understand the terms used in this section and the concept of the operation of an XML Parser, please review the W3C Architecture Domain website, Extensible Markup Language (XML) page at: http://www.w3.org/XML/
The Toolkit VistA XML Parser Application Programming Interfaces (APIs) have been developed to assist you in creating an XML document.
Integration Control Registration #3561 defines the various callable entry points in the MXMLDOM routine. These APIs are based on the W3C’s Document Object Model (DOM) specification. It first builds an “in-memory” image of the fully parsed and validated document and then provides a set of methods to permit structured traversal of the document and extraction of its contents. This API is actually layered on top of the event-driven API. In other words, it is actually a client of the event-driven API that in turn acts as a server to another client application.
[image: Note]	REF: The VistA Extensible Markup Language (XML) Parser technical and user documentation can be found on the VA Software Document Library (VDL) located at: http://www.va.gov/vdl/application.asp?appid=137
[bookmark: _Toc46896802][bookmark: _Toc458599808]Known Issues
The following are known issues in this version of the XML parser. Some of these are due to certain limitations of the M programming language.
[bookmark: _Toc458599809]Unsupported Character Encodings
Unlike languages like Java that have multiple character encoding support built-in, M does not recognize character encodings that do not incorporate the printable ASCII character subset. Thus, 16-bit character encodings (e.g., Unicode) are not supported. Fortunately, a large number of 8-bit character encodings do incorporate the printable ASCII character subset and can be parsed. Because of this limitation, the VistA XML Parser rejects any documents with unsupported character encodings.
[bookmark: _Toc458599810]Retrieval of External Entities Using Non-Standard File Access Protocols
The current version of the VistA XML Parser does not support retrieval of external entities using the HTTP or FTP protocols (or for that matter, any protocols other than the standard file access protocols of the underlying operating system). Client applications using the event-driven interface can intercept external entity retrieval by the parser and implement support for these protocols if desired.
[bookmark: _Toc458599811]File Access
The parser uses the Kernel function FTG^%ZISH for file access. This function reads the entire contents of a file into an M global. There are several nuances to this function that manifest themselves in parser operation:
Files are opened with a time-out parameter. If an attempt is made to access a non-existent file, there is a delay of a few seconds before the error is signaled.
Files are accessed in text mode. The result is that certain imbedded control characters are stripped from the input stream and never detected by the parser. Because these control characters are disallowed by XML, the parser does not report such documents as non-conforming.
A line feed/carriage return sequence at the end of a document is stripped and not presented to the parser. Only in rare circumstances would this be considered significant data, but in the strictest sense should be preserved.
[bookmark: _Toc458599812]Entity Substitutions Text
The parser allows external entities to contain substitution text that in some cases would violate XML rules that state that a document must be conforming in the absence of resolving such references. In other words, XML states that a non-validating parser should be able to verify that a document is conforming without processing external entities. This restriction constrains how token streams can be continued across entities. The parser recognizes most, but not all, of these restrictions. The effect is that the parser is more lax in allowing certain kinds of entity substitutions.
[bookmark: _Toc458599813]Enforcing Whitespace
Parsers vary in how they enforce whitespace that is designated as required by the XML specification. This parser flags the absence of any required whitespace as a conformance error, even in situations where the absence of such whitespace would not introduce syntactic ambiguity. The result is that this parser rejects some documents that may be accepted by other parsers.
[bookmark: _Toc458599814]Application Programming Interface (API)
The Toolkit VistA XML Parser Application Programming Interfaces (APIs) have been developed to assist you in creating an XML document.
Integration Control Registration #3561 defines the various callable entry points in the MXMLDOM routine. These APIs are based on the W3C’s Document Object Model (DOM) specification. It first builds an “in-memory” image of the fully parsed and validated document and then provides a set of methods to permit structured traversal of the document and extraction of its contents. This API is actually layered on top of the event-driven API. In other words, it is actually a client of the event-driven API that in turn acts as a server to another client application.
Several APIs are available for developers to work with the EXtensible Markup Language (XML). These APIs are described below.
[bookmark: _Toc458599815]$$ATTRIB^MXMLDOM(): XML—Get First or Next Node Attribute Name
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function returns the first or next attribute associated with the specified node.
Format:	$$ATTRIB^MXMLDOM(handle,node[,attrib])
[bookmark: _Toc97637650]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) whose attribute name is being retrieved.
	attrib:	(optional) The name (string) of the last attribute retrieved by this call. If null or missing, the first attribute associated with the specified node is returned. Otherwise, the next attribute in the list is returned.
Output:	returns:	Returns:
Name (string) of the first or next attribute associated with the specified node.
Null if there are none remaining.

[bookmark: _Toc458599816]$$CHILD^MXMLDOM(): XML—Get Parent Node’s First or Next Child
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function returns the node of the first or next child of a given parent node, or zero (0) if there are none remaining.
Format:	$$CHILD^MXMLDOM(handle,parent[,child])
[bookmark: _Toc97637653]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	parent:	(required) The node (integer) whose children are being retrieved.
	child:	(optional) If specified, this is the last child node (integer) retrieved. The function returns the next child in the list. If the parameter is zero or missing, the first child is returned.
Output:	returns:	Returns:
Child Node—The next child node (integer).
Zero (0)—If there are none remaining.

[bookmark: _Toc458599817]$$CMNT^MXMLDOM(): XML—Extract Comment Text (True/False)
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function extracts comment text associated with the specified node.
Format:	$$CMNT^MXMLDOM(handle,node,text)
[bookmark: _Toc97637656]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) in the document tree that is being referenced by this API.
	text:	(required) This input parameter (string) must contain a closed local or global array reference that is to receive the text. The specified array is deleted before being populated.
Output:	returns:	Returns a Boolean value:
True (non-zero)—Text was retrieved.
False (zero)—Text was not retrieved.
[bookmark: _Ref49134456][bookmark: _Ref49137849][bookmark: _Ref49140002][bookmark: _Ref49140589][bookmark: _Ref49149811][bookmark: _Ref49149985][bookmark: _Ref49158059][bookmark: _Ref49158782][bookmark: _Ref49310348][bookmark: _Toc458599818]CMNT^MXMLDOM(): XML—Extract Comment Text (True/False)
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This API extracts comment text associated with the specified node.
Format:	$$CMNT^MXMLDOM(handle,node,text)
Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) in the document tree that is being referenced by this API.
	text:	(required) This input parameter (string) must contain a closed local or global array reference that is to receive the text. The specified array is deleted before being populated.
Output:	returns:	Returns a Boolean value:
True (non-zero)—Text was retrieved.
False (zero)—Text was not retrieved.

[bookmark: _Toc458599819]DELETE^MXMLDOM(): XML—Delete Document Instance
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This API deletes the specified document instance. A client application should always call this API when finished with a document instance.
Format:	DELETE^MXMLDOM(handle)
Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
Output:	none.
[bookmark: _Ref97638051][bookmark: _Ref97638124][bookmark: _Ref97638202][bookmark: _Ref97638271][bookmark: _Ref97638332][bookmark: _Ref97638387][bookmark: _Ref97638432][bookmark: _Ref97638468][bookmark: _Ref97638532][bookmark: _Ref97639420][bookmark: _Ref97639464][bookmark: _Ref303847364]
[bookmark: _Toc458599820]$$EN^MXMLDOM(): XML—Initial Processing of XML Document, Build In-memory Image
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function performs initial processing of the XML document. The client application must first call this entry point to build the in-memory image of the document before the remaining methods can be applied. The return value is a handle to the document instance that was created and is used by the remaining API calls to identify a specific document instance. The parameters for this entry point are listed by type, requirement (yes or no), and description.
Format:	$$EN^MXMLDOM(doc[,opt])
Input Parameters:	doc:	(required) This string is either a closed reference to a global root containing the document or a filename and path reference identifying the document on the host system. If a global root is passed, the document either must be stored in standard VA FileMan word-processing format or may occur in sequentially numbered nodes below the root node. Thus, if the global reference is “^XYZ”, the global must be of one of the following formats:
^XYZ(1,0) = “LINE 1”

^XYZ(2,0) = “LINE 2” ...
Or:
^XYZ(1) = “LINE 1”

^XYZ(2) = “LINE 2” ...
	opt:	(optional) This string is a list of option flags that control parser behavior. Recognized option flags are:
W—Do not report warnings to the client.
V—Validate the document. If not specified, the parser only checks for conformance.
1—Terminate parsing on encountering a validation error. (By default, the parser terminates only when a conformance error is encountered.)
0—Terminate parsing on encountering a warning.
Output:	returns:	Returns:
Successful—A non-zero handle of the document instance if parsing completed successfully.
Unsuccessful—Zero handle of document instance.
This handle is passed to all other API methods to indicate which document instance is being referenced. This allows for multiple document instances to be processed concurrently.

[bookmark: _Toc458599821]$$NAME^MXMLDOM(): XML—Get Element Name
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function retrieves the name of the element at the specified node within the document parse tree.
Format:	$$NAME^MXMLDOM(handle,node)
[bookmark: _Toc97637662]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) for which the associated element name is being retrieved.
Output:	returns:	Returns the name (string) of the element associated with the specified node.

[bookmark: _Toc458599822]$$PARENT^MXMLDOM(): XML—Get Parent Node
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function returns the parent node of the specified node, or zero (0) if there is none.
Format:	$$PARENT^MXMLDOM(handle,node)
[bookmark: _Toc97637665]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) in the document tree whose parent is being retrieved.
Output:	returns:	Returns:
Parent Node—The parent node (string) of the specified node.
Zero (0)—If there is no parent.

[bookmark: _Toc458599823]$$SIBLING^MXMLDOM(): XML—Get Sibling Node
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function returns the node of the specified node’s immediate sibling, or zero (0) if there is none.
Format:	$$SIBLING^MXMLDOM(handle,node)
[bookmark: _Toc97637668]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) in the document tree whose sibling is being retrieved.
Output:	returns:	Returns:
Node—The node (integer) corresponding to the immediate sibling of the specified node.
Zero (0)—If there is no node (integer) corresponding to the immediate sibling of the specified node.

[bookmark: _Toc458599824]$$TEXT^MXMLDOM(): XML—Extract Non-markup Text (True/False)
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function extracts non-markup text associated with the specified node.
Format:	$$TEXT^MXMLDOM(handle,node,text)
[bookmark: _Toc97637671]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) in the document tree that is being referenced by this API.
	text:	(required) This input parameter (string) must contain a closed local or global array reference that is to receive the text. The specified array is deleted before being populated.
Output:	returns:	Returns a Boolean value:
True (non-zero)—Text was retrieved.
False (zero)—Text was not retrieved.

[bookmark: _Toc458599825]TEXT^MXMLDOM(): XML—Extract Non-markup Text (True/False)
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This API extracts non-markup text associated with the specified node.
Format:	TEXT^MXMLDOM(handle,node,text)
[bookmark: _Toc97637674]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) in the document tree that is being referenced by this API.
	text:	(required) This input parameter (string) must contain a closed local or global array reference that is to receive the text. The specified array is deleted before being populated.
Output:	returns:	Returns a Boolean value:
True (non-zero)—Text was retrieved.
False (zero)—Text was not retrieved.

[bookmark: _Toc458599826]$$VALUE^MXMLDOM(): XML—Get Attribute Value
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	3561
Description:	This extrinsic function returns the value associated with the named attribute.
Format:	$$VALUE^MXMLDOM(handle,node[,attrib])
[bookmark: _Toc97637677]Input Parameters:	handle:	(required) The value (integer) returned by the $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image API, which created the in-memory document image.
	node:	(required) The node (integer) whose attribute value is being retrieved.
	attrib:	(optional) The name of the attribute (string) whose value is being retrieved by this API.
Output:	returns:	Returns the value associated with the specified attribute.

[bookmark: _Toc458599827]EN^MXMLPRSE(): XML—Event Driven API
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	4149
Description:	This API is an event-driven interface that is based on the well-established Simple API for XML (SAX) interface employed by many XML parsers. This API has a single method.

In this implementation, a client application provides a special handler for each parsing event of interest. When the client invokes the parser, it conveys not only the document to be parsed, but also the entry points for each of its event handlers. As the parser progresses through the document, it invokes the client’s handlers for each parsing event for which a handler has been registered.
Format:	EN^MXMLPRSE(doc,cbk[,opt])
Input Parameters:	doc:	(required) This string is either a closed reference to a global root containing the document or a filename and path reference identifying the document on the host system. If a global root is passed, the document either must be stored in standard VA FileMan word-processing format or may occur in sequentially numbered nodes below the root node. Thus, if the global reference is “^XYZ”, the global must be of one of the following formats:
^XYZ(1,0) = “LINE 1”

^XYZ(2,0) = “LINE 2”...
Or:
^XYZ(1) = “LINE 1”

^XYZ(2) = “LINE 2”...
	cbk:	(required) This is a local array, passed by reference that contains a list of parse events and the entry points for the handlers of those events. The format for each entry is:
CBK(<event type>) = <entry point>
The entry point must reference a valid entry point in an existing M routine and should be of the format tag^routine. The entry should not contain any formal parameter references. The application developer is responsible for ensuring that the actual entry point contains the appropriate number of formal parameters for the event type. For example, client application might register its STARTELEMENT event handler as follows:
CBK(“STARTELEMENT”) = “STELE^CLNT”
The actual entry point in the CLNT routine must include two formal parameters as in the following example:
STELE(ELE,ATR) <handler code>
[image: Note]	REF: For the types of supported events and their required parameters, see the “Details” section.
	opt:	(optional) This is a list of option flags (string) that control parser behavior. Recognized option flags are:
W—Do not report warnings to the client.
V—Validate the document. If not specified, the parser only checks for conformance.
1—Terminate parsing on encountering a validation error. (By default, the parser terminates only when a conformance error is encountered.)
0—Terminate parsing on encountering a warning.
Output:	returns:	Returns the XML parsed string.

[bookmark: _Ref433033383][bookmark: _Toc458599828]Details
The VistA XML Parser recognizes the event types listed in Table 46:
[bookmark: _Ref453856326][bookmark: _Toc458600041]Table 46: XML Parser—Event types
	[bookmark: COL001_TBL038]Event Type
	Parameters
	Description

	STARTDOCUMENT
	None
	Notifies the client that document parsing has commenced.

	ENDDOCUMENT
	None
	Notifies the client that document parsing has completed.

	DOCTYPE
	ROOT
PUBID
SYSID
	Notifies the client that a DOCTYPE declaration has been encountered. The name of the document root is given by ROOT. The public and system identifiers of the external document type definition are given by PUBID and SYSID, respectively.

	STARTELEMENT
	NAME
ATTRLIST
	An element (tag) has been encountered. The name of the element is given in NAME. The list of attributes and their values is provided in the local array ATTRLST in the format:
ATTRLST(<name>) = <value>

	ENDELEMENT
	NAME
	A closing element (tag) has been encountered. The name of the element is given in NAME.

	CHARACTERS
	TEXT
	Non-markup content has been encountered. TEXT contains the text. Line breaks within the original document are represented as carriage return/line feed character sequences. The parser does not necessarily pass an entire line of the original document to the client with each event of this type.

	PI
	TARGET
TEXT
	The parser has encountered a processing instruction. TARGET is the target application for the processing instruction. TEXT is a local array containing the parameters for the instruction.

	EXTERNAL
	SYSID
PUBID
GLOBAL
	The parser has encountered an external entity reference whose system and public identifiers are given by SYSID and PUBID, respectively. If the event handler elects to retrieve the entity rather than allowing the parser to do so, it should pass the global root of the retrieved entity in the GLOBAL parameter. If the event handler wishes to suppress retrieval of the entity altogether, it should set both SYSID and PUBID to null.

	NOTATION
	NAME
SYSID
PUBIC
	The parser has encountered a notation declaration. The notation name is given by NAME. The system and public identifiers associated with the notation are given by SYSID and PUBIC, respectively.

	COMMENT
	TEXT
	The parser has encountered a comment. TEXT is the text of the comment.

	ERROR
	ERR
	The parser has encountered an error during the processing of a document. ERR is a local array containing information about the error. The format is:
ERR(“SEV”) = Severity of the error where zero (0) is a warning, 1 is a validation error, and 2 is a conformance error.
ERR(“MSG”)—Brief text description of the error.
ERR(“ARG”)—The token value the triggered the error (optional).
ERR(“LIN”)—The number of the line being processed when the error occurred.
ERR(“POS”)—The character position within the line where the error occurred.
ERR(“XML”)—The original document text of the line where the error occurred.

[bookmark: _Toc458599829]Example
This is a simple example of how to use the VistA XML Parser with an XML document (file). The XML file contains a parent node named BOOKS. Nested within that parent node are child nodes named TITLE and AUTHOR.
Remember the following:
The parent node is the node whose child nodes are being retrieved.
The child node, if specified, is the last child node retrieved. The function returns the next child in the list. If the parameter is zero or missing, the first child is returned.
A sample client of the event-driven API is provided in the routine MXMLTEST. This routine has an entry point EN(DOC,OPT), where DOC and OPT are the same parameters as described above for the parser entry point. This sample application simply prints a summary of the parsing events as they occur.
1. [bookmark: _Toc46896821]Create an XML File:
[bookmark: _Toc46896839][bookmark: _Toc200270053][bookmark: _Toc458599992]Figure 153: VistA XML Parser Use—Example: Create XML file
^TMP($J,1) = <?xml version=‘1.0’?>
^TMP($J,2) = <!DOCTYPE BOOK>
^TMP($J,3) = <BOOK>
^TMP($J,4) = <TITLE>Design Patterns</TITLE>
^TMP($J,5) = <AUTHOR>Author1</AUTHOR>
^TMP($J,6) = <AUTHOR>Author2</AUTHOR>
^TMP($J,7) = <AUTHOR>Author3</AUTHOR>
^TMP($J,8) = <AUTHOR>Author4</AUTHOR>
^TMP($J,9) = </BOOK>
[bookmark: _Toc46896840][bookmark: _Toc200270054]
Invoke Simple API for XML (SAX) Interface:
[bookmark: _Toc458599993]Figure 154: VistA XML Parser Use Example—Invoke SAX Interface
D EN^MXMLTEST($NA(^TMP($J)),"V")

Check Document Object Model (DOM) Interface:
[bookmark: _Toc458599994]Figure 155: VistA XML Parser Use Example—Check DOM Interface
>S HDL=$$EN^MXMLDOM($NA(^TMP($J)))
Write the name of the first node.

>W $$NAME^MXMLDOM(HDL,1)
BOOK
Get the child of the node.

>S CHD=$$CHILD^MXMLDOM(HDL,1)
Write the child name.

>W $$NAME^MXMLDOM(HDL,CHD)
TITLE

Get the text of the child.

>W $$TEXT^MXMLDOM(HDL,CHD,$NA(VV))
1

>ZW VV
VV(1)=Design Patterns

List All Sibling Nodes:
[bookmark: _Toc458599995]Figure 156: VistA XML Parser Use Example—List All Sibling Nodes
>S CHD=$$CHILD^MXMLDOM(HDL,1)
>S SIB=CHD
>F S SIB=$$SIBLING^MXMLDOM(HDL,SIB) Q:SIB'>0 W !,SIB,?4,$$NAME^MXMLDOM(HDL,SIB)
3 AUTHOR
4 AUTHOR
5 AUTHOR
6 AUTHOR
>

[bookmark: _Toc458599830]$$SYMENC^MXMLUTL(): XML—Replace XML Symbols with XML Encoding
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	4153
Description:	This extrinsic function replaces reserved Extensible Markup Language (XML) symbols in a string with their XML encoding for strings used in an XML message.
Format:	$$SYMENC^MXMLUTL(str)
Input Parameters:	str:	(required) String to be encoded in an XML message.
Output:	returns:	Returns the input string with XML encoding replacing reserved XML symbols.
[bookmark: _Toc458599831]Example
>S X=$$SYMENC^MXMLUTL(“This line isn’t &”“<XML>”“ safe as is.”)

>W X
This line isn&os;t &"<XML>" safe as is.

[bookmark: _Toc458599832]$$XMLHDR^MXMLUTL: XML—Get XML Message Header
Reference Type:	Supported
Category:	XML Parser (VistA)
ICR #:	4153
Description:	This extrinsic function returns a standard Extensible Markup Language (XML) header for encoding XML messages.
Format:	$$XMLHDR^MXMLUTL
Input Parameters:	none.
Output:	returns:	Returns a standard XML header.

[bookmark: _Toc458599833]Example
>S X=$$XMLHDR^MXMLUTL

>W X
<?xml version=“1.0” encoding=“utf-8” ?>

[bookmark: _Ref423511124][bookmark: _Toc458599834]^XTMP Global: Developer Tools
[bookmark: _Toc458599835]Overview
There is a recurring need by VistA software to store data in a translated global for relatively short periods of time. However, this data needs to be accumulated for a period longer than an individual user's logon session and longer than the time a specific process/job might run. The ^UTILITY, ^TMP and ^XUTL globals do not meet the basic requirements for storing this type of data due to the following:
These globals are not translated, and thus, cannot be relied upon for transferring data from one job to another.
The data is not stored for excessively long periods of time and is constantly being processed and purged.
The data is stored in an intermediate form, temporarily, so that it can be further processed in an efficient manner.
The original data is stored in a VA FileMan file from which the temporary data can be recreated, or on another system (usually non-VistA) from which it can be resent, if necessary. Hence, the creation of a VA FileMan file, while feasible, would add unnecessary overhead to the VistA systems.
Therefore, the Standards and Conventions Committee (SACC) asked Kernel to establish the ^XTMP global, which can be used by any VistA software application. This global is dynamic in size and activity, with one copy accessible to all members of a UCI, and should be placed accordingly.
[image: Caution]	CAUTION: The ^XTMP global should not be used for long-term storage of data; data requiring long-term storage should be placed within a file. The ^XTMP global should only be used for near-term storage needs and should respect size constraints.
[bookmark: _Toc458599836]Rules for Use of the ^XTMP Global
The structure of each top node of the ^XTMP global has the following format:
^XTMP(namespaced- subscript,0)=purge date^createdate^optional descriptive information
(Both dates must be in VA FileMan internal date format.)
As per the Standards and Conventions (SAC, Section 2.11.8), developers are encouraged to include other descriptive information on the third piece of the 0 node of the ^XTMP global (e.g., task description and creator DUZ).
1. First Subscript Must be Namespaced—The first subscript of the ^XTMP global must be namespaced; however, other characters can follow the namespace. For example, if the namespace for the software is "RA," the first subscript could be "RA"_DUZ, "RA"_literal, "RA"_$J, etc. This allows the developer to use the global in different parts of the software.
1. 0 Node Must Exist—There must be a 0 node for the global in which the first piece contains the PURGE DATE in VA FileMan internal date format, and the second piece contains the CREATE DATE in VA FileMan internal date format. For example:
^XTMP("RA1",0)=2920416^2920401
1. KILL ^XTMP After Use—The developer is responsible for KILLing ^XTMP(x) when its use is complete (where "x" is their namespaced subscript).
1. Code Cleanup—Kernel has included the necessary code in the XQ82 routine to clean up the ^XTMP global (e.g., ^XTMP("RA1"). It KILLs this global under any of the following conditions:
There is no 0 node (e.g., ^XTMP("RA1",0).
The 0 node does not contain a purge date as the first piece.
The date in the first piece of the 0 node is the same as or before the system date.
[bookmark: _Toc458599837]SAC Exemptions
As of May 17, 2002, the Standards and Conventions (SAC) document has the following exemptions regarding the ^XTMP global:
Section 2.3.2.1—Subscripts used in the ^TMP and ^XTMP globals can be lowercase.
Section 2.3.2.5—The ^TMP, ^UTILITY, and ^XTMP globals do not have to be VA FileMan compatible.
Section 2.3.2.5.2—The ^XTMP global will be translated, with one copy for the entire VistA production system at each site.
Section 2.7.3.3—All documented temporary scratch global nodes (e.g., ^TMP and ^UTILITY) are created by a called supported reference, with the exception of ^XTMP global data.
Section 2.7.3.4—All local variables, locks, and scratch global nodes (except ^XTMP, or other scratch globals designed to be passed between parts of a package) are created by the application.
A new extension must be added to the SAC stating that this global should be used as a scratch area when a translated scratch global is required by software applications.
[image: Note]	REF: To view the entire SAC document, see the SACC website at: http://vaww.vista.med.va.gov/sacc/

[bookmark: _Toc458599838]Glossary

	Term
	Definition

	ALERTS
	An alert notifies one or more users of a matter requiring immediate attention. Alerts function as brief notices that are distinct from mail messages or triggered bulletins.
Alerts are designed to provide interactive notification of pending computing activities (e.g., the need to reorder supplies or review a patient’s clinical test results). Along with the alert message is an indication that the View Alerts common option should be chosen to take further action.
An alert includes any specifications made by the developer when designing the alert. This minimally includes the alert message and the list of recipients (an information-only alert). It can also include an alert action, software application identifier, alert flag, and alert data. Alerts are stored in the ALERT file (#8992).

	ALERT ACTION
	The computing activity that can be associated with an alert (i.e., an option [XQAOPT input variable] or routine [XQAROU input variable]).

	ALERT DATA
	An optional string that the developer can define when creating the alert. This string is restored in the XQADATA input variable when the alert action is taken.

	ALERT FLAG
	An optional tool currently controlled by the Alert Handler to indicate how the alert should be processed (XQAFLG input variable).

	ALERT HANDLER
	The name of the mechanism by which alerts are stored, presented to the user, processed, and deleted. The Alert Handler is a part of Kernel, in the XQAL namespace.

	ALERT IDENTIFIER
	A three-semicolon piece identifier, composed of the original Package Identifier (described below) as the first piece; the DUZ of the alert creator as the second piece; and the date and time (in VA FileMan format) when the alert was created as the third piece. The Alert Identifier is created by the Alert Handler and uniquely identifies an alert.

	ALERT MESSAGE
	One line of text that is displayed to the user (the XQAMSG input variable).

	ALPHA TESTING
	In VA terminology, Alpha testing is when a VistA test software application is running in a site’s account.

	AUDIT ACCESS
	A user’s authorization to mark the information stored in a computer file to be audited.

	AUDITING
	Monitoring computer usage such as changes to the database and other user activity. Audit data can be logged in a number of VA FileMan and Kernel files.

	AUTO MENU
	An indication to Menu Manager that the current user’s menu items should be displayed automatically. When AUTO MENU is not in effect, the user must enter a question mark at the menu’s select prompt to see the list of menu items.

	BETA TESTING
	In VA terminology, Beta testing is when a VistA test software application is running in a Production account.

	CAPACITY MANAGEMENT
	The process of assessing a system’s capacity and evaluating its efficiency relative to workload in an attempt to optimize system performance. Kernel provides several utilities.

	CARET
	A symbol expressed as ^ (caret). In many M systems, a caret is used as an exiting tool from an option. Also referred to as the “up-arrow” symbol.

	CHECKSUM
	A numeric value that is the result of a mathematical computation involving the characters of a routine or file.

	CIPHER
	A system that arbitrarily represents each character as one or more other characters.
(See also: ENCRYPTION.)

	COMMON MENU
	Options that are available to all users. Entering two question marks (“??”) at the menu’s select prompt displays any SECONDARY MENU OPTIONS available to the signed-on user along with the common options available to all users.

	COMPILED MENU SYSTEM (^XUTL GLOBAL)
	Job-specific information that is kept on each CPU so that it is readily available during the user’s session. It is stored in the ^XUTL global, which is maintained by the menu system to hold commonly referenced information. The user’s place within the menu trees is stored, for example, to enable navigation via menu jumping.

	COMPUTED FIELD
	This field takes data from other fields and performs a predetermined mathematical function (e.g., adding two columns together). You do not, however, see the results of the mathematical function on the screen. Only when you are printing or displaying information on the screen do you see the results for this type of field.

	DEVICE HANDLER
	The Kernel module that provides a mechanism for accessing peripherals and using them in controlled ways (e.g., user access to printers or other output devices).

	DIFROM
	VA FileMan utility that gathers all software components and changes them into routines (namespaceI* routines) so that they can be exported and installed in another VA FileMan environment.

	DOUBLE QUOTE (“)
	A symbol used in front of a Common option’s menu text or synonym to select it from the Common menu. For example, the five character string “TBOX selects the User’s Toolbox Common option.

	DR STRING
	The set of characters used to define the DR variable when calling VA FileMan. Since a series of parameters may be included within quotes as a literal string, the variable’s definition is often called the DR string. To define the fields within an edit sequence, for example, the developer may specify the fields using a DR string rather than an INPUT template.

	DUZ(0)
	A local variable that holds the FILE MANAGER ACCESS CODE of the signed-on user.

	ENCRYPTION
	Scrambling data or messages with a cipher or code so that they are unreadable without a secret key. In some cases encryption algorithms are one directional, that is, they only encode and the resulting data cannot be unscrambled (e.g., Access and Verify codes).

	
FILE ACCESS SECURITY SYSTEM
	Formerly known as Part 3 of the Kernel Inits. If the File Access Security conversion has been run, file-level security for VA FileMan files is controlled by Kernel’s File Access Security system, not by VA FileMan Access codes (i.e., FILE MANAGER ACCESS CODE field).

	FORCED QUEUING
	A device attribute indicating that the device can only accept queued tasks. If a job is sent for foreground processing, the device rejects it and prompts the user to queue the task instead.

	GO-HOME JUMP
	A menu jump that returns the user to the primary menu presented at signon. It is specified by entering two carets (“^^”) at the menu’s select prompt. It resembles the Rubber-band Jump but without an option specification after the carets.

	HELP PROCESSOR
	A Kernel module that provides a system for creating and displaying online documentation. It is integrated within the menu system so that help frames associated with options can be displayed with a standard query at the menu’s select prompt.

	HOST FILE SERVER (HFS)
	A procedure available on layered systems whereby a file on the host system can be identified to receive output. It is implemented by the Device Handler’s HFS device type.

	INIT
	Initialization of a software application. INIT* routines are built by VA FileMan’s DIFROM and, when run, recreate a set of files and other software components.

	JUMP
	In VistA applications, the Jump command allows you to go from a particular field within an option to another field within that same option. You can also Jump from one menu option to another menu option without having to respond to all the prompts in between. To jump, type a caret (“^”, uppercase-6 key on most keyboards) and then type the name of the field or option to which you wish to jump.
(See also GO-HOME JUMP, PHANTOM JUMP, RUBBER-BAND JUMP, or UP-ARROW JUMP.)

	JUMP START
	A logon procedure whereby the user enters the “Access code;Verify code;option” to go immediately to the target option, indicated by its menu text or synonym. The jump syntax can be used to reach an option within the menu trees by entering “Access;Verify;^option”.

	KERMIT
	A standard file transfer protocol. It is supported by Kernel and can be set up as an alternate editor.

	MANAGER ACCOUNT
	A UCI that can be referenced by non-manager accounts (e.g., production accounts). Like a library, the MGR UCI holds percent routines and globals (e.g., ^%ZOSF) for shared use by other UCIs.

	MENU CYCLE
	The process of first visiting a menu option by picking it from a menu’s list of choices and then returning to the menu’s select prompt. Menu Manager keeps track of information (e.g., the user’s place in the menu trees) according to the completion of a cycle through the menu system.

	MENU MANAGER
	The Kernel module that controls the presentation of user activities (e.g., menu choices or options). Information about each user’s menu choices is stored in the Compiled Menu System, the ^XUTL global, for easy and efficient access.

	MENU SYSTEM
	The overall Menu Manager logic as it functions within the Kernel framework.

	MENU TEMPLATE
	An association of options as pathway specifications to reach one or more final destination options. The final options must be executable activities and not merely menus for the template to function. Any user can define user-specific MENU templates via the corresponding Common option.

	MENU TREES
	The menu system’s hierarchical tree-like structures that can be traversed or navigated, like pathways, to give users easy access to various options.

	PAC
	Programmer Access Code. An optional user attribute that can function as a second level password into Programmer mode.

	PACKAGE IDENTIFIER
	An optional identifier that the developer can use to identify the alert for such purposes as subsequent lookup and deletion (XQAID input variable).

	PART 3 OF THE KERNEL INIT
	See FILE ACCESS SECURITY SYSTEM.

	PATTERN MATCH
	A preset formula used to test strings of data. Refer to your system’s M Language Manuals for information on Pattern Match operations.

	PHANTOM JUMP
	Menu jumping in the background. Used by the menu system to check menu pathway restrictions.

	PRIMARY MENUS
	The list of options presented at signon. Each user must have a PRIMARY MENU OPTION in order to sign on and reach Menu Manager. Users are given primary menus by system administrators. This menu should include most of the computing activities the user needs.

	PROGRAMMER ACCESS
	Privilege to become a programmer on the system and work outside many of the security controls of Kernel. Accessing Programmer mode from Kernel’s menus requires having the developer’s at-sign security code, which sets the variable DUZ()=@.

	PROTOCOL
	An entry in the PROTOCOL file (#101). Used by the Order Entry/Results Reporting (OE/RR) software to support the ordering of medical tests and other activities. Kernel includes several protocol-type options for enhanced menu displays within the OE/RR software.

	PURGE INDICATOR
	Checked by the Alert Handler (in the XQAKILL input variable) to determine whether an alert should be deleted, and whether deletion should be for the current user or for all users who might receive the alert.

	QUEUING
	Requesting that a job be processed in the background rather than in the foreground within the current session. Kernel’s TaskMan module handles the queuing of tasks.

	QUEUING REQUIRED
	An option attribute that specifies that the option must be processed by TaskMan (the option can only be queued). The option can be invoked and the job prepared for processing, but the output can only be generated during the specified time periods.

	RESOURCE
	A method that enables sequential processing of tasks. The processing is accomplished with a RES device type designed by the application developer and implemented by system administrators. The process is controlled via the RESOURCE file (#3.54).

	RUBBER-BAND JUMP
	A menu jump used to go out to an option and then return, in a bouncing motion. The syntax of the jump is two carets (“^^”, uppercase-6 on most keyboards) followed by an option’s menu text or synonym (e.g., ^^Print Option File). If the two carets are not followed by an option specification, the user is returned to the primary menu.
(See also: GO-HOME JUMP.)

	SCHEDULING OPTIONS
	A way of ordering TaskMan to run an option at a designated time with a specified rescheduling frequency (e.g., once per week).

	SCROLL/NO SCROLL
	The Scroll/No Scroll button (also called Hold Screen) allows the user to “stop” (No Scroll) the terminal screen when large amounts of data are displayed too fast to read and “restart” (Scroll) when the user wishes to continue.

	SECONDARY MENU OPTIONS
	Options assigned to individual users to tailor their menu choices. If a user needs a few options in addition to those available on the primary menu, the options can be assigned as secondary options. To facilitate menu jumping, secondary menus should be specific activities, not elaborate and deep menu trees.

	SECURE MENU DELEGATION (SMD)
	A controlled system whereby menus and keys can be allocated by people other than system administrators (e.g., application coordinators) who have been so authorized. SMD is a part of Menu Manager.

	SERVER OPTION
	In VistA, an entry in the OPTION file (#19). An automated mail protocol that is activated by sending a message to the server with the “S.server” syntax. A server option’s activity is specified in the OPTION file (#19) and can be the running of a routine or the placement of data into a file.

	SIGNON/SECURITY
	The Kernel module that regulates access to the menu system. It performs a number of checks to determine whether access can be permitted at a particular time. A log of signons is maintained.

	SPECIAL QUEUEING
	An option attribute indicating that TaskMan should automatically run the option whenever the system reboots.

	SPOOLER
	An entry in the DEVICE file (#3.5). It uses the associated operating system’s spool facility, whether it is a global, device, or host file. Kernel manages spooling so that the underlying OS mechanism is transparent. In any environment, the same method can be used to send output to the spooler. Kernel subsequently transfers the text to a global for subsequent despooling (printing).

	SYNONYM
	In VistA, a field in the OPTION file (#19). Options can be selected by their menu text or synonym.
(See also: MENU TEXT.)

	TASKMAN
	The Kernel module that schedules and processes background tasks (also called Task Manager).

	TIMED READ
	The amount of time Kernel waits for a user response to an interactive READ command before starting to halt the process.

	UP-ARROW JUMP
	In the menu system, entering a caret (“^”) followed by an option name accomplishes a jump to the target option without needing to take the usual steps through the menu pathway.

	XINDEX
	A Kernel utility used to verify routines and other M code associated with a software application. Checking is done according to current ANSI MUMPS standards and VistA programming standards. This tool can be invoked through an option or from direct mode (>D ^XINDEX).

	Z EDITOR (^%Z)
	A Kernel tool used to edit routines or globals. It can be invoked with an option, or from direct mode after loading a routine with >X ^%Z.

	ZOSF GLOBAL (^%ZOSF)
	The Operating System File—a manager account global distributed with Kernel to provide an interface between VistA software and the underlying operating system. This global is built during Kernel installation when running the manager setup routine (ZTMGRSET). The nodes of the global are filled-in with operating system-specific code to enable interaction with the operating system. Nodes in the ^%ZOSF global can be referenced by VistA application developers so that separate versions of the software need not be written for each operating system.

[image: Note]	REF: For a list of commonly used terms and definitions, see the OI&T Master Glossary VA Intranet Website.

For a list of commonly used acronyms, see the VA Acronym Lookup Intranet Website.

Glossary

810	Kernel	July 1995
	Developer’s Guide	Revised March 2015
	Version 8.0
[bookmark: _Toc458599839]Index
Index

$
$$%H^XLFDT, 503
$$ABS^XLFMTH, 529
$$ACCESS^XQCHK, 218
$$ACOS^XLFMTH, 530
$$ACOSDEG^XLFMTH, 530
$$ACOSH^XLFHYPER, 523
$$ACOT^XLFMTH, 531
$$ACOTDEG^XLFMTH, 531
$$ACOTH^XLFHYPER, 524
$$ACSC^XLFMTH, 532
$$ACSCDEG^XLFMTH, 532
$$ACSCH^XLFHYPER, 524
$$ACTIVE^XUAF4, 121
$$ACTIVE^XUSER, 467
$$ACTJ^%ZOSV, 262
$$ADD^XPDMENU, 210
$$ADD^XPDPROT, 213
$$ADD^XUSERNEW, 290
$$ADDRESS^XLFNSLK, 88
$$AESDECR^XUSHSH, 48
$$AESENCR^XUSHSH, 49
$$ASEC^XLFMTH, 533
$$ASECDEG^XLFMTH, 533
$$ASECH^XLFHYPER, 525
$$ASIN^XLFMTH, 534
$$ASINDEG^XLFMTH, 534
$$ASINH^XLFHYPER, 525
$$ASKSTOP^%ZTLOAD, 333
$$ATAN^XLFMTH, 535
$$ATANDEG^XLFMTH, 535
$$ATANH^XLFHYPER, 526
$$ATTRIB^MXMLDOM, 576
$$AVJ^%ZOSV, 263
$$B64DECD^XUSHSH, 50
$$B64ENCD^XUSHSH, 50
$$BASE^XLFUTL, 563
$$BLDNAME^XLFNAME, 232
$$BSA^XLFMSMT, 549
$$CCD^XLFUTL, 564
$$CHECKAV^XUSRB, 291
$$CHECKAV^XUVERIFY, 297
$$CHILD^MXMLDOM, 577
$$CHKDGT^XUSNPI, 254
$$CHKSUM^XUSESIG1, 91
$$CIRN^XUAF4, 122
$$CJ^XLFSTR, 554
$$CLEANC^XLFNAME, 234
$$CMNT^MXMLDOM, 577
$$CMP^XUSESIG1, 91
$$CNV^XLFUTL, 564
$$CODE2TXT^XUA4A72, 464
$$COMCP^XPDUTL, 192
$$CONVERT^XLFIPV, 567
$$COS^XLFMTH, 536
$$COSDEG^XLFMTH, 536
$$COSH^XLFHYPER, 526
$$COT^XLFMTH, 537
$$COTDEG^XLFMTH, 537
$$COTH^XLFHYPER, 527
$$CRC16^XLFCRC, 500
$$CRC32^XLFCRC, 502
$$CREATE^XUSAP, 285
$$CSC^XLFMTH, 538
$$CSCDEG^XLFMTH, 538
$$CSCH^XLFHYPER, 527
$$CURCP^XPDUTL, 193
$$CURRSURO^XQALSURO, 39
$$DE^XUSESIG1, 92
$$DEA^XUSER, 468
$$DEC^XLFUTL, 565
$$DECDMS^XLFMTH, 539
$$DECODE^XTHCUTL, 377
$$DECRYP^XUSRB1, 294
$$DEFDIR^%ZISH, 112
$$DEL^%ZISH, 113
$$DELETE^XPDMENU, 210
$$DELETE^XPDPROT, 214
$$DEV^XUTMDEVQ, 312
$$DMSDEC^XLFMTH, 539
$$DOW^XLFDT, 503
$$DT^XLFDT, 504
$$DTIME^XUP, 465
$$DTR^XLFMTH, 540
$$E^XLFMTH, 540
$$EC^%ZOSV, 96
$$EN^MXMLDOM, 579
$$EN^XUA4A71, 226
$$EN^XUSESIG1, 92
$$EN^XUWORKDY, 229
$$ENCODE^XTHCURL, 374
$$ENCRYP^XUSRB1, 295
$$ESBLOCK^XUSESIG1, 92
$$EXP^XLFMTH, 541
$$FIPS^XIPUTIL, 4
$$FIPSCHK^XIPUTIL, 5
$$FMADD^XLFDT, 505
$$FMDIFF^XLFDT, 505
$$FMNAME^XLFNAME, 236
$$FMTE^XLFDT, 506
$$FMTH^XLFDT, 511
$$FMTHL7^XLFDT, 511
$$FORCEIP4^XLFIPV, 568
$$FORCEIP6^XLFIPV, 569
$$FTG^%ZISH, 114
$$GATF^%ZISH, 115
$$GET^XPAR, 405
$$GET^XUA4A72, 464
$$GET^XUPARAM, 280
$$GET1^DID, 172
$$GETMASTR^XTID, 416
$$GETRPLC^XTIDTRM, 348
$$GETSTAT^XTID, 417
$$GETSURO^XQALSURO, 39
$$GETURL^XTHC10, 372
$$GETVUID^XTID, 419
$$GTF^%ZISH, 116
$$HADD^XLFDT, 512
$$HANDLE^XUSRB4, 295
$$HDIFF^XLFDT, 512
$$HL7TFM^XLFDT, 513
$$HLNAME^XLFNAME, 238
$$HTE^XLFDT, 515
$$HTFM^XLFDT, 517
$$ID^XUAF4, 124
$$IDX^XUAF4, 124
$$IEN^XUAF4, 125
$$IEN^XUMF, 134
$$IEN^XUPS, 45
$$IEN2CODE^XUA4A72, 465
$$INHIBIT^XUSRB, 292
$$INSTALDT^XPDUTL, 193
$$INVERT^XLFSTR, 555
$$JOB^%ZTLOAD, 336
$$KCHK^XUSRB, 480
$$KSP^XUPARAM, 281
$$LAST^XPDUTL, 194
$$LEGACY^XUAF4, 125
$$LENGTH^XLFMSMT, 550
$$LGR^%ZOSV, 264
$$LIST^%ZISH, 116
$$LJ^XLFSTR, 555
$$LKOPT^XPDMENU, 211
$$LKPROT^XPDPROT, 215
$$LKUP^XPDKEY, 270
$$LKUP^XUAF4, 126
$$LKUP^XUPARAM, 282
$$LN^XLFMTH, 541
$$LOG^XLFMTH, 542
$$LOOKUP^XUSER, 473
$$LOW^XLFSTR, 556
$$MADD^XUAF4, 127
$$MAKEURL^XTHCURL, 375
$$MAX^XLFMTH, 542
$$MIN^XLFMTH, 543
$$MV^%ZISH, 117
$$NAME^MXMLDOM, 580
$$NAME^XUAF4, 127
$$NAME^XUSER, 475
$$NAMEFMT^XLFNAME, 241
$$NEWCP^XPDUTL, 196
$$NEWERR^%ZTER, 99
$$NNT^XUAF4, 128
$$NODEV^XUTMDEVQ, 316
$$NOW^XLFDT, 517
$$NPI^XUSNPI, 255
$$NS^XUAF4, 128
$$O99^XUAF4, 129
$$OPTDE^XPDUTL, 197
$$OS^%ZOSV, 265
$$PADD^XUAF4, 129
$$PARCP^XPDUTL, 197
$$PARENT^MXMLDOM, 580
$$PARSEURL^XTHCURL, 376
$$PATCH^XPDUTL, 198
$$PENDING^XQALBUTL, 18
$$PI^XLFMTH, 543
$$PKG^XPDUTL, 198
$$PKGPAT^XPDIP, 191
$$PKGPEND^XQALBUTL, 19
$$PRNT^XUAF4, 130
$$PROD^XUPROD, 283
$$PRODE^XPDUTL, 199
$$PROVIDER^XUSER, 476
$$PSET^%ZTLOAD, 337
$$PWD^%ZISH, 119
$$PWR^XLFMTH, 544
$$QI^XUSNPI, 256
$$QQ^XUTMDEVQ, 318
$$RENAME^XPDKEY, 270
$$REPEAT^XLFSTR, 557
$$REPLACE^XLFSTR, 557
$$REQQ^XUTMDEVQ, 321
$$RES^XUDHSET, 58
$$REWIND^%ZIS, 70
$$RF^XUAF4, 131
$$RJ^XLFSTR, 558
$$RPLCLST^XTIDTRM, 349
$$RPLCMNT^XTIDTRM, 350
$$RPLCTRL^XTIDTRM, 351
$$RPLCVALS^XTIDTRM, 352
$$RSADECR^XUSHSH, 51
$$RSAENCR^XUSHSH, 52
$$RT^XUAF4, 131
$$RTD^XLFMTH, 544
$$RTNUP^XPDUTL, 199
$$S^%ZTLOAD, 343
$$SCH^XLFDT, 518
$$SCREEN^XTID, 420
$$SD^XLFMTH, 545
$$SDEA^XUSER, 477
$$SDETOX^XUSER, 471
$$SEC^XLFDT, 521
$$SEC^XLFMTH, 545
$$SECDEG^XLFMTH, 546
$$SECH^XLFHYPER, 528
$$SENTENCE^XLFSTR, 559
$$SETMASTR^XTID, 422
$$SETSTAT^XTID, 353, 423
$$SETUP1^XQALERT, 31
$$SETVUID^XTID, 425
$$SHAHASH^XUSHSH, 53
$$SIBLING^MXMLDOM, 581
$$SIN^XLFMTH, 546
$$SINDEG^XLFMTH, 547
$$SINH^XLFHYPER, 528
$$SQRT^XLFMTH, 547
$$STA^XUAF4, 133
$$STATUS^%ZISH, 119
$$STRIP^XLFSTR, 559
$$SYMENC^MXMLUTL, 588
$$TAN^XLFMTH, 548
$$TANDEG^XLFMTH, 548
$$TANH^XLFHYPER, 529
$$TAXIND^XUSTAX, 257
$$TAXORG^XUSTAX, 258
$$TEMP^XLFMSMT, 551
$$TEXT^MXMLDOM, 581
$$TF^XUAF4, 133
$$TITLE^XLFSTR, 560
$$TM^%ZTLOAD, 345
$$TRIM^XLFSTR, 561
$$TYPE^XPDMENU, 212
$$TYPE^XPDPROT, 217
$$TZ^XLFDT, 522
$$UP^XLFSTR, 562
$$UPCP^XPDUTL, 200
$$VALIDATE^XLFIPV, 570
$$VALUE^MXMLDOM, 582
$$VCD^XLFUTL, 566
$$VDEA^XUSER, 479
$$VER^XPDUTL, 200
$$VERCP^XPDUTL, 201
$$VERSION^%ZOSV, 268
$$VERSION^XLFIPV, 571
$$VERSION^XPDUTL, 201
$$VOLUME^XLFMSMT, 552
$$VPID^XUPS, 45
$$WEIGHT^XLFMSMT, 553
$$WHAT^XUAF4, 134
$$WITHIN^XLFDT, 522
$$WORKDAY^XUWORKDY, 230
$$WORKPLUS^XUWORKDY, 231
$$XMLHDR^MXMLUTL, 588
%
%G Utility, 222
%Index of Routines Option, 429, 444
%RR Routine, 434
%RS Routine, 434
%ZTPP Utility, 432
%ZTRDEL Routine, 434
^
^ %RR Direct Mode Utility, 427
^ %RS Direct Mode Utility, 428
^%G (OS-specific)
Direct Mode Utility, 222
^%G Direct Mode Utility, 221
^%INDEX Direct Mode Utility, 427, 436
^%RR Direct Mode Utility, 434
^%RS Direct Mode Utility, 434
^%Z Direct Mode Utility, 427, 432
^%Z Editor, 222, 224, 431, 432
User Interface, 222
^%Z Global, 222
^%ZIS, 58
^%ZISC, 71
^%ZOSF
Global, 259
Nodes, 259
ACTJ, 260
AVJ, 260
BRK, 260
DEL, 260
EOFF, 260
EON, 260
EOT, 260
ERRTN, 260
ETRP, 260
GD, 260
GSEL, 260
JOBPARAM, 260
LABOFF, 260
LOAD, 260
LPC, 260
MAGTAPE, 261
MAXSIZ, 261
MGR, 259, 261
MTBOT, 261
MTERR, 261
MTONLINE, 261
MTWPROT, 261
NBRK, 261
NO-PASSALL, 261
NO-TYPE-AHEAD, 261
OS, 261
PASSALL, 261
PRIINQ, 261
PRIORITY, 261
PROD, 259, 261
PROGMODE, 261
RD, 261
RESJOB, 261
RM, 261
RSEL, 261
RSUM, 261
RSUM1, 262
SAVE, 262
SIZE, 262
SS, 262
TEST, 262
TMK, 262
TRAP, 262
TRMOFF, 262
TRMON, 262
TRMRD, 262
TYPE-AHEAD, 262
UCI, 262
UCICHECK, 262
UPPERCASE, 262
VOL, 259, 262
XY, 262
ZD, 262
^%ZTBKC Direct Mode Utility, 259
^%ZTER, 97
^%ZTER Direct Mode Utility, 436, 438
^%ZTLOAD, 304
^%ZTP1 Direct Mode Utility, 427
^%ZTPP Direct Mode Utility, 427, 432
^%ZTRDEL Direct Mode Utility, 427, 434
^nsNTEG Direct Mode Utility, 436
^XGF Direct Mode Utilities, 484
^XGFDEMO Direct Mode Utility, 484
^XINDEX Direct Mode Utility, 427, 435, 436, 444
^XQ1 Direct Mode Utility, 209
^XQDATE, 227
^XTEMP Global, 429, 439
^XTER Direct Mode Utility, 436, 438
^XTERPUR, 438
^XTERPUR Direct Mode Utility, 436, 438
^XTFCE Direct Mode Utility, 427, 431
^XTFCR Direct Mode Utility, 427, 431
^XTMUNIT, 392, 393
^XTMUNIT1 Routine, 392
^XTMZZUT1 Routine, 393
^XTRCMP Direct Mode Utility, 427, 434
^XTRGRPE Direct Mode Utility, 427, 431
^XTVCHG Direct Mode Utility, 427, 432
^XTVNUM Direct Mode Utility, 427, 432
^XUP Direct Mode Utility, 276, 438
^XUP Routine, 209
^XUS Direct Mode Utility, 276
^XUSCLEAN, 277
^XUSCLEAN Direct Mode Utility, 277
^XUSEC Global, 269
^XUSESIG, 90
^XUVERIFY, 296
^XUWORKDY, 227
^ZTEDIT Direct Mode Utility, 222
^ZTMGRSET Direct Mode Utility, 259
^ZU Direct Mode Utility, 277
A
Aborting an Installation During the Pre-Install Routine (KIDS), 171
Aborting Installations During the Environment Check (KIDS), 167
Accessing Questions and Answers (KIDS), 175
Acronyms
Intranet Website, 597
ACTION Menu, 224
ACTION^XQALERT, 22
ACTION^XQH4, 110
Actual Usage of Alpha/Beta Test Options Option, 187
ADD^XPAR, 401
Adding New Users
$$ADD^XUSERNEW, 290
ADDPAT^XULMU, 205
ADDRESS FOR USAGE REPORTING Field (#22), 185, 188
Address Hygiene
$$FIPS^XIPUTIL, 4
$$FIPSCHK^XIPUTIL, 5
APIs, 3
CCODE^XIPUTIL, 3
Developer Tools, 3
POSTAL^XIPUTIL, 5
POSTALB^XIPUTIL, 8
Advanced Build Techniques (KIDS), 165
AHISTORY^XQALBUTL, 13
AK.Keyname Cross-reference, 269
ALERT File (#8992), 10, 12, 23, 28, 32, 37, 43, 592
Alert Identifier, 11
ALERT TRACKING File (#8992.1), 11, 13, 14, 15, 21, 22, 25, 32
ALERTDAT^XQALBUTL, 15
Alerts
$$CURRSURO^XQALSURO, 39
$$GETSURO^XQALSURO, 39
$$PENDING^XQALBUTL, 18
$$PKGPEND^XQALBUTL, 19
$$SETUP1^XQALERT, 31
ACTION^XQALERT, 22
AHISTORY^XQALBUTL, 13
Alert Identifier, 11
ALERTDAT^XQALBUTL, 15
APIs, 13
DELETE^XQALERT, 23, 24
DELSTAT^XQALBUTL, 16
Developer Tools
Overview, 10
FORWARD^XQALFWD, 37
GETACT^XQALERT, 25
Glossary, 12
NOTIPURG^XQALBUTL, 17
Package Identifier, 11
PATIENT^XQALERT, 26
PTPURG^XQALBUTL, 20
RECIPURG^XQALBUTL, 20
REMVSURO^XQALSURO, 40
SETSURO1^XQALSURO, 41
SETUP^XQALERT, 27
SUROFOR^XQALSURO, 42
SUROLIST^XQALSURO, 43
USER^XQALERT, 36
USERDATA^XQALBUTL, 21
USERLIST^XQALBUTL, 22
ALERTS File (#8992), 33
ALPHA,BETA TEST OPTION Multiple Field (#33), 184, 189
Alpha/Beta Test Option Usage Menu, 187
ALPHA/BETA TEST PACKAGE Multiple Field (#32), 184, 189
ALPHA/BETA TESTING Field (#20), 185, 189
Alpha/Beta Tracking
Initiating (KIDS), 185
Build Entry, 185
Local Option Counting, 184
Monitoring (KIDS), 187
Purging of the Option Counts, 188
Send Alpha/Beta Usage to Programmers Option, 188
Sending a Summary Message, 186, 188
Terminating (KIDS), 188
Terminating Tracking
Local Test Software Option Usage, 189
National Release Software Option Usage, 189
Usage Reports (KIDS), 187
Alpha/Beta Tracking (KIDS), 184
Analyzing Routines
Routine Tools, 429
APIs, 202
CHKLOCAL^XDRMERG2, 370
Document Object Model (DOM), 573
LKUP^XTLKMGR, 381
Lock Manager
Housekeeping, 202
M Unit, 393
Obsolete
XRT0 Output Parameter, Start Time, 266
XRTN Input Parameter, Routine Name, 268
APP PROXY ALLOWED Field (#.11), 285
Appending Text to a Server Request Bulletin or Mailman Reply, 274
Application Programming Interface (API)
Address Hygiene, 3
Alerts, 13
Common Services, 45
Data Security, 48
DEA ePCS Utility, 468, 471, 477, 479
Device Handler, 55
DNS, 88
Electronic Signatures, 90
Error Processing, 96
Field Monitoring, 101
Help Processor, 109
Host Files, 111
Institution File, 121
KIDS, 190
Menu Manager, 210
Miscellaneous, 225
Name Standardization, 232
National Provider Identifier (NPI), 254
Operating System, 259
Security Keys, 269
Signon/Security, 280
Spooling, 300
TaskMan, 312
Toolkit, 346
Unwinder, 461
User, 464
XGF Function Library, 485
XLF Function Library, 500
XML, 576
Application Programming Interfaces (APIs), 202
M Unit, 393
Application Proxy User, 285, 286
Ask if Production Account Option, 283
Ask Installation Questions, How to (KIDS), 174
Assumptions, lxiv
AUTO MENU, 208
AVHLPTXT^XUS2, 284
B
BLDLST^XPAREDIT, 410
BMES^XPDUTL, 192
Build Entries (KIDS), 143
BUILD File (#9.6), 143, 148, 166, 170, 172, 181, 185, 188, 189, 198, 200, 429, 433, 439
Build Name (KIDS), 148
Build Screens (KIDS), 146
C
Calculate and Show Checksum Values Option
Programmer Options Menu, 437, 438
CALL^%ZISTCP, 79
Callable Entry Points
XTLKKWL, 381
Calling
^%ZTLOAD to Create Tasks (TaskMan), 301
^%ZTLOAD within a Task (TaskMan), 307
Device Handler (^%ZIS) within a Task (TaskMan), 307
EN^XUTMDEVQ to Create Tasks (TaskMan), 302
Callout Boxes, lxii
CAN DELETE WITHOUT PROCESSING Field (#.1), 28, 32
Candidate Collection, Selecting Fields to Compare in, 360
Capacity Management
Response Time Measures (Obsolete)
APIs
XRT0 Output Parameter, Start Time, 266
XRTN Input Parameter, Routine Name, 268
Capacity Planning
National Database, 265
CCODE^XIPUTIL, 3
CDSYS^XUAF4, 121
CHCKSUM^XTSUMBLD Direct Mode Utility, 435, 437, 438
CHECK^XTSUMBLD Routine, 433, 435, 438
CHECK1^XTSUMBLD Routine, 433, 435, 438
Checking
For Background Execution
ZTQUEUED (TaskMan), 306
For Stop Requests (TaskMan), 304
Checkpoint Parameter Node, 178
Checkpoints with Callbacks, 177
Checkpoints without Callbacks (Data Storage), 180
CHECKSUM REPORT Field, 433
CHECKSUM VALUE Field, 433
Checksums, 224, 434, 437
CHG^XPAR, 402
CHGA^XGF, 485
child node, 586
CHILDREN^XUAF4, 122
CHKLOCAL^XDRMERG2 API, 370
Choosing What Data to Send with a File (KIDS), 152
Clean Error Trap Option, 96
CLEAN^XGF, 486
CLEANUP^XULMU, 202
CLEAR^XGF, 487
CLOSE^%ZISH, 112
CLOSE^%ZISTCP, 80
CLOSE^%ZISUTL, 81
CLOSEST PRINTER Field, 65
CMNT^MXMLDOM, 578
Common Services
$$IEN^XUPS, 45
$$VPID^XUPS, 45
APIs, 45
Developer Tools, 45
EN1^XUPSQRY, 46
Compare local/national checksums report Option, 433, 438
Compare Routines on Tape to Disk Option, 433
Compare Two Routines Option, 434
Comparing Routines
Routine Tools, 433
Conformance Error, 576
Conforming XML, 575
Contents, xxii
Controlling
The Disable Options/Protocols Prompt (KIDS), 168
The Move Routines to Other CPUs Prompt (KIDS), 169
The Queueing of the Install Prompt (KIDS), 168
Convert
$H to External Format, 515
$H to VA FileMan Date Format, 517
$H/VA FileMan date to Seconds, 521
Another Base to Base 10, 565
Base 10 to Another Base, 564
Between Two Bases, 563
Decimals to Degrees:Minutes:Seconds, 539
Degrees to Radians, 540
Degrees:Minutes:Seconds to Decimal, 539
Domain Name to IP Addresses, 88
HL7 Date to VA FileMan Date, 513
HL7 Formatted Name to Name, 236
Length Measurement, 550
Name to HL7 Formatted Name, 238
Radians to Degrees, 544
Seconds to $H, 503
String to Lowercase, 556
String to Soundex, 226
String to Uppercase, 562
Temperature Measurement, 551
VA FileMan Date to $H, 511
VA FileMan Date to External Format, 506
VA FileMan Date to HL7 Date, 511
Volume Measurement, 552
Weight Measurement, 553
Copy Build to Build (KIDS), 145
COUNTY CODE File (#5.13), 6, 8
CRC Functions
$$CRC16^XLFCRC, 500
$$CRC32^XLFCRC, 502
CRC Functions (XLF), 500
Create a Build Using Namespace (KIDS), 144
Creating
Tasks Using Scheduled Options (TaskMan), 302
Creating a Package-specific User Termination Action, 279
Creating Builds (KIDS), 143
Creating Options, 207
Creating Transport Globals that Install Efficiently (KIDS), 164
Customized Merge, 356
Customizing a Server Request Bulletin, 274
CVC^XUSRB, 292
D
Data Dictionary
Data Dictionary Utilities Menu, lxiv
Listings, lxiv
Data Dictionary Cleanup (KIDS), 155
Data Dictionary Update (KIDS), 148
Data Security
$$AESDECR^XUSHSH, 48
$$AESENCR^XUSHSH, 49
$$B64DECD^XUSHSH, 50
$$B64ENCD^XUSHSH, 50
$$RSADECR^XUSHSH, 51
$$RSAENCR^XUSHSH, 52
$$SHAHASH^XUSHSH, 53
APIs, 48
Data Standardization
Replacement Relationships, 347
Toolkit APIs, 346
Databases
Capacity Planning National Database, 265
Date Functions
$$$H^XLFDT, 503
$$DOW^XLFDT, 503
$$DT^XLFDT, 504
$$FMADD^XLFDT, 505
$$FMDIFF^XLFDT, 505
$$FMTE^XLFDT, 506
$$FMTH^XLFDT, 511
$$FMTHL7^XLFDT, 511
$$HADD^XLFDT, 512
$$HDIFF^XLFDT, 512
$$HL7TFM^XLFDT, 513
$$HTE^XLFDT, 515
$$HTFM^XLFDT, 517
$$NOW^XLFDT, 517
$$SCH^XLFDT, 518
$$SEC^XLFDT, 521
$$TZ^XLFDT, 522
$$WITHIN^XLFDT, 522
Date Functions (XLF), 503
Dates
Miscellaneous Developer Tools, 227
DAYS FOR BACKUP REVIEWER Field (#.15), 33
DE^XUSHSHP, 93
DEA eCPS Utility
$$DEA^XUSER, 468
$$SDEA^XUSER, 477
$$SDETOX^XUSER, 471
$$VDEA^XUSER, 479
DEA ePCS Utility
APIs, 468, 471, 477, 479
DEFAULT TIMED READ (SECONDS) Field (#210), 466
DEL^XPAR, 402
DEL^XPDKEY, 269
DELCOMP^XLFNAME2, 250
Delete a Routine or Skip Installing (KIDS), 167
Delete Old (>14d) Alerts Option, 29, 33
Delete Routines Option, 434
Delete Unreferenced Options Option, 221
DELETE^MXMLDOM, 578
DELETE^XQALERT, 23
DELETEA^XQALERT, 24
Deleting
Routines
Routine Tools, 434
DELSTAT^XQALBUTL, 16
DESC^%ZTLOAD, 333
Determining How Data is Installed at the Receiving Site (KIDS), 153
Developer Tools
^XINDEX Direct Mode Utility, 435
Address Hygiene, 3
Alerts
Overview, 10
Common Services, 45
Device Handler
Overview, 55
Domain Name Service (DNS), 88
Electronic Signatures, 90
Error Processing, 96
Field Monitoring, 101
File Access Security
Overview, 106
Help Processor, 109
Host Files, 111
Institution File, 121
KIDS, 142
M Unit
Overview, 392
Menu Manager, 207
Miscellaneous, 221
Date Conversions and Calculations, 227
Lookup Utility, 226
Progress Bar Emulator, 225
Name Standardization, 232
National Provider Identifier (NPI), 254
Operating System Interface
Overview, 259
Security Keys
Overview, 269
Server Options, 273
Signon/Security
Overview, 276
Spooling
Overview, 299
TaskMan
Overview, 301
Toolkit, 346
Unwinder, 461
User, 464
XGF Function Library
Overview, 483
XLF Function Library
Overview, 500
XML, 576
DEVICE File (#3.5), 38, 59, 60, 61, 62, 64, 65, 66, 70, 111, 400, 465, 466
Device Handler
$$RES^XUDHSET, 58
$$REWIND^%ZIS, 70
$I, 62
^%ZIS, 58
^%ZISC, 71
APIs, 55
CALL^%ZISTCP, 79
CLOSE^%ZISTCP, 80
CLOSE^%ZISUTL, 81
Developer Tools
Overview, 55
Device Type, 65
DEVICE^XUDHGUI, 55
ENDR^%ZISS, 73
ENS^%ZISS, 74
GKILL^%ZISS, 78
GSET^%ZISS, 78
Help Frames, 68, 69
HLP1^%ZIS, 68
HLP2^%ZIS, 69
HOME^%ZIS, 69
KILL^%ZISS, 79
Multiple Devices and ^%ZIS, 68
OPEN^%ZISUTL, 81
PKILL^%ZISP, 71
RMDEV^%ZISUTL, 83
SAVDEV^%ZISUTL, 84
Subtype, 64
USE^%ZISUTL, 84
DEVICE^XUDHGUI, 55
Devices
Rewinding, 70
DI DDU Menu, lxiv
Dialog Entries (KIDS), 159
DIALOG File (#.84), 159, 404
DIFROM, 143, 150, 165, 171, 173
DIFROM Variable, 166, 172
DILIST Option, lxiv
DINUM, 355, 356, 370, 371
Direct Mode Utilities
^%G, 221
^%G (OS-specific), 222
^%INDEX, 436
^%ZTER, 436
^nsNTEG, 436
^XGF, 484
^XGFDEMO, 484
^XINDEX, 435, 436
^XTER, 96, 436
^XTERPUR, 96, 436
^XTLKKWL, 381
^XUSCLEAN, 277
^ZTEDIT, 222
^ZTMB, 311
^ZTMCHK, 311
^ZTMGRSET, 259
^ZTMON, 311
^ZU, 277
CHCKSUM^XTSUMBLD, 435, 437, 438
Check Environment (TaskMan), 311
Error Processing, 96
H^XUS, 277
Menu Manager, 209
^XQ1, 209
Miscellaneous Programmer
^%ZTER, 438
^XUP, 438
Monitor TaskMan, 311
ONE^nsNTEG, 436
Operating System Interface, 259
^%ZTBKC, 259
Global Block Count, 259
Update ^%ZOSF Nodes, 259
Place Taskman in a WAIT State, 311
Remove Taskman from WAIT State Option, 311
Restart TaskMan, 311
RESTART^ZTM, 311
Routine Tools
^ %RR (OS-specific), 427
^ %RS (OS-specific), 428
^%INDEX, 427
^%RR (OS-specific), 434
^%RS (OS-specific), 434
^%Z, 427, 432
^%ZTP1, 427
^%ZTPP, 427, 432
^%ZTRDEL, 427, 434
^XINDEX, 427, 444
^XTFCE, 427, 431
^XTFCR, 427, 431
^XTRCMP, 427, 434
^XTRGRPE, 427, 431
^XTVCHG, 427, 432
^XTVNUM, 427, 432
TE^XTRCMP, 427, 433
RUN^ZTMKU, 311
Signon/Security, 276
^XUP, 276
^XUS, 276
^XUSCLEAN, 277
^ZU, 277
H^XUS, 277
Starting TaskMan, 311
STOP^ZTMKU, 311
Stopping TaskMan, 311
TaskMan, 311
Toolkit
Miscellaneous Tools, 221
Routine Tools, 427
Verification Tools, 435
Verification Tools
^%ZTER, 438
^XTER, 438
^XTERPUR, 438
^XTTER, 438
WAIT^ZTMKU, 311
XGF Function Library
^XGFDEMO, 484
Direct Mode Utility
RUNSET^XTMUNIT(setname), 392
DISABLE, 168
Disclaimers
Documentation, lxi
Software, lx
Discontinuation
USER TERMINATE ROUTINE, 279
DISP^XQORM1, 463
DISP^XUTMOPT, 322
DIV4^XUSER, 472
DIVGET^XUSRB2, 481
DIVSET^XUSRB2, 481
DK^XTLKMGR, 383
DLAYGO
^DIC Calls, 107
^DIE Calls, 107
When Navigating to Files, 106
DLL^XTLKMGR, 383
DNS
APIs, 88
DNS IP Field (#8989.3,51), 88
Document Object Model (DOM), 573, 587
Document Type Definition, 574, 575
Documentation
Symbols, lxi
Documentation Conventions, lxi
Documentation Disclaimer, lxi
Documentation Navigation, lxiii
Documents
XML, 586
DOLRO^%ZOSV, 263
Domain, 281
DOMAIN File (#4.2), 281, 400
Domain Name Service (DNS)
$$ADDRESS^XLFNSLK, 88
Developer Tools, 88
MAIL^XLFNSLK, 89
DQ^%ZTLOAD, 334
DSD^ZISPL, 300
DSDOC^ZISPL, 300
DSH^XTLKMGR, 384
DSY^XTLKMGR, 384
DUPLICATE RECORD file, 356
DUPLICATE RECORD File (#15), 355, 357, 358, 359, 362
Duplicate Record Merge
Toolkit APIs, 355
DUPLICATE RESOLUTION File (#15), 362
DUPLICATE RESOLUTION File (#15.1), 355, 358, 360
Duplicate Resolution Utilities, 358
Candidate Collection, Selecting Fields to Compare in, 360
Customized Merge, 356
DUPLICATE RECORD file, 356
DUPLICATE RECORD file (#15), 362
DUPLICATE RECORD File (#15), 357
DUPLICATE RESOLUTION file, 358
DUPLICATE RESOLUTION file (#15), 362
DUPLICATE RESOLUTION File (#15.1), 360
Duplicate Threshold%, 362
Merge Capability
Developing, 356
POTENTIAL DUPLICATE THRESHOLD%, 362
Potential Duplicates, 362
Selecting Fields to Compare in Candidate Collection, 360
Duplicate Test Routines
Examples, 366
Duplicate Threshold%, 362
DUZ(”AG”),, 276
DUZ(0), 106
DUZ(2), 276
E
Edit a Build
Components
Dialog entries, 159
Forms, 159
Options, 157
Protocols, 157
Routines, 158
Templates, 160
Components (KIDS), 156
File List
Data Dictionary Update (KIDS), 148
DD (Full or Partial) (KIDS), 150
Sending Security Codes (KIDS), 149
Files (KIDS), 148
Name & Version, Build Information (KIDS), 147
Edit a Build (KIDS), 146
Edit a Build—Screen 4 (KIDS), 174
EDIT HISTORY Multiple, 223
Edit Options, 207
EDIT^XPAREDIT, 410
EDIT^XUTMOPT, 323
Editing in Line Mode
Help, 223
Editing Routines
Routine Tools, 431
Editors
^%Z, 222, 224, 431, 432
User Interface, 222
EDITPAR^XPAREDIT, 410
Electronic Signatures
$$CHKSUM^XUSESIG1, 91
$$CMP^XUSESIG1, 91
$$DE^XUSESIG1, 92
$$EN^XUSESIG1, 92
$$ESBLOCK^XUSESIG1, 92
^XUSESIG, 90
APIs, 90
DE^XUSHSHP, 93
Developer Tools, 90
EN^XUSHSHP, 94
HASH^XUSHSHP, 94
SIG^XUSEIG, 90
EN^MXMLPRSE, 583
EN^XDRMERG, 368
EN^XPAR, 403
EN^XPAREDIT, 411
EN^XPDIJ, 191
EN^XQH, 109
EN^XQOR, 461
EN^XQORM, 462
EN^XUSHSHP, 94
EN^XUTMDEVQ, 314
EN^XUTMTP, 324
EN1^XQH, 109
EN1^XQOR, 461
EN1^XUPSQRY, 46
ENDR^%ZISS, 73
ENS^%ZISS, 74
Enter/Edit Kernel Site Parameters Option, 189
Entity
Parameter Tools
Toolkit APIs, 400
Entity Catalog, 574
VA FileMan-compatible database, 573
Entry Action Options, 208
Entry and Exit Execute Statements, 109
ENVAL^XPAR, 404
Environment Check is Run Twice (KIDS), 165
Environment Check Routine (KIDS), 165
Error
Log, 438
ERROR LOG File (#3.075), 97
ERROR MESSAGES File (#3.076), 97
Error Processing
$$NEWERR^%ZTER, 99
^%ZTER, 97
^XTER, 96
^XTERPUR, 96
APIs, 96
Developer Tools, 96
Direct Mode Utilities, 96
UNWIND^%ZTER, 100
Error Trap Display Option, 96
Errors
Conformance, 576
Log, 438
Processing Kernel Error Trapping and Reporting, 438
Reporting, 438
Tracking Alpha/Beta Software Errors (KIDS), 186
Trapping, 438
Errors Logged in Alpha/Beta Test (QUEUED) Option, 185, 186
EVE Menu, 142
Event Types
VistA XML Parser
CHARACTERS, 585
COMMENT, 585
DOCTYPE, 584
ENDDOCUMENT, 584
ENDELEMENT, 585
ERROR, 586
EXTERNAL, 585
PI, 585
STARTDOCUMENT, 584
STARTELEMENT, 585
Event Types recognized by VistA XML Parser
NOTATION, 585
Event-driven Interface, 573
Examples
XML Parser
Usage, 586
Exit Action Options, 208
EXIT^XPDID, 226
Exporting Globals (KIDS), 163
External Document Type Definition, 574, 575
External Entities, 574, 575
F
F4^XUAF4, 123
Field Level Protection, 106
Field Monitoring
APIs, 101
Developer Tools, 101
OPKG^XUHUI, 101
Fields
ADDRESS FOR USAGE REPORTING (#22), 185, 188
ALPHA,BETA TEST OPTION Multiple (#33), 184, 189
ALPHA/BETA TEST PACKAGE Multiple (#32), 184, 189
ALPHA/BETA TESTING (#20), 185, 189
APP PROXY ALLOWED (#.11), 285
CAN DELETE WITHOUT PROCESSING (#.1), 28, 32
CHECKSUM REPORT, 433
CHECKSUM VALUE, 433
CLOSEST PRINTER, 65
DAYS FOR BACKUP REVIEWER (#.15), 33
DEFAULT TIMED READ (SECONDS) (#210), 466
DNS IP (#8989.3,51), 88
EDIT HISTORY Multiple, 223
INSTALLATION MESSAGE (#21), 185
MASTER ENTRY FOR VUID, 415, 416, 422, 423
OPEN PARAMETERS, 60, 64
PACKAGE FILE LINK, 182, 183
PACKAGE NAMESPACE OR PREFIX (#23), 185
PATCH APPLICATION HISTORY (#1105, Multiple), 191
PRE-TRANSPORTATION ROUTINE f(#900), 170
Protection, 106
STATION NUMBER (#99), 133, 135
SURROGATE END DATE/TIME (#.04), 43
SURROGATE FOR ALERTS (#.02), 43
SURROGATE START DATE/TIME (#.03), 43
TIME ZONE (#1), 522
TIMED READ (# OF SECONDS) (#200.1), 466
TIMED READ (# OF SECONDS) (#51.1), 466
TRANSPORT BUILD NUMBER (#63), 433
TYPE (#4), 212
USE PARAMETERS, 64
USER CLASS (#9.5), 285
USER TERMINATE ROUTINE, 279
USER TERMINATE TAG, 279
VERSION (#22, Multiple), 191
Figures, liii
File Access
FTG^%ZISH, 575
File Access Security
Developer Tools
Overview, 106
DLAYGO
^DIC Calls, 107
^DIE Calls, 107
When Navigating to Files, 106
Field Level Protection, 106
File Navigation, 106
File Merge Capability
Developing, 356
File Navigation, 106
FileMan, 573
Files
ALERT (#8992), 10, 12, 23, 28, 32, 37, 43, 592
ALERT TRACKING (#8992.1), 11, 13, 14, 15, 21, 22, 25, 32
ALERTS(#8992), 33
BUILD (#9.6), 143, 148, 166, 170, 172, 181, 185, 188, 189, 198, 200, 429, 433, 439
COUNTY CODE (#5.13), 6, 8
DEVICE (#3.5), 400
DEVICE (#3.5), 38, 59, 60, 61, 62, 64, 65, 66, 70, 111
DEVICE (#3.5), 465
DEVICE (#3.5), 466
DIALOG (#.84), 159, 404
DOMAIN (#4.2), 281, 400
DUPLICATE RECORD (#15), 355, 357, 358, 359, 362
DUPLICATE RESOLUTION (#15), 362
DUPLICATE RESOLUTION (#15.1), 355, 358, 360
ERROR LOG (#3.075), 97
ERROR MESSAGES (#3.076), 97
FORUM ROUTINE (#9.8), 433
HELP FRAME (#9.2), 109, 110
HL7 MESSAGE TEXT (#772), 135
HOLIDAY (#40.5), 227, 229, 230, 231
HOSPITAL LOCATION (#44), 400
ICD DIAGNOSIS (#80), 386
ICD OPERATION/PROCEDURE (#80.1), 386
INDEX (#.11), 251
INSTALL (#9.7), 190, 191, 192, 195, 196, 197, 200, 429, 439
INSTITUTION (#4), 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 255, 258, 281, 400, 472
INSTITUTION ASSOCIATION TYPES (#4.05), 130, 132
KERMIT HOLDING (#8980), 378
KERNEL PARAMETERS (#8989.2), 280, 282
KERNEL SYSTEM PARAMETERS (#8989.3), 88, 112, 184, 189, 281, 290, 466
LOCAL KEYWORD (#8984.1), 382, 383, 385
LOCAL LOOKUP (#8984.4), 381, 382, 383, 384, 385, 386, 387, 391
LOCAL SHORTCUT (#8984.2), 382, 384, 390
LOCAL SYNONYM (#8984.3), 382, 384, 386, 391
MAILMAN SITE PARAMETERS (#4.3), 522
MAILMAN TIME ZONE (#4.4), 514, 522
MERGE IMAGE (#15.4), 368, 371
MUMPS OPERATING SYSTEM (#.7), 154
MUNIT TEST GROUP (#8992.8), 392
NAME COMPONENTS (#20), 233, 238, 240, 241, 245, 251, 252, 253
NAME COMPONENTS File (#20), 232, 250
NEW PERSON (#200), 18, 19, 20, 21, 37, 39, 40, 41, 42, 43, 45, 46, 90, 92, 93, 94, 101, 102, 233, 240, 245, 251, 255, 257, 269, 277, 279, 280, 285, 286, 290, 400, 464, 465, 466, 467, 468, 469, 472, 473, 475, 476
OE/RR LIST (#100.21), 400
OPTION (#19), 101, 157, 184, 207, 208, 209, 211, 212, 218, 222, 278, 289, 302, 322, 323, 324, 461
OPTION SCHEDULING (#19.2), 157, 301, 302, 303, 323
PACKAGE (#9.4), 143, 174, 181, 182, 183, 191, 201, 279, 355, 357, 358, 400, 429, 439
PARAMETER DEFINITION (#8989.51), 401, 403, 405, 410, 412
PARAMETER ENTITY (#8989.518), 400
PARAMETER TEMPLATE (#8989.52), 401, 412, 413
PARAMETERS (#8989.5), 401, 403
PATIENT (#2), 11, 20, 26, 205, 206
PERSON CLASS (#8932.1), 464, 465
PROTOCOL (#101), 101, 137, 213, 214, 215, 216, 217, 461, 462, 595
REMOTE PROCEDURE (#8994), 285
ROOM-BED (#405.4), 400
ROUTINE (#9.8), 158, 223, 433, 434
SECURITY KEY (#19.1), 269
SERVICE/SECTION (#49), 33, 400
SIGN-ON LOG (#3.081), 277
SPOOL DATA (#3.519), 300
SPOOL DOCUMENT (#3.51), 300
STATE (#5), 3, 6, 8
TASK SYNC FLAG (#14.8), 310, 311
TASKS (#14.4), 304, 305, 334
TEAM (#404.51), 400
TERMINAL TYPE (#3.2), 60, 64, 72, 73, 74
USER CLASS (#201), 285
USR CLASS (#8930), 400
VOLUME SET (#14.5), 335
XDR REPOINTED ENTRY (#15.3), 368
XML ENTITY CATALOG (#950), 574
XQAB ERRORS LOGGED (#8991.5), 185
XTV ROUTINE CHANGES (#8991), 437
XTV ROUTINE CHANGES File (#8991), 437
FIND^XPDPROT, 214
Flow Chart Entire Routine Option, 431
Flow Chart from Entry Point Option, 431
Forced Queuing, 67
Form Feeds, 64, 71
Forms (KIDS), 159
FORUM ROUTINE File (#9.8), 433
FORWARD^XQALFWD, 37
FRAME^XGF, 488
FTG^%ZISH
Read File into M Global, 575
FTP Protocol, 575
Full DD (All Fields) (KIDS), 150
Functions
FTG^%ZISH, 575
G
GETACT^XQALERT, 25
GETENT^XPAREDIT, 411
GETENV^%ZOSV, 264
GETIREF^XTID, 414
GETLST^XPAR, 406
GETPAR^XPAREDIT, 412
GETPEER^%ZOSV, 298
GETWP^XPAR, 407
GKILL^%ZISS, 78
Global
^%Z, 222
Global Block Count option, 259
Global Block Count Option, 221
Globals
^%ZOSF, 259
^%ZRTL
Obsolete, 267, 268
^XTEMP Global, 429, 439
^XTV, 184
^XUSEC, 269, 270
Block Count, 259
XTMP, 160, 161, 168, 263, 264, 295, 296, 307
XUTL, 463
Glossary, 592
Alerts, 12
Intranet Website, 597
Group Routine Edit Option, 431, 432
GSET^%ZISS, 78
H
H^XUS, 277, 283
H^XUS Direct Mode Utility, 277
HASH^XUSHSHP, 94
Header Options, 208
Help
At Prompts, lxiv
Line Mode Editing, 223
Online, lxiv
Question Marks, lxiv
HELP FRAME File (#9.2), 109, 110
Help processor
ACTION^XQH4, 110
EN^XQH, 109
EN1^XQH, 109
Help Processor
APIs, 109
Developer Tools, 109
Entry and Exit Execute Statements, 109
History, Revisions to Documentation and Patches, ii
HL7 MESSAGE TEXT File (#772), 135
HLP1^%ZIS, 68
HLP2^%ZIS, 69
HOLIDAY File (#40.5), 227, 229, 230, 231
Home Pages
Acronyms Intranet Website, 597
Adobe Website, lxiv
EPMO Website, lxi
Glossary Intranet Website, 597
Kernel Website, lxiv
VA Software Document Library (VDL), lxiv
HOME^%ZIS, 69
HOSPITAL LOCATION File (#44), 400
Host Files
$$DEFDIR^%ZISH, 112
$$DEL^%ZISH, 113
$$FTG^%ZISH, 114
$$GATF^%ZISH, 115
$$GTF^%ZISH, 116
$$LIST^%ZISH, 116
$$MV^%ZISH, 117
$$PWD^%ZISH, 119
$$STATUS^%ZISH, 119
APIs, 111
CLOSE^%ZISH, 112
Developer Tools, 111
OPEN^%ZISH, 118
How KIDS Matches Incoming Entries with Existing Entries, 154
How to
Ask Installation Questions (KIDS), 174
Obtain Technical Information Online, lxiii
Override MTLU, 381
Use this Manual, lx
Write Code to Queue Tasks, 301
HTTP Client
Toolkit APIs, 371
HTTP Protocol, 575
Hyperbolic Trigonometric Functions
$$ACOSH^XLFHYPER, 523
$$ACOTH^XLFHYPER, 524
$$ACSCH^XLFHYPER, 524
$$ASECH^XLFHYPER, 525
$$ASINH^XLFHYPER, 525
$$ATANH^XLFHYPER, 526
$$COSH^XLFHYPER, 526
$$COTH^XLFHYPER, 527
$$CSCH^XLFHYPER, 527
$$SECH^XLFHYPER, 528
$$SINH^XLFHYPER, 528
$$TANH^XLFHYPER, 529
Hyperbolic Trigonometric Functions (XLF), 523
I
ICD DIAGNOSIS File (#80), 386
ICD OPERATION/PROCEDURE File (#80.1), 386
IEN
Duplicate Record Merge Utilities, 360
INDEX File (#.11), 251
INIT^XPDID, 225
Initiating
Alpha/Beta Tracking (KIDS), 185
Build Entry, 185
INITKB^XGF, 489
Input Routines Option, 434
INSTALL File (#9.7), 190, 191, 192, 195, 196, 197, 200, 429, 439
Install Package(s) Option, 165
INSTALLATION MESSAGE Field (#21), 185
Instance
Parameter Tools
Toolkit APIs, 401
Institution, 281
INSTITUTION ASSOCIATION TYPES File (#4.05), 130, 132
Institution File
$$ACTIVE^XUAF4, 121
$$CIRN^XUAF4, 122
$$ID^XUAF4, 124
$$IDX^XUAF4, 124
$$IEN^XUAF4, 125
$$IEN^XUMF, 134
$$LEGACY^XUAF4, 125
$$LKUP^XUAF4, 126
$$MADD^XUAF4, 127
$$NAME^XUAF4, 127
$$NNT^XUAF4, 128
$$NS^XUAF4, 128
$$O99^XUAF4, 129
$$PADD^XUAF4, 129
$$PRNT^XUAF4, 130
$$RF^XUAF4, 131
$$RT^XUAF4, 131
$$STA^XUAF4, 133
$$TF^XUAF4, 133
$$WHAT^XUAF4, 134
APIs, 121
CDSYS^XUAF4, 121
CHILDREN^XUAF4, 122
Developer Tools, 121
F4^XUAF4, 123
LOOKUP^XUAF4, 126
MAIN^XUMFI, 135
MAIN^XUMFP, 136
PARENT^XUAF4, 130
SIBLING^XUAF4, 132
INSTITUTION File (#4), 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 255, 258, 281, 400, 472
Intended Audience, lx
INTRO^XUSRB, 293
Introduction, 1
IOXY^XGF, 489
IP Address Functions
$$CONVERT^XLFIPV, 567
$$FORCEIP4^XLFIPV, 568
$$FORCEIP6^XLFIPV, 569
$$VALIDATE^XLFIPV, 570
$$VERSION^XLFIPV, 571
IP Address Functions (XLF), 567
ISQED^%ZTLOAD, 334
K
K^XTLKMGR, 385
KERMIT
Toolkit APIs, 378
KERMIT HOLDING File (#8980), 378
Kernel
Error Trapping and Reporting, 438
Website, lxiv
Kernel Installation & Distribution System Menu, 142
Kernel Management Menu, 189, 283
KERNEL PARAMETERS File (#8989.2), 280, 282
KERNEL SYSTEM PARAMETERS File (#8989.3), 88, 112, 184, 189, 281, 290, 466
Key
Parameters
KIDS, 172
Variables
KIDS, 172
Key Lookup, 269
Key Variables
KIDS, 166
Server Options, 273
Tasks, 303
KIDS
$$PKG^XPDUTL, 198
$$PKGPAT^XPDIP, 191
$$VER^XPDUTL, 200
$$VERSION^XPDUTL, 201
Alpha/Beta Tracking, 184
APIs, 190
Build Entries, 143
Build Name, 148
Build Screens, 146
Checkpoint Parameter Node, 178
Checkpoints with Callbacks, 177
Checkpoints without Callbacks (Data Storage), 180
Choosing What Data to Send with a File, 152
Copy Build to Build, 145
Create a Build Using Namespace, 144
Creating Builds, 143
Data Dictionary Cleanup, 155
Data Dictionary Update, 148
Determining How Data is Installed at the Receiving Site, 153
Developer Tools, 142
Advanced Build Techniques, 165
Edit a Build, 146
Components, 156
Dialog Entries, 159
File List
DD (Full or Partial), 150
Files, 148
Forms, 159
Name & Version, Build Information, 147
Options and Protocols, 157
Routines, 158
Templates, 160
Edit a Build—Screen 4, 174
EN^XPDIJ, 191
Environment Check, 165
$$PATCH^XPDUTL, 198
$$RTNUP^XPDUTL, 199
Aborting Installations, 167
DIFROM Variable, 166
DISABLE Scheduled Options, Options, and Protocols Prompt, 168
Key Variables, 166
Move routines to other CPUs Prompt, 169
Queueing the Install Prompt, 168
Routine Install Options, 167
Run Twice, 165
Sample Routine, 170
Self-Contained Routine, 165
Verifying Patch Installation, 167
Version Numbers, 167
XPDENV Variable, 166
XPDNM Variable, 166
XPDNM(”SEQ”), 166, 172
XPDNM(”TST”), 166, 172
Exporting Globals, 163
Full DD (All Fields), 150
How KIDS Matches Incoming Entries with Existing Entries, 154
How to Ask Installation Questions, 174
Initiating Alpha/Beta Tracking, 185
Build Entry, 185
Installation Questions
M Code, 175
Questions and answers, 175
Skipping, 175
Subscripts, 175
Where Asked, 176
Limited Resolution of Pointers, 155
M Code in Questions, 175
Monitoring Alpha/Beta Tracking, 187
Multi-Package Builds, 163
NEW the DIFROM Variable When Calling MailMan, 173
Options, 142
Package File Link, 182
Partial DD (Some Fields), 150
File Number Level, 150
Multiple Level, 150
Pre- and Post-Install
Aborting installations, 171
Pre- and Post-Install Routines
$$COMCP^XPDUTL, 192
$$CURCP^XPDUTL, 193
$$LAST^XPDUTL, 194
$$NEWCP^XPDUTL, 196
$$OPTDE^XPDUTL, 197
$$PARCP^XPDUTL, 197
$$PRODE^XPDUTL, 199
$$UPCP^XPDUTL, 200
$$VERCP^XPDUTL, 201
BMES^XPDUTL, 192
Checkpoint Parameter Node, 178
Checkpoints without Callbacks, 180
DIFROM Variable, 172
Key
Parameters, 172
Variables, 172
MES^XPDUTL, 195
Sample Routine, 179
XPDNM Variable, 172
ZTQUEUED Variable, 173
Pre- and Post-Install Routines:Special Features, 171
PRE-TRANSPORTATION ROUTINE Field (#900), 170
Question Subscripts, 175
Re-Indexing Files, 155
Required Build, 181
Return All Install Dates/Times
$$CURCP^INSTALDT, 193
Send Alpha/Beta Usage to Programmers Option, 188
Sending Security Codes, 149
Setting a File’s Package Revision Data Node (Post-Install), 172
Skipping Installation Questions, 175
Terminating Alpha/Beta Tracking, 188
Local Test Software Option Usage, 189
National Release Software Option Usage, 189
Track Package Nationally, 183
Tracking Alpha/Beta Software Errors, 186
Transporting a distribution
Efficient builds, 164
Transporting a Distribution, 160
Update the Status Bar During Pre- and Post-Install Routines, 173
UPDATE^XPDID, 190
Usage Reports for Alpha/Beta Tracking, 187
Using Checkpoints (Pre- and Post-Install Routines), 176
When to Transport More than One Transport Global in a Distribution, 162
Where Questions Are Asked During Installations, 176
KILL^%ZISS, 79
KILL^%ZTLOAD, 304, 305, 336
KILL^XUSCLEAN, 289
Known issues
ASCII character subset, 575
Known Issues
Enforcing Whitespace, 576
Entity Substitutions, 575
File Access, 575
FTG^%ZISH
Parser Operation, 575
FTP Protocol, 575
HTTP Protocol, 575
KWIC Cross-reference, 381, 382
L
L^XTLKMGR, 385
Limited Resolution of Pointers (KIDS), 155
Line Mode Editing Help, 223
Link
Package File Link, 182
List File Attributes Option, lxiv
List Global Option, 222
List Routines Option, 432
LKUP^XTLKMGR, 386
LKUP^XTLKMGR API, 381
Load Routines, 434
Load/refresh checksum values into ROUTINE file Option, 434
LOCAL KEYWORD File (#8984.1), 382, 383, 385
LOCAL LOOKUP File (#8984.4), 381, 382, 383, 384, 385, 386, 387, 391
LOCAL SHORTCUT File (#8984.2), 382, 384, 390
LOCAL SYNONYM File (#8984.3), 382, 384, 386, 391
Lock Manager
ADDPAT^XULMU, 205
APIs
Lock Dictionary, 205
CLEANUP^XULMU, 202
Housekeeping
APIs, 202
Lock Dictionary
APIs, 205
PAT^XULMU, 205
SETCLEAN^XULMU, 203
UNCLEAN^XULMU, 204
Lock Template, 206
LOGOUT^XUSRB, 293
LOGRSRC^%ZOSV, 264
Logs
Error Log, 438
Long Running Tasks
Writing Two-step Tasks (TaskMan), 307, 308
Lookup Utility
Miscellaneous Developer Tools, 226
LOOKUP^XUAF4, 126
Low Usage of Alpha/Beta Test Options Option, 188
Lowercase
$$LOW^XLFSTR, 556
M
M Code in Questions (KIDS), 175
M Unit
APIs, 393
Developer Tools
Overview, 392
MAIL^XLFNSLK, 89
MAILMAN SITE PARAMETERS File (#4.3), 522
MAILMAN TIME ZONE File (#4.4), 514, 522
MAIN^XUMFI, 135
MAIN^XUMFP, 136
MASTER ENTRY FOR VUID Field, 415, 416, 422, 423
Math Functions
$$ABS^XLFMTH, 529
$$ACOS^XLFMTH, 530
$$ACOSDEG^XLFMTH, 530
$$ACOT^XLFMTH, 531
$$ACOTDEG^XLFMTH, 531
$$ACSC^XLFMTH, 532
$$ACSCDEG^XLFMTH, 532
$$ASEC^XLFMTH, 533
$$ASECDEG^XLFMTH, 533
$$ASIN^XLFMTH, 534
$$ASINDEG^XLFMTH, 534
$$ATAN^XLFMTH, 535
$$ATANDEG^XLFMTH, 535
$$COS^XLFMTH, 536
$$COSDEG^XLFMTH, 536
$$COT^XLFMTH, 537
$$COTDEG^XLFMTH, 537
$$CSC^XLFMTH, 538
$$CSCDEG^XLFMTH, 538
$$DECDMS^XLFMTH, 539
$$DMSDEC^XLFMTH, 539
$$DTR^XLFMTH, 540
$$E^XLFMTH, 540
$$EXP^XLFMTH, 541
$$LN^XLFMTH, 541
$$LOG^XLFMTH, 542
$$MAX^XLFMTH, 542
$$MIN^XLFMTH, 543
$$PI^XLFMTH, 543
$$PWR^XLFMTH, 544
$$RTD^XLFMTH, 544
$$SD^XLFMTH, 545
$$SEC^XLFMTH, 545
$$SECDEG^XLFMTH, 546
$$SIN^XLFMTH, 546
$$SINDEG^XLFMTH, 547
$$SQRT^XLFMTH, 547
$$TAN^XLFMTH, 548
$$TANDEG^XLFMTH, 548
Math Functions (XLF), 529
Measurement Functions
$$BSA^XLFMSMT, 549
$$LENGTH^XLFMSMT, 550
$$TEMP^XLFMSMT, 551
$$VOLUME^XLFMSMT, 552
$$WEIGHT^XLFMSMT, 553
Measurement Functions (XLF), 549
Menu Manager
$$ACCESS^XQCHK, 218
$$ADD^XPDMENU, 210
$$ADD^XPDPROT, 213
$$DELETE^XPDMENU, 210
$$DELETE^XPDPROT, 214
$$LKOPT^XPDMENU, 211
$$LKPROT^XPDPROT, 215
$$TYPE^XPDMENU, 212
$$TYPE^XPDPROT, 217
APIs, 210
Creating Options, 207
Developer Tools, 207
Direct Mode Utilities, 209
^XQ1, 209
FIND^XPDPROT, 214
NEXT^XQ92, 218
OP^XQCHK, 219
Option Types, 207
OUT^XPDMENU, 211
OUT^XPDPROT, 215
RENAME^XPDMENU, 212
RENAME^XPDPROT, 216
Variables for Developer Use, 208
XQ1, 209
XQMM(”A”) Variable, 208
XQMM(”B”) Variable, 208
XQMM(”J”) Variable, 209
XQMM(”N”) Variable, 209
XQUIT Variable, 208
Menus
ACTION, 224
Alpha/Beta Test Option Usage Menu, 187
Data Dictionary Utilities, lxiv
DI DDU, lxiv
EVE, 142
Kernel Installation & Distribution System, 142
Kernel Management Menu, 189, 283
Operations Management, 187
Programmer Options, 142, 221, 222, 428, 435, 437, 444
Routine Tools, 428, 444
Systems Manager Menu, 142, 436
Verifier Tools, 436
Verifier Tools Menu, 436
XPD MAIN, 142
XQAB MENU, 187
XTV MENU Menu, 436
XUKERNEL, 189, 283
XUPROG, 142, 428, 437, 444
XUPR-ROUTINE-TOOLS, 428, 444
XUSITEMGR, 187
ZTMQUEUABLE OPTIONS, 186
Merge Capability
Duplicate Resolution Utilities
Developing, 356
MERGE IMAGE File (#15.4), 368, 371
MES^XPDUTL, 195
Miscellaneous
$$EN^XUA4A71, 226
$$EN^XUWORKDY, 229
$$WORKDAY^XUWORKDY, 230
$$WORKPLUS^XUWORKDY, 231
^XQDATE, 227
^XUWORKDY, 227
APIs, 225
Developer Tools, 221
Date Conversions and Calculations, 227
Lookup Utility, 226
Progress Bar Emulator, 225
Direct Mode Utilities, 221
EXIT^XPDID, 226
INIT^XPDID, 225
TITLE^XPDID, 225
Miscellaneous Programmer Tools
^%Z Editor, 222
Delete Unreferenced Options Option, 221
Global Block Count Option, 221
List Global Option, 222
Test an option not in your menu Option, 222
Miscellaneous Tools
^%G Direct Mode Utility, 221
Monitor Taskman Option, 311
Monitoring
Alpha/Beta Tracking (KIDS), 187
Move routines to other CPUs Prompt (KIDS), 169
MSG^XQOR, 462
Multi-Package Builds (KIDS), 163
Multi-Term Look-Up (MTLU)
Callable Entry Point
XTLKKWL, 381
Direct Mode Utilities
^XTLKKWL, 381
How to Override, 381
LOCAL LOOKUP File (#8984.4), 381
MTLU and VA FileMan lookups, 381
MTLU and VA FileMan Supported Calls, 381
MTLU, How to Override
VA FileMan lookups and MTLU, 381
Supported Calls, 381
Toolkit APIs, 381
VA FileMan Supported Calls, 381
MUMPS OPERATING SYSTEM File (#.7), 154
MUnit Test Group edit Option, 392
MUNIT TEST GROUP File (#8992.8), 392
MXMLDOM
$$ATTRIB^MXMLDOM, 576
$$CHILD^MXMLDOM, 577
$$CMNT^MXMLDOM, 577
$$EN^MXMLDOM, 579
$$NAME^MXMLDOM, 580
$$PARENT^MXMLDOM, 580
$$SIBLING^MXMLDOM, 581
$$TEXT^MXMLDOM, 581
$$VALUE^MXMLDOM, 582
CMNT^MXMLDOM, 578
DELETE^MXMLDOM, 578
EN^MXMLPRSE, 583
TEXT^MXMLDOM, 582
MXMLDOM Routine, 574, 576
MXMLUTL
$$SYMENC^MXMLUTL, 588
$$XMLHDR^MXMLUTL, 588
N
NAME COMPONENTS File (#20), 232, 233, 238, 240, 241, 245, 250, 251, 252, 253
Name Standardization
$$BLDNAME^XLFNAME, 232
$$CLEANC^XLFNAME, 234
$$FMNAME^XLFNAME, 236
$$HLNAME^XLFNAME, 238
$$NAMEFMT^XLFNAME, 241
APIs, 232
DELCOMP^XLFNAME2, 250
Developer Tools, 232
NAMECOMP^XLFNAME, 240
STDNAME^XLFNAME, 245
UPDCOMP^XLFNAME2, 251
NAMECOMP^XLFNAME, 240
Namespaces
XU, 187
National Database
Capacity Planning, 265
National Provider Identifier (NPI)
$$CHKDGT^XUSNPI, 254
$$NPI^XUSNPI, 255
$$QI^XUSNPI, 256
$$TAXIND^XUSTAX, 257
$$TAXORG^XUSTAX, 258
APIs, 254
Developer Tools, 254
Navigation
DLAYGO, 106
Files, 106
NDEL^XPAR, 408
NEW PERSON File (#200), 18, 19, 20, 21, 37, 39, 40, 41, 42, 43, 45, 46, 90, 92, 93, 94, 101, 102, 233, 240, 245, 251, 255, 257, 269, 277, 279, 280, 285, 286, 290, 400, 464, 465, 466, 467, 468, 469, 472, 473, 475, 476
NEW the DIFROM Variable When Calling MailMan (KIDS), 173
NEXT^XQ92, 218
Nodes
^%ZOSF, 259
ACTJ, 260
AVJ, 260
BRK, 260
DEL, 260
EOFF, 260
EOT, 260
ERRTN, 260
ETRP, 260
GSEL, 260
JOBPARAM, 260
LABOFF, 260
LOAD, 260
LPC, 260
MAGTAPE, 261
MAXSIZ, 261
MGR, 259, 261
MTBOT, 261
MTERR, 261
MTONLINE, 261
MTWPROT, 261
NBRK, 261
NO-PASSALL, 261
NO-TYPE-AHEAD, 261
OS, 261
PASSALL, 261
PRIINQ, 261
PRIORITY, 261
PROD, 259, 261
PROGMODE, 261
RD, 261
RESJOB, 261
RM, 261
RSEL, 261
RSUM, 261
RSUM1, 262
SAVE, 262
SIZE, 262
SS, 262
TEST, 262
TMK, 262
TRAP, 262
TRMOFF, 262
TRMON, 262
TRMRD, 262
UCI, 262
UCICHECK, 262
UPPERCASE, 262
VOL, 259, 262
XY, 262
ZD, 262
Non-conforming XML, 575
NOTIPURG^XQALBUTL, 17
Number of Workdays Calculation, 229
O
Obsolete
$$NEWERR^%ZTER, 99
^XQDATE, 227
^XUWORKDY, 227
D H^XUS, 277
T0^%ZOSV, 266
T1^%ZOSV, 267
USER TERMINATE ROUTINE Option, 279
Obtaining
Data Dictionary Listings, lxiv
OE/RR LIST File (#100.21), 400
ONE^nsNTEG Direct Mode Utility, 436
Online
Documentation, lxiv
Technical Information, How to Obtain, lxiii
OP^XQCHK, 219
OPEN PARAMETERS Field, 60, 64
OPEN^%ZISH, 118
OPEN^%ZISUTL, 81
Operating System
APIs, 259
Operating System Interface
$$ACTJ^%ZOSV, 262
$$AVJ^%ZOSV, 263
$$EC^%ZOSV, 96
$$LGR^%ZOSV, 264
$$OS^%ZOSV, 265
$$VERSION^%ZOSV, 268
Developer Tools
Overview, 259
Direct Mode Utilities, 259
DOLRO^%ZOSV, 263
GETENV^%ZOSV, 264
Global Block Count, 259
LOGRSRC^%ZOSV, 264
SETENV^%ZOSV, 265
SETNM^%ZOSV, 266
T0^%ZOSV, 266
T1^%ZOSV, 267
Update ^%ZOSF Nodes, 259
Operations Management Menu, 187
OPKG^XUHUI, 101
OPTION File (#19), 101, 157, 184, 207, 208, 209, 211, 212, 218, 222, 278, 289, 302, 322, 323, 324, 461
Entry Action, 208
Exit Action, 208
Header, 208
OPTION SCHEDULING File (#19.2), 157, 301, 302, 303, 323
OPTION^%ZTLOAD, 337
Options
%Index of Routines, 429, 444
ACTION, 224
Actual Usage of Alpha/Beta Test Options, 187
Alpha/Beta Test Option Usage Menu, 187
Ask if Production Account Option, 283
Calculate and Show Checksum Values
Programmer Options Menu, 437, 438
Clean Error Trap, 96
Compare local/national checksums report, 433, 438
Compare Routines on Tape to Disk, 433
Compare Two Routines, 434
Creating, 207
Data Dictionary Utilities, lxiv
Delete Old (>14d) Alerts, 29, 33
Delete Routines, 434
Delete Unreferenced Options, 221
DI DDU, lxiv
DILIST, lxiv
Enter/Edit Kernel Site Parameters option, 189
Error Trap Display Option, 96
Errors Logged in Alpha/Beta Test (QUEUED), 185, 186
EVE, 142
Flow Chart Entire Routine, 431
Flow Chart from Entry Point, 431
Global Block Count, 221, 259
Group Routine Edit, 431, 432
Input Routines, 434
Install Package(s), 165
Kernel Installation & Distribution System, 142
Kernel Management Menu, 189, 283
KIDS, 142, 157
List File Attributes, lxiv
List Global, 222
List Routines, 432
Load/refresh checksum values into ROUTINE file, 434
Low Usage of Alpha/Beta Test Options, 188
Monitor Taskman, 311
MUnit Test Group edit, 392
Operations Management, 187
Output Routines, 434
Place Taskman in a WAIT State, 311
Print Alpha/Beta Errors (Date/Site/Num/Rou/Err), 188
Programmer Options, 142, 221, 222, 428, 435, 437, 444
Regularly Scheduled, 208
Remove Taskman from WAIT State, 311
Routine Compare - Current with Previous, 436, 437
Routine Edit, 432
Routine Tools, 428, 444
Routines by Patch Number, 432
Run MUnit Tests from Test Groups, 392
Send Alpha/Beta Usage to Programmers, 186, 188
Startup PROD check, 283
Stop Task Manager, 311
Systems Manager Menu, 142, 436
Test an option not in your menu, 222
Types, 207
Update with Current Routines, 436, 437
USER TERMINATE ROUTINE (Obsolete), 279
Variable Changer, 432
Verifier Tools, 436
Verifier Tools Menu, 436
Version Number Update, 432
XPD BUILD NAMESPACE, 144
XPD COPY BUILD, 145
XPD INSTALL BUILD, 165
XPD MAIN, 142
XQ UNREF’D OPTIONS, 221
XQAB ACTUAL OPTION USAGE, 187
XQAB AUTO SEND, 186, 188
XQAB ERR DATE/SITE/NUM/ROU/ERR, 188
XQAB ERROR LOG SERVER, 185
XQAB ERROR LOG XMIT, 185, 186
XQAB LIST LOW USAGE OPTS, 188
XQAB MENU, 187
XQUIT (Menu Manager), 208
XTFCE, 431
XTFCR, 431
XTMUNIT GROUP EDIT, 392
XTMUNIT GROUP RUN, 392
XT-OPTION TEST, 222
XTRDEL, 434
XTRGRPE, 431
XT-ROUTINE COMPARE, 434
XTSUMBLD-CHECK
Programmer Options Menu, 437, 438
XTV MENU Menu, 436
XT-VARIABLE CHANGER, 432
XT-VERSION NUMBER, 432
XTVR COMPARE, 436, 437
XTVR UPDATE, 436, 437
XU BLOCK COUNT, 221, 259
XU CHECKSUM LOAD, 434
XU CHECKSUM REPORT, 433, 438
XU SID ASK, 283
XU SID STARTUP, 283
XU USER SIGN-ON, 277
XU USER START-UP, 278
Package-specific Signon Actions, 278
XU USER TERMINATE, 279
XUEDITOPT, 207
XUINDEX, 429, 444
XUKERNEL, 189, 283
XUPR RTN EDIT, 432
XUPR RTN PATCH, 432
XUPRGL, 222
XUPROG, 142, 428, 437, 444
XUPRROU, 432
XUPR-ROUTINE-TOOLS, 428, 444
XUPR-RTN-TAPE-CMP, 433
XUROUTINE IN, 434
XUROUTINE OUT, 434
XUSITEMGR, 187
XUSITEPARM, 189
ZTMQUEUABLE OPTIONS, 186
OPTSTAT^XUTMOPT, 323
Orientation, lx
OUT^XPDMENU, 211
OUT^XPDPROT, 215
Output Routines Option, 434
Overview
Alerts
Developer Tools, 10
Device Handler
Developer Tools, 55
File Access Security
Developer Tools, 106
M Unit
Developer Tools, 392
Operating System Interface
Developer Tools, 259
Security Keys
Developer Tools, 269
Signon/Security
Developer Tools, 276
Spooling
Developer Tools, 299
TaskMan
Developer Tools, 301
XGF Function Library
Developer Tools, 483
XLF Function Library
Developer Tools, 500
OWNSKEY^XUSRB, 271
P
PACKAGE file (#9.4), 355
PACKAGE File (#9.4), 143, 174, 181, 182, 183, 191, 201, 279, 357, 358, 400, 429, 439
Package File Link (KIDS), 182
PACKAGE FILE LINK Field, 182, 183
Package Identifier
Alert Identifier, 11
Conventions, 11
PACKAGE NAMESPACE OR PREFIX Field (#23), 185
Package Revision Data Node, 172
PackMan Compare Utilities, 434
Page Length, 64
Parameter
Parameter Tools
Toolkit APIs, 401
PARAMETER DEFINITION File (#8989.51), 401, 403, 405, 410, 412
PARAMETER ENTITY File (#8989.518), 400
Parameter Template
Parameter Tools
Toolkit APIs, 401
PARAMETER TEMPLATE file (#8989.52), 401
PARAMETER TEMPLATE File (#8989.52), 412, 413
Parameter Tools
Toolkit APIs, 400
Entity Definition, 400
Instance Definition, 401
Parameter Definition, 401
Parameter Template Definition, 401
Value Definition, 401
Parameters
KIDS, 172
XPD NO_EPP_DELETE, 172
PARAMETERS File (#8989.5), 401, 403
Parameters, Site, 281
Parent Node, 586
PARENT^XUAF4, 130
Part 3 of Kernel Install, 106
Partial DD (Some Fields) (KIDS), 150
File Number Level, 150
Multiple Level, 150
PAT^XULMU, 205
PATCH APPLICATION HISTORY Field (#1105, Multiple), 191
Patches
History, xxi
PATIENT File (#2), 11, 20, 26, 205, 206
PATIENT^XQALERT, 26
PCLEAR^%ZTLOAD, 337
PERSON CLASS File (#8932.1), 464, 465
Phantom Jump, 209
PKILL^%ZISP, 71
Place Taskman in a WAIT State Option, 311
POSTAL^XIPUTIL, 5
POSTALB^XIPUTIL, 8
Post-Execution Commands
ZTREQ (TaskMan), 306
Post-execution commands - ZTREQ, 306
POTENTIAL DUPLICATE THRESHOLD%, 362
PRD^DILFD, 172
Pre- and Post-Install Routines
Special Features (KIDS), 171
PREP^XGF, 490
PRE-TRANSPORTATION ROUTINE Field (#900), 170
Print Alpha/Beta Errors (Date/Site/Num/Rou/Err) Option, 188
Printing Routines
Routine Tools, 432
Problems Related To Data Entry While Merging, 369
Programmer Options Menu, 142, 221, 222, 428, 435, 437, 444
Progress Bar Emulator
Miscellaneous Developer Tools, 225
PROTOCOL File (#101), 101, 137, 213, 214, 215, 216, 217, 461, 462, 595
Protocols
KIDS, 157
Proxy
Application Proxy User, 285, 286
PS Anonymous Directories, lxv
PSET^%ZISP, 72
PTPURG^XQALBUTL, 20
Public Identifier, 574
Purging
Alpha/Beta Tracking Data (KIDS), 188
Purging the Task Record (TaskMan), 305
PUT^XPAR, 409
Q
Question Mark Help, lxiv
Question Subscripts (KIDS), 175
Queueing the Install Prompt (KIDS), 168
Queuers
Non-interactive, 329
Queuers (TaskMan), 301
^%ZTLOAD, 301
EN^XUTMDEVQ, 302
Scheduled Options, 302
Queuing, 59, 61, 63
Spooler), 299
R
READ^XGF, 491
RECEIVE^XTKERMIT, 378
RECIPURG^XQALBUTL, 20
Reference Materials, lxiv
Reference Type
Controlled Subscription
$$CHECKAV^XUSRB, 291
$$CHKDGT^XUSNPI, 254
$$CREATE^XUSAP, 285
$$KCHK^XUSRB, 480
$$NPI^XUSNPI, 255
$$QI^XUSNPI, 256
$$TAXIND^XUSTAX, 257
$$TAXORG^XUSTAX, 258
^XUSESIG, 90
AVHLPTXT^XUS2, 284
CVC^XUSRB, 292
DELCOMP^XLFNAME2, 250
DIV4^XUSER, 472
DIVGET^XUSRB2, 481
DIVSET^XUSRB2, 481
DOLRO^%ZOSV, 263
DSD^ZISPL, 300
DSDOC^ZISPL, 300
EN^XPDIJ, 191
EN^XUTMTP, 324
EN1^XUPSQRY, 46
GETPEER^%ZOSV, 298
INTRO^XUSRB, 293
LOGOUT^XUSRB, 293
MAIN^XUMFI, 135
MAIN^XUMFP, 136
SAVEMERG^XDRMERGB, 371
SETUP^XUSRB, 293
UPDCOMP^XLFNAME2, 251
USERINFO^XUSRB2, 482
VALIDAV^XUSRB, 294
WITNESS^XUVERIFY, 297
Supported
$$%H^XLFDT, 503
$$ABS^XLFMTH, 529
$$ACCESS^XQCHK, 218
$$ACOS^XLFMTH, 530
$$ACOSDEG^XLFMTH, 530
$$ACOSH^XLFHYPER, 523
$$ACOT^XLFMTH, 531
$$ACOTDEG^XLFMTH, 531
$$ACOTH^XLFHYPER, 524
$$ACSC^XLFMTH, 532
$$ACSCDEG^XLFMTH, 532
$$ACSCH^XLFHYPER, 524
$$ACTIVE^XUAF4, 121
$$ACTIVE^XUSER, 467
$$ACTJ^%ZOSV, 262
$$ADD^XPDMENU, 210
$$ADD^XPDPROT, 213
$$ADD^XUSERNEW, 290
$$ADDRESS^XLFNSLK, 88
$$AESDECR^XUSHSH, 48
$$AESENCR^XUSHSH, 49
$$ASEC^XLFMTH, 533
$$ASECDEG^XLFMTH, 533
$$ASECH^XLFHYPER, 525
$$ASIN^XLFMTH, 534
$$ASINDEG^XLFMTH, 534
$$ASINH^XLFHYPER, 525
$$ASKSTOP^%ZTLOAD, 333
$$ATAN^XLFMTH, 535
$$ATANDEG^XLFMTH, 535
$$ATANH^XLFHYPER, 526
$$ATTRIB^MXMLDOM, 576
$$AVJ^%ZOSV, 263
$$B64DECD^XUSHSH, 50
$$B64ENCD^XUSHSH, 50
$$BASE^XLFUTL, 563
$$BLDNAME^XLFNAME, 232
$$BSA^XLFMSMT, 549
$$CCD^XLFUTL, 564
$$CHECKAV^XUVERIFY, 297
$$CHILD^MXMLDOM, 577
$$CHKSUM^XUSESIG1, 91
$$CIRN^XUAF4, 122
$$CJ^XLFSTR, 554
$$CLEANC^XLFNAME, 234
$$CMNT^MXMLDOM, 577
$$CMP^XUSESIG1, 91
$$CNV^XLFUTL, 564
$$CODE2TXT^XUA4A72, 464
$$COMCP^XPDUTL, 192
$$CONVERT^XLFIPV, 567
$$COS^XLFMTH, 536
$$COSDEG^XLFMTH, 536
$$COSH^XLFHYPER, 526
$$COT^XLFMTH, 537
$$COTDEG^XLFMTH, 537
$$COTH^XLFHYPER, 527
$$CRC16^XLFCRC, 500
$$CRC32^XLFCRC, 502
$$CSC^XLFMTH, 538
$$CSCDEG^XLFMTH, 538
$$CSCH^XLFHYPER, 527
$$CURCP^XPDUTL, 193
$$CURRSURO^XQALSURO, 39
$$DE^XUSESIG1, 92
$$DEA^XUSER, 468
$$DEC^XLFUTL, 565
$$DECDMS^XLFMTH, 539
$$DECODE^XTHCUTL, 377
$$DECRYP^XUSRB1, 294
$$DEFDIR^%ZISH, 112
$$DEL^%ZISH, 113
$$DELETE^XPDMENU, 210
$$DELETE^XPDPROT, 214
$$DEV^XUTMDEVQ, 312
$$DMSDEC^XLFMTH, 539
$$DOW^XLFDT, 503
$$DT^XLFDT, 504
$$DTIME^XUP, 465
$$DTR^XLFMTH, 540
$$E^XLFMTH, 540
$$EC^%ZOSV, 96
$$EN^MXMLDOM, 579
$$EN^XUSESIG1, 92
$$EN^XUWORKDY, 229
$$ENCODE^XTHCURL, 374
$$ENCRYP^XUSRB1, 295
$$ESBLOCK^XUSESIG1, 92
$$EXP^XLFMTH, 541
$$FIPS^XIPUTIL, 4
$$FIPSCHK^XIPUTIL, 5
$$FMADD^XLFDT, 505
$$FMDIFF^XLFDT, 505
$$FMNAME^XLFNAME, 236
$$FMTE^XLFDT, 506
$$FMTH^XLFDT, 511
$$FMTHL7^XLFDT, 511
$$FORCEIP4^XLFIPV, 568
$$FORCEIP6^XLFIPV, 569
$$FTG^%ZISH, 114
$$GATF^%ZISH, 115
$$GET^XPAR, 405
$$GET^XUA4A72, 464
$$GET^XUPARAM, 280
$$GETMASTR^XTID, 416
$$GETRPLC^XTIDTRM(), 348
$$GETSTAT^XTID, 417
$$GETSURO^XQALSURO, 39
$$GETURL^XTHC10, 372
$$GETVUID^XTID, 419
$$GTF^%ZISH, 116
$$HADD^XLFDT, 512
$$HANDLE^XUSRB4, 295
$$HDIFF^XLFDT, 512
$$HL7TFM^XLFDT, 513
$$HLNAME^XLFNAME, 238
$$HTE^XLFDT, 515
$$HTFM^XLFDT, 517
$$ID^XUAF4, 124
$$IDX^XUAF4, 124
$$IEN^XUAF4, 125
$$IEN^XUMF, 134
$$IEN^XUPS, 45
$$IEN2CODE^XUA4A72, 465
$$INHIBIT^XUSRB, 292
$$INSTALDT^XPDUTL, 193
$$INVERT^XLFSTR, 555
$$JOB^%ZTLOAD, 336
$$KSP^XUPARAM, 281
$$LAST^XPDUTL, 194
$$LEGACY^XUAF4, 125
$$LENGTH^XLFMSMT, 550
$$LGR^%ZOSV, 264
$$LIST^%ZISH, 116
$$LJ^XLFSTR, 555
$$LKOPT^XPDMENU, 211
$$LKPROT^XPDPROT, 215
$$LKUP^XPDKEY, 270
$$LKUP^XUAF4, 126
$$LKUP^XUPARAM, 282
$$LN^XLFMTH, 541
$$LOG^XLFMTH, 542
$$LOOKUP^XUSER, 473
$$LOW^XLFSTR, 556
$$MADD^XUAF4, 127
$$MAKEURL^XTHCURL, 375
$$MAX^XLFMTH, 542
$$MIN^XLFMTH, 543
$$MV^%ZISH, 117
$$NAME^MXMLDOM, 580
$$NAME^XUAF4, 127
$$NAME^XUSER, 475
$$NAMEFMT^XLFNAME, 241
$$NEWCP^XPDUTL, 196
$$NEWERR^%ZTER, 99
$$NNT^XUAF4, 128
$$NODEV^XUTMDEVQ, 316
$$NOW^XLFDT, 517
$$NS^XUAF4, 128
$$O99^XUAF4, 129
$$OPTDE^XPDUTL, 197
$$OS^%ZOSV, 265
$$PADD^XUAF4, 129
$$PARCP^XPDUTL, 197
$$PARENT^MXMLDOM, 580
$$PARSEURL^XTHCURL, 376
$$PATCH^XPDUTL, 198
$$PENDING^XQALBUTL, 18
$$PI^XLFMTH, 543
$$PKG^XPDUTL, 198
$$PKGPAT^XPDIP, 191
$$PKGPEND^XQALBUTL, 19
$$PRNT^XUAF4, 130
$$PROD^XUPROD, 283
$$PRODE^XPDUTL, 199
$$PROVIDER^XUSER, 476
$$PSET^%ZTLOAD, 337
$$PWD^%ZISH, 119
$$PWR^XLFMTH, 544
$$QQ^XUTMDEVQ, 318
$$RENAME^XPDKEY, 270
$$REPEAT^XLFSTR, 557
$$REPLACE^XLFSTR, 557
$$REQQ^XUTMDEVQ, 321
$$RES^XUDHSET, 58
$$REWIND^%ZIS, 70
$$RF^XUAF4, 131
$$RJ^XLFSTR, 558
$$RPLCLST^XTIDTRM, 349
$$RPLCMNT^XTIDTRM, 350
$$RPLCTRL^XTIDTRM, 351
$$RPLCVALS^XTIDTRM, 352
$$RSADECR^XUSHSH, 51
$$RSAENCR^XUSHSH, 52
$$RT^XUAF4, 131
$$RTD^XLFMTH, 544
$$RTNUP^XPDUTL, 199
$$S^%ZTLOAD, 343
$$SCH^XLFDT, 518
$$SCREEN^XTID, 420
$$SD^XLFMTH, 545
$$SDEA^XUSER, 477
$$SDETOX^XUSER, 471
$$SEC^XLFDT, 521
$$SEC^XLFMTH, 545
$$SECDEG^XLFMTH, 546
$$SECH^XLFHYPER, 528
$$SENTENCE^XLFSTR, 559
$$SETMASTR^XTID, 422
$$SETRPLC^XTIDTRM, 353
$$SETSTAT^XTID, 423
$$SETUP1^XQALERT, 31
$$SETVUID^XTID, 425
$$SHAHASH^XUSHSH, 53
$$SIBLING^MXMLDOM, 581
$$SIN^XLFMTH, 546
$$SINDEG^XLFMTH, 547
$$SINH^XLFHYPER, 528
$$SQRT^XLFMTH, 547
$$STA^XUAF4, 133
$$STATUS^%ZISH, 119
$$STRIP^XLFSTR, 559
$$SYMENC^MXMLUTL, 588
$$TAN^XLFMTH, 548
$$TANDEG^XLFMTH, 548
$$TANH^XLFHYPER, 529
$$TEMP^XLFMSMT, 551
$$TEXT^MXMLDOM, 581
$$TF^XUAF4, 133
$$TITLE^XLFSTR, 560
$$TM^%ZTLOAD, 345
$$TRIM^XLFSTR, 561
$$TYPE^XPDMENU, 212
$$TYPE^XPDPROT, 217
$$TZ^XLFDT, 522
$$UP^XLFSTR, 562
$$UPCP^XPDUTL, 200
$$VALIDATE^XLFIPV, 570
$$VALUE^MXMLDOM, 582
$$VCD^XLFUTL, 566
$$VDEA^XUSER, 479
$$VER^XPDUTL, 200
$$VERCP^XPDUTL, 201
$$VERSION^%ZOSV, 268
$$VERSION^XLFIPV, 571
$$VERSION^XPDUTL, 201
$$VOLUME^XLFMSMT, 552
$$VPID^XUPS, 45
$$WEIGHT^XLFMSMT, 553
$$WHAT^XUAF4, 134
$$WITHIN^XLFDT, 522
$$WORKDAY^XUWORKDY, 230
$$WORKPLUS^XUWORKDY, 231
$$XMLHDR^MXMLUTL, 588
^%ZIS, 58
^%ZISC, 71
^%ZTER, 97
^%ZTLOAD, 325
^XQDATE, 227
^XUP, 276
^XUS, 276
^XUSCLEAN, 277
^XUVERIFY, 296
^XUWORKDY, 227
^ZU, 277
ACTION^XQALERT, 22
ACTION^XQH4, 110
ADD^XPAR, 401
ADDPAT^XULMU, 205
AHISTORY^XQALBUTL, 13
ALERTDAT^XQALBUTL, 15
BLDLST^XPAREDIT, 410
BMES^XPDUTL, 192
CALL^%ZISTCP, 79
CCODE^XIPUTIL, 3
CDSYS^XUAF4, 121
CHG^XPAR, 402
CHGA^XGF, 485
CHILDREN^XUAF4, 122
CLEAN^XGF, 486
CLEANUP^XULMU, 202
CLEAR^XGF, 487
CLOSE^%ZISH, 112
CLOSE^%ZISTCP, 80
CLOSE^%ZISUTL, 81
CMNT^MXMLDOM, 578
DE^XUSHSHP, 93
DEL^XPAR, 402
DEL^XPDKEY, 269
DELETE^MXMLDOM, 578
DELETE^XQALERT, 23
DELETEA^XQALERT, 24
DELSTAT^XQALBUTL, 16
DESC^%ZTLOAD, 333
DEVICE^XUDHGUI, 55
DISP^XQORM1, 463
DISP^XUTMOPT, 322
DK^XTLKMGR, 383
DLL^XTLKMGR, 383
DQ^%ZTLOAD, 334
DSH^XTLKMGR, 384
DSY^XTLKMGR, 384
EDIT^XPAREDIT, 410
EDIT^XUTMOPT, 323
EDITPAR^XPAREDIT, 410
EN^MXMLPRSE, 583
EN^XDRMERG, 368
EN^XPAR, 403
EN^XPAREDIT, 411
EN^XQH, 109
EN^XQOR, 461
EN^XQORM, 462
EN^XUA4A71, 226
EN^XUSHSHP, 94
EN^XUTMDEVQ, 314
EN1^XQH, 109
EN1^XQOR, 461
ENDR^%ZISS, 73
ENS^%ZISS, 74
ENVAL^XPAR, 404
EXIT^XPDID, 226
F4^XUAF4, 123
FIND^XPDPROT, 214
FORWARD^XQALFWD, 37
FRAME^XGF, 488
GETACT^XQALERT, 25
GETENT^XPAREDIT, 411
GETENV^%ZOSV, 264
GETIREF^XTID, 414
GETLST^XPAR, 406
GETPAR^XPAREDIT, 412
GETWP^XPAR, 407
GKILL^%ZISS, 78
GSET^%ZISS, 78
H^XUS, 277, 283
HASH^XUSHSHP, 94
HLP1^%ZIS, 68
HLP2^%ZIS, 69
HOME^%ZIS, 69
INIT^XPDID, 225
INITKB^XGF, 489
IOXY^XGF, 489
ISQED^%ZTLOAD, 334
K^XTLKMGR, 385
KILL^%ZISS, 79
KILL^%ZTLOAD, 336
KILL^XUSCLEAN, 289
L^XTLKMGR, 385
LKUP^XTLKMGR, 386
LOGRSRC^%ZOSV, 264
LOOKUP^XUAF4, 126
MAIL^XLFNSLK, 89
MES^XPDUTL, 195
MSG^XQOR, 462
NAMECOMP^XLFNAME, 240
NDEL^XPAR, 408
NOTIPURG^XQALBUTL, 17
OP^XQ92, 218
OP^XQCHK, 219
OPEN^%ZISH, 118
OPEN^%ZISUTL, 81
OPKG^XUHUI, 101
OPTION^%ZTLOAD, 337
OPTSTAT^XUTMOPT, 323
OUT^XPDMENU, 211
OUT^XPDPROT, 215
OWNSKEY^XUSRB, 271
PARENT^XUAF4, 130
PAT^XULMU, 205
PATIENT^XQALERT, 26
PCLEAR^%ZTLOAD, 337
PKILL^%ZISP, 71
POSTAL^XIPUTIL, 5
POSTALB^XIPUTIL, 8
PREP^XGF, 490
PSET^%ZISP, 72
PTPURG^XQALBUTL, 20
PUT^XPAR, 409
READ^XGF, 491
RECEIVE^XTKERMIT, 378
RECIPURG^XQALBUTL, 20
REMVSURO^XQALSURO, 40
RENAME^XPDMENU, 212
RENAME^XPDPROT, 216
REP^XPAR, 409
REQ^%ZTLOAD, 338
RESCH^XUTMOPT, 324
RESETKB^XGF, 493
RESTART^XDRMERG, 370
RESTORE^XGF, 493
RFILE^XTKERM4, 378
RMDEV^%ZISUTL, 83
RTN^%ZTLOAD, 342
SAVDEV^%ZISUTL, 84
SAVE^XGF, 494
SAY^XGF, 495
SAYU, 496
SEND^XTKERMIT, 379
SET^XUPARAM, 282
SET^XUS1A, 284
SETA^XGF, 497
SETCLEAN^XULMU, 203
SETENV^%ZOSV, 265
SETNM^%ZOSV, 266
SETSURO1^XQALSURO, 41
SETUP^XQALERT, 27
SH^XTLKMGR, 390
SIBLING^XUAF4, 132
SIG^XUSESIG, 90
STAT^%ZTLOAD, 343
STDNAME^XLFNAME, 245
SUROFOR^XQALSURO, 42
SUROLIST^XQALSURO, 43
SY^XTLKMGR, 391
T0^%ZOSV, 266
T1^%ZOSV, 267
TED^XPAREDIT, 412
TEDH^XPAREDIT, 413
TEXT^MXMLDOM, 582
TITLE^XPDID, 225
TOUCH^XUSCLEAN, 312
UNCLEAN^XULMU, 204
UNWIND^%ZTER, 100
UPDATE^XPDID, 190
USE^%ZISUTL, 84
USER^XQALERT, 36
USERDATA^XQALBUTL, 21
USERLIST^XQALBUTL, 22
WIN^XGF, 498
XREF^XQORM, 463
XTLKKWL^XTLKKWL, 382
ZTSAVE^%ZTLOAD, 345
Regularly Scheduled Options, 208
Re-Indexing Files (KIDS), 155
REMOTE PROCEDURE File (#8994), 285
Remove Taskman from WAIT State Option, 311
REMVSURO^XQALSURO, 40
RENAME^XPDMENU, 212
RENAME^XPDPROT, 216
REP^XPAR, 409
REQ^%ZTLOAD, 338
Required Builds (KIDS), 181
RESCH^XUTMOPT, 324
RESETKB^XGF, 493
Resource Devices
SYNC FLAGs, 87
RESTART^XDRMERG, 370
RESTART^ZTMB Direct Mode Utility, 311
RESTORE^XGF, 493
Revision History, ii
Patches, xxi
Rewinding Devices, 70
RFILE^XTKERM4, 378
Right Margin, 64, 66
RMDEV^%ZISUTL, 83
ROOM-BED File (#405.4), 400
Routine Compare - Current with Previous Option, 436, 437
Routine Edit Option, 432
Routine Editor, 222, 224
ROUTINE File (#9.8), 158, 223, 433, 434
Routine Install Options (KIDS), 167
Routine Tools, 427
^ %RR Direct Mode Utility, 427
^ %RS Direct Mode Utility, 428
^%INDEX Direct Mode Utility, 427
^%Z Direct Mode Utility, 427
^%ZTP1 Direct Mode Utility, 427
^%ZTPP Direct Mode Utility, 427
^%ZTRDEL Direct Mode Utility, 427
^XINDEX Direct Mode Utility, 427
^XTFCE Direct Mode Utility, 427
^XTFCR Direct Mode Utility, 427
^XTRCMP Direct Mode Utility, 427
^XTRGRPE Direct Mode Utility, 427
^XTVCHG Direct Mode Utility, 427
^XTVNUM Direct Mode Utility, 427
Analyzing Routines, 429
Compare local/national checksums report Option, 433
Compare Routines on Tape to Disk Option, 433
Compare Two Routines Option, 434
Comparing Routines, 433
Delete Routines Option, 434
Deleting
Routines, 434
Direct Mode Utilities, 427
Flow Chart Entire Routine Option, 431
Flow Chart from Entry Point Option, 431
Group Routine Edit Option, 431
Input Routines Option, 434
List Routines option, 432
Load Routines, 434
Load/refresh checksum values into ROUTINE file Option, 434
Output Routines Option, 434
Printing Routines, 432
Routine Edit Option, 432
Routine Tools
Editing Routines, 431
Routines by Patch Number Option, 432
Save Routines, 434
TE^XTRCMP Direct Mode Utility, 427
Variable Changer Option, 432
Version Number Update Option, 432
Routine Tools Menu, 428, 444
Routines
%RR, 434
%RS, 434
%ZTRDEL, 434
^XTMUNIT, 392, 393
^XTMUNIT1, 392
^XTMZZUT1, 393
^XUP, 209
CHCEK1^XTSUMBLD, 438
CHECK^XTSUMBLD, 433, 435, 438
CHECK1^XTSUMBLD, 433, 435, 438
KIDS, 158
Load, 434
MXMLDOM, 574, 576
Save, 434
XQ1, 209
XQ12, 278
XTMUNIT, 394, 395
XTRCMP, 433, 434
XTVCHG, 432
XTVNUM, 432
ZTMGRSET, 222
Routines by Patch Number Option, 432
RPCs
XUPS PERSONQUERY, 46
XUS KEY CHECK, 271
RT logging, 266
RTN^%ZTLOAD, 342
RUM, 264, 265
Run MUnit Tests from Test Groups Option, 392
RUN^ZTMKU Direct Mode Utility, 311
RUNSET^XTMUNIT(setname) Direct Mode Utility, 392
S
S^%ZTLOAD, 304
SAC
VA Programming Standards and Conventions, 439
SAVDEV^%ZISUTL, 84
Save Routines, 434
SAVE^XGF, 494
SAVEMERG^XDRMERGB, 371
SAX Interface, 573, 587
SAY^XGF, 495
SAYU^XGF, 496
SECURITY KEY File (#19.1), 269
Security Keys
$$KCHK^XUSRB, 480
$$LKUP^XPDKEY, 270
$$RENAME^XPDKEY, 270
APIs, 269
DEL^XPDKEY, 269
Developer Tools
Overview, 269
Key Lookup, 269
OWNSKEY^XUSRB, 271
Person Lookup, 269
XUMGR, 222
XUPROG, 142, 222, 428, 434, 444
XUPROGMODE, 222, 428, 431, 432, 434, 438
Selecting Fields to Compare in Candidate Collection, Duplicate Resolution Utilities, 360
Selecting Templates (KIDS), 160
Self-Contained Routine (KIDS), 165
Send Alpha/Beta Usage to Programmers Option, 186, 188
SEND^XTKERMIT, 379
Sending Security Codes (KIDS), 149
Server Options
Appending Text to a Server Request Bulletin or Mailman Reply, 274
Customizing a Server Request Bulletin, 274
Developer Tools, 273
Key Variables, 273
Tools for Processing Server Requests, 273
SERVICE/SECTION File (#49), 33, 400
SET^XUPARAM, 282
SET^XUS1A, 284
SETA^XGF, 497
SETCLEAN^XULMU, 203
SETENV^%ZOSV, 265
SETNM^%ZOSV, 266
SETSURO1^XQALSURO, 41
Setting a File’s Package Revision Data Node (Post-Install) (KIDS), 172
SETUP^XQALERT, 27
SETUP^XUSRB, 293
SH^XTLKMGR, 390
Sibling Node, 587
SIBLING^XUAF4, 132
SIG^XUSESIG, 90
SIGN-ON LOG File (#3.081), 277
Signon/Security
$$PROD^XUPROD, 283
$$ADD^XUSERNEW, 290
$$CHECKAV^XUSRB, 291
$$CHECKAV^XUVERIFY, 297
$$CREATE^XUSAP, 285
$$DECRYP^XUSRB1, 294
$$ENCRYP^XUSRB1, 295
$$GET^XUPARAM, 280
$$HANDLE^XUSRB4, 295
$$INHIBIT^XUSRB, 292
$$KSP^XUPARAM, 281
$$LKUP^XUPARAM, 282
^XUP Direct Mode Utility, 276
^XUS Direct Mode Utility, 276
^XUSCLEAN Direct Mode Utility, 277
^XUVERIFY, 296
^ZU Direct Mode Utility, 277
APIs, 280
AVHLPTXT^XUS2, 284
Creating a Package-specific User Termination Action, 279
CVC^XUSRB, 292
Developer Tools
Overview, 276
Direct Mode Utilities, 276
^XUP, 276
^XUS, 276
^XUSCLEAN, 277
^ZU, 277
H^XUS, 277
GETPEER^%ZOSV, 298
H^XUS, 283
H^XUS Direct Mode Utility, 277
INTRO^XUSRB, 293
KILL^XUSCLEAN, 289
LOGOUT^XUSRB, 293
SET^XUPARAM, 282
SET^XUS1A, 284
SETUP^XUSRB, 293
VALIDAV^XUSRB, 294
WITNESS^XUVERIFY, 297
XU USER SIGN-ON Option, 277
XU USER START-UP Option, 278
Package-specific Signon Actions, 278
XU USER TERMINATE Option, 279
Signon/security Functions
SIG^XUSESIG, 90
Simple API for XML (SAX), 573, 587
Site Parameters, 281
Skip Installing or Delete a Routine (KIDS), 167
Skipping Installation Questions (KIDS), 175
Slave Printers, 63
Software Disclaimer, lx
Software-wide Variables, Protecting, 289
Soundex
$$EN^XUA4A71, 226
SPOOL DATA File (#3.519), 300
SPOOL DOCUMENT File (#3.51), 300
Spooling
APIs, 300
Developer Tools
Overview, 299
DSD^ZISPL, 300
DSDOC^ZISPL, 300
Site Parameters, 281
Spool Device, 63
Startup PROD check Option, 283
STAT^%ZTLOAD, 343
STATE File (#5), 3, 6, 8
STATION NUMBER Field (#99), 133, 135
STDNAME^XLFNAME, 245
Stop Requests, Checking for (TaskMan), 304
Stop Task Manager Option, 311
STOP^ZTMKU Direct Mode Utility, 311
Stopping tasks, 343
String Functions
$$CJ^XLFSTR, 554
$$INVERT^XLFSTR, 555
$$LJ^XLFSTR, 555
$$LOW^XLFSTR, 556
$$REPEAT^XLFSTR, 557
$$REPLACE^XLFSTR, 557
$$RJ^XLFSTR, 558
$$SENTENCE^XLFSTR, 559
$$STRIP^XLFSTR, 559
$$TITLE^XLFSTR, 560
$$TRIM^XLFSTR, 561
$$UP^XLFSTR, 562
String Functions (XLF), 554
Subtype, 64
SUROFOR^XQALSURO, 42
SUROLIST^XQALSURO, 43
SURROGATE END DATE/TIME Field (#.04), 43
SURROGATE FOR ALERTS Field(#.02), 43
SURROGATE START DATE/TIME Field (#.03), 43
SY^XTLKMGR, 391
Symbols
Found in the Documentation, lxi
SYNC FLAG, 310
SYNC FLAGs, 87
SYNC FLAGs to Control Sequences of Tasks, 310
System Identifier, 574
Systems Manager Menu, 142, 436
T
T0^%ZOSV, 266
T1^%ZOSV, 267
Table of Contents, xxii
Tables, lviii
TASK SYNC FLAG File (#14.8), 310, 311
TaskMan
$$ASKSTOP^%ZTLOAD, 333
$$DEV^XUTMDEVQ, 312
$$JOB^%ZTLOAD, 336
$$NODEV^XUTMDEVQ, 316
$$PSET^%ZTLOAD, 337
$$QQ^XUTMDEVQ, 318
$$REQQ^XUTMDEVQ, 321
$$S^%ZTLOAD, 343
$$TM^%ZTLOAD, 345
^%ZTLOAD, 87, 325
APIs, 312
Checking Environment, 311
DESC^%ZTLOAD, 333
Developer Tools
Overview, 301
Direct Mode Utilities, 311
^ZTMB, 311
^ZTMCHK, 311
^ZTMON, 311
Check Environment, 311
Remove Taskman from WAIT State Option, 311
Restart, 311
RESTART^ZTMB, 311
RUN^ZTMKU, 311
Starting, 311
STOP^ZTMKU, 311
Stopping, 311
WAIT^ZTMKU, 311
DISP^XUTMOPT, 322
DQ^%ZTLOAD, 334
EDIT^XUTMOPT, 323
EN^XUTMDEVQ, 314
EN^XUTMTP, 324
How to Write Code to Queue Tasks, 301
ISQED^%ZTLOAD, 334
KILL^%ZTLOAD, 336
Monitoring, 311
OPTION^%ZTLOAD, 337
OPTSTAT^XUTMOPT, 323
PCLEAR^%ZTLOAD, 337
Placing in a WAIT State, 311
Queuers, 301
Removing from WAIT State, 311
REQ^%ZTLOAD, 338
RESCH^XUTMOPT, 324
Restarting, 311
RTN^%ZTLOAD, 342
Starting, 311
Stopping, 311
SYNC FLAGs, 87
Task Status, 343
Tasks, 303
TOUCH^XUSCLEAN, 312
ZTSAVE^%ZTLOAD, 345
TaskMan (DCL context), 326
Tasks
^%ZIS Call within a Task, 307
^%ZTLOAD call within a task, 307
Destination, 304
Device, 304
DT Variable, 303
DUZ Array, 303
Error Trap, 304
IO* Array, 303
Post-execution commands, 306
Priority, 304
Purging the Task Record, 305
Queuing with no I/O device, 329
S^%ZTLOAD, 304
Saved Variables, 304
Stop Requests, 304
SYNC FLAGs, 310
TaskMan, 303
Tools, 304
Two-step tasks
Long Running Tasks, 307, 308
ZTDESC Variable, 303
ZTDTH Variable, 303
ZTIO Variable, 303
ZTQUEUED variable, 306
ZTQUEUED Variable, 303
ZTREQ, 306
ZTREQ Variable, 305
ZTRTN Variable, 303
ZTSK Variable, 304
ZTSTOP Variable, 304, 305
TASKS File (#14.4), 304, 305, 334
TE^XTRCMP Direct Mode Utility, 427, 433
TEAM File (#404.51), 400
TED^XPAREDIT, 412
TEDH^XPAREDIT, 413
Templates
Lock Template, 206
Templates (KIDS), 160
Term Definitions and XML Parser Concept, 574
Terminal Server, 60, 63
TERMINAL TYPE File (#3.2), 60, 64, 72, 73, 74
Terminating
Alpha/Beta Tracking
Local Test Software Option Usage, 189
National Release Software Option Usage, 189
Alpha/Beta Tracking (KIDS), 188
Termination Action, Creating, 279
Test an option not in your menu Option, 222
TEXT^MXMLDOM, 582
TIME ZONE field (#1), 522
TIMED READ (# OF SECONDS) Field (#200.1), 466
TIMED READ (# OF SECONDS) Field (#51.1), 466
TITLE^XPDID, 225
Toolkit
APIs, 346
Data Standardization APIs, 346
Developer Tools, 346
Direct Mode Utilities
Miscellaneous Tools, 221
Routine Tools, 427
Verification Tools, 435
Duplicate Record Merge
RESTART^XDRMERG, 370
SAVEMERG^XDRMERGB, 371
Duplicate Record Merge APIs, 355
Get Field Values of Final Replacement Term (Term/Concept)
$$RPLCVALS^XTIDTRM, 352
Get List of Replacement Terms, w/Optional Status Date and History (Term/Concept)
$$RPLCLST^XTIDTRM, 349
Get Mapped Terms (Term/Concept)
GETRPLC^XTIDTRM, 348
Get Replacement Trail for Term, with Replaced ”BY” and Replacement ”FOR” Terms (Term/Concept)
$$RPLCTRL^XTIDTRM, 351
HTTP Client APIs, 371
HTTP Client Helper
$$DECODE^XTHCUTL, 377
$$ENCODE^XTHCURL, 374
$$GETURL^XTHC10, 372
$$MAKEURL^XTHCURL, 375
$$PARSEURL^XTHCURL, 376
Kermit
RECEIVE^XTKERMIT, 378
RFILE^XTKERM4, 378
SEND^XTKERMIT, 379
KERMIT APIs, 378
M One Term to Another (Term/Concept)
$$RPLCMNT^XTIDTRM, 350
Multi-Term Look-Up (MTLU)
APIs, 381
DK^XTLKMGR, 383
DLL^XTLKMGR, 383
DSH^XTLKMGR, 384
DSY^XTLKMGR, 384
K^XTLKMGR, 385
L^XTLKMGR, 385
LKUP^XTLKMGR, 386
SH^XTLKMGR, 390
SY^XTLKMGR, 391
XTLKKWL^XTLKKWL, 382
Multi-Term Look-Up (MTLU) APIs, 381
Parameter Tools
$$GET^XPAR, 405
ADD^XPAR, 401
BLDLST^XPAREDIT, 410
CHG^XPAR, 402
DEL^XPAR, 402
EDIT^XPAREDIT, 410
EDITPAR^XPAREDIT, 410
EN^XDRMERG, 368
EN^XPAR, 403
EN^XPAREDIT, 411
Entity Definition, 400
ENVAL^XPAR, 404
GETENT^XPAREDIT, 411
GETLST^XPAR, 406
GETPAR^XPAREDIT, 412
GETWP^XPAR, 407
Instance Definition, 401
NDEL^XPAR, 408
Parameter Definition, 401
Parameter Template Definition, 401
PUT^XPAR, 409
REP^XPAR, 409
TED^XPAREDIT, 412
TEDH^XPAREDIT, 413
Value Definition, 401
Parameter Tools APIs, 400
Replacement Relationships, 347
Set Replacement Terms (Term/Concept)
SETRPLC^XTIDTRM, 353
VHA Unique ID (VUID)
$$GETMASTR^XTID, 416
$$GETSTAT^XTID, 417
$$GETVUID^XTID, 419
$$SCREEN^XTID, 420
$$SETMASTR^XTID, 422
$$SETSTAT^XTID, 423
$$SETVUID^XTID, 425
GETIREF^XTID, 414
VHA Unique ID (VUID) APIs, 414
XML Parser (VistA) APIs, 573, 574
Toolkit Queuable Options menu
Errors Logged in Alpha/Beta Test (QUEUED) Option, 185, 186
Tools for Processing Server Requests, 273
TOUCH^XUSCLEAN, 312
Track Package Nationally (KIDS), 183
TRANSPORT BUILD NUMBER Field (#63), 433
Transporting a Distribution (KIDS), 160
Troubleshooting
Errors
KIDS
Tracking Alpha/Beta Software Errors, 186
KIDS
Tracking Alpha/Beta Software Errors, 186
TYPE Field (#4), 212
Types
Options, 207
U
UNCLEAN^XULMU, 204
UNWIND^%ZTER, 100
Unwinder
APIs, 461
Developer Tools, 461
DISP^XQORM1, 463
EN^XQOR, 461
EN^XQORM, 462
EN1^XQOR, 461
MSG^XQOR, 462
XREF^XQORM, 463
Update ^%ZOSF Nodes, 259
Update the Status Bar During Pre- and Post-Install Routines (KIDS), 173
Update with Current Routines Option, 436, 437
UPDATE^XPDID, 190
UPDCOMP^XLFNAME2, 251
URLs
Acronyms Intranet Website, 597
Adobe Website, lxiv
EPMO Website, lxi
Glossary Intranet Website, 597
Kernel Website, lxiv
VA Software Document Library (VDL), lxiv
Usage Reports
Alpha/Beta Tracking (KIDS), 187
Use of
DIDEL in ^DIE Calls, 107
DLAYGO in ^DIC Calls, 107
DLAYGO When Navigating to Files, 106
USE PARAMETERS, 61
USE PARAMETERS Field, 64
Use this Manual, How to, lx
USE^%ZISUTL, 84
User
$$ACTIVE^XUSER, 467
$$CODE2TXT^XUA4A72, 464
$$DTIME^XUP, 465
$$GET^XUA4A72, 464
$$IEN2CODE^XUA4A72, 465
$$LOOKUP^XUSER, 473
$$NAME^XUSER, 475
$$PROVIDER^XUSER, 476
APIs, 464
Developer Tools, 464
DIV4^XUSER, 472
DIVGET^XUSRB2, 481
DIVSET^XUSRB2, 481
USERINFO^XUSRB2, 482
USER CLASS Field (#9.5), 285
USER CLASS File (#201), 285
User Interface
^%Z Editor, 222
USER TERMINATE ROUTINE Field, 279
USER TERMINATE ROUTINE Option (Obsolete), 279
USER TERMINATE TAG Field, 279
User Termination Action, Creating, 279
USER^XQALERT, 36
USERDATA^XQALBUTL, 21
USERINFO^XUSRB2, 482
USERLIST^XQALBUTL, 22
Using Checkpoints (Pre- and Post-Install Routines), 176
Using SYNC FLAGs to Control Sequences of Tasks (TaskMan), 310
USR CLASS File (#8930), 400
Utilities
%G, 222
%ZTPP, 432
^XUP, 184
^XUS, 184
Lookup Utility
Miscellaneous Developer Tools, 226, 227
PackMan Compare, 434
XINDEX, 429, 435, 439, 444
Error Codes, 441, 442
Utility Functions
$$BASE^XLFUTL, 563
$$CCD^XLFUTL, 564
$$CNV^XLFUTL, 564
$$DEC^XLFUTL, 565
$$VCD^XLFUTL, 566
Utility Functions (XLF), 563
V
VA FileMan, 573
VA FileMan lookups and MTLU, 381
VA FileMan Supported Calls
Multi-Term Look-Up (MTLU), 381
VA Programming Standards and Conventions (SAC), 435, 439
VA Software Document Library (VDL)
Website, lxiv
valid XML, 573
Validated Document, 573
VALIDAV^XUSRB, 294
Value
Parameter Tools
Toolkit APIs, 401
Variable Changer Option, 432
Variables
Developer Use in Menu Manager, 208
DIFROM, 166
DIFROM (KIDS), 172
KIDS, 166, 172
Server Options, 273
Tasks, 303
XPDENV, 166
XPDNM, 166
XPDNM (KIDS), 172
XPDNM(”SEQ”), 166, 172
XPDNM(”TST”), 166, 172
XQABTST, 184
XQMM(”A”) (Menu Manager), 208
XQMM(”B”) (Menu Manager), 208
XQMM(”J”) (Menu Manager), 209
XQMM(”N”) (Menu Manager), 209
XQUIT (Menu Manager), 208
ZTQUEUED (KIDS), 173
Verification Tools, 435
^%INDEX Direct Mode Utility, 436
^%ZTER Direct Mode Utility, 436
^nsNTEG Direct Mode Utility, 436
^XINDEX Direct Mode Utility, 436
^XTER Direct Mode Utility, 436
^XTERPUR Direct Mode Utility, 436
Calculate and Show Checksum Values Option
Programmer Options Menu, 437, 438
CHCKSUM ^XTSUMBLD Direct Mode Utility, 435, 437, 438
Direct Mode Utilities, 435
ONE^nsNTEG Direct Mode Utility, 436
Routine Compare - Current with Previous option, 436, 437
Update with Current Routines option, 437
Update with Current Routines Option, 436
Verifier Tools Menu, 436
Verifying Patch Installation (KIDS), 167
VERSION Field (#22, Multiple), 191
Version Number Update Option, 432
Version Numbers (KIDS), 167
VHA Unique ID (VUID)
Toolkit APIs, 414
VistA XML Parser
Introduction, 573
VOLUME SET File (#14.5), 335
W
WAIT^ZTMKU Direct Mode utility, 311
Websites
Acronyms Intranet Website, 597
Adobe Website, lxiv
EPMO, lxi
Glossary Intranet Website, 597
Kernel, lxiv
VA Software Document Library (VDL), lxiv
well formed XML, 573
When to Transport More than One Transport Global in a Distribution (KIDS), 162
Where Questions Are Asked During Installations (KIDS), 176
WIN^XGF, 498
WITNESS^XUVERIFY, 297
Workday Calculation, 227
Workday Offset Calculation, 231
Workday Validation, 230
World Wide Web Consortium (W3C’s), 573
Document Object Model (DOM), 573
World Wide Web Consortium Document Object Model Specification, 573
Writing Two-step Tasks (TaskMan)
Long Running Tasks, 307, 308
X
XDR REPOINTED ENTRY File (#15.3), 368
XDRMERG
EN^XDRMERG, 368
RESTART^XDRMERG, 370
XDRMERGB
SAVEMERG^XDRMERGB, 371
XGF Direct Mode Utilities, 484
XGF Function Library
$$READ^XGF, 491
^XGFDEMO, 484
^XGFDEMO Direct Mode Utility, 484
APIs, 485
CHGA^XGF, 485
CLEAN^XGF, 486
CLEAR^XGF, 487
Demo Program, 484
Developer Tools
Overview, 483
FRAME^XGF, 488
INITKB^XGF, 489
IOXY^XGF, 489
PREP^XGF, 490
RESETKB^XGF, 493
RESTORE^XGF, 493
SAVE^XGF, 494
SAY^XGF, 495
SAYU^XGF, 496
SETA^XGF, 497
System Requirements, 483
WIN^XGF, 498
XGFDEMO
^XGFDEMO, 484
XINDEX, 436
XINDEX Utility, 429, 435, 439, 444
Error Codes, 441, 442
XIPUTIL
$$FIPS^XIPUTIL, 4
$$FIPSCHK^XIPUTIL, 5
CCODE^XIPUTIL, 3
POSTAL^XIPUTIL, 5
POSTALB^XIPUTIL, 8
XLF Function Library
$$%H^XLFDT, 503
$$ABS^XLFMTH, 529
$$ACOS^XLFMTH, 530
$$ACOSDEG^XLFMTH, 530
$$ACOSH^XLFHYPER, 523
$$ACOT^XLFMTH, 531
$$ACOTDEG^XLFMTH, 531
$$ACOTH^XLFHYPER, 524
$$ACSC^XLFMTH, 532
$$ACSCDEG^XLFMTH, 532
$$ACSCH^XLFHYPER, 524
$$ASEC^XLFMTH, 533
$$ASECDEG^XLFMTH, 533
$$ASECH^XLFHYPER, 525
$$ASIN^XLFMTH, 534
$$ASINDEG^XLFMTH, 534
$$ASINH^XLFHYPER, 525
$$ATAN^XLFMTH, 535
$$ATANDEG^XLFMTH, 535
$$ATANH^XLFHYPER, 526
$$BASE^XLFUTL, 563
$$BSA^XLFMSMT, 549
$$CCD^XLFUTL, 564
$$CJ^XLFSTR, 554
$$CNV^XLFUTL, 564
$$CONVERT^XLFIPV, 567
$$COS^XLFMTH, 536
$$COSDEG^XLFMTH, 536
$$COSH^XLFHYPER, 526
$$COT^XLFMTH, 537
$$COTDEG^XLFMTH, 537
$$COTH^XLFHYPER, 527
$$CRC16^XLFCRC, 500
$$CRC32^XLFCRC, 502
$$CSC^XLFMTH, 538
$$CSCDEG^XLFMTH, 538
$$CSCH^XLFHYPER, 527
$$DEC^XLFUTL, 565
$$DECDMS^XLFMTH, 539
$$DMSDEC^XLFMTH, 539
$$DOW^XLFDT, 503
$$DT^XLFDT, 504
$$DTR^XLFMTH, 540
$$E^XLFMTH, 540
$$EXP^XLFMTH, 541
$$FMADD^XLFDT, 505
$$FMDIFF^XLFDT, 505
$$FMTE^XLFDT, 506
$$FMTH^XLFDT, 511
$$FMTHL7^XLFDT, 511
$$FORCEIP4^XLFIPV, 568
$$FORCEIP6^XLFIPV, 569
$$HADD^XLFDT, 512
$$HDIFF^XLFDT, 512
$$HL7TFM^XLFDT, 513
$$HTE^XLFDT, 515
$$HTFM^XLFDT, 517
$$INVERT^XLFSTR, 555
$$LENGTH^XLFMSMT, 550
$$LJ^XLFSTR, 555
$$LN^XLFMTH, 541
$$LOG^XLFMTH, 542
$$LOW^XLFSTR, 556
$$MAX^XLFMTH, 542
$$MIN^XLFMTH, 543
$$NOW^XLFDT, 517
$$PI^XLFMTH, 543
$$PWR^XLFMTH, 544
$$REPEAT^XLFSTR, 557
$$REPLACE^XLFSTR, 557
$$RJ^XLFSTR, 558
$$RTD^XLFMTH, 544
$$SCH^XLFDT, 518
$$SEC^XLFDT, 521
$$SEC^XLFMTH, 545
$$SECDEG^XLFMTH, 546
$$SECH^XLFHYPER, 528
$$SENTENCE^XLFSTR, 559
$$SIN^XLFMTH, 546
$$SINDEG^XLFMTH, 547
$$SINH^XLFHYPER, 528
$$SQRT^XLFMTH, 547
$$STRIP^XLFSTR, 559
$$TAN^XLFMTH, 548
$$TANDEG^XLFMTH, 548
$$TANH^XLFHYPER, 529
$$TEMP^XLFMSMT, 551
$$TITLE^XLFSTR, 560
$$TRIM^XLFSTR, 561
$$TZ^XLFDT, 522
$$UP^XLFSTR, 562
$$VALIDATE^XLFIPV, 570
$$VCD^XLFUTL, 566
$$VERSION^XLFIPV, 571
$$VOLUME^XLFMSMT, 552
$$WEIGHT^XLFMSMT, 553
$$WITHIN^XLFDT, 522
APIs, 500
CRC Functions, 500
Date Functions, 503
Developer Tools
Overview, 500
Hyperbolic Trigonometric Functions, 523
IP Address Functions, 567
Math Functions, 529
Measurement Functions, 549
String Functions, 554
Utility Functions, 563
XLFCRC
$$CRC16^XLFCRC, 500
$$CRC32^XLFCRC, 502
CRC Functions, 500
XLFDT
$$%H^XLFDT, 503
$$DOW^XLFDT, 503
$$DT^XLFDT, 504
$$FMADD^XLFDT, 505
$$FMDIFF^XLFDT, 505
$$FMTE^XLFDT, 506
$$FMTH^XLFDT, 511
$$FMTHL7^XLFDT, 511
$$HADD^XLFDT, 512
$$HDIFF^XLFDT, 512
$$HL7TFM^XLFDT, 513
$$HTE^XLFDT, 515
$$HTFM^XLFDT, 517
$$NOW^XLFDT, 517
$$SCH^XLFDT, 518
$$SEC^XLFDT, 521
$$TZ^XLFDT, 522
$$WITHIN^XLFDT, 522
Date Functions), 503
XLFHYPER
$$ACOSH^XLFHYPER, 523
$$ACOTH^XLFHYPER, 524
$$ACSCH^XLFHYPER, 524
$$ASECH^XLFHYPER, 525
$$ASINH^XLFHYPER, 525
$$ATANH^XLFHYPER, 526
$$COSH^XLFHYPER, 526
$$COTH^XLFHYPER, 527
$$CSCH^XLFHYPER, 527
$$SECH^XLFHYPER, 528
$$SINH^XLFHYPER, 528
$$TANH^XLFHYPER, 529
Hyperbolic Trigonometric Functions), 523
XLFIPV
$$CONVERT^XLFIPV, 567
$$FORCEIP4^XLFIPV, 568
$$FORCEIP6^XLFIPV, 569
$$VALIDATE^XLFIPV, 570
$$VERSION^XLFIPV, 571
IP Address Functions), 567
XLFMSMT
$$BSA^XLFMSMT, 549
$$LENGTH^XLFMSMT, 550
$$TEMP^XLFMSMT, 551
$$VOLUME^XLFMSMT, 552
$$WEIGHT^XLFMSMT, 553
Measurement Functions), 549
XLFMTH
$$ABS^XLFMTH, 529
$$ACOS^XLFMTH, 530
$$ACOSDEG^XLFMTH, 530
$$ACOT^XLFMTH, 531
$$ACOTDEG^XLFMTH, 531
$$ACSC^XLFMTH, 532
$$ACSCDEG^XLFMTH, 532
$$ASEC^XLFMTH, 533
$$ASECDEG^XLFMTH, 533
$$ASIN^XLFMTH, 534
$$ASINDEG^XLFMTH, 534
$$ATAN^XLFMTH, 535
$$ATANDEG^XLFMTH, 535
$$COS^XLFMTH, 536
$$COSDEG^XLFMTH, 536
$$COT^XLFMTH, 537
$$COTDEG^XLFMTH, 537
$$CSC^XLFMTH, 538
$$CSCDEG^XLFMTH, 538
$$DECDMS^XLFMTH, 539
$$DMSDEC^XLFMTH, 539
$$DTR^XLFMTH, 540
$$E^XLFMTH, 540
$$EXP^XLFMTH, 541
$$LN^XLFMTH, 541
$$LOG^XLFMTH, 542
$$MAX^XLFMTH, 542
$$MIN^XLFMTH, 543
$$PI^XLFMTH, 543
$$PWR^XLFMTH, 544
$$RTD^XLFMTH, 544
$$SD^XLFMTH, 545
$$SEC^XLFMTH, 545
$$SECDEG^XLFMTH, 546
$$SIN^XLFMTH, 546
$$SINDEG^XLFMTH, 547
$$SQRT^XLFMTH, 547
$$TAN^XLFMTH, 548
$$TANDEG^XLFMTH, 548
Math Functions), 529
XLFNAME
$$BLDNAME^XLFNAME, 232
$$CLEANC^XLFNAME, 234
$$FMNAME^XLFNAME, 236
$$HLNAME^XLFNAME, 238
$$NAMEFMT^XLFNAME, 241
NAMECOMP^XLFNAME, 240
STDNAME^XLFNAME, 245
XLFNAME2
DELCOMP^XLFNAME2, 250
UPDCOMP^XLFNAME2, 251
XLFNSLK
$$ADDRESS^XLFNSLK, 88
MAIL^XLFNSLK, 89
XLFSTR
$$CJ^XLFSTR, 554
$$INVERT^XLFSTR, 555
$$LJ^XLFSTR, 555
$$LOW^XLFSTR, 556
$$REPEAT^XLFSTR, 557
$$REPLACE^XLFSTR, 557
$$RJ^XLFSTR, 558
$$SENTENCE^XLFSTR, 559
$$STRIP^XLFSTR, 559
$$TITLE^XLFSTR, 560
$$TRIM^XLFSTR, 561
$$UP^XLFSTR, 562
String Functions), 554
XLFUTL
$$BASE^XLFUTL, 563
$$CCD^XLFUTL, 564
$$CNV^XLFUTL, 564
$$DEC^XLFUTL, 565
$$VCD^XLFUTL, 566
Utility Functions), 563
XML
$$ATTRIB^MXMLDOM, 576
$$CHILD^MXMLDOM, 577
$$CMNT^MXMLDOM, 577
$$EN^MXMLDOM, 579
$$NAME^MXMLDOM, 580
$$PARENT^MXMLDOM, 580
$$SIBLING^MXMLDOM, 581
$$SYMENC^MXMLUTL, 588
$$TEXT^MXMLDOM, 581
$$VALUE^MXMLDOM, 582
$$XMLHDR^MXMLUTL, 588
APIs, 576
CMNT^MXMLDOM, 578
DELETE^MXMLDOM, 578
Developer Tools, 576
EN^MXMLPRSE, 583
TEXT^MXMLDOM, 582
XML Document, 586
XML ENTITY CATALOG (#950)
Fields
.01, 574
1, 574
XML ENTITY CATALOG File (#950), 574
XML Parser
Known Issues
Retrieval of External Entities Using Non-Standard File Access Protocols, 575
Unsupported Character Encodings, 575
XML Parser
Known Issues
M Limitations, 575
XML Parser
Usage Example, 586
XML Parser (VistA)
APIs, 573, 574
XML Parser, VistA
Introduction, 573
XPAR
$$GET^XPAR, 405
ADD^XPAR, 401
CHG^XPAR, 402
DEL^XPAR, 402
EN^XPAR, 403
ENVAL^XPAR, 404
GETLST^XPAR, 406
GETWP^XPAR, 407
NDEL^XPAR, 408
PUT^XPAR, 409
REP^XPAR, 409
XPAREDIT
BLDLST^XPAREDIT, 410
EDIT^XPAREDIT, 410
EDITPAR^XPAREDIT, 410
EN^XPAREDIT, 411
GETENT^XPAREDIT, 411
GETPAR^XPAREDIT, 412
TED^XPAREDIT, 412
TEDH^XPAREDIT, 413
XPD BUILD NAMESPACE Option, 144
XPD COPY BUILD Option, 145
XPD INSTALL BUILD Option, 165
XPD MAIN Menu, 142
XPD NO_EPP_DELETE Parameter, 172
XPDENV Variable, 166
XPDID
EXIT^XPDID, 226
INIT^XPDID, 225
TITLE^XPDID, 225
UPDATE^XPDID, 190
XPDIJ
EN^XPDIJ, 191
XPDIP
$$PKGPAT^XPDIP, 191
XPDKEY
$$LKUP^XPDKEY, 270
$$RENAME^XPDKEY, 270
DEL^XPDKEY, 269
XPDMENU
$$ADD^XPDMENU, 210
$$DELETE^XPDMENU, 210
$$LKOPT^XPDMENU, 211
$$TYPE^XPDMENU, 212
OUT^XPDMENU, 211
RENAME^XPDMENU, 212
XPDNM Variable, 166, 172
XPDNM(”SEQ”) Variable, 166, 172
XPDNM(”TST”) Variable, 166, 172
XPDPROT
$$ADD^XPDPROT, 213
$$DELETE^XPDPROT, 214
$$LKPROT^XPDPROT, 215
$$TYPE^XPDPROT, 217
FIND^XPDPROT, 214
OUT^XPDPROT, 215
RENAME^XPDPROT, 216
XPDUTL
$$COMCP^XPDUTL, 192
$$CURCP^XPDUTL, 193
$$INSTALDT^XPDUTL, 193
$$LAST^XPDUTL, 194
$$NEWCP^XPDUTL, 196
$$OPTDE^XPDUTL, 197
$$PARCP^XPDUTL, 197
$$PATCH^XPDUTL, 198
$$PKG^XPDUTL, 198
$$PRODE^XPDUTL, 199
$$RTNUP^XPDUTL, 199
$$UPCP^XPDUTL, 200
$$VER^XPDUTL, 200
$$VERCP^XPDUTL, 201
$$VERSION^XPDUTL, 201
BMES^XPDUTL, 192
MES^XPDUTL, 195
XQ UNREF’D OPTIONS Option, 221
XQ1 Routine, 209
XQ12 Routine, 278
XQ92
NEXT^XQ92, 218
XQAB ACTUAL OPTION USAGE Option, 187
XQAB AUTO SEND Option, 186, 188
XQAB ERR DATE/SITE/NUM/ROU/ERR Option, 188
XQAB ERROR LOG SERVER Option, 185
XQAB ERROR LOG XMIT Option, 185, 186
XQAB ERRORS LOGGED File (#8991.5), 185
XQAB LIST LOW USAGE OPTS Option, 188
XQAB MENU Menu, 187
XQABTST Variable, 184
XQALBUTL
$$PENDING^XQALBUTL, 18
$$PKGPEND^XQALBUTL, 19
AHISTORY^XQALBUTL, 13
ALERTDAT^XQALBUTL, 15
DELSTAT^XQALBUTL, 16
NOTIPURG^XQALBUTL, 17
PTPURG^XQALBUTL, 20
RECIPURG^XQALBUTL, 20
USERDATA^XQALBUTL, 21
USERLIST^XQALBUTL, 22
XQALERT
$$SETUP1^XQALERT, 31
ACTION^XQALERT, 22
DELETE^XQALERT, 23
DELETEA^XQALERT, 24
GETACT^XQALERT, 25
PATIENT^XQALERT, 26
SETUP^XQALERT, 27
USER^XQALERT, 36
XQALFWD
FORWARD^XQALFWD, 37
XQALSURO
$$CURRSURO^XQALSURO, 39
$$GETSURO^XQALSURO, 39
REMVSURO^XQALSURO, 40
SETSURO1^XQALSURO, 41
SUROFOR^XQALSURO, 42
SUROLIST^XQALSURO, 43
XQCHK
$$ACCESS^XQCHK, 218
OP^XQCHK, 219
XQDATE
^XQDATE, 227
XQH
EN^XQH, 109
EN1^XQH, 109
XQH4
ACTION^XQH4, 110
XQOR
EN^XQOR, 461
EN1^XQOR, 461
MSG^XQOR, 462
XQORM
EN^XQORM, 462
XREF^XQORM, 463
XQORM1
DISP^XQORM1, 463
XQUIT Variable, 208
XREF^XQORM, 463
XTER Direct Mode Utility, 96
XTERPUR Direct Mode Utility, 96
XTFCE, 431
XTFCR Option, 431
XTHC10
$$GETURL^XTHC10, 372
XTHCURL
$$ENCODE^XTHCURL, 374
$$MAKEURL^XTHCURL, 375
$$PARSEURL^XTHCURL, 376
XTHCUTL
$$DECODE^XTHCUTL, 377
XTID
$$GETMASTR^XTID, 416
$$GETSTAT^XTID, 417
$$GETVUID^XTID, 419
$$SCREEN^XTID, 420
$$SETMASTR^XTID, 422
$$SETSTAT^XTID, 423
$$SETVUID^XTID, 425
GETIREF^XTID, 414
XTIDTRM
$$GETRPLC^XTIDTRM, 348
$$RPLCLST^XTIDTRM, 349
$$RPLCMNT^XTIDTRM, 350
$$RPLCTRL^XTIDTRM, 351
$$RPLCVALS^XTIDTRM, 352
$$SETRPLC^XTIDTRM, 353
XTKERM4
RFILE^XTKERM4, 378
XTKERMIT
RECEIVE^XTKERMIT, 378
SEND^XTKERMIT, 379
XTLKKWL
XTLKKWL^XTLKKWL, 382
XTLKKWL^XTLKKWL, 382
XTLKMGR
DK^XTLKMGR, 383
DLL^XTLKMGR, 383
DSH^XTLKMGR, 384
DSY^XTLKMGR, 384
K^XTLKMGR, 385
L^XTLKMGR, 385
LKUP^XTLKMGR, 386
SH^XTLKMGR, 390
SY^XTLKMGR, 391
XTMP Global, 160, 161, 168, 263, 264, 295, 296, 307
XTMUNIT GROUP EDIT Option, 392
XTMUNIT GROUP RUN Option, 392
XTMUNIT Routine, 394, 395
XT-OPTION TEST Option, 222
XTRCMP Routine, 433, 434
XTRDEL Option, 434
XTRGRPE Option, 431
XT-ROUTINE COMPARE Option, 434
XTSUMBLD-CHECK Option
Programmer Options Menu, 437, 438
XTV Global, 184
XTV MENU Menu, 436
XTV ROUTINE CHANGES File (#8991), 437
XT-VARIABLE CHANGER Option, 432
XTVCHG Routine, 432
XT-VERSION NUMBER Option, 432
XTVNUM Routine, 432
XTVR COMPARE Option, 436, 437
XTVR UPDATE Option, 436, 437
XU BLOCK COUNT Option, 221, 259
XU CHECKSUM LOAD Option, 434
XU CHECKSUM REPORT Option, 433, 438
XU Namespace, 187
XU SID ASK Option, 283
XU SID STARTUP Option, 283
XU USER SIGN-ON Extended Action, 284
XU USER SIGN-ON Option, 277
Package-specific Signon Actions, 277
XU USER START-UP Option, 278
Package-specific Signon Actions, 278
XU USER TERMINATE Option, 279
XUA4A71
$$EN^XUA4A71, 226
XUA4A72
$$CODE2TXT^XUA4A72, 464
$$GET^XUA4A72, 464
$$IEN2CODE^XUA4A72, 465
XUAF4
$$ACTIVE^XUAF4, 121
$$CIRN^XUAF4, 122
$$ID^XUAF4, 124
$$IDX^XUAF4, 124
$$IEN^XUAF4, 125
$$LEGACY^XUAF4, 125
$$LKUP^XUAF4, 126
$$MADD^XUAF4, 127
$$NAME^XUAF4, 127
$$NNT^XUAF4, 128
$$NS^XUAF4, 128
$$O99^XUAF4, 129
$$PADD^XUAF4, 129
$$PRNT^XUAF4, 130
$$RF^XUAF4, 131
$$RT^XUAF4, 131
$$STA^XUAF4, 133
$$TF^XUAF4, 133
$$WHAT^XUAF4, 134
CDSYS^XUAF4, 121
CHILDREN^XUAF4, 122
F4^XUAF4, 123
LOOKUP^XUAF4, 126
PARENT^XUAF4, 130
SIBLING^XUAF4, 132
XUDHGUI
DEVICE^XUDHGUI, 55
XUDHSET
$$RES^XUDHSET, 58
XUEDITOPT Option, 207
XUHUI
OPKG^XUHUI, 101
XUINDEX Option, 429, 444
XUKERNEL Menu, 189, 283
XULMU
ADDPAT^XULMU, 205
CLEANUP^XULMU, 202
PAT^XULMU, 205
SETCLEAN^XULMU, 203
UNCLEAN^XULMU, 204
XUMF
$$IEN^XUMF, 134
XUMFI
MAIN^XUMFI, 135
XUMFP
MAIN^XUMFP, 136
XUMGR Security Key, 222
XUP
$$DTIME^XUP, 465
^XUP Direct Mode Utility, 276
XUP Routine, 209
XUP Utility, 184
XUPARAM
$$GET^XUPARAM, 280
$$KSP^XUPARAM, 281
$$LKUP^XUPARAM, 282
SET^XUPARAM, 282
XUPR RTN EDIT, 432
XUPR RTN PATCH Option, 432
XUPRGL Option, 222
XUPROD
$$PROD^XUPROD, 283
XUPROG Menu, 142, 428, 437, 444
XUPROG Security Key, 142, 222, 428, 434, 444
XUPROGMODE Security Key, 222, 428, 431, 432, 434, 438
XUPRROU Option, 432
XUPR-ROUTINE-TOOLS Menu, 428, 444
XUPR-RTN-TAPE-CMP Option, 433
XUPS
$$IEN^XUPS, 45
$$VPID^XUPS, 45
XUPS PERSONQUERY RPC, 46
XUPSQRY
EN1^XUPSQRY, 46
XUROUTINE IN Options, 434
XUROUTINE OUT Option, 434
XUS
^XUS Direct Mode Utility, 276
H^XUS, 283
H^XUS Direct Mode Utility, 277
XUS KEY CHECK RPC, 271
XUS Utility, 184
XUS1A
SET^XUS1A, 284
XUS2
AVHLPTXT^XUS2, 284
XUSCLEAN
$$CREATE^XUSAP, 285
^XUSCLEAN Direct Mode Utility, 277
KILL^XUSCLEAN, 289
TOUCH^XUSCLEAN, 312
XUSEC Global, 269, 270
XUSER
$$ACTIVE^XUSER, 467
$$DEA^XUSER, 468
$$LOOKUP^XUSER, 473
$$NAME^XUSER, 475
$$PROVIDER^XUSER, 476
$$SDEA^XUSER, 477
$$SDETOX^XUSER, 471
$$VDEA^XUSER, 479
DIV4^XUSER, 472
XUSERNEW
$$ADD^XUSERNEW, 290
XUSESIG
^XUSESIG, 90
SIG^XUSESIG, 90
XUSESIG1
$$CHKSUM^XUSESIG1, 91
$$CMP^XUSESIG1, 91
$$DE^XUSESIG1, 92
$$EN^XUSESIG1, 92
$$ESBLOCK^XUSESIG1, 92
XUSHSH
$$AESDECR^XUSHSH, 48
$$AESENCR^XUSHSH, 49
$$B64DECD^XUSHSH, 50
$$B64ENCD^XUSHSH, 50
$$RSADECR^XUSHSH, 51
$$RSAENCR^XUSHSH, 52
$$SHAHASH^XUSHSH, 53
XUSHSHP
DE^XUSHSHP, 93
EN^XUSHSHP, 94
HASH^XUSHSHP, 94
XUSITEMGR Menu, 187
XUSITEPARM Option, 189
XUSNPI
$$CHKDGT^XUSNPI, 254
$$NPI^XUSNPI, 255
$$QI^XUSNPI, 256
XUSPF200 Key, 290
XUSRB
$$CHECKAV^XUSRB, 291
$$INHIBIT^XUSRB, 292
$$KCHK^XUSRB, 480
CVC^XUSRB, 292
INTRO^XUSRB, 293
LOGOUT^XUSRB, 293
OWNSKEY^XUSRB, 271
SETUP^XUSRB, 293
VALIDAV^XUSRB, 294
XUSRB1
$$DECRYP^XUSRB1, 294
$$ENCRYP^XUSRB1, 295
XUSRB2
DIVGET^XUSRB2, 481
DIVSET^XUSRB2, 481
USERINFO^XUSRB2, 482
XUSRB4
$$HANDLE^XUSRB4, 295
XUSTAX
$$TAXIND^XUSTAX, 257
$$TAXORG^XUSTAX, 258
XUTL Global, 463
XUTMDEVQ
$$DEV^XUTMDEVQ, 312
$$NODEV^XUTMDEVQ, 316
$$QQ^XUTMDEVQ, 318
$$REQQ^XUTMDEVQ, 321
EN^XUTMDEVQ, 314
XUTMOPT
DISP^XUTMOPT, 322
EDIT^XUTMOPT, 323
OPTSTAT^XUTMOPT, 323
RESCH^XUTMOPT, 324
XUTMTP
EN^XUTMTP, 324
XUVERIFY
$$CHECKAV^XUVERIFY, 297
^XUVERIFY, 296
WITNESS^XUVERIFY, 297
XUWORKDY
$$EN^XUWORKDY, 229
$$WORKDAY ^XUWORKDY, 230
$$WORKPLUS ^XUWORKDY, 231
^XUWORKDY, 227
Z
ZIS
$$REWIND^%ZIS, 70
^%ZIS, 58
HLP1^%ZIS, 68
HLP2^%ZIS, 69
HOME^%ZIS, 69
ZISC
^%ZISC, 71
ZISH
$$DEFDIR^%ZISH, 112
$$DEL^%ZISH, 113
$$FTG^%ZISH, 114
$$GATF^%ZISH, 115
$$GTF^%ZISH, 116
$$LIST^%ZISH, 116
$$MV^%ZISH, 117
$$PWD^%ZISH, 119
$$STATUS^%ZISH, 119
CLOSE^%ZISH, 112
OPEN^%ZISH, 118
ZISP
PKILL^%ZISP, 71
PSET^%ZISP, 72
ZISPL
DSD^ZISPL, 300
DSDOC^ZISPL, 300
ZISS
ENDR^%ZISS, 73
ENS^%ZISS, 74
GKILL^%ZISS, 78
GSET^%ZISS, 78
KILL^%ZISS, 79
ZISTCP
CALL^%ZISTCP, 79
CLOSE^%ZISTCP, 80
ZISUTL
CLOSE^%ZISUTL, 81
OPEN^%ZISUTL, 81
RMDEV^%ZISUTL, 83
SAVDEV^%ZISUTL, 84
USE^%ZISUTL, 84
ZOSV
$$ACTJ^%ZOSV, 262
$$AVJ^%ZOSV, 263
$$EC^%ZOSV, 96
$$LGR^%ZOSV, 264
$$OS^%ZOSV, 265
$$VERSION^%ZOSV, 268
DOLRO^%ZOSV, 263
GETENV^%ZOSV, 264
GETPEER^%ZOSV, 298
LOGRSRC^%ZOSV, 264
SETENV^%ZOSV, 265
SETNM^%ZOSV, 266
T0^%ZOSV, 266
T1^%ZOSV, 267
ZRTL Global
Obsolete, 267, 268
ZSTOP, 304
ZTER
$$NEWERR^%ZTER, 99
^%ZTER, 97
UNWIND^%ZTER, 100
ZTLOAD, 87
$$ASKSTOP^%ZTLOAD, 333
$$JOB^%ZTLOAD, 336
$$S^%ZTLOAD, 343
$$TM^%ZTLOAD, 345
^%ZTLOAD, 325
DESC^%ZTLOAD, 333
DQ^%ZTLOAD, 334
ISQED^%ZTLOAD, 334
KILL^%ZTLOAD, 336
OPTION^%ZTLOAD, 337
PCLEAR^%ZTLOAD, 337
REQ^%ZTLOAD, 338
RTN^%ZTLOAD, 342
STAT^%ZTLOAD, 343
ZTSAVE^%ZTLOAD, 345
ZTMB Direct Mode Utility, 311
ZTMCHK Direct Mode Utility, 311
ZTMGRSET Routine, 222
ZTMON Direct Mode Utility, 311
ZTMQUEUABLE OPTIONS Menu, 186
ZTQUEUED variable, 306
ZTQUEUED Variable, 173, 304
ZTREQ, 306
ZTREQ variable, 304
ZTREQ Variable, 305
ZTSAVE^%ZTLOAD, 345
ZTSTAT Variable, 310
ZTSTOP Variable, 304, 305
ZU
^ZU Direct Mode Utility, 277

image2.png

image3.png

image4.wmf

^TMP($J,35,0)="1st 255 of host file line..."

^TMP($J,35,"OVF",1)="next 255 chars of host file line..."

^TMP($J,35,"OVF",2)="next 255 characters of line etc."

Incrementing subscript for line

Overflow subscript level for line

Incremen

ting subscript for overflows

oleObject1.bin

^TMP($J,35,0)="1st 255 of host file line..."

^TMP($J,35,"OVF",1)="next 255 chars of host file line..."

^TMP($J,35,"OVF",2)="next 255 characters of line etc."

Incrementing subscript for line

Overflow subscript level for line

Incrementing subscript for overflows

image1.png

image5.jpg
Child1

|<top attrl="vall” attr2="val2”>
I<childl>childl text</childl>
|<child2>child2 text></child2>
</top>

Top

Childl text

attrl=vall
attr2=val2

Child2

Child2 text

